Compliance of a Robot Arm
using Torque-Based
Cartesian Impedance Control

Oussama Chouman

UNIVERSITY

Department of Automatic Control

MSc Thesis
TFRT-6147
ISSN 0280-5316

Department of Automatic Control
Lund University

Box 118

SE-221 00 LUND

Sweden

© 2021 by Oussama Chouman. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2021

Abstract

Robots have become important for the development of today’s society. They are
known to obtain good accuracy and repeatability of tasks that either complement
or replace human labour. Furthermore, as machine-learning is emerging in many
technologies, it is important to consider the uncertainties that are introduced when
this method is used in robotics. This work aims at developing and evaluating a
torque-based control framework that allows a state-of-the-art robot arm to be seen
as an impedance, and its environment as an admittance. Using said control strat-
egy allows the robot to behave as a mass-spring-damper system, which allows it
to act more compliantly. Moreover, the type of strategy is referred to as Cartesian
impedance control.

The framework was developed both in a simulation environment called Dynamic
Animation and Robotics Toolkit (DART), but also in the common robotics environ-
ment called Robot Operating System (ROS). The latter framework was in turn used
to run the control strategy on a real robot arm.

The results showed compliant behaviour of the robot in Cartesian space, both in sim-
ulation and on the real system. Translational, rotational and nullspace compliances
were tested and evaluated. For reasonably high stiffness values, these experiments
showed the expected behaviour when the robot was subjected to external forces.
Moreover, the behaviour of the robot in selected singularities was also studied, and
the robot was stable in all the tested singular configurations with no apparent oscil-
lations. The experiments also revealed some limitations of the real system, allowing
the robot to behave sufficiently well only under certain bounds. That is, the inheri-
tance of friction on the real system limited the tracking ability when lower stiffness
values were used. A peg-in-hole assembly experiment was also done both on the
real system and in simulation, in order to get a sense of how the robot performs in
the intended contact-rich tasks. The results of these experiments showed that the
robot could insert the attached peg into a box with a hole, after sliding along the

surface of the box for some time. The peg insertion in simulation was about twice
as fast compared to the real robot. Moreover, the specific path of the end-effector in
simulation compared to the real system did not match precisely due to uncertainties
and limitations such as calibration errors and friction.

Acknowledgements

I would like to take the opportunity to express my uttermost gratitude to my supervi-
sors, Dr. Bjorn Olofsson, Ph.D. students Matthias Mayr and Julian Salt Ducaju, for
the continuous advice, explanations and motivation throughout the whole project.
This work would certainly not have been possible without the guidance and support
of my supervisors.

I would also like to thank Joel Holmesson for giving me insight into his M.Sc.
Thesis work, which was performed in parallel and was similar to my thesis project
in many aspects.

Contents

[2.3 Cartesian Trajectory Planning|

|Z§ D znamlcs| .

IZS Impeaance COI’ItI'OIl

2.6 Control Shaping|

B Robot Setup and Software Interfaces|

3.1 TheRobotSetup|.,
B2 Robot Operating System].

3.3 Dynamic Animation and Robotics Toolkit)

4. Approach and Methodology|

4.2 Control Implementation|

4.3 Working Environment| L.
A4ROS Frameworkl

[5. Experiments and Results|

5.1 General Performancel

. gularities
|3.3 Peg—m—Flole|

10
12
12

14
14
16
20
22
24
25
29
29
30
34
35
35
39
41
42
44
44
46
46
55
57
61
61
64
65

Contents

[References|
|A. Appendix — Robot Setup|
[B. Appendix — Simulation Environments|

|C. Appendix — Computational Time|

[D.” Appendix — rqt_reconfigure Plugin|

[E.Appendix — Experiments]

66
70
71
73
74
76

1

Introduction

Robots are becoming a more prevalent part of today’s society [Statista Research
Department, 2021]]. They are suitable for performing a multitude of labour tasks
in many types of industries. Some of the labour can be fulfilled solely by robots,
while other types of tasks require interactions with a partially unknown environ-
ment, or human collaboration. In order to accomplish tasks, the robots are usually
equipped with a peripheral device called the end-effector, on which different types
of customizable tools can be mounted [Denning,|2017]]. The end-effector is hence a
crucial part in robotics, and it usually needs to be tracked in terms of position and
orientation during robot tasks.

Contact-rich tasks usually require some sort of controller that allows the robot to be-
come more compliant with the environment. One approach of dealing with this is by
implementing a control strategy, which, in a sense, makes the manipulator "softer".
More specifically, one such strategy is known as impedance control [Hogan, [1984].
This type of control makes the robot act as a virtual mass-spring-damper and ap-
plies said spring between the desired position and the actual position of the robot.
Essentially, the robot is treated as a mechanical impedance, while the environment is
treated as an admittance. Mechanical impedance is in fact the relationship between
force and position. Therefore, damaging equipment through collisions becomes less
likely as the contact forces would not be as elastic. This is especially favourable
when the tasks are contact-rich with the environment.

Another important aspect in robotics is the requirement of obtaining accurate robot
movements while doing tasks [Freidovich, 2013} p. 10]. More specifically, robot
arms that are used in industry should follow planned trajectories sufficiently well.
To obtain a precise movement, a reliable model of the robot needs to be developed.
However, it is not always the case that the robot follows the planned plan sufficiently
well [Placzek and Piszczek, [2018[. This may be due to several reasons and varies
for each robot model. Physical limitations and uncertainties of the control signals

9

Chapter 1. Introduction

with respect to the actual robot dynamics are some examples, which may lead to
exigent consequences. These in turn would bring on unexpected collisions or failure
to perform the desired task.

While machine-learning is emerging in many fields of technology, robotics is cer-
tainly not excluded [Williams, |2018]]. One aspect in machine-learning is based on
automatically finding an optimal strategy by iterative trial-and-error interactions,
namely reinforcement learning (RL) [Kaelbling et al., [1996]. Moreover, RL has
the potential to deal with complex tasks, such as robot manipulation, which would
otherwise be hard to implement using traditional programming. But as the name
suggests, the manipulations would be subjected to deviations as the algorithm is
learning from its mistakes. There are multiple ways of dealing with the effects of
said uncertainties. A common way is by using some type of compliance control, for
example, the previously mentioned impedance control.

1.1 Problem Statement

The main objective of this project is to develop and evaluate a control strategy that
integrates with the open source package collection Robot Operating System (ROS)
[Dattalo, 2018|]. More specifically, the type of strategy that is of interest is a torque-
driven impedance controller in Cartesian space. This should then be applied on a
real 7 degree of freedom (DoF) state-of-the-art robot arm, namely the LBR iiwa by
KUKA AG [KUKA, 2021] (see Figure [I.T), but also simulated using the Dynamic
Animation and Robotics Toolkit (DART) [Lee et al.,|2018]]. Since DART is not a part
of ROS, a base library that separates the control system from ROS should also
be developed. Some important properties of the base library should be that it is
not dependent on ROS, and that it should contain a set of functionalities that run
the calculations of a Cartesian impedance controller. This is explained further in
Chapters [3]and 4}

In addition to this, the following features are of interest:

* Being able to configure some parameters, like stiffness and damping of the
controller, during run-time.

* Being able to command a force or torque along a specific direction, that is
then exerted at the end-effector, during run-time.

The specific parameters that should become re-configurable during operation will
be discussed in the following chapters, but essentially these make up for the overall
impedance of the robot.

10

1.1 Problem Statement

Figure 1.1: Robot arm used for this project [KUKA, [2021]].

As of now, RL methods allow to master complex tasks in simulations [OpenAl,
2018]]. However, in order to make them more trustworthy and reliable in real sce-
narios, a framework that works well both in simulation and on the real robot is
desired.

Many tasks require a relocation of the end-effector. For this, a trajectory generator
is needed and will therefore also be developed, during the course of the project.

Related Work

This project is, in many aspects, similar to the one of another student’s thesis work.
In particular, the thesis that is being referred to here is "Accurate Simulation of a
Collaborative Robot Arm with Cartesian Impedance Control" by Joel Holmesson,
where the main objective was to find a control strategy for the robot, so that the
real robot and the simulations match well [Holmesson, 2021}, pp. 10-11]. The con-
trol framework that was developed was, however, based on forward dynamics, and
used feedback from force-torque measurements at the end-effector in the controller.
Moreover, the related work used joint positions as outputs of the controller, rather
than joint-torque control. There are advantages and disadvantages for both methods,
but they will not be discussed further here.

Besides this, the simulation environment of focus was different, as this work focused

11

Chapter 1. Introduction

more on the usage of DART, while the simulations in the related work were produced
from a ROS-integrated 3D-simulator called Gazebo together with the Open Dynam-
ics Engine (ODE) as physics engine [Gazebo, |2014]]. The approach for this project
is thus a different one from the work of Holmesson.

Scientific Basis In this work, the scientific basis in terms of impedance control is
built upon the book by Ott (2008)), which is mainly dedicated on the topic of torque-
based Cartesian impedance control. As for the related work, the controller is built
upon the presented paper by Scherzinger et al. (2017)).

1.2 Aim and Limitations

The targeted application of the framework is mainly in a reinforcement-learning
scenario, but also in combination with kinesthetic teaching of robots. The results
will mainly contribute to the development of a safer environment for robots that
work with contact-rich tasks, but also when the robots operate in collaboration with
humans [Abu-Dakka and Saveriano, 2020]]. By including an impedance controller
in robots it is also possible to apply experimental methods more safely. Moreover,
by developing the base library mentioned earlier for the control system, it would be
possible to use the same controller in other independent robotic simulation software.

The thesis will be based upon existing material and solutions, that is, both a the-
oretical foundation, but also a skeleton framework of the control strategy. What
this work is intended for is giving new insights of how the control strategy would
perform on a practical system, and how it may differ from the theoretical expecta-
tions. Furthermore, the framework intends to set a foundation in which the Cartesian
impedance controller becomes integrated with the DART environment. Thus, future
works could use the framework as a starting point for kinesthetic teaching of state-
of-the-art robots.

An issue may arise from intrinsic non-linearities in the robot dynamics, where, e.g.,
identifying counter-intuitive friction effects in the system can become a demanding
and time-consuming task. Therefore, system identification and friction compensa-
tion are not included in the scope of this thesis.

1.3 Outline

The structure of the report is shaped as follows. In Chapter [2] a basic overview of
the relevant theory is presented. Chapter [3] gives an overview of the specific robot
and software interface that was used. The methodology of the work is described
in Chapter [In Chapters [and [6] the experiments and results are presented and

12

1.3 Outline

discussed. Lastly, Chapter [/| concludes the results and some ideas for future work
are proposed.

13

2
Theory

In this chapter an introductory background to the relevant theory for the work is
described. Firstly, a brief overview of the general concepts in robotics is presented
in Sections[2.1]and[2.2] A short description of Cartesian trajectory planning is given
in Section In Section [2.4] a common modeling approach to the dynamics of
a robot arm is presented. Lastly, Section [2.5] introduces the concept of Cartesian
impedance control for a rigid manipulator.

2.1 Basics of Robotics

Robotics is a branch of science and technology which combines many other tech-
nology fields such as electromechanics, computer science and automation [Infineon,
2018]]. Robots are mainly used as a substitution for, or complemented to human la-
bor in hazardous environments or when the tasks at hand become too complicated
or repetitive to perform manually. They are also commonly used in collaboration
with humans to achieve shared goals. There are many types of robots which come
in different shapes, sizes, etc. One of the most commonly used today are the articu-
lated robots (also referred to as robot arms) [Guarana-DIY, [2020]. As this work is
done using a robot arm, the following theory will be shaped solely for this type of
robot. Furthermore, it will be assumed that the parts of the robot are rigid.

Joint Space

The mathematical descriptions and tools are based on a geometrical model-
representation of the robot with simplifications. For instance, it is assumed that the
robot is built by a serial chain of rigid links, in which the position and velocities
for each joint are given. The joints are also assumed to be revolute and independent
from the other joints and thus contribute to one DoF each, which makes it easier to
manage the mathematical modeling of the components needed.

14

2.1 Basics of Robotics

Figure 2.1: A simple robot model with two revolute joints, g and g;. A red dot (tool
center point) is held in place by a gripper tool (end-effector).

From a chain of links the joint space is defined by a set of general coordinates, also
known as the configuration,

g=(q1 a2 - 4qn) (2.1a)

g= (41 G2 - dn) (2.1b)
where n is total number of independent joints, g; is the i:th revolute joint angle and
¢; is the joint velocity of said joint. A simple model of a robot arm is shown in

Figure[2.1]

Coordinate Frames

In robotics it is important to keep track of where objects, sensors, robot joints and
the end-effector are located in space. This is usually done with the help of coordi-
nate frames. In order to describe the locations of the frames in space, they must be
measured in relation to some other frame [Sprague, |[2016]]. Usually, the origin is set
as the base frame. Furthermore, each frame is described as the composition of its
position and orientation in space (also referred as its pose).

For the position, it is quite straight forward to use the Cartesian system with one
axis per dimension. In three-dimensional space, the axes are usually denoted x, y
and z, respectively. On the other hand, the orientation can be represented in several
ways, for example using Euler angles, rotation matrices or quaternions.

The choice of which representation to use depends on the application, since they
have advantages and disadvantages relative to one another. For instance, quaternions

15

Chapter 2. Theory

are less computationally demanding and more numerically stable, but on the other
hand less intuitive to understand and visualize compared to Euler angles [Ben-Ari,
2014].

Transformations
In many applications, including robotics, the relationship between two arbitrary co-

ordinate frames is often described using homogeneous transformations [Freidovich,
2013], Ch. 2]. The matrix representation of a homogeneous transformation is defined

as follows,
0 0
o (R d
H” = (01X3 1) (2.2)

where the rotation matrix R® € R3*3 belongs to the group of rotations (SO(3)), de-
scribing the relative rotation, and d° € R3*! describes the relative translation. Note
that the lower row of (2.2)) is only included so that multiplication of transformation
matrices can be performed.

To illustrate how is used, consider two arbitrary frames denoted as the 0-frame
and 1-frame, respectively. Furthermore, some known position P* = (»° 1) ’ ,ple
R3*! in the O-frame is assumed to be known, where the last element in PP is, just
as the second row of @]), introduced as an auxiliary element. Then, in order to
represent the same point but in the 1-frame, the following formula can be used,

P’ = H)P! (2.3)
where o o
RY d
HY = 1 1 24
1 (om 1) @9

is the homogeneous transformation between the O-frame and 1-frame. The details
of how rotational operations are performed is left out here, but is explained in more
detail by Freidovich (2013).

2.2 Kinematics

The main idea of kinematics in robotics is to find a relationship between the joint
configuration and the end-effector pose of a robot. Furthermore, in order to effi-
ciently use a robot in different applications, the end-effector is a necessary compo-
nent [Denning, [2017]]. Consequently, kinematics needs to be used in the develop-
ment of robotic control systems and applications.

Essentially, the desired relation is obtained through strategically attached coordinate
frames along the joints of the robot. The translational and rotational relationships

16

2.2 Kinematics

between the frames are, in turn, usually described by homogeneous transformation
matrices for example using the Denavit-Hartenberg convention [Freidovich, [2013]
Ch. 2]. In Figure 2.2} the serial chain for the robot arm used in this project is shown.

Forward Kinematics

The procedure of finding the pose of the end-effector, is carried out by non-linear
equations which in turn are used to map the configuration space in (2.Ta)), to the
Cartesian pose [Freidovich, 2013} Ch. 2]. This is also known as forward kinematics
and can be defined mathematically as follows. Given a set of joint angles g € R",
the pose of the end-effector x € R™ (not to be mixed with one of the Cartesian
dimensions denoted by x) is obtained by computing

x=f(q)
iR R™ 2.5)

where f is the map-function and m is the number of variables of the end-effector.
Depending on how the orientation is described, the value of m will vary. The min-
imum amount of variables needed for full representation of the end-effector is six,
i.e., three dimensions for the position and three for the orientation.

Workspace All robots have a limit of the space that can be reached by the end-
effector. This space can also be seen as a set of all reachable coordinate frames
within the working range [Cao et al.,|[2011]].

Inverse Kinematics

When the pose of the end-effector is known and the robot configuration is of need,
the problem is then to solve the inverse of (2.5)), i.e.,

g=f"(x). (2.6)

This is, however, often not as straight forward, since the non-linear equations can
lead to tedious and time-consuming calculations [Spong et al., 2006]. Since the
workspace is limited, no feasible solution would exist if one tries to use (2.6) for
poses out of range. There may even exist an infinite amount of solutions, and this
is typically a result of reaching a singularity or when using a redundant manipula-
tor with more DoFs than the task requires. This is described in more detail in the
following subsection.

Jacobian

To get a sense of how fast the robot is moving both in the configuration- and work-
space, the first and second derivatives of (2.5)) are needed. The velocity x and accel-
eration ¥ are given by

i=J(q)d (2.72)
§=J(q)j+I(9)q (2.7b)

17

Chapter 2. Theory

154

Z[m]

0.5+

0 |
05 T—— " s

0 0
J Y 0505 [
15+
1 -
E
N
05
Z 0- -
J 02 002 020 02
" Y [m] X [m]

Figure 2.2: Robot arm (top) with its corresponding serial link of coordinate frames
(bottom), attached at the respective joint. The base and end-effector frames are lo-
cated at the bottom and top of the robot, respectively. Both frames are displayed in

purple.

18

2.2 Kinematics

and

J(g) = a];(;) (2.8)

where J(g) € R™*" is the analytical Jacobian matrix. There is also a way of directly
finding the relation between the end-effector twist v and the joint velocities by using
the following formula [Zhang, |[2018]],

v= (Z,) = Je(a) 2.9)

where J,(g) is the geometrical Jacobian matrix, v is the linear velocity and @ is the
angular velocity. It is important to note that v # x, because the angular velocity is
not necessarily equal to the rotational velocity in x. Either way, only the analytical
Jacobian will be considered from now on, and will be referred to as the Jacobian.

In (2.8) it is apparent that the velocity and acceleration profiles can be expressed
either in the Cartesian space or the joint space, depending on what is needed. How-
ever, to get the representation in joint space one would need to find the inverse of
the Jacobian, which is not necessarily a square matrix. The robot can have an arbi-
trarily high number of independent joints, while the end-effector is fully described
with six dimensions. Therefore, using pseudo inverses instead can allow obtaining
the joint velocities [Stewart, |1977]], i.e.,

g=J(q)"x (2.10)

where J(g)™ is the pseudo inverse of J(g). There are several ways of computing the
pseudo inverse, for example using singular value decomposition (SVD). By defining
the SVD of the Jacobian as J(q) = UXV*, the pseudo inverse is then given by

J(g) T =vEtuU* (2.11)

where U and V are orthogonal, U* and V* are the conjugates and X is a real diag-
onal matrix consisting of singular values. Furthermore, X* is shaped by taking the
inverse of all the (non-zero) diagonal elements of X.

Singularities There are some limitations to the robot when performing motions
and tasks. When two or more joints line up in a co-linear way, it may drive the robot
to a state commonly known as a singularity [Spong et al., [2006]. When the robot
reaches a singularity, several problems may occur. Some examples are:

 Certain motions may be unattainable.

* The end-effector may be blocked in certain directions.

19

Chapter 2. Theory

e There may be an infinite amount of solutions to the inverse kinematics in
singularities.

* The robot can result in unpredictable motions and oscillations due to imple-
mentation.

Reaching such a state is therefore undesirable and should preferably be avoided.

Furthermore, by inspection of the rank of the Jacobian in a certain configuration, one
can identify singularities. If the robot reaches a certain configuration that decreases
the rank of the matrix to a lower value than the maximum, a singularity has been
reached.

2.3 Cartesian Trajectory Planning

The tasks of a robot are usually planned in advance, consisting of trajectories ei-
ther in joint space or in terms of the end-effector pose [Freidovich, 2013} p. 10].
A trajectory embeds information that describes the motion with respect to time be-
tween an initial and a final pose (or configurations if the planning is done in the joint
space). This means that the trajectories consist of a time plan for how to follow a
path, subject to desired velocity and acceleration profiles.

There are different pros and cons with trajectory planning in joint or Cartesian space
[Castro, |2019]. For example, joint-space trajectories have smooth actuator motion
and have no problem with singularities. On the other hand, Cartesian-space trajec-
tories are easier to visualize and the motion in task-space is more predictable, but at
the expense of needing inverse kinematics, making it prone to singularities. Besides,
actuator motion is more difficult to verify.

Only Cartesian trajectories will be considered in the following details. The tra-
jectory planning can be formulated as follows. Given an initial end-effector pose
x;, the objective is to reach the final pose x; as fast as possible subject to the
velocity- and acceleration-constraints. Furthermore, separating the translational and
rotational parts simplifies the calculations [Luca, 2014].

Translational Planning

The path between the initial and final position can generally be defined as any
smooth geometric curve s(z) € [0, 1], see Figure s = 0 means that the trajec-
tory plan is just starting and s = 1 means that the final pose is reached. The initial
position, final position, maximum Cartesian velocity and maximum Cartesian ac-

celeration are denoted as p;, py, Viar and apqc. Moreover, the curve s(r) = % is

20

2.3 Cartesian Trajectory Planning

Wi

Figure 2.3: Path from the initial pose x; to the final pose x.

a parameterization of the trajectory profile A(z) € [0,L] with respect to the total arc
length L (L = ||ps — pil| for linear curves). Depending on the specific task of the
robot, some types of paths are more suitable than others, but for the sake of sim-
plicity, only linear paths are dealt with here. The linear interpolation between a start
and final point is given by

p(t) = pi+s(t)(pr—pi) (2.12)

with p(t) = (x(r) (1) z(t))T. Furthermore, it is assumed that the robot is at rest
at the start and at the end of the trajectory. By using classical mechanics and taking

into consideration said constraints, the translational motion profile becomes [Luca,
2014]

2
Amaxt
m;x , t €10,
V2
A(t) = § Vinaad — 575, 1 € [ty, 17 — 1] (2.13)
2amax
2 2
a r—t1
_M ety — 9 (1]
max

where ; is the time at which the maximum velocity is reached and ¢ is the final
time. To illustrate further, the velocity profile of a typical trajectory generated from
(2.13) is shown in Figure [2.4] If the trajectory is short enough, the maximum ve-
locity may not be reached. In that case the trajectory is then given by the following
formula instead [Luca, 2014

2
mand” 4 [0,27/2]
2 P
Ar) = , , (2.14)
Amax(tr/2)" Amax(t —17/2) tr. ty .
> - 5 +amgx2 (t— 2)1‘ € [tr/2,1y]
Rotational Planning

The rotational interpolation between an initial orientation and final orientation can
be performed with different techniques. A common method used in robotics is

21

Chapter 2. Theory

Figure 2.4: The velocity v = A as a function of time for a linear translational trajec-
tory.

called spherical linear interpolation (slerp) [Shoemake, [1985]. The technique is
based on quaternions and uses a constant angular velocity about a fixed axis. In
addition, the interpolation finds the shortest and most direct path for orientations.
Given an initial orientation ¢; and a final orientation ¢ fﬂ the interpolation becomes
[Shoemake, |1985] p. 248]

G(s) = Slerp(Gi,qr.s) (2.15)
where it is assumed that the function Slerp is a given operator.

The variable s can still be parameterized as s(f) = @, but A needs to be modi-

fied and L would now represent the arc angle [Luca, |2014]. Since the kinematics
describe rotational motion in this context, the constraints are bounded by the angu-
lar velocity @,y and angular acceleration @i, instead. These parameters will then

replace Viqy and dpqy in (2.13)) and 2.14).

2.4 Dynamics

So far, the underlying theory for the kinematic aspects of the motions has been
presented. But in order to be able to apply control strategies, a dynamic model of
the robot is often needed. That is, a model which provides a relation between the
generalized forces (input) acting on the robot and the motion of the robot (i.e., how
the configuration g changes with time). The model is described using equations of
motion of a rigid articulated manipulator. There are multiple approaches that lead to

! Note that §; and gy are not referring to robot joint configurations here, but to quaternions.

22

2.4 Dynamics

different formulations, all of which leads to equivalent equations [Deshpande and
Verma, [2010].

The equations of motion for robots are commonly derived from Lagrangian me-
chanics and this procedure will therefore be explained briefly. Lagrangian mechan-
ics can be used for many different types of systems in different applications when
the equations of motion are of need. The Lagrangian L is defined as the difference
between the kinetic and potential energies of a system [Freidovich, 2013|, Ch. 5],
ie.,

L(q,9) :==T(q,9)—V(q) (2.16)

where T and V are the kinetic and potential energies, respectively. The next step is to
rewrite Newton’s second law in terms of the Lagrangian, which yields the following
expression (also known as the Euler-Lagrange equations)

d/a 9 .
4 (ML) - gL =T = L @.17)

where 7; is the generalized force acting on link i. Equation (2.17) can in turn be used
to derive the dynamics of a robot with an arbitrarily amount of links #.

Single-linked Manipulator

Consider the example with a single-linked robot, see Figure [2.5] In this case a DC
motor with torque input u is coupled to a rigid link through a gear, with angles of
the motor shaft and link being 6,, and 6;, respectively. Thus 6,, = r6; holds for a
rigid-body robot, where r is the gear ratio. The energies are then given by

1., 1 ., 1 .
T = EJme,%, + EJ,ef = 5(r2Jm +J1)6f (2.18a)
V = Mgl(1 —cos6;) (2.18b)

where J;,, and J; are the rotational inertias of the motor and the link, respectively,
M is the mass of the link, g is the gravitational acceleration constant and / is the
distance between the joint and the center of mass of the link. Plugging in (2.18a)
and (2.18b)) into (2.17), the equations of motion eventually become

(P20 + ;)6 + Mglsin€; = ru (2.19)
where g;, i = 1 was replaced with 6; and 7 replaced with ru.

General Case

In practice it is much more convenient to rewrite the dynamic model of any robot
with more than two links into matrix form, as the equations would quickly become

23

Chapter 2. Theory

Figure 2.5: A single-linked manipulator, consisting of a DC motor (orange), gear
(grey) and a rigid link (pink).

hefty. It can be shown that the link dynamics of a robot with n links can be com-
pactly summarized as [Freidovich, 2013, Ch. 5]

M(q)G+C(q,4)q+g(q) = Ta + Tex (2.20a)

Text = JT (Q)Fext (2.20b)

where M(gq) € R™" is the inertia matrix, C(g,§) € R"*" is the Coriolis/Centrifugal
matrix, g(g) € R" are the gravity terms and 7, € R” are the desired torques. More-
over, T, € R" are the external joint torques which are related to the generalized
Cartesian forces F,; € R™ performing work on the end-effector. The generalized
forces are in turn given by

Fext:<fx fy fz Tx Ty Tz) (2-21)

where the first three and last three elements correspond to the forces and torques
being felt at each of the spatial dimensions, respectively. With this laid out, the
next step is to describe how the dynamics can be exploited to shape a Cartesian
impedance controller.

2.5 Impedance Control

The concept of integrating an impedance controller (i.e., a virtual mass-spring-
damper) on a manipulator was first proposed during the 80’s [Hogan, [1984]. The

24

2.6 Control Shaping

idea is quite simple; to treat the robot as a mechanical impedance with its envi-
ronment viewed as an admittance. In other words, the controller is essentially a
framework that sets a dynamical relationship between the external forces and the
motion of the robot.

Ultimately, the desired behaviour can be achieved by viewing external contact
forces as disturbances. If (2.20a) is formulated in Cartesian space, the following
is obtained [Ott, 2008, pp. 31-33]

M (x)5 4 Cy(x,%)x% + gx(x) = Fg+ Foxr (2.22)

where M, (x) € R™", Cy(x,%) € R"™" and g,(x) € R" are the Cartesian inertia, Cori-
olis/centrifugal, gravity matrices, respectively, and F; are the desired controlled
forces. These matrices and vectors are in turn given by

M (x) =T (q)M(q)] " (q)

Fy=7"T(q)1,. (2.23)

Notice that the objective of the controlled forces Fy in (2.22) is similar to the con-
trolled torques 7, in (2.20a)), but with respect to the Cartesian space instead. The
state variables are now x and X, hence the name Cartesian impedance control. Prac-
tically, the implementation would still employ the joint variables in (2.1a) and (2.1b)
as they are directly measured and accessible. Recap that measurements are not di-
rectly obtained from the end-effector for most industrial robots, including the one
used in this project. The external forces F,y; are not directly measured either (but
could be estimated from sensed joint torques) and 7, are the control inputs to the ac-
tuators. For these reasons, it is therefore easier to mix both dimensions in the actual
implementation.

2.6 Control Shaping

The variables of a manipulator can be separated into two groups; redundant and
non-redundant ones [Ott, 2008, Ch. 3-4]. If redundant variables are present, the
robot would have more DoFs than needed (n >7) to allow arbitrary pose of the end-
effector. A result of this is the possibility to keep the tool center point (TCP) fixed
while freely moving the robot along the redundant dimensions. This feature, which
is also known as nullspace motion, is useful in several scenarios. For instance, the
joints need to be in a specific configuration but maintain the same TCP in order to
avoid collision. Another usage is reproducibility of motions, i.e., to achieve suffi-
cient repetitional accuracy of the same task.

25

Chapter 2. Theory

Cartesian

T
o | Impedance
T

d Robot q,cj'

: System
> Null-space
Qi

_ | Impedance T,

Figure 2.6: Block diagram of the control system.

In order to combine the Cartesian impedance and nullspace motion in a simple way
the superposition principle is used. This results in the desired torque being separated
as

Ty=T,+ T, (2.24)

where 7. is responsible for the Cartesian impedance and 7, is responsible for
the nullspace impedance. To further illustrate the overall control system, a block-
diagram is shown in Figure 2.6

Cartesian Impedance

In order to make sense of a mechanical impedance in terms of control design, the
external forces F, in the Cartesian space are defined as [Ott, 2008, pp. 30-31]

Foxr = MyX, + Dgx, + Kyx, (2.25a)
Xe =X —Xg (2.25b)

where M;, D, and K; are the desired inertia, damping and stiffness matrices, re-
spectively. The deviation in position from the desired motion, x,, is given by xﬂ
Notice, however, that the error in orientation is not simply calculated by taking the
linear "difference” between two orientations. Rather, Equation (2.25b) only shows
a compact way of representing the deviation between two end-effector poses. To
get the actual rotational error, one could for example use quaternions. Given two
quaternions ¢; and gy, the difference g, is given by [Baker, 2021]

Ge =4r4; (2.26)

where g} is the conjugate of g;.

2 The deviation and desired motion can change with time, i.e., x, = x,(¢) and x; = x4(z).

26

2.6 Control Shaping

By inserting into (2.22)) and rewriting the expression, the control law even-
tually becomes [Ott, 2008, p. 34]

e =J"(q)Fy
= g(q) +J" (q) (M (x)%g + Cx(x, 1)) —
7 (¢ Mx(x)M,Il (Kaxe 4 Dgxe)+
M

2.27)
)

JT(q)(x(x)MJl _I)Fext

where [is the identity matrix. Since the external forces F,, can not be directly mea-
sured, the variable needs not be included in the control law. To deal with this issue, a
simplification can be made without affecting performance significantly. That is, by
setting the desired inertia equal to the robot inertia, i.e., M; = M,. The avoidance of
inertia shaping also allows focusing on designing the desired stiffness and damping
matrices instead. By taking into consideration said simplification, (2.27) is reduced
to

Te = g(q) +J7 (q) (My(x)%q + Cx(x,%) — Kyxe — Daie). (2.28)
Hence, the external forces are no longer a part of the control law.

Stiffness Designing an appropriate stiffness matrix depends mainly on the appli-
cation. Consider a first scenario, where it is expected that there will be contact with
the environment along a certain direction. Then the stiffness in the same direction
can be set to a smaller value to reduce the impact. On the other hand, if a good tra-
jectory tracking is desired, and no contact is expected along said direction, then the
stiffness should be set to something larger. The choice of stiffness is thus a trade-off
between contact force and accuracy.

The structure of the stiffness matrix is given by

_ (K K.
Kd_(KC K) (2.29)

where K;, K, and K. are the translational, rotational and coupling stiffness sub-
matrices, respectively.

Damping Damping coefficients are designed to obtain desired transient be-
haviour. The damping matrix can be chosen with respect to the generalized eigen-
values of K; [Ott, 2008, pp. 36-37],

Dy =20"Dg/AxQ (2.30)

where Q € R™" is a non-singular matrix, Dg € R"*" is a diagonal matrix where
the i:th element &; is a damping factor € [0,1] and Ax € R™" is a diagonal matrix
consisting of the generalized eigenvalues of K. If it is desirable to have a system

27

Chapter 2. Theory

that responds quickly but with minimal overshoot, the elements in D¢ should be
closer to the upper limit. On the other hand, if the damping factors are chosen to be
on the lower end, the robot would dissipate energy at a lesser rate, allowing it to be
more forgiving during contact with the environment.

Nullspace Impedance

There are several ways of modelling nullspace impedance to get the desired control
law. One way is through the so called nullspace projection approach [Ott, 2008 pp.
48-51]. Firstly, one can define the joint space impedance 7, as

T = _Drzq_Kn(q_Qd,n) (231)

where D, € R™" and K,, € R™" are the desired damping and stiffness matrices
in terms of nullspace motion. These matrices are designed in a similar way as the
methods used for the Cartesian impedance. Moreover, g, is the desired nullspace
configuration which satisfies f(g4,) = x4. The desired nullspace controller is then
given by

TWw=P(@)% (2.32)

where P(g) is a projection matrix constructed such that the Cartesian impedance is
dynamically decoupled from the joint-space impedance. This can be achieved by,
e.g., projection in the operational space [Ott,[2008}; Khatib, |1987]]

P(q)=1-T"(q)J(@)M ' (q)7" ()" T(g)M ' (g). (2.33)

The control law for the nullspace impedance can then be obtained by inserting (2.33))

into (2.32).

28

3

Robot Setup and Software
Interfaces

This chapter provides a brief overview of the robot setup and hardware as well as
software interfaces used throughout the work. In Section a description of the
robot setup used for this work is layed out. In Section [3.2] a general overview of
the open source program Robotic Operating System (ROS) is given, whereas in
Section [3.3] a short introduction to the Dynamic Animation and Robotics Toolkit
(DART) is given.

3.1 The Robot Setup

As mentioned earlier, the robot used in this project is a 7-DoF manipulator. The
manipulator is called LBR iiwa and is manufactured by KUKA AG [KUKA, 2021],
see Figure It is a light-weight robot, especially designed for human-robot—
collaboration tasks. With a weight of around 20 kg and a payload capacity of
around 7 kg, the robot is suitable for human—-robot—collaboration and complex as-
sembly tasks. For insight of how the work-setup for this project looked like, see

Appendix [A]

The robot consists of actuators that manipulate the joint positions with specified
input torques through the equations and relationships, as described in Chapter
These input torques are in turn obtained or manipulated, by reading or commanding
torques to the motors that are mounted by the joints. There are two internal con-
trol modes for this robot, in which one of them needs to be used during operation.
Namely, these are the position and the torque modes. Naturally, the torque-mode
can be used here, as the framework is essentially implementing a force-controlled
impedance.

29

Chapter 3. Robot Setup and Software Interfaces

Another feature that KUKA provides is a Fast Robot Interface (FRI) [KUKA, 2021],
which allows implementing external controllers with up to 1000 Hz execution fre-
quency. However, using this frequency range is only possible for implementations
that can run as fast, or faster.

3.2 Robot Operating System

Robot Operating System, commonly referred to as ROS, is a collection of tools and
libraries that aim at configuring the software of the robot such that the complexity of
achieving desired behaviour is reduced [Dattalo, 2018]]. The platform is not actually
an operating system, but includes diverse features similar to one, such as hardware
abstraction, low-level device control and communication between processes. Be-
cause of its powerful features, ROS is used by many in the robotics community,
and has steadily been growing ever since it was released. The software can also be
seen as the interface that allows communication and data flow between different
applications, or more commonly known as the middleware [IBM Cloud Education,
2021].

ROS Control

One of the core packages for managing controllers is called ros_control [Chitta
et al.,|2017]. This extension can be seen as a safe layer of communication, which
focuses both on real-time performance, but also on managing controllers in a robot-
agnostic way. The way data flow from the controller, all the way to the actuators, is
visualized in Figure[3.T] For instance, the Controller Manager is responsible for
managing available controllers, whereas hardware_interface: :RobotHW acts as
an interface between the hardware and ROS. Furthermore, using the ros_control
package allows to apply controllers on the real robot and in simulation, without
needing to do any modifications in the implementation.

Hardware Interfaces and Inheritance In the package, there are multiple hard-
ware interfaces that are responsible for sending or receiving commands to the hard-
ware to choose from. The commands could, for instance, be effort-based (torque),
position-based or velocity-based. Needless to say, the effort-joint-interface is of
particular interest for this project, since the Cartesian impedance controller in this
project uses torque inputs.

The interface requires an inheritance of four distinct methods, namely init,
starting, update and stopping [Meeussen,2016]. In the init method, the con-
troller is loaded and initialized in non-realtime. Furthermore, the robot joints, sen-
sors and actuators interfaces are also initialized here. The next function, starting,
unlike the first one, is executed in real-time, and is called once every time a con-
troller is started up. This is where the initial parameters of the robot are retrieved and

30

3.2 Robot Operating System

Figure 3.1: Overview of the package ros_control [Chitta et al.,[2017]. The figure
is bounded by the Attribution 4.0 International license.

used to assign values such as initial desired pose, stiffness and more. It also allows
the controller to be stopped and started without having to reinitialize the hardware.
The function can also be seen as a middle-step between hardware-interface startup
and the update-loop, update. In this latter function, the calculations that update the
controller at every sampling instant are performed. The last method, stopping, is
called when the controller is stopped.

Components of a ROS Program

A typical ROS system is easiest visualized by a graph, consisting mainly of nodes,
topics and messages [Dattalo, 2018]]. A node is in other words a running program
or executable file, in which computations are performed. The developer can build
multiple nodes and let them communicate with each other by sending information,
i.e., messages, over some links named fopics.

Each node can publish messages over multiple topics and also receive messages
from multiple topics at the same time. A master node keeps track of the publica-
tions and subscriptions on all topics. Thus, developers need not worry about low-

31

Chapter 3. Robot Setup and Software Interfaces

Figure 3.2: A simple ROS network consisting of three nodes, including the master
node. In this case, nodel is publishing on topicl, and node?2 is listening to this
topic. Both of these nodes are also communicating with the master through the topic
rosout.

level data flow, even if the system would consist of tens or hundreds of processes
communicating with each other. A simple ROS network can be observed in Fig-
ure[3.2] The described software architecture is also known as the publish-subscribe
pattern [Buck et al., 2018]].

Simulations

Before applying any implementation on a real system, it is wise to simulate some
virtual representative model beforehand [Hosseinpour and Hajihosseini, 2009].
Clearly, robotics is not excluded, as simulations not only help visualizing the dy-
namics of the robot, but also provide a safe way of testing new experimental meth-
ods and applications without risking damaging expensive equipment.

In ROS, the simulation is usually performed with the help of a virtual robot model
described with, e.g., the Universal Robot Description Format (URDF), which is
shaped using extensible markup language (XML) [Sucan and Kay, 2019]. URDF
includes a physical description of an object, i.e., geometrical shape, joints, links,
friction and more. A simplified example of how an URDF-file could look like is
shown in Figure [3.3] There are also other types of formats that could be used for
describing robots, but they are deliberately excluded here. The URDF format was not
chosen for any particular reason here, but has historically been used within ROS,
even if there might be better suited formats available today.

Graphical Visualization

To visualize the simulations in ROS, a graphical user interface (GUI) can be used.
There are several GUISs that are integrated with ROS, each serving a different pur-
pose. The ones mainly used for this project are called Gazebo, rviz and rqt.

Gazebo Gazebo is a 3D-simulator, which aims to display how the robot would
behave in a real-world scenario, as accurately as possible [Gazebo, |[2014]]. The sim-

32

3.2 Robot Operating System

<?xml version="1.0"7>
<robot name="simple_example">
<link name="linkl ">
<visual >
<geometry >
<cylinder length="1" radius="0.2"/>
</geometry >
</visual >
</link >
</robot>

Figure 3.3: A simple XML-block that defines a cylindrically shaped link with the
length of 1 units and radius of 0.2 units.

ulator supports several physics engines, but uses a specific one by default. Depend-
ing on how accurate the model is described compared to the real system, one can
achieve desired behaviour both with the real robot and in simulation. When the
URDF-model of the iiwa from KUKA is launched in Gazebo, the environment in

Figure[B.1] Appendix[B] is shown.

rviz Unlike Gazebo, rviz aims at aiding the developer with visualization tools in
order to efficiently debug robot applications [Hershberger et al.,|2018]. It can give
insight to what information the robot is processing, by providing, e.g., the state of
the robot, sensor values and coordinate frames. This GUI is therefore a suitable tool
for visually debugging robot applications in ROS. In Figure [B.2] Appendix [B] the
URDF-model of the robot in the rviz environment is shown.

rqt The rqt-package is a framework that utilizes tools and interfaces in the form
of plugins [Thomas et al., |2016]. Over time there have emerged many useful
plugins from rqt. For example, one could use rqt_graph to visualize a ROS-
system consisting of nodes, topics and messages, similar to the system in Fig-
ure@ There are also other useful topics that were used for this work. For instance,
rqt_reconfigure, which allows dynamically configuring parameters in run-time,
which is convenient for tweaking parameters in a debugging scenario.

Tweaking Parameters During Operation

As mentioned in the previous paragraphs, one could interact with the robot in real-
time using rqt plugins. However, in practice, some parameters usually need to be
varied with respect to the robot state, but also to the specific application, without
needing to manually tweak parameters. In essence, this means that the variables
need to have the ability to change in run-time, automatically. Firstly, the parameters
that should become configurable are the stiffnesses and damping factors along each

33

Chapter 3. Robot Setup and Software Interfaces

Cartesian dimension. This is necessary in order to achieve certain tasks. Another
variable that is also desired to change during run-time is the desired pose of the
end-effector. In fact, it is needed for commanding new Cartesian locations of the
end-effector within the workspace. Lastly, applying Cartesian wrenches at the end-
effector is also something that should be a possibility. For instance, this might be
useful in scenarios where the payload is heavy. One could then counter the weight
by "pushing" in the opposite direction with a force with equal magnitude.

To achieve this, one could for instance setup ROS-subscribers that listen for incom-
ing information over some topics, which in turn manipulate the robot/controller ac-
cordingly. With this approach, information could readily be published (commanded)
from outside of the ROS-system through, e.g., Python or Bash scripts. This is ex-
plained further in Section[4.3]

3.3 Dynamic Animation and Robotics Toolkit

The Dynamic Animation and Robotics Toolkit (DART) is an open source library
intended for robotic applications and simulations [Lee et al.,2018]]. Fundamentally,
the toolkit is a physics engine, making it possible to animate kinematic and dynamic
applications in robotics.

Just like the simulators in ROS, DART allows simulating and visualizing robots that
are described with URDF. Furthermore, the DART-engine can also be used in other
robotic simulators, including Gazebo. However, Gazebo uses the Open Dynamics
Engine by default [Gazebo, 2014].

RobotDART

RobotDART is a wrapper around the DART physics engine [Chatzilygeroudis and
Mouret, 2021]]. In Figure Appendix [B] the URDF-model of the robot in the
RobotDART environment is shown. Furthermore, this extension is mainly developed
for robotics and machine-learning researchers, making it suitable for this project.

One could then ask why this simulator should be used instead of Gazebo, that would
have the possibility to use the same physics engine. On the other hand, RobotDART’s
implementation is said to have low overhead and delay, unlike Gazebo. An impli-
cation of this is that parallelization is easier to achieve using RobotDART. In fact,
this is one of the main limitations when using Gazebo, as parallelization is difficult
to achieve with the simulator.

34

4

Approach and Methodology

In the coming sections, the approach and methodology of the work are presented.
First, a general overview of the work is presented in Section4.1] In Sections
B3] a deeper explanation of the methodology is given. Lastly, in Section [4.6] the
licenses of the software tools used are mentioned.

4.1 General Overview

In order to setup a framework that is convenient both for the ROS and DART envi-
ronments, a library with the base algorithms was developed separately. That is, an
implementation of the Cartesian trajectory planner and Cartesian impedance con-
troller described in Sections [2.3]and [2.6] respectively. While the base libraries take
care of the underlying calculations, the ROS and DART frameworks implement the
desired features presented in Section [I.1] That is, the ability to configure parame-
ters as well as exerting Cartesian forces during run-time. The overall structure of
the framework can also be visualized as in Figure d.1]

The main framework of the base algorithms is separated into two libraries, mainly
the Cartesian Trajectory Generator and the Cartesian Impedance Controller. How-
ever, since the latter library had a higher priority, a limited time was spent on the
trajectory generator. At a later occasion during the project, it was further developed
by one of the supervisors to be more generic and user-friendly{ﬂ In fact, it also in-
cluded the possibility to generate overlay motions that replicate a circular search
motion. Nevertheless, its features was mainly used to perform simple trajectories
and motions, replicating applications such as a peg insertion.

1T am thankful that one of my advisors, Matthias Mayr, contributed with this.

35

Chapter 4. Approach and Methodology

Figure 4.1: The overall structure of the framework.

Table 4.1: Example parameters that are given to the trajectory generator.

Initial Position (m) x=0, y=0, z=0
Initial Orientation (rad) roll=0, pitch=0, yaw=0
Final Position (m) x=1, y=1, z=1
Final Orientation (rad) roll=r/2,pitch = 0,yaw = 7
Vmax (m/S) 0.3
Amax (M/s?) 0.05
Wmax (rad/s) 0.3
Olmax (rad/s?) 0.05
Synced? yes

Cartesian Trajectory Generation

The algorithm of the Cartesian trajectory planner implements the formulas pre-
sented in Section @ that is, a generator that can take translational and rota-
tional reference changes independently from each other. The algorithm also allows
for planning synchronized trajectories, i.e., making the translational and rotational
plans to start and finish at the same time.

Consider the case where a new goal-pose is requested some distance away from
the initial pose, subject to velocity and acceleration constraints. More specifically,
assuming that the information in Table {.1] is provided to the algorithm, the cal-
culations would result in the trajectory plan shown in Figures f.2}H4.4] For better
visualization of the orientation, the Euler representation is used here. The Euler an-
gles are in turn described with the XYZ-representation, also known as roll, pitch
and yaw.

36

4.1 General Overview

As seen in Figure .2} the initial acceleration jumps to its maximum value, result-
ing in second-order increase in terms of position. When the maximum velocity is
reached, the acceleration becomes zero, hence the linear progression in position.
When the distance to the goal pose decreases to a certain amount, the retardation
phase is started and has (in this case) an identical behaviour to the initial accelera-
tion phase. Taking the derivative of the generated position trajectory would result in
a velocity profile similar to the one shown in Figure 2.4]

12 Position as a Function of Time

—X
1+ Y

Position [m]

0 5 10 15 20
Time [s]
Figure 4.2: Translational plan generated from the parameters in Table As the

initial and final poses are the same for each axis, the individual plans overlap each
other.

Euler-XYZ angles as a Function of Time

—X
Y
37 —Z
— 27
he]
o
o 1
S
<
0
-1+
2 . I |
0 5 10 15 20

Time [s]

Figure 4.3: Rotational plan generated from the parameters in Table
In the same manner as mentioned in Section [2.3] a rotation can be performed with

37

Chapter 4. Approach and Methodology

Path with start (magenta) and end (cyan) poses marked

1
X [m) Y [m]

Figure 4.4: Trajectory plan in 3D-space, generated from the parameters in Table
To get an idea of how the plan is progressing, selected intermediate pose frames are
scattered along the trajectory. Red, green and blue directions of the frames represent
the x, y and z-axis, respectively.

similar behaviour given angular velocity and acceleration profiles. This can be vi-
sualized by studying the rotational change in Figure £.3] Notice, however, that the
rotation along the y-axis starts to deviate from the desired angle progressively, be-
fore eventually reaching back to the desired angle along said direction. As a matter
of fact, this is a result from using quaternions along with (2.13)) in the actual algo-
rithm. The rotational representations shown in Figure [d.3]are hence converted from
quaternions. This is because, as discussed before, the Euler angles give an intuitive
way of visualizing rotations, while quaternions are more suited for calculations and
numerical stability.

Limitations The trajectory generator inherits some limitations that are important
to consider. Firstly, the algorithm has no knowledge of the reachable points of
the end-effector of a robot. If one commands an unreachable point, the robot may
stretch out and end up in a singularity. Another limitation is that the trajectory gener-
ator does not get any feedback from either the environment or an existing non-zero
velocity of the end-effector. This may, consequently, lead to collisions or undesired
motions if one is not careful enough.

38

4.2 Control Implementation

4.2 Control Implementation

For the Cartesian impedance controller, an example implementation is already given
in [Emika, 2017|], which is based upon the package ros_contro However, the
base algorithm was integrated within the ROS environment and needed to be sepa-
rated. By moving the base algorithms from the ROS environment into a library that
only requires C++ and a template library for linear algebreﬂ it became possible to
integrate it into other frameworks, e.g., the DART environment.

The control law in (2.28)) was modified in the implementation to the following equa-
tion instead,

te = J7(q)(—Kaxe — Dl (9)4). 4.1)
where x, was rightfully replaced with J(¢)q using (2.7a). This simplification may
seem absurd at first, but can be justified assuming a number of things. Firstly, the
gravitational term is already accounted for internally in some robots as it is in the
KUKA iiwa. Secondly, the Coriolis and inertia terms can be neglected for this work,
because the targeted area for the controller of this thesis is in kinesthetic teaching
and slower and contact-rich motions. This also allows focusing on the shaping of
good stiffness and damping matrices instead.

Another simplification can be done by letting the stiffness matrix have a specific
shape. The parameters K; and K, are often chosen as diagonal matrices [Ott, [2008|
pp. 40-41]. Furthermore, it was assumed that the coupling stiffness was insignifi-
cant, i.e., K. = 0. The resulting matrix was then a diagonal one, where each element
represents the stiffness along a specific translational or rotational axis. Hence, this
allowed the stiffness along each direction to be specified without interfering with
the other directions. Consequently, it also followed that the damping matrix became
a diagonal, with each element describing the damping behaviour in a certain dimen-
sion.

Just like for the Cartesian impedance control law, the projection matrix in the
nullspace term in (2.32) can be simplified. That is, by setting the inertia matrix
equal to identity in (2.33)), the following relation is obtained

T = —=T"(q)] " (q))(—Dng — Ku(q— 4a.n)) 4.2)

Although this substitution may have some consequences in terms of dynamic be-
haviour, one can, once again, focus on shaping good nullspace stiffness and damp-

2 A new implementation based on only ROS and RBDyn was created, where the latter is a dependency-
package that provides a set of classes and functions which allows modelling the dynamics of rigid
body systems. Further information about the latter library is found through the following link:
https://github.com/jrl-umi3218/RBDyn

3 The specific library here is called Eigen, and further information about the library can be found in
the given link: https://eigen.tuxfamily.org/index.php?title=Main_Page

39

https://github.com/jrl-umi3218/RBDyn
https://eigen.tuxfamily.org/index.php?title=Main_Page

Chapter 4. Approach and Methodology

ing values instead. Needless to say, these simplifications result in fewer computa-
tions, and therefore, a faster controller on the real system.

As mentioned in Chapter 3] the robot can respond at a rate of up to 1000 Hz. How-
ever, even with said simplifications taken into account, it turned out that the con-
troller needed around 1 millisecond per loop for the computationﬂ, see Appendix
Consequently, for safety reasons, the FRI was setup to run at 500 Hz.

Main Functionalities

The base framework was shaped as follows. The main function, when provided
with the state of the roboﬂ returns the desired torques. These torques are then
commanded, either to the real robot or to the virtual model in simulation.

The specific parameters that were desired to become re-configurable are mentioned
in Section [3.2] This was achieved by implementing separate functions that receives
said parameters and update the control law accordingly.

Applying Cartesian Wrenches

Furthermore, applying a Cartesian wrench F,y during run-time was also one of
the desired features of the framework. To facilitate this, they were added through
(2:20D), which would then be added to the overall control law given by (2.24). Nev-
ertheless, applying forces in this fashion would technically mean that they are not
external. Rather, they only demonstrate how the robot would react, should similar
external forces be applied at the end-effector.

Safety Features

An important aspect to consider when working with robots, or any other solid and
heavy system for that matter, is that sudden reference changes may lead to rapid
maneuvers, which could result in dangerous situations as well as oscillations in the
robot structure. More specifically, consider the case where the stiffness is initially
zero, and is located some distance away from the desired pose. A sudden increase to
some high stiffness would result in movement that could be faster than the average
response time of a human. Similarly, by applying a sudden virtual wrench while the
robot has little or no stiffness, the situation could once again become dangerous.

4 That is, for the computational machine used in this project. It is a high-performance machine, ded-
icated just for the robot arm. It was configured to prioritize controller computations and used a
real-time kernel. Further information about the processor can be found through the following link:
https://linux-hardware.org/index.php?id=pci:8086-1901-1462-127d

5 For easier annotation, this term is used to combinedly refer to the configuration, its derivative, the
end-effector pose and the Jacobian.

40

https://linux-hardware.org/index.php?id=pci:8086-1901-1462-127d

4.3 Working Environment

A way of dealing with the issue described in the previous paragraph is by applying
some type of filtering that "smoothens" the transitions between reference changes.
Hence, a first order low-pass filter was used both for stiffness-transitions but also
for applying Cartesian wrenches. Sudden forces exerted on the robot could also lead
to volatile transients in the output of the control law. To delimit the effects of this,
a torque-rate limiter was also embedded and used before sending the commands to
the robot.

Another important consideration is to saturate the stiffness, damping factors and
Cartesian wrenches to reasonable limits. For instance, if a user accidentally re-
quested a negative stiffness or damping value, the controller could face potential
problems and become unstable. Moreover, applying too big of a wrench could drive
the robot to instability. For these reasons, saturation of said parameters was also
embedded in the framework.

Usage of the Base Implementations

To summarize how the base libraries would be utilized in either of the ROS or DART
frameworks, consider Figure[d.5] In the figure, the User Interface block contains
a collection of the configurable parameters, which would in turn be commanded
either through ROS topics or the rqt_reconfigure plugin. Then, after passing
through some safety functions, the desired parameters are sent to the Controller
block. In addition, the state of the robot is also sent repeatedly to the Controller
block from the Robot block, allowing the desired torques to be generated and up-
dated. The Robot block is in turn either representing the real robot, or the model.

4.3 Working Environment

Most of the functionality was implemented using the programming language C++.
This includes both the ROS and DART integrations. Aside from the actual imple-
mentations, the work was conducted through a Linux environment. For example, to
launch a ROS system, one would either need to run every ROS node, including the
master node in a new terminal, or join the relevant nodes in a so called launch-file,
which, in turn, runs the collected processes subsequently.

When nodes are started up and running, information such as topics, subscribers,
publishers and parameters becomes accessible within the ROS framework via ter-
minals. Consequently, one could send or receive messages on dedicated topics and
allow configuration of parameters during run-time. As a matter of fact, this feature
allowed automating tasks with the help of Python and Bash scripts. This in turn
made it possible to run identical experiments both in simulation and on the robot.

41

Chapter 4. Approach and Methodology

User Interface

Damping . Cartesian
factors IDIEEIEE e wrench

Filtering

Stiffness

Filtering

Controller
[

Torques

Rate limiter|

Robot State

Figure 4.5: Flowchart of the overall control strategy. The (blue) dotted rectangle
shows what is included in the base framework.

4.4 ROS Framework

The framework in ROS was established using the ros_control package described
in Section [3.2] There are several other dependencies of the framework that make it
possible to utilize the FRI together with ros_control, in order to connect to the
robot. Moreover, a URDF file, which describes the LBR iiwa robot and its basic setup,
was provided by Virga et al. (2019). This model was in turn used along with Gazebo
and rviz to graphically visualize trajectories, control output, robot behaviour and
other experiments.

Updating Spatial Frames

As discussed in Sections and the serial chain of the robot frames would
change during tasks. Fortunately, ROS comes with a package called tf [Foote et
al.,[2017], that lets the user keep track of the frames as time progresses. The only
input that needed to be provided when using this package was the joint configuration
along with the URDF-models. The remaining transformations and calculations would
hence lead to available and up-to-date spatial frames, including the end-effector.

Configuring Parameters

As stated earlier, there are several parameters that need to be configurable during
operation. As shown in Figure[4.5] the way the controller receives inputs is through

42

4.4 ROS Framework

the User Interface block. The details of what this blocks represents will be dis-
cussed in the coming subsections.

Parameter Server In Section |4.3] it was stated that information about the nodes
would become available when nodes are started and running, Whilst some informa-
tion is available through topics, other might be available through a shared dictionary,
namely a Parameter Server [Miller, 2018]]. This is where one could specify param-
eters that are also retrievable during operation. In many cases the dictionary can
become quite big, and is usually specified in so called YAML-files, which in short
is a collection of parameters that is associated with some node(s). As a matter of
fact, the Cartesian Trajectory Generator uses a YAML-file with specifications such
as maximum velocities, accelerations, publishing rate and more.

Dedicated Topics In Figure [.5] the controller receives inputs from the
User Interface block, which is mainly through topics, where each output from
said block is paired with a topic.

rqt Plugin Another way of specifying the parameters is through the
rqt_reconfigure plugin. As discussed earlier, this is primarily convenient in de-
bugging scenarios, but also for doing more supervised experiments and tasks. For
each of the outputs from the User Interface block in Figure .5 new nodes
were created. Each of the nodes were in turn paired with a so called dynamic server,
which made it possible to use the plugin to configure the desired parameters. The
resulting GUI is shown in Appendix D}

Applying Cartesian Wrenches at the End-Effector Frame When applying forces
through (2.20b), it is also important to consider in what coordinate frame the wrench
is being exerted at. The general forces, F,,, will by default be applied at the end-
effector frame (translational) , but with respect to the orientation of the base frame.
Consider the case where the z-axis of the end-effector is pointing in the opposite
direction relative to the base frame. Then, if a positive force is applied, the end-
effector frame would be subjected to a force in the same direction as the z-axis of
the base frame and hence move along said direction. However, in many applications
it is often desired to apply a force with respect to the end-effector frame.

To solve the issue described in the previous paragraph, the generalized forces would
need to be rotated such that the exertion is applied at the end-effector. Firstly, (2.21))
was split into two 3D-vectors, each corresponding to the forces and torques along
the spatial axes, respectively. Consequently, the vectors were transformed into the
desired frame using the previously mentioned package tf, which also inherits the
ability to transform vectors from one frame into another.

Measuring Cartesian Wrenches

A way of verifying that the applied forces are exerted correctly is by using a force-
torque (FT) -sensor, mounted at the end-effector. A physical FT-sensor is, however,

43

Chapter 4. Approach and Methodology

not available on the LBR iiwa robot. Instead, the robot embeds an estimator of the

external joint torques, which would then be transformed to the spatial exertion at
the end-effector through (2.20b).

Simulation Tools in ROS

The introduced simulation tools in ROS were not explicitly used for evaluation and
comparison with the performance of the real robot. Rather, they were mainly used
as a way of making sure that the general behaviour was expected and non-chaotic.
DART was the target simulation platform for reasons stated in Section 3.2}

4.5 DART Framework

Sequentially, the DART integration was separated into two smaller libraries. The first
one was dedicated for integrating the base functionalities into the RobotDART en-
vironment. More specifically, an interface class in RobotDART was available by
Chatzilygeroudis and Mouret (2021) and thus inherited. This library is a wrap-
per that already implements functionalities often needed in robotics. In essence,
it would act as an intermediate library that passes through the available functions in
the base library, into another class that inherits the interface.

The second library implements a class that was shaped as a ROS node using similar
structure as the ros_control package. More specifically, two functions in this
library were developed, namely init and updateﬂ These functions would then
use the integrated functionalities in the first library to run the controller in the 3D-
simulator. This not only allowed to exploit the features and tools of ROS, but also
made it possible to use topics to configure parameters during run-time.

Aside from this, the features in this framework were, to a large extent, implemented
with identical features to the ones in Section [£.4] However, a few features were
excluded in the DART framework due to the time-restriction of the project. These
are dynamic reconfiguration of parameters using rqt_reconfigure and an FT-
estimator.

4.6 Licenses

All of the tools and packages that were used for the implementation are open source
software. Essentially, this means that the packages are free to use, distribute and
modify, as long as the licenses are mentioned and honoured. As far as ROS is of

6 Using a starting function like for the ros_control package is not needed here.

44

4.6 Licenses

concern, the standard BSD license covers the majority of the system. The BSD li-
cense allows for reuse both in commercial and closed-source productsﬂ DART is also
licensed under the BSD contract, whereas RobotDART is bounded by the CeCILL
license®]

7 Further information about the BSD license can be found through the following link: https:
//opensource.org/licenses/BSD-3-Clause

8 Further information about the CeCILL license can be found through the following link: http://
www.cecill.info/index.en.html

45

https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
http://www.cecill.info/index.en.html
http://www.cecill.info/index.en.html

D

Experiments and Results

This chapter contains results from experiments both on the robot and simulation us-
ing DART, which were performed using the control strategy presented in Chapter [}
In Section[5.1] the performance of the robot for different stiffness and damping val-
ues is evaluated. Moreover, the results of exerting external Cartesian wrenches are
also presented here. In Section[5.2] different experiments where singularities are in-
volved are shown. Lastly, Section[5.3|shows the results of performing a contact-rich
assembly task using said control strategy.

5.1 General Performance

This section shows the general performance of the control strategy through strategi-
cally designed experiments. Selected experiments were done both on the robot and
in simulation, whilst others were performed on the robot only. This is because the
FT-observer was only available in the ROS environment. Therefore, experiments
that are partly validated through the estimated forces could not be shown in the sim-
ulation environment. The reason why this was not included in the DART environment
was because of the time-restriction of the project.

Linear Trajectories

The trajectory generator described in Section[2.3| was used to generate a linear path
from one pose to another. More specifically, the generated trajectories were exe-
cuted with different stiffness values and damping factors. Moreover, the orientation
of the end-effector was kept constant, and only the reference of the end-effector po-
sition along the y-direction was changed. The resulting experiments in DART and on
the real robot are summarized in Figures[5.1)and [5.2} respectively.

Firstly, consider Figures and[5.2a] In the top plots of these figures, the position
of the end-effector along y-direction is shown. The same trajectory was repeated

46

5.1 General Performance

for three different stiffness values and the bottom plots show how the stiffness was
varied during the experiment. Furthermore, the whole experiment was repeated with
the damping factors (along all dimensions) 1.0, 0.85 and 0.7, respectively.

In Figures [5.1b] and [5.2b] the positional errors (along all dimensions) for each re-
peated experiment are shown. The top, middle and bottom subplots represent the
experiment using damping factors 0.7, 0.85 and 1.0, respectively. Furthermore, the
error was derived using (2.25D).

Low Stiffness

In order to test how the robot performs for lower stiffnesses, the robot was once
again commanded to track a linear positional path along one direction, but with
lower translational stiffnesses. It turned out that using stiffnesses less than 200 N/m
on the real robot led to significant deviations along all dimensions. On the other
hand, no significant deviations appeared in the simulations. The results for these
experiments in simulation and on the real system can be seen in Figures[5.3]and [5.4]
respectively.

In Figures [5.3a) and [5.4a] the top plots show how the desired end-effector position
along the y-axis was being tracked and the bottom plots show the positional devia-
tion along all directions. Furthermore, in these figures, the translational stiffnesses
were set to 200 N/m. In Figures [5.3b|and [5.4b] corresponding plots are shown for a
similar experiment using a translational stiffness of 100 N/m instead.

Sliding Motion

Cartesian forces were evaluated by setting low stiffness in the direction perpendic-
ular to the black table seen in Figure and then commanding the robot to move
along the other directions whilst applying a Cartesian force along the direction with
low stiffness, resulting in a sliding motion on the surface of the table. Four different
magnitudes of forces were exerted along said direction, namely 5 N, 8 N, 10 N and
12.5 N, and the results of applying these forces are shown in Figure[5.5]

In Figure [5.5] sliding motion with different force magnitudes applied at the end-
effector is displayed in the base-frame orientation (z-axis of the end-effector is
pointing in the opposite direction of the z-axis in the base-frame). The top figures
show the commanded, along with the estimated (using the FT-estimator) forces. In
the bottom figures, the position along the z-direction is shown. Moreover, the noisy
parts of the FT-observer signals show when the robot is sliding along the surface.

Further illustration of the experiments can be visualized through Figures[E.IHE.2]in
Appendix [E]

47

Chapter 5. Experiments and Results

Trajectory for different damping factors, y-axis

E
o
8
3
o
a
L L L L L L L L L I
0 20 40 60 80 100 120 140 160 180 200
Time [s]
Translational (blue) and rotational (red) stiffnesses
T T T T T T T =
£'1000 1000 §
= £
? 500 500 &
g 7]
£ £
? £
0 0o 9
0 20 40 60 80 100 120 140 160 180 200

Time [s]

(a) Position of the end-effector along y-axis (top plot) and stiffness values (bottom plot). In the top plot,
the reference position is black (dashed), while the experiments with damping values 0.7, 0.85 and 1.0 are
shown in red, green and blue, respectively. In the bottom plot, the blue graph represents the translational
stiffnesses, and the red graph represents the rotational stiffnesses.

Error of each axis with damping factor 0.7
T T

T 001F —
= 0 ¥ { 7 gl
S.oo01f \J A
W _0.02 L L L L L L I I I =
0 20 40 60 80 100 120 140 160 180 200
Time [s]
Error of each axis with damping factor 0.85
T 0.01F T T T T T T T =]
—_ ¢
= 0 ¥ \ el
2-0.01F ‘j i
w-0.02= I I I I I I I I I =1
0 20 40 60 80 100 120 140 160 180 200
Time [s]
Error of each axis with damping factor 1.0
'g‘ 0.01F T T T T T T T |
. f—y
- 0 v i el
2-0.01 ¥ o
w -0.02c 1 1 1 1 1 1 | | | 2
0 20 40 60 80 100 120 140 160 180 200
Time [s]

(b) Positional error for each repeated experiment. For each repeated experiment, the positional errors
along the x, y and z-directions are shown in red, green and blue, respectively.

Figure 5.1: Linear trajectories for different stiffness values and damping factors,
performed in DART. The values are identical for all dimensions.

Compliance

Some interesting cases occur when the translational stiffnesses are high and rota-
tional stiffnesses low, or vice versa. Then, by perturbing the robot, one could verify
that the robot was behaving as expected. More specifically, the expected behaviour

48

5.1 General Performance

Trajectory for different damping factors, y-axis

W—o.7
= o085
= —1.0
_g -~ -ref
E= 7
& \
L L L L L L L L L >777ﬁ\
0 20 40 60 80 100 120 140 160 180 200
Time [s]
Translational (blue) and rotational (red) stiffnesses
T T T T T T T T g‘
= 1000 1000 IS
2 z
@ so0 4500 3
£ ¢
Z £
0 L L L L L L L | L 0]
0 20 40 60 80 100 120 140 160 180 200

Time [s]

(a) Position of the end-effector along y-axis (top plot) and stiffness values (bottom plot). In the top plot,
the reference position is black (dashed), while the experiments with damping values 0.7, 0.85 and 1.0 are
shown in red, green and blue, respectively. In the bottom plot, the blue graph represents the translational
stiffnesses, and the red graph represents the rotational stiffnesses.

Error of each axis with damping factor 0.7
T T

= 0.1 T T T T —
s A .
s O N f K
= ¥ |—e.
w -0.1 1 1 1 1 1 1 L L L

0 20 40 60 80 100 120 140 160 180 200

Time [s]
o1 Error of each axis with damping factor 0.85

’g . T T T T T —
5 0 W
£ ! v —e
w91 L L L L L L I I I

0 20 40 60 80 100 120 140 160 180 200

Time [s]
Error of each axis with damping factor 1.0
5 0.1 T T T T T T T
f—y

= Mr—(—\/—\ y
5 OF========x] \ i
= \ —e,
w91 - 1 1 1 1 1 L L L

0 20 40 60 80 100 120 140 160 180 200

Time [s]

(b) Positional error for each repeated experiment. For each repeated experiment, the positional errors
along the x, y and z-directions are shown in red, green and blue, respectively.

Figure 5.2: Linear trajectories for different stiffness values and damping factors,
performed on the real robot. The varied parameters are identical for all dimensions.

for high translational stiffness is that the end-effector should not be able to devi-
ate more than a few centimeters in terms of position, when disturbed externally by
a humaxﬂ Similarly, high rotational stiffness should not allow the end-effector to

! This assumes that the applied disturbances are not abnormally high.

49

Chapter 5. Experiments and Results

Commanded trajectory in y-axis

of reference
e actual
§-0.2
3
[e]
O 04t
0 2 4 6 8 10 12
Time [s]
Error of each directional axis
0
E
§ -0.01+
]
-0.02
0 2 4 6 8 10 12
Time [s]

(a) The translational stiffness was set to 200 N/m for all direc-

tions.
Commanded trajectory in y-axis
Or reference
= actual
§-02
‘@
(o]
Q .04t

0 5 10 15
Time [s]
Error of each directional axis

Error [m]

-0.02¢

0 5 10 15
Time [s]

(b) The translational stiffness was set to 100 N/m for all direc-
tions.

Figure 5.3: Linear trajectory tracking for lower stiffness values, performed in DART.
The damping factors were chosen to 1.0 for all directions.

50

5.1 General Performance

Commanded trajectory in y-axis

0 reference
= actual
§-02
g
o
& .04

0 5 10 15

Time [s]
Error of each directional axis

0 5 10 15
Time [s]

(a) The translational stiffness was set to 200 N/m for all direc-
tions.

Commanded trajectory in y-axis

0 reference
= actual
§-02¢
3
o
& 04f

0 5 10 15

Time [s]
Error of each directional axis

Time [s]

(b) The translational stiffness was set to 100 N/m for all direc-
tions.

Figure 5.4: Linear trajectory tracking for lower stiffness values, performed on the
real robot. The damping factors were chosen to 1.0 for all directions.

51

Chapter 5. Experiments and Results

o '
~ N
N

Position [m]
o
3
N

Force [N]
5

mmanded
[—estimated
0

Commanded force at the end-effector, z-axis
of—7 :

0 10 20 30
Time [s]

Position of the end-effector, z-axis

40

0.7
0 10 20 30 40 50 60
Time [s]

(a) Force applied: 5 N.

Commanded force at the end-effector, z-axis

0

Force [N]

0.74

Position [m]
o
3
N

30

40 50 60
Time [s]

Position of the end-effector, z-axis

0.7

0 10

20 30 40 50
Time [s]

60

(c) Force applied: 10 N.

50 60

Commanded force at the end-effector, z-axis

Of—— !
Z
8-10
g
I---commanded
[——estimated
-20
0 10 20 30 40 50 60
Time [s]
074 Position of the end-effector, z-axis

Position [m]
o
3
N

0.7

0 10

—

20 30

Time [s]

40 50 60

(b) Force applied: 8 N.

Commanded force at the end-effector, z-axis

Force [N]

-~-commanded
estimated

0.74

20 40
Time [s]

Position of the end-effector, z-axis

60 80

Position [m]
o
3
N

0.7

20 40 60
Time [s]

80

(d) Force applied: 12.5 N.

Figure 5.5: Sliding motion with different force magnitudes applied at the end-
effector, z-axis.

rotate

much when perturbed.

Another interesting case is when both the translational and rotational stiffnesses
are high, while perturbing the robot along the nullspace dimensions. This allowed
verifying that nullspace motion was possible while keeping the end-effector at the
desired pose with minimal deviation.

52

5.1 General Performance

These experiments were, however, only tested on the real robot as it is much easier
to verify the behaviour that way, that is, both visually, but also applying distur-
bances. Besides, the FT signal estimation was, as mentioned before, only available
in the ROS environment for this work, and the experiment in the simulation envi-
ronment was therefore excluded.

Translational Compliance Translational compliance, i.e., low translational stiff-
nesses (close to zero), allowed moving the robot around freely in space without
much perturbation. However, as the rotational stiffnesses were high, rotating the
end-effector was hard and therefore the rotational error would stay relatively low
throughout the experiment. The results of said experiment are shown in Figure[5.6]

In Figure [5.6] the top-left and bottom-left plots show the estimated (using the FT-
observer) Cartesian forces and torques through interaction, respectively. The top-
right and bottom-right plots show the end-effector positional and rotational errors
(using Euler-XYZ representation), respectively. As the translational stiffnesses were
low, the end-effector position would move away from the desired position with little
effort, hence increasing the translational error noticeably. On the other hand, the
rotational error would stay relatively small throughout the experiment.

Cartesian forces Translational error
40 0.6
—e,
= 20 E 04 o
@ S ooll—e
8 o S 02
o %])
%20 £ o=
40 -0.2
10 20 30 0 10 20 30
Time [s] Time [s]
s Cartesian torques Rotational error using Euler-XYZ representation
I —X 0.04 —e,
E Dl Y T e
Z 00— | —74] £oo2[|
3) -
o
= -5 c 0
2 <
10 0.02
0 10 20 30 0
Time [s] Time [s]

Figure 5.6: Physical perturbation on the robot with translational compliance.
Around the time interval 23 s to 27 s, the robot end-effector was manually shaken a
little along a specific direction, hence the rapid oscillations.

Rotational Compliance On the other end, rotational compliance allowed to rotate
the end-effector freely when perturbed, but it was much harder to move around
in terms of position. Thus, the positional error would stay relatively low, and the
overall experiment is summarized in Figure[5.7]

53

Chapter 5. Experiments and Results

In Figure the top-left and bottom-left plots show the estimated (using the FT-
observer) Cartesian forces and torques, respectively. The top-right and bottom-right
plots show the end-effector positional and rotational errors (using Euler-XYZ rep-
resentation), respectively. As the rotational stiffnesses were low, the end-effector
orientation would deviate from the desired orientation through little effort. On the
other hand, the translational error would stay relatively small throughout the exper-
iment.

Cartesian forces Translational error

Force [N]
Position [m]
o

g
o
=

o
o
]

0 10 20 30
Time [s] Time [s]
10 Cartesian torques Rotational error using Euler-XYZ representation
e
3 T mﬂ
=i e
Z g Y
5 5 O, =l
= =3
= c
© <
i
2 \\J
-10
0 10 20 30 0 10 20 30
Time [s] Time [s]

Figure 5.7: Physical perturbation on the robot with rotational compliance.

Nullspace Control Using none or small nullspace stiffness while perturbating the
robot, along with high translational and rotational stiffnesses, allows the joint con-
figuration to change considerably while keeping the end-effector close to the desired
pose. A translational stiffness of 2000 N/m along all directions and a rotational
stiffness of 200 Nm/rad along all directions were used. Furthermore, the nullspace
stiffness was set to zero, which allowed free nullspace motion. The results of this
experiment can be studied in Figure[5.8]

In Figure the top-left and bottom-left plots show the estimated (using the FT-
observer) Cartesian forces and torques through interaction, respectively. The top-
right and bottom-right plots show the end-effector positional and rotational errors
(using Euler-XYZ representation), respectively. Moreover, in Figure[5.8b] the joint-
configuration of the robot is presented. It shows how the robot was able to change
configuration noticeably and continuously, while keeping the end-effector deviation
small.

54

5.2 Singularities

Cartesian forces Translational error
50 0.04
Z o0 E 002
c
g Al Zg
2 50 g 0y
a
100 0.02 /
5 10 15 20 25 0 5 10 15 20 25
Time [s] Time [s]
Rotational error using Euler-XYZ representation
5 0.05
= —
Z 8
g’ g o
= =4
e <
s -0.05
0 5 10 15 20 25 0 5 10 15 20 25
Time [s] Time [s]

(a) The top-left and bottom-left plots show the estimated (using the FT-observer) Cartesian forces and
torques through interaction, respectively. The top-right and bottom-right plots show the end-effector
positional and rotational errors (using Euler-XYZ representation), respectively.

Joint configuration as time progresses

Angle [rad]

3 L L L L |
0 5 10 15 20 25
Time [s]

(b) Joint configuration of the robot throughout the whole experiment.

Figure 5.8: Illustration of nullspace motion. As the robot was perturbed throughout
the experiment, the joint configuration would change considerably while at the same
time keeping the end-effector deviation relatively small.

5.2 Singularities

This subsection shows the behaviour of the robot ccccwhen approaching singular-
ities in different ways. Some of the experiments were done both on the real robot
and in simulation, but only the experiments on the real robot will be shown here,

55

Chapter 5. Experiments and Results

as the output of the FT-observer is important to consider, but, as stated before, was
only available in the ROS environment.

Going In and Out of a Singularity

The following experiment was performed in order to test how the robot would be-
have, should the robot for some reason reach a singularity during a task. The robot
was first driven into a singularity, by using nullspace stiffness along with a strategi-
cally chosen nullspace configuration, allowing two or more joints to be co-linearly
aligned. When the robot reached the chosen singular configuration, it would delib-
erately stay there for some time until eventually be driven out using the trajectory
generator, to a non-singular pose. The results from this experiment are summarized

in Figure[5.9]

In Figure 5.9 the top and middle plots show the Cartesian effort in terms of forces
and torques, respectively. The bottom figure shows how the nullspace stiffness and
translational stiffness were varied during the experiment. During the time interval
12.5 s to 28.5 s, the robot was in a singular configuration. By 30 s, the robot was
moved out of the singular configuration. At the same time, the nullspace stiffness
was commanded to zero, and the translational stiffness was quadrupled. For more
detailed visualization of the experiment, see Figure [E.5]in Appendix [E]

Cartesian forces

Z 100F T T T T —
5}
o 0 - — - yl
S \}:‘\ —
L -100 = ! ! ! ! ! I |
0 5 10 15 20 25 30 35 40
Time [s]

Cartesian torques
T

C T T T T T
| — X
=====c —=F
£ I I I I I I I —2
0 5 10 15 20 25 30 35
Time [s]
Translational (blue) and nullspace (red) stiffnesses
T

T T T T 20
50 - 10
00 —K,
50 I I I I I I 0
25 30 35

0 5 10 15 20 40
Time [s]

Torque [Nm]

Stiffness [N/ m]
B
Stiffness [Nm / rad]

Figure 5.9: Driving the robot into a singularity, with two of the joints co-linearly
aligned.

Commanding Out-Of-Reach Poses

Another way of driving the robot into a singularity is by commanding a position
that is outside the workspace, hence allowing the robot to stretch out. The results of

56

5.3 Peg-in-Hole
commanding a pose outside the workspace are shown in Figure[5.10]

In Figure [5.10] the top plot shows the position of the end-effector, along with the
desired position. After around 18 s into the experiment, the robot was stretched
out and not moving anymore. This can also be seen in the middle plot, where the
translational deviation is shown. As the target pose is mostly out-of-reach along the
x-axis, the error along said axis became the largest, about 18.4 cm. In the third plot,
the Cartesian forces that were estimated by the FT-observer, are shown. For this par-
ticular experiment, a stiffness of 500 N/m was used for all translational directions.
Further illustration of the experiment can be seen in Figures[E.3HE.4]in Appendix [E]

T, Position of the end-effector]
£ T 7 - .
S of 41 Y
.g 1 1 T T t t y
o ---z
0 5 10 15 20 25 30/ d
Time [s] —z
Translational error of the end-effector
=02 —— T : : : : -
E R x
501 IS
] e t 1 1 t t t —,|
12 14 16 18 20 22 24 26 28 30
Time [s]
Cartesian forces
= 0 7%\ T T T =]
—_ — X
8 50+ Tr— 11y
L_Cﬁ 100 I I N L 2 + + — —z
12 14 16 18 20 22 24 26 28 30
Time [s]

Figure 5.10: Commanding a position outside the workspace.

5.3 Peg-in-Hole

Considering what has been presented so far, the robot would in general behave in
a stable and decent way, as far as the configurable parameters would stay within
reasonable limits. However, to get a better idea of how the framework performs in
intended application tasks, that is, contact-rich tasks, assembly experiments were
conducted. More specifically, a peg-in-hole assembly task was performed both in
simulation and on the robot.

The procedure was done as follows: Firstly, a box with hole with a diameter slightly
bigger (about 5 mm) than the peg attached at the end-effector was provided, and
placed on the black table that is visible in Figure That is, both in simulation

57

Chapter 5. Experiments and Results

(as a URDF-model), but also a physical box for the real experiments. The robot end-
effector was then commanded to a pose which aligned the peg with the hole in the
box, slightly above it. Then, the stiffness along the vertical direction (z-axis) was
set to a value close to zero, whilst the stiffnesses along the other directions (x and
y axes) were empirically set to 300 N/m, such that the target pose could be tracked
reasonably well (empirically), while keeping the forces as minimal as possible. As it
was desired to keep the peg perpendicular to the hole throughout the experiment, the
rotational stiffnesses (x and y axes) along the stiff directions were set to reasonably
high values of 100 Nm/rad, and the remaining axis was instead set to a smaller value
of 5 Nm/rad. This of course assumes that the mounted tool, i.e., peg, is symmetric
along the z-axis (the attack direction of the end-effector). Moreover, the nullspace
stiffness was set to zero.

With this in place, the next step was to command a search motimﬂ using the Carte-
sian trajectory generator, along the stiff translational directions, while applying a
force towards the box, resulting in a sliding motion along the surface of the box.
The shaping of the search motion was configured, such that the peg would always
be inserted in the hole after some movement on the surface of the box. When the peg
was inserted in the hole, the experiment was considered to be completed. The re-
sults from the experiment in simulation and on the real system are shown in Figures

[.1T)and [5.12] respectively.

The upper plots of Figures [5.11] and [5.12] show the path of the end-effector along
the directions (x and y axes) with higher stiffness (300 N /m) whilst the peg was in
contact with the surface of the box. At the start (magenta dot), the peg was slightly
above the box, and at the end (cyan dot), the peg was inserted in the hole. This can
also be seen in the lower plots of the figures, where the height (z-axis) of the end-
effector is shown. At the start, (0 s — 2 s), the peg was still not in contact with the
box. During the search motion (roughly 2 s — 18 s) the height was constant, until
the peg became aligned with the hole, resulting in decline in height. The sequence
of the experiment can also be visualized by studying Figure [E.6|in Appendix [E]

2 The shape of the search motion was circular with increasing radius, and was shaped to move along a
path on the surface that eventually led to peg insertion.

58

5.3 Peg-in-Hole

Path with start (magenta) and end (cyan) poses marked

0 ST
001 [(
E 002 L\
g -0.03 } /\ N
-0.04 /

-0.66 -0.64 -062 -0.6 -058 -056 -0.54
X [m]

Position of end-effector, z-axis

0.81

o
(o]
T

Position [m]
o
o
[{e]

0.78 & | | |
0 5 10 15 20

Time [s]

Figure 5.11: Peg-in-hole task performed in DART. In the upper figure, the path starts
at the pose marked as a magenta dot, and ends at the pose marked as a cyan dot.

59

Chapter 5. Experiments and Results

Path with start (magenta) and end (cyan) poses marked

- /(]
: <y
/&

-0.03
V4

-0.66 -0.64 -062 -06 -058 -0.56
X [m]

Position of end-effector, z-axis

0.81

o
o

Position [m]
o
]
©

0.78 | | | |
0 5 10 15 20 25 30 35

Time [s]

Figure 5.12: Peg-in-hole task performed on the real robot. In the upper figure, the
path starts at the pose marked as a magenta dot, and ends at the pose marked as a

cyan dot.

60

6

Discussion

This chapter aims at giving a critical review of the obtained results.

6.1 Discussion of the Results

General Performance

Overall, the robot behaved reasonable and could track desired trajectories as long
as the stiffnesses were sufficiently high. As presented in Chapter [5] the value of
the stiffness stimulated the trajectory-tracking deviation for the end-effector in, ar-
guably, a proportional way. The results in simulation and on the real robot showed
that the deviation in position would decrease as the stiffness increase (see Figures
and[5.2). In simulation, however, the deviation would not reach a dimensional
error of more than 2 cm during a trajectory when using a stiffness of 250 N/m, as
seen in Figure [5.Tb] On the other hand, the corresponding experiment on the real
robot showed that the deviation could exceed 5 cm. Besides this, there would often
appear stationary errors on the real system (unlike in the simulations), especially
for lower stiffness values. This is most probably a result of the inherent friction
in the robot joints, which were not accounted for. In fact, the model in simulation
did not include any friction, and could therefore track trajectories with virtually no
stationary positional errors, even for stiffness values of 100 N/m or lower (see Fig-
ure [5.3b). Using any value lower than 200 N/m on the real robot, however, showed
that the deviation could be off about 2 cm (see Figure[5.4).

The adjustment of damping factors did not seem to affect the results in simulation
significantly. In fact, the overall behaviour in terms of deviation, as seen in Fig-
ure[5.1b] seemed to be, apart from the small tweaking in magnitudes, identical (for
the tested damping factors). On the other hand, the real experiments showed that a
combination of low stiffnesses and high damping factors (250 N/m and 1.0, respec-
tively) gave rise to a noticeable stationary error, as seen in Figure One must,

61

Chapter 6. Discussion

however, be careful in drawing any conclusions about the consistency of these re-
sults. As the experiments were only tested a few times (at most) each, it is hard to
say whether these outcomes are reliable in terms of consistency and repeatability.

The sliding-motion experiments showed that the exerted forces would most proba-
bly be exerted correctly. Although it is apparent in the top plots in Figure [5.5] that
the estimated forces were not perfectly aligned with the commanded wrench, they
still prove that the force is applied along the correct direction with somewhat cor-
rect (but offset) magnitudes. After all, when no wrench was applied, the estimated
forces would still be offset by a non-zero value. This was probably because of cal-
ibration errors, as well as uncertainties in the FT observer, but it must be further
investigated for validity. Furthermore, the decline in height in the lower plots in
Figure [5.5| was probably due to the surfaces not being completely flat and smooth.
The decline would, however, not exceed more than a few millimeters. Either way,
the main idea with this experiment was to get a sense of validation for commanding
Cartesian wrenches.

The tested compliance experiments on the real system yielded expected results. The
robot would show expected behaviour during translational, rotational and nullspace

compliance, as seen in Figures[5.6] [5.7]and [5.8] respectively.

Singularities

The first singularity experiment, i.e., going in and out of a singular configuration,
showed that the controller and the robot would not indicate any hints of oscillations
or instability. This was the case even though the experiment appeared to produce
spiky estimated Cartesian forces and torques around 12.5 s in Figure [5.9] whilst
reaching the singularity. However, this did not appear visually during the experi-
ment, and the spikes could therefore simply be a result from how the FT-observer
is estimating the forces. Moreover, the spikes also seemed to correlate to stiffness
changes around 30 s. But, as stated before, one cannot draw any solid conclusions
about the consistency of said results, as extensive repeatability of the experiments
were not tested.

The other singularity that was tested, i.e., commanding out-of-reach poses, also
showed that the robot would behave in a stable way. As the robot would stretch out
to try and reach the desired pose, a Cartesian force would obviously build up the
further the pose deviated from the desired one (up until a certain point), as seen in
Figure[5.10] One could also verify the magnitude of the stiffness along a direction,
by simply dividing the Cartesian force along the same direction, with the corre-
sponding deviation along the same direction. For instance, consider the stationary
values of Cartesian force and translational stiffness along the x-axis in Figure
respectively. The estimated magnitude of the translational stiffness along the x-axis

62

6.1 Discussion of the Results

would then be roughly 95 N / 0.185 m ~ 514 N/m, which is not that far away from
the actual set stiffness of 500 N/m. However, in order to verify if this is a coinci-
dence, one could try out the same experiment using different stiffness values and
observe whether the results are consistent or not.

Peg-In-Hole

The last experiment, i.e., the peg-in-hole assembly task, was performed in order
to evaluate how well the robot would behave in a contact-rich task. As shown in
Figures the attached peg on the robot would eventually get inserted into
a box with a hole, after sliding along the surface of the box for some time. This
motion was, as stated earlier, intended to replicate a type of circular search motion.
However, neither the timing nor the shape of the search-paths were accurately sim-
ilar, comparing the two cases. In fact, the search motion lasted for about twice as
long on the real robot compared to the simulations.

There are several factors that may have a significant role in determining said accu-
racy. Firstly, the inherent stiction in the real robot resulted in the movement being
more jerky compared to the simulations. Secondly, the friction between the surface
of the box and the surface of the peg was not the same in simulation as on the real
system. In fact, an adjustable friction parameter of the surface of the box with hole
was given, but only a limited time was spent on trying to find the optimal friction
value. On the other hand, the intention of this experiment was not to try and match
the simulation and robot behaviours optimally. Rather, the outcomes can help indi-
cate how well the control framework might perform in contact-rich tasks.

63

7

Conclusions and Future
Work

As stated in the problem formulation, the main objective of this work was to develop
and evaluate a torque-based Cartesian impedance controller in a ROS environment
as well as in a DART environment. Thus, said control strategy was implemented,
which allows treating a state-of-the-art light-weight robot arm as an impedance, and
its environment as an admittance. With regards to the implementation of the frame-
work, it can be seen as a composition of three main building blocks. The first block
consisted of the actual control implementation with calculations and such, along
with other embedded features as well. In the second block, a ROS environment that
allowed running the control implementation on the real robot was developed. In the
third and last block, a similar implementation was used, but in a DART environment
instead.

On top of this, the desired feature of being able to configure parameters that shapes
the impedance of the robot was desired and hence implemented. The framework also
includes the desired feature of exerting Cartesian wrenches on command, during
run-time. Furthermore, it was also desired to have a strategy that works well in
simulation as well as on the real robot. In both cases, the results have shown that
the controller allows the robot arm to become compliant in terms of position and
orientation, but also in terms of nullspace motion. On the other hand, they have
also showed what limitations the control strategy inherits from, e.g., stiction and
inaccurate calibration, allowing accuracy to be achieved only under certain bounds.
Nevertheless, the overall performance showed promising results, which may be used
for future work.

64

7.1 Future Work

7.1 Future Work

Some aspects that may be interesting to investigate further in future work are:

* Investigate and implement control strategies that overcome the situation of
the real system. That is, strategies that reduce the limitations of the system,
allowing a more sophisticated, compliant and expected behaviour.

¢ Identifying the friction of the real robot so that it matches the simulations
better.

¢ Including an FT-observer in the DART environment, so that the simulations
become more comparable.

* Investigate how computational time affects the stability and performance of
the controller. An interesting follow-up would then be to look into how one
could decrease the computational time.

* Investigate the repeatability and consistency of tasks using the Cartesian
impedance controller.

65

References

Abu-Dakka, F. J. and M. Saveriano (2020). “Variable Impedance Control and Learn-
ing—A Review”. Frontiers in Robotics and Al 7. ISSN: 2296-9144. DOI: |10.
3389/frobt.2020.590681.

Baker, M. J. (2021). Maths - Angle between vectors. EuclideanSpace - Mathemat-
ics and Computing. URL: https : //www . euclideanspace . com/maths /
algebra/vectors/angleBetween/| (visited on 2021-05-09).

Ben-Ari, M. (2014). A Tutorial on Euler Angles and Quaternions. Department
of Science Teaching, Weizmann Institute of Science. URL: https : // www .
weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/
uploads/softwareAndLearningMaterials/quaternion-tutorial-2-
0-1.pdf| (visited on 2021-04-05).

Buck, A., E. Price, R. Park, N. Peterson, D. Kshirsagar, D. Coulter, D. Stanford,
K. Furbush, N. Schonning, and M. Wilson (2018). Publisher-Subscriber pat-
tern. Microsoft. URL: https : //docs . microsoft . com/en- us/azure/
architecture/patterns/publisher - subscriber (visited on 2021-07-
14).

Cao, Y., K. Lu, X. Li, and Y. Zang (2011). “Accurate Numerical Methods for
Computing 2D and 3D Robot Workspace”. International Journal of Advanced
Robotic Systems 8, p. 1. DOI:/10.5772/45686.

Castro, S. (2019). Trajectory Planning for Robot Manipulators. Mathworks. URL:
https://medium. com/mathworks/trajectory-planning-for-robot-
manipulators-522404efb6£0|(visited on 2021-04-15).

Chatzilygeroudis, K. and J.-B. Mouret (2021). RobotDART. URL: http://www.
resibots.eu/robot_dart/ (visited on 2021-02-16).

Chitta, S., E. Marder-Eppstein, W. Meeussen, V. Pradeep, A. R. Tsouroukdissian,
J. Bohren, D. Coleman, B. Magyar, G. Raiola, M. Liidtke, and E. F. Perdomo
(2017). “ros_control: A generic and simple control framework for ROS”. Jour-
nal of Open Source Software 2:20. DOI: 10.21105/joss . 00456,

66

https://doi.org/10.3389/frobt.2020.590681
https://doi.org/10.3389/frobt.2020.590681
https://www.euclideanspace.com/maths/algebra/vectors/angleBetween/
https://www.euclideanspace.com/maths/algebra/vectors/angleBetween/
https://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/quaternion-tutorial-2-0-1.pdf
https://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/quaternion-tutorial-2-0-1.pdf
https://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/quaternion-tutorial-2-0-1.pdf
https://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/quaternion-tutorial-2-0-1.pdf
https://docs.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://docs.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://doi.org/10.5772/45686
https://medium.com/mathworks/trajectory-planning-for-robot-manipulators-522404efb6f0
https://medium.com/mathworks/trajectory-planning-for-robot-manipulators-522404efb6f0
http://www.resibots.eu/robot_dart/
http://www.resibots.eu/robot_dart/
https://doi.org/10.21105/joss.00456

References

Dattalo, A. (2018). ROS/Introduction. ROS. URL: http://wiki.ros.org/R0OS/
Introduction (visited on 2021-02-16).

Denning, T. (2017). End Effector Accessories. Design For Making. URL: https:
//www.designformaking.com/m10 (visited on 2021-02-19).

Deshpande, V. and A. Verma (2010). “Dynamics of Robot Manipulators: A
Review”. International Journal of Engineering Research and Technology 3,
pp- 603-606.

Emika, F. (2017). “franka_ros”. GitHub repository. URL: https://github.com/
frankaemika/franka_ros.

Foote, T., E. Marder-Eppstein, and W. Meeussen (2017). tf; Package Summary.
ROS. URL: http://wiki.ros.org/tfe (visited on 2021-05-13).

Freidovich, L. B. (2013). Control Methods for Robotic Applications: Lecture Notes.
Saint Petersburg National Research University of Information Technologies Me-
chanics and Optics, St. Petersburg, Russia. Umea University. URL: http: //
umu . diva- portal . org/smash/record. jsf 7pid=diva2%3A663949&
dswid=9505f| (visited on 2021-02-15).

Gazebo (2014). Gazebo; Robot simulation made easy. Open Source Robotics Foun-
dation. URL: http://gazebosim.org/ (visited on 2021-05-13).

Guarana-DIY (2020). “The Top Six Types of Industrial Robots in 2020”. URL:
https://diy-robotics. com/blog/top-six- types - industrial -
robots-2020/|(visited on 2021-03-04).

Hershberger, D., D. Gossow, J. Faust, and W. Woodall (2018). rviz;, Package Sum-
mary. ROS. URL: http://wiki.ros.org/rviz (visited on 2021-05-13).
Hogan, N. (1984). Impedance Control: An Approach to Manipulation. DOI: |10 .

23919/ACC.1984.4788393.

Holmesson, J. (2021). “Accurate Simulation of a Collaborative Robot Arm with
Cartesian Impedance Control”. M.Sc. TFRT-6142. 1SSN: 0280-5316.

Hosseinpour, F. and H. Hajihosseini (2009). “Importance of Simulation in Manu-
facturing”. International Journal of Economics and Management Engineering
3:3,229-232. 1SSN: 1307-6892.

IBM Cloud Education (2021). Middleware. IBM Cloud Education. URL: https :
//www.ibm.com/cloud/learn/middleware (visited on 2021-07-19).

Infineon (2018). “Fundamentals of robotics”. URL: https : //www . infineon .
com/cms/en/discoveries/fundamentals-robotics/ (visited on 2021-
03-02).

Kaelbling, L. P, M. L. Littman, and A. W. Moore (1996). “Reinforcement Learning:

A Survey”. Journal of Artificial Intelligence Research 4, pp. 237-285. DOI:[10.
1613/jair.301l

67

http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
https://www.designformaking.com/m10
https://www.designformaking.com/m10
https://github.com/frankaemika/franka_ros
https://github.com/frankaemika/franka_ros
http://wiki.ros.org/tfe
http://umu.diva-portal.org/smash/record.jsf?pid=diva2%3A663949&dswid=9505f
http://umu.diva-portal.org/smash/record.jsf?pid=diva2%3A663949&dswid=9505f
http://umu.diva-portal.org/smash/record.jsf?pid=diva2%3A663949&dswid=9505f
http://gazebosim.org/
https://diy-robotics.com/blog/top-six-types-industrial-robots-2020/
https://diy-robotics.com/blog/top-six-types-industrial-robots-2020/
http://wiki.ros.org/rviz
https://doi.org/10.23919/ACC.1984.4788393
https://doi.org/10.23919/ACC.1984.4788393
https://www.ibm.com/cloud/learn/middleware
https://www.ibm.com/cloud/learn/middleware
https://www.infineon.com/cms/en/discoveries/fundamentals-robotics/
https://www.infineon.com/cms/en/discoveries/fundamentals-robotics/
https://doi.org/10.1613/jair.301
https://doi.org/10.1613/jair.301

References

Khatib, O. (1987). “A unified approach for motion and force control of robot ma-
nipulators: The operational space formulation”. IEEE Journal on Robotics and
Automation 3:1, pp. 43-53. DO1:/10.1109/JRA . 1987 .1087068.

KUKA (2021). LBR iiwa. URL: https: //www . kuka . com/en- se/products/
robotics-systems/industrial-robots/lbr-iiwa (visited on 2021-05-
09).

Lee, J., M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa, M. Stilman, and
C. K. Liu (2018). “DART: Dynamic Animation and Robotics Toolkit”. Journal
of Open Source Software 3:22, p. 500. DOI1:/10.21105/ joss . 00500.

Luca, A. D. (2014). Trajectory planning in Cartesian space. Course material:
Robotics 1. Department of Computer, Control, and Management Engineering
Antonio Ruberti, Sapienza University of Rome. URL: http://www . diag.
uniromal.it/~deluca/robl_en/14_TrajectoryPlanningCartesian.
pdf| (visited on 2021-04-17).

Meeussen, W. (2016). pr2_controller_interface; Package Summary. ROS. URL:
http://wiki.ros.org/pr2_controller_interface|(visited on 2021-
06-01).

Miller, B. (2018). Parameter Server. ROS. URL: http : / / wiki . ros . org/
Parameter?’20Server| (visited on 2021-05-13).

OpenAl (2018). Learning Dexterity. OpenAl. URL: https://openai.com/blog/
learning-dexterity/|(visited on 2021-02-16).

Ott, C. (2008). Cartesian Impedance Control of Redundant and Flexible-Joint
Robots. Vol. 49. Springer Tracts in Advanced Robotics. Springer, Berlin, Hei-
delberg. ISBN: 978-3-540-69253-9. DOI:|10.1007/978-3-540-69255- 3.

Placzek, M. and L. Piszczek (2018). “Testing of an industrial robot’s accuracy and
repeatability in off and online environment”. Eksploatacja i Niezawodnosc -
Maintenance and Reliability 20, pp. 455—464. DOI: |10.17531/ein.2018.3.
15.

Scherzinger, S., A. Roennau, and R. Dillmann (2017). “Forward Dynamics Compli-
ance Control (FDCC): A new approach to cartesian compliance for robotic ma-
nipulators”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4568-4575. DOI:/10.1109/IR0S.2017.8206325,

Shoemake, K. (1985). “Animating Rotation with Quaternion Curves”. SSIGGRAPH
Comput. Graph. 19:3, pp. 245-254. 1SSN: 0097-8930. DO1:|10.1145/325165.
325242,

Spong, M., S. Hutchinson, and M. Vidyasagar (2006). “Robot modeling and con-
trol”. IEEE Control Systems 26:6, pp. 19-21. 1SSN: 1066-033X. DOI:/110.1109/
MCS.2006.252815.

Sprague, N. (2016). Coordinate Frames. URL: https://www . academia . edu/
38172552 /Frames|(visited on 2021-06-13).

68

https://doi.org/10.1109/JRA.1987.1087068
https://www.kuka.com/en-se/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-se/products/robotics-systems/industrial-robots/lbr-iiwa
https://doi.org/10.21105/joss.00500
http://www.diag.uniroma1.it/~deluca/rob1_en/14_TrajectoryPlanningCartesian.pdf
http://www.diag.uniroma1.it/~deluca/rob1_en/14_TrajectoryPlanningCartesian.pdf
http://www.diag.uniroma1.it/~deluca/rob1_en/14_TrajectoryPlanningCartesian.pdf
http://wiki.ros.org/pr2_controller_interface
http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/Parameter%20Server
https://openai.com/blog/learning-dexterity/
https://openai.com/blog/learning-dexterity/
https://doi.org/10.1007/978-3-540-69255-3
https://doi.org/10.17531/ein.2018.3.15
https://doi.org/10.17531/ein.2018.3.15
https://doi.org/10.1109/IROS.2017.8206325
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/325165.325242
https://doi.org/10.1109/MCS.2006.252815
https://doi.org/10.1109/MCS.2006.252815
https://www.academia.edu/38172552/Frames
https://www.academia.edu/38172552/Frames

References

Statista Research Department (2021). Size of the global market for industrial and
non-industrial robots between 2018 and 2025. Statista Research Department.
URL: https://www.statista.com/statistics/760190/worldwide -
robotics-market-revenue/| (visited on 2021-07-28).

Stewart, G. W. (1977). “On the Perturbation of Pseudo-Inverses, Projections and
Linear Least Squares Problems”. SIAM Review 19:4, pp. 634-662. ISSN:
00361445. DOI1:/10.1137/1019104.

Sucan, I. and J. Kay (2019). urdf; Package Summary. ROS. URL: http://wiki.
ros.org/urdf/ (visited on 2021-05-13).

Thomas, D., D. Scholz, and A. Blasdel (2016). rqt;, Package Summary. ROS. URL:
http://wiki.ros.org/rqt (visited on 2021-05-13).

Virga, S., M. Esposito, and D. Niewinski (2019). “ITWA STACK”. URL: https :
//github.com/IFL-CAMP/iiwa_stack|(visited on 2021-02-15).

Williams, A. (2018). Applying Machine Learning to Robotics. Robotics Busi-
ness Review. URL: https : //www . roboticsbusinessreview . com/ wp -
content/uploads/2018/04/RBR_MachineLearningRobots_WP_Final.
pdf| (visited on 2021-02-16).

Zhang, W. (2018). Velocity Kinematics and Jacobian. Course material: Introduc-
tion to Robotics ECES5643, Lecture Note 7. Department of Electrical and Com-
puter Engineering Ohio State University Columbus, Ohio, USA. URL: http:
//wwu2 . ece.ohio- state . edu/~zhang/RoboticsClass/docs/LN7 _
VelocityKinematics_a.pdf| (visited on 2021-05-10).

69

https://www.statista.com/statistics/760190/worldwide-robotics-market-revenue/
https://www.statista.com/statistics/760190/worldwide-robotics-market-revenue/
https://doi.org/10.1137/1019104
http://wiki.ros.org/urdf/
http://wiki.ros.org/urdf/
http://wiki.ros.org/rqt
https://github.com/IFL-CAMP/iiwa_stack
https://github.com/IFL-CAMP/iiwa_stack
https://www.roboticsbusinessreview.com/wp-content/uploads/2018/04/RBR_MachineLearningRobots_WP_Final.pdf
https://www.roboticsbusinessreview.com/wp-content/uploads/2018/04/RBR_MachineLearningRobots_WP_Final.pdf
https://www.roboticsbusinessreview.com/wp-content/uploads/2018/04/RBR_MachineLearningRobots_WP_Final.pdf
http://www2.ece.ohio-state.edu/~zhang/RoboticsClass/docs/LN7_VelocityKinematics_a.pdf
http://www2.ece.ohio-state.edu/~zhang/RoboticsClass/docs/LN7_VelocityKinematics_a.pdf
http://www2.ece.ohio-state.edu/~zhang/RoboticsClass/docs/LN7_VelocityKinematics_a.pdf

A

Appendix — Robot Setup

Figure A.1: The LBR iiwa robot setup. A peg-tool is attached at the end-effector,
intended for peg-in-hole experiments. For these experiments, a box with a hole was
provided.

70

B

Appendix — Simulation
Environments

Figure B.1: URDF model of LBR iiwa setup in the Gazebo environment.

71

Appendix B. Appendix — Simulation Environments

Figure B.2: URDF model of LBR iiwa setup in the rviz environment. The robot is
half transparent, making it possible to see the spatial chain of frames. Moreover, the
base frame is located at the bottom right corner of the table.

Figure B.3: URDF model of LBR iiwa setup in the RobotDART environment. In com-
parison to the other simulation environments, there is also a black box added, repli-
cating the black table of the real robot setup (compare with Figure[A.T).

72

C

Appendix — Computational
Time

Computational Time per Update Loop as Time Progresses
T T T T T T T T T

1.35

Raw
13r Filtered | 7

1251 1

12r 1

1151 1

111 .

1.05

Time per Update-Loop [ms]

0 5 10 15 20 25 30 35 40 45 50
Time [s]

Figure C.1: Computational time per update loop as time progresses. The raw (red)
data show how the computational time would vary from just under 0.9 ms to more
than 1.25 ms at some occasions. The filtered (black) data are obtained using moving
average with a window of 20 data points. It shows that the computational time
would, on average, vary between 0.9 — 1 ms per update loop.

73

D

Appendix — rqt_reconfigure
Plugin

Figure D.1: Dynamic reconfiguration of stiffness values using rqt_reconfigure.

Figure D.2: Dynamic reconfiguration of damping factors using rqt _reconfigure.

74

Appendix D. Appendix — rqt_reconfigure Plugin

Figure D.3: Dynamic reconfiguration of the desired pose using rqt _reconfigure.

Figure D.4: Dynamic reconfiguration of Cartesian wrenches using
rqt_reconfigure.

75

E

Appendix — Experiments

Figure E.1: Sliding motion along the surface of the table with initial position (left
picture) and final position (right picture) shown.

76

Appendix E. Appendix — Experiments

Path with start (magenta) and end (cyan) poses marked, XY-plane

0.2

0.1

o
T

Y [m]
)

-0.31

-0.41

---real
—desired

-1

-0.9

-0.8

-0.7

06
X [m]

-0.5

-0.4

-0.3 -0.2

Figure E.2: Sliding motion along the surface of the table. The translational stiffness
along the x-direction was set to a value lower than 10 N/m, hence the noticeable
deviation along said direction. On the other hand, the stiffness along the y-direction
was set to 1000 N/m and the deviation was therefore not as big as along the x-
direction. The combination of a high stiffness value along one direction and a low
stiffness value along another allows the robot to slide on the table evenly while
reducing the risk of reaching joint limits (but at the expense of not achieving good

tracking along the direction with low stiffness).

77

Appendix E. Appendix — Experiments

Figure E.3: Commanding out-of-reach pose (the right-most frame on the top figure),
driving the robot into a singularity, where joints 3 and 5 are aligned co-linearly.

78

Appendix E. Appendix — Experiments

—real
-—-desired

Path with start (magenta) and end (cyan) poses marked

Figure E.4: Path of the end-effector position in 3D space, as the robot is commanded
to move the end-effector pose outside of the workspace. By the final pose of the real
path, the robot is stretched out.

79

Appendix E. Appendix — Experiments

Figure E.5: Robot in a singularity (top picture) with joints 5 and 7 aligned, and robot
in a non-singular configuration (bottom picture). Chronologically, the top picture
was taken first, and the bottom picture was taken shortly after.

80

Appendix E. Appendix — Experiments

Figure E.6: Peg-in-hole task displayed in sequence. The left and right pictures rep-
resent the experiment on the real robot and in simulation, respectively.

81

Lund University Document name

Department of Automatic Control ngj;iiR S THESIS
Box 118 November 2021
SE-221 00 Lund Sweden Document Number
TFRT-6147
Author(s) Supervisor
Oussama Chouman Julian Salt Ducaju, Dept. of Automatic Control, Lund

University, Sweden

Matthias Mayr, Dept. of Computer Science, Lund
University, Sweden

Bjorn Olofsson, Dept. of Automatic Control, Lund
University, Sweden

Anders Robertsson, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle
Compliance of a Robot Arm using Torque-Based Cartesian Impedance Control

Abstract

Robots have become important for the development of today’s society. They are known to obtain
good accuracy and repeatability of tasks that either complement or replace human labour.
Furthermore, as machine-learning is emerging in many technologies, it is important to consider the
uncertainties that are introduced when this method is used in robotics. This work aims at developing
and evaluating a torque-based control framework that allows a state-of-the-art robot arm to be seen
as an impedance, and its environment as an admittance. Using said control strategy allows the robot
to behave as a mass-spring-damper system, which allows it to act more compliantly. Moreover, the
type of strategy is referred to as Cartesian impedance control.

The framework was developed both in a simulation environment called Dynamic Animation and
Robotics Toolkit (DART), but also in the common robotics environment called Robot Operating
System (ROS). The latter framework was in turn used to run the control strategy on a real robot arm.

The results showed compliant behaviour of the robot in Cartesian space, both in simulation and on
the real system. Translational, rotational and nullspace compliances were tested and evaluated. For
reasonably high stiffness values, these experiments showed the expected behaviour when the robot
was subjected to external forces. Moreover, the behaviour of the robot in selected singularities was
also studied, and the robot was stable in all the tested singular configurations with no apparent
oscillations. The experiments also revealed some limitations of the real system, allowing the robot to
behave sufficiently well only under certain bounds. That is, the inheritance of friction on the real
system limited the tracking ability when lower stiffness values were used. A peg-in-hole assembly
experiment was also done both on the real system and in simulation, in order to get a sense of how the
robot performs in the intended contact-rich tasks. The results of these experiments showed that the
robot could insert the attached peg into a box with a hole, after sliding along the surface of the box for
some time. The peg insertion in simulation was about twice as fast compared to the real robot.
Moreover, the specific path of the end-effector in simulation compared to the real system did not
match precisely due to uncertainties and limitations such as calibration errors and friction.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 1-83

Security classification

http://www.control.lth.se/publications/

	Introduction
	Problem Statement
	Aim and Limitations
	Outline

	Theory
	Basics of Robotics
	Kinematics
	Cartesian Trajectory Planning
	Dynamics
	Impedance Control
	Control Shaping

	Robot Setup and Software Interfaces
	The Robot Setup
	Robot Operating System
	Dynamic Animation and Robotics Toolkit

	Approach and Methodology
	General Overview
	Control Implementation
	Working Environment
	ROS Framework
	DART Framework
	Licenses

	Experiments and Results
	General Performance
	Singularities
	Peg-in-Hole

	Discussion
	Discussion of the Results

	Conclusions and Future Work
	Future Work

	References
	Appendix — Robot Setup
	Appendix — Simulation Environments
	Appendix — Computational Time
	Appendix — rqt_reconfigure Plugin
	Appendix — Experiments
	Blank Page
	regler-forstasida_A4.pdf
	Tom sida

