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Abstract

Building on previous studies investigating the use of real-time evolutionary algo-
rithms for truck dispatching scheduling in underground mines, this study aims
to investigate the potential improvement in performance that can be achieved
by using information from previously used and discarded schedules when con-
structing new ones. Changes to two di�erent algorithms have been made; a
single evolutionary algorithm developing truck dispatching schedules and a co-
evolutionary algorithm developing truck dispatching schedules and tra�c light
schedules in parallel. For both respectively, two di�erent approaches have been
investigated.

The changes to the evolutionary algorithm result in similar mine productiv-
ity compared to the original approach, but a decrease in the required computa-
tional power. For the co-evolutionary algorithm, the changes have led to a large
decrease in computational power, which comes at a cost of a slight decrease in
productivity.

Keywords: Machine Learning, Evolutionary Algorithms, Vehicle Dispatching Problem,
Underground Mine Dispatching, Real-time Scheduling
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Chapter 1

Introduction

This chapter gives an initial understanding of the purpose of the study, the problem at
hand and the research question the study aims to answer as well as the associated limita-
tions. Thereafter, the authors’ perceived contributions in relation to one another as well as
to academia are described. Lastly, the general outline of the report is explained. Some of
the more specific terminology that is used throughout this chapter is listed and explained in
more detial in Section 2.1.2.

1.1 Purpose
In underground mines, a challenge arises in regards to scheduling of trucks carrying ore from
the point where it is being broken to where it is further processed. The problem this con-
stitutes is very similar to a traditional vehicle dispatching problem but with the addition
of features specific to the mine context. This challenge has been addressed through many
di�erent means, which will be discussed in Background (Section 2, primarily in 2.2, 2.3. Us-
ing evolutionary algorithms (henceforth referred to as EAs) to develop suitable schedules has
been found to be one successful approach. At University of Western Australia (henceforth
referred to as UWA) much work has been done to evaluate the use of EAs to evolve schedules
for real-time underground mine scheduling.

This study builds directly upon the work performed at UWA, and more specifically on
their latest research project which was compiled into a submission finalised in late 2018 [7].
The key concepts and findings of that project are described in Previous work (Section 2.3),
which makes up the first stepping stone for this study.

The purpose of this study is to further enhance the EA developed by UWA in order to
improve its performance in the context of real-time scheduling in underground mines. This
will be done by examining the use of already existing information when rerunning the EA,
as opposed to the benchmark approach which is constructed so that the EA begins every run
in a randomly generated starting point.
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1. Introduction

1.2 Problem description
The profitable operation in any underground mine is to extract ore and transport it to the
surface. In order to do this, machinery is placed on di�erent levels underground and a number
of trucks populate the mine, going back and forth throughout the work shift. The costs
incurred by truck transportation alone stand for approximately 50-60 percent of total costs
[13]. Due to high costs related to site expansion, certain sections of the roads underground
are one-lane only, complicating the tra�c situation. This results in a complex scheduling
problem, one that aims to secure and ideally maximise productivity while at the same time
keeping costs at a minimum.

This reasoning has been captured andmodeled in a softwaremine simulator. This project,
as well as the previous work in the area performed by UWA, is centered around this mine
simulator and thus rather specific problem setup. The outlines of it are explained in this
section.

1.2.1 Mine simulator setup
Figure 1.1 shows the setup of the underground mine simulator. Above ground level a crusher
is placed adjacent to the opening of the mine. The crusher is where the trucks unload their
ore. Hence, it is the destination of all loaded trucks. When the ore is unloaded the truck gets
a new destination; which shovel to go to next. The shovels are placed at di�erent depths and
this is where the trucks are loaded with ore. The downward sloping road sections are one-
lane only and the roads to and from each shovel are two-lane. At the intersection between
the main road and each of the shovel access roads there are so called passing points. At each
passing point tra�c lights regulates the tra�c in both directions.

Figure 1.1: Model of an underground mine. A truck is given a desti-
nation shovel each time it leaves the crusher. Access to each one-lane
road is controlled by a pair of tra�c lights.

In order to regulate the tra�c in themine, two separate schedules are necessary; one truck
dispatching schedule and one tra�c light schedule. The quality of each of the schedules is
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1.3 Research question

dependent on the content of the other, which makes the problem complex.

1.2.2 Real-time scheduling
In reality, many mines operate continuously day and night. In order to be able to compare
the productivity and limit the simulation time, the time that is simulated as a work shift in
this problem is set to approximately eight hours (500 minutes).

The simplest way of managing the schedules would be to generate them once in the be-
ginning of a work shift and run the mine according to the set plan for the full eight hours.
However, in reality there is a certain level of randomness incorporated into the problem.
Some of the conducted operations di�er in the time they require to be executed, one exam-
ple of this being the time it takes to load and unload ore onto trucks. This randomness will
cause discrepancies between the actual state of the mine (i.e. the current positions of the
trucks) and what would be expected for each point in time (a beforehand predicted state of
the mine). Allowing these discrepancies to accumulate would eventually lead to the schedule
no longer being the best possible. Due to this, the schedule needs to be frequently updated -
real-time scheduling is necessary.

The deviations from the expected operation times will not be large enough that the sched-
ule would need updating every second or minute. Therefore, an updating frequency of 15
minutes is instead implemented. Every 15 minutes the software discards the old schedules
and develops brand new schedules based on the current state of the mine.

Figure 1.2: Updating frequency during work shift. Full shift of 500
minutes with schedule update occurring every 15 minutes.

1.3 Research question
To address the constraints and incentives associated with underground mining, and with the
vision of delivering value to those operating in the industry, the objective of this study is to
answer the following research question:

Can information from a previous run of an evolutionary algorithm be used when creating
generation zero in the following run of the evolutionary algorithm in order to improve its
performance?

The research question incorporates terminology that will be explained in Section 2.1. The
objective of “improving performance” is vague and can be concretised by being broken down
into the following three sub-meanings:
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1. Introduction

1. To increase overall productivity - An increased level of peak performance, i.e. max-
imised productivity in terms of number of truckloads being delivered to the crusher
during a work shift.

2. To achieve better productivity when using a smaller number of trucks - Reaching a
higher number of truckloads in cases when the number of trucks is lower than in a sat-
urated state (minimum number of trucks in order to reach 99% of peak performance)
of the mine.

3. Less computational power required to run the evolutionary algorithm -A smaller num-
ber of generations required to be run through by the evolutionary algorithm to find a
solution, and thus less computational power and time required.

1.4 Limitations
Some simplifications that may a�ect the reliability of the outcome have been made.

In spite of the fact that the fitness function should be ameasure of themetric that is being
optimised, using the overall objective as the fitness function of the EA (maximising the num-
ber of truckloads) is in this case not feasible due numerous reasons. This was first discovered
by Cox et al., and several motives for working with a proxy metric instead were established
[7]. For instance, the discreteness of the overall goal requires a full shift of 500 minutes to be
simulated (at least), which in turn leads to drawbacks in terms of requiring longer run times
as well as longer solutions (i.e. larger search space) compared to what could be achieved with
a proxy metric. For the full discussion see [7, p. 12-13]. Therefore, a proxy metric is used as
the EA’s fitness function. The proxy metric is closely linked to the performance of the overall
objective, but it is not exactly the same. Thus, it constitutes a limitation to the study. A more
in-depth description of the proxy metrics can be found under Section 3.4.1.

Second, a number of factors observed in real-world mines have been omitted in the setup
of the mine simulator. These are the same as mentioned by Cox et al.:

• Because of limited communication in the mines it is sometimes impossible to know
the state of the mine

• Some systems have incorporated techniques for collision avoidance

• Some situations will require priority rules for di�erent trucks

• Some mines operate over-trucked in order to always maximise productivity

Furthermore, the simulations in the experiments run for 500 minute work shifts. In real
life mines the machinery usually runs continuously, only stopping for maintenance when
necessary. It is however assumed that the mines will reach steady state during the time used
in the simulations, thus, that the results are valid as a base of comparison.
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1.5 Contributions
During the course of the project Hedda Malmström and Sofia Tenerz have worked closely
together, both contributing to each section of the final product. Malmström and Tenerz
were both physically present for the experimental phase of the project that was conducted
in Perth, Australia during a period of eight weeks, as well as the following phase in Lund,
Sweden, documenting the results.

This study, investigating the possibility to improve the performance of an EA, seeks to
deliver value to the team of researchers at UWA, and thus in turn contribute to the industry
of undergroundmining inWesternAustralia. Additionally, with the ambition of establishing
conclusions relevant to EA applications in a broader context, this would ideally also mean
contributing to the EA community as a whole.

1.6 Report outline
This report is structured as follows:

1. Introduction: Explains the general purpose of the project and gives an initial overview
and understanding of the problem at hand. The research question is defined and lim-
itations and contributions are investigated.

2. Background: The chapter is meant to explain all the background needed to compre-
hend the contribution made by the authors. First, general theory around artificial
intelligence and EAs is explained. Second, a comprehensive literature review is con-
ducted and lastly, the previous work made by the research group at UWA is examined.

3. Approach: The Approach chapter goes into detail on the existing problem and sim-
ulation setup as well as the implementation of the changes and how the experiments
were conducted.

4. Evaluation: In Evaluation, the methodology is briefly explained followed by the results
from the conducted experiments and related analysis. Graphs and tables provides an
overview of the experiment outcome.

5. Discussion: In Discussion, the results are put in a greater perspective, analysing the
contribution to academia and future research.

6. Conclusion: The results and discussion are compiled into a conclusion that provides
an answer to the research question.
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Chapter 2

Background

This chapter will first explain the theoretical concepts related to this area of research, which
build the foundation in this research project. Thereafter, a literature study is compiled, ex-
hibiting related work in fields from EAs to vehicle dispatching scheduling, as well as the
two combined. Finally, the one study by UWA, which this research project builds directly
upon, is described in closer detail. This to establish the starting point of the project and the
surrounding prerequisites.

2.1 Theory
The theory behind this line of research is centered around the concepts of artificial intelli-
gence, machine learning and more specifically EAs. This chapter explores the general defini-
tions of these concepts.

2.1.1 Artificial intelligence and machine learning
Artificial intelligence can be defined as follows: The e�ort to automate intellectual tasks normally
performed by humans. Artificial intelligence is a wide concept, and includes a plethora of
various approaches that aim to make computers think the way humans do [6, p. 4-5].

Machine learning is a subset of artificial intelligence and is a collection of approaches and
algorithms that are based on the computer independently learning and developing knowledge
without explicit rules written by humans. In classical programming, humans would construct
the rules that the computer uses to make necessary calculations in order to reach an answer.
In machine learning, the computer is fed with data, and will construct rules or patterns on its
own. Some machine learning systems use large data sets to be trained. As such, these systems
builds mostly on empirical results rather than theoretical [6, p. 4-5].
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2. Background

2.1.2 Evolutionary algorithms
An evolutionary algorithm is one of many examples of a machine learning system. EAs aim
to mimic the natural behaviour of evolution by iterating over several generations and using
mutation and cross-over to produce o�spring that combine qualities from their parents with
new traits [5, p. 38-40].

In general, all EAs share three main characteristics: (1) They build on maintaining a pop-
ulation of di�erent solutions to the same problem, (2) o�spring are created using random
operations made to mimic genetic mutation and recombination, and (3) every solution in
the population will be evaluated using some kind of fitness function [5].

EAs are primarily a good choice when the search space considered is large enough that it
would be unfeasible to try all solutions [28], and at the same time is uneven or unpredictable
[5]. Figure 2.1 shows an example of a complex search space with several local optima. A
simpler algorithm might get stuck and deliver a bad solution, but an EA has a good chance
of performing well in spite of these circumstances [28]. As with all algorithms of this type
one can never be sure that the optimal solution can ever be found, but the goal is to find a
solution that is good enough for the particular situation in a reasonable time frame [28].

Figure 2.1: Visual representation of a complex search space.

The following two sections describe some of the terminology that is used throughout the
report as well as the general concept behind the workings of an EA. Most implementations
will be customised to the specific application in question, but the basic concept will in most
cases be derived from this approach. The given information is based on the content of the
course CITS4404 Artificial Intelligence and Adaptive Systems, UWA and is summarised in
lecture slides [28].

Useful terminology
• The search space is essentially the landscape of possible solutions. Given a finite num-
ber of parameters one can sometimes visually represent the search space to get a better
understanding of the size and complexity of it (see Figure 2.1).
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2.1 Theory

• A solution is something that fulfills the requirements and objectives of the problem
at hand; a particular way of getting from A to B. A solution needs to be represented
in a way that can be understood and evaluated (by a fitness function, see below). In
practice the solution representation could be a string of di�erent decisions. As an ex-
ample, imagine a network of roads between two points, start and finish. A 0 represents
turning right at the next intersection, and a 1 means turning left. One way of travelling
between the start and finish could look like this: [0 0 1 1 0 1 1 0].

The solutions are sometimes referred to as ‘parents’ and ‘o�spring’ depending on the
current perspective of the process. Parents and o�spring are both of the same solution
representation, but the parent is the predecessor to the o�spring.

• A population consists of a number of solutions. They are all solutions to the same
problem. The size of the population will usually be kept at a constant number.

• Generations are, just as in biological evolution, the time variable of populations. In
EAs the same solution will never change. After evaluation of parent solutions, some
of the same solutions might survive and o�spring will be created. Together they will
make up the next generation.

• To create o�spring some genetic operators are required. Mutation is essentially a slight
alteration of the parent solution. This could for example consist of insertion or dele-
tion of genes. Building on the example above, an insertion mutation could look like
this (inserting a zero and removing the last gene, everything else remaining the same):

[0 0 1 1 0 1 1 0]⇒ [0 0 1 1 0 0 1 1]

Crossover could for instance be choosing a sequence of genes (e.g genes on position
3-5) and switching places with the corresponding genes in another solution.

• The fitness function is used to evaluate the solutions. The fitness function is the same
as, or closely related to, the objective of the problem. If the aim is to get from start
to finish as fast as possible, an appropriate fitness function could be minimizing the
travel time in seconds.

• After the fitness evaluation, the selection will occur. This determines which solutions
that qualify for the next generation.

General concept
There is more than one way to construct an EA. In Figure 2.2, a simple illustration is made
to explain the general concept.

1. An initial population (generation 0) is generated. The population size is constant (here:
4). The solutions in the first generation could either be constructed at random, or by
some prior knowledge. The solutions have di�erent shapes to symbolise that even
though they are solutions to the same problem, the have di�erent characteristics.

2. The fitness function is applied to all solutions and the fitnesses are compared to each
other.

15



2. Background

3. The best half (here: 2) gets to survive to the next generation and make o�spring. This
is an example of a maximizing problem. Hence, the two solutions with the highest
fitness are the ones that are considered best.

4. O�spring are created with mutation and crossover from the chosen parents.

5. The former parents and the o�spring they created make up the next generation (1...n).
All solutions are equal and the process will start over from (1) again.

Figure 2.2: General Concept of an evolutionary algorithm. The dif-
ferent symbols do all represent solutions to the same problem, but
with slightly di�erent characteristics.

Termination of the process can be determined in di�erent ways, the number of genera-
tions the algorithm will run for could be a constant number, or the algorithm can run until
the improvement from one generation to the next has stagnated.

2.1.3 Co-evolutionary algorithms
Co-evolutionary algorithms, henceforth referred to as CEAs, are an extension of the simpler
evolutionary algorithms. The idea builds on combining di�erent types of solutions from
separate populations that together make up the complete solution to the problem at hand.
This will make it possible to apply EAs to more complex problems and explore larger search
spaces [21].

In Figure 3.2.2 the concept is illustrated.

1. Two generations aremaintained, both containing four di�erent solutions at each point
in time. They represent di�erent parts of a complete solution and both are needed in
order to form the full solution to the problem at hand.

2. Members from the two populations are paired to evaluate the fitness. They are both
given the same fitness score based on the quality of the solution they together made
up.

16



2.2 Literature review

3. After the fitness evaluation the algorithm will perform selection of the best solutions.
After this, o�spring are created the same way as in an EA; using genetic operations on
the surviving parents.

4. This process continues for several generations until termination.

Figure 2.3: General Concept of a co-evolutionary algorithm.

2.2 Literature review
There is much work related to this research in one way or another. Very closely related work,
using the same type of algorithm for the same problem, is however limited. Nevertheless,
using EAs for adjacent problem setups is frequently occurring. In addition, another com-
monly researched area is the very same problem, scheduling in mines, being solved by other
means than this specific type of algorithm. The purpose of this section is to summarise rele-
vant related work and highlight and discuss potential takeaways that could be valuable going
forward.

17



2. Background

2.2.1 Evolutionary algorithms for truck dispatching in
mines

The use of EAs to target the issue of scheduling in underground mines is a niched matter,
which seems to have been exposed to limited amount of research. The group dedicated to this
at UWA have established findings on multiple occasions. Cox et al. proved 2017 that using
EAs (there referred to as genetic algorithms) for this purpose displays benefits compared
to both the industry standard DISPATCH as well as the simpler approach of using greedy
heuristics [9] [24]. Benefits were seen in terms of production increase and cost-savings, and
mainly made a di�erence in setups where other approaches struggled, for instance when one-
lane roads were included.

The research was thereafter taken further by the development of a cooperative CEA that
performed real-time evolution of both dispatching schedules and tra�c light schedules to-
gether [8]. The problem setup here also included one-lane roads, which had previously been
seen as the main area for potential improvement. Final results established that the CEA out-
performed other approaches, primarily by delivering high productivity with fewer trucks in
use. These findings were covered on a brief level on the Australaisan Joint Conference on
AI in 2018. More exhaustive documentation of the proposed approach as well as adjacent
experiments was compiled into an article submitted (but not yet published) in late 2018 [7].
This is the article that has been considered the starting point for this study, being described
in closer detail in Previous work (Section 2.3).

The only other identified case that investigates the use of EAs for truck dispatching in
mines was performed by Mendes et al. in 2016 [16]. Documentation was done solely in Por-
tuguese. Knowledge and takeaways gathered from this should therefore be treated with care
as there is a risk of translation fallacies. In this study, Mendes et al. implement and com-
pare di�erent versions of a hybrid multi-objective EA (hereafter referred to as hMOEA).
This study is very similar to the ones that have been conducted at UWA, primarily consid-
ering the fact that they both use real-time dispatch scheduling and evaluate the solutions by
simulating in abstract mine setups where trucks travel between shovels and crushers.

In the study conducted by Mendes et al., each approach is evaluated by calculating In-
verted Generational Distance (IGD) and hypervolume. This also makes the objectives similar
to previously described work, where the main performance indicator also relates to produc-
tivity in terms of volume of ore delivered. The research performed by Mendes et al. primar-
ily builds upon the following two concepts, which constitute the di�erences between the
hMOEA versions compared:

1. Implementing a local search engine, a heuristic, for constructing the first generation

2. Applying a Pareto local search method for multi-objective problems (MOPs) to the set
of generated feasible solutions to enable faster identification of a new non-dominated
solution [30]

In this study, the multi-objective nature of the problem is emphasised and several more
variables are introduced (compared to the problem setup in the work done at UWA). This
further complicates the problem and raises the level of di�culty in finding a suitable solution.
For example, the trucks used in the mine all di�er in loading capacity.
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2.2 Literature review

Introducing local search methods and thus achieving faster convergence is desirable in
complex problem setups [1]. However, considering the relevance of this work in relation to
ours, one can conclude that these findings might be less applicable to our project due to the
fact that our problem setup is more simplified. For instance, in the case of generating dis-
patching schedules (our starting point) the solution representation is basic, meaning adding
local search engines will deliver limited value. For the development of tra�c lights schedules
on the other hand, where solutions have more room for variation, this concept might be of
interest at a later stage.

2.2.2 Evolutionary algorithms for other forms of mine
planning

Even though work done investigating the use of EAs for truck dispatching is limited, the use
of EAs in adjacent fields seem to have been more commonly addressed. Bitanshu demon-
strated in 2012 the advantages of using EAs for open pit mine production scheduling, i.e.
planning the extraction sequence of mining blocks [11]. Solving the problem of production
scheduling in an open pit mine means solving a large scale mixed integer programming prob-
lemwith a large search space, whilst being subject to constraint equations. This could, accord-
ing to Bitanshu’s research, be done in significantly shorter time while still finding satisfactory
solutions when using an EA.

Optimising production scheduling using EAs seems to be an anticipated future lucrative
business, with mine consultancies developing commercial algorithms. An example of this is
the EvORElution, a trademark software optimising open pit mine scheduling using an EA
[18]. This has been developed by the Western Australia-based mine consultancy ORElogy.
Escalating to a higher level of planning, EAs have also been introduced to multi-mine plan-
ning, i.e. planning across several mine sites [19]. This has shown potential benefits, but since
the study investigating this was the first of its kind (or one of very few) the main conclusion
was that further fine-tuning and extention of scope was to be done.

2.2.3 Evolutionary algorithms for vehicle dispatching
problems

The problem of truck dispatching scheduling in mines show both similarities and di�erences
to vehicle dispatching problems in general. Alarie and Gamache describe two typical aspects
of a vehicle dispatching problem:

1. The variability of the demand

2. The multiple objectives [2]

Di�culties and complexities related to the problem are subsequently based on these as-
pects. There are also challenges indirectly related, as for instance determining the size of the
fleet (i.e. depending on demand). Typical for these problems is that they are often too com-
plex and include toomany parameters and constraints to be solved by deterministic methods.
Therefore, heuristic solutions have traditionally been seen as common practicable methods
for solving the problems. Heuristic approaches are described in closer detail in Section 2.2.4.
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The truck dispatching problem in mining can be seen as a simplification of the general
vehicle dispatching problem. It treats a closed system (pick-up and drop-o� points stay the
same over time), trucks are loaded with ore to full capacity at one shovel and then sent di-
rectly to a crusher (meaning there are never several pick-up points on any one route), time of
travel is short compared to the full shift and visiting frequency to every pick-up point is high;
to name a few significant di�erences. Furthermore, the near future of the state of the mine
can be predicted and the level of randomness incorporated to the problem setup is limited.
This opposed to the general case, which usually has a stochastic nature at any moment. These
di�erences in overall characteristics have to be kept in mind when taking part of methodol-
ogy or algorithms developed to address truck dispatching problems in general or for other
industries, for the purpose of our research.

Potvin has compiled a review of the work done on EAs for vehicle routing problems
(VRPs) [22]. For the study at hand the subcategory of vehicle routing problems consider-
ing time (time-dependant VRPs), rather than distance travelled, is the most relevant. This
because time-dependant VRPs display the greatest correlation to both the overall goal and
the proxy metrics of our study (described under Approach, Section 3). In the work studied
by the author some shortcomings to the classical EA were encountered when applying it to
VRPs. Many of these shortcomings matter exclusively when considering the conservative
and classical view of the EA. When moving away from this static view of the features of the
algorithm (as in the case of the EA developed by UWA and used in this study) many of these
shortcomings are already acknowledged and regarded for. However, one mentioned short-
coming that still stands is the notion that heuristic information has to be incorporated into
the algorithm to ensure the EA obtains competitive results. Since this also aligns with what
was stated by Mendes et al. [16], but does not seem to be an established truth in the work
by UWA (which is the starting point for this study) [7], this should be kept in mind going
forward.

On an overall level the review conducted by Potvin displays an extensive use of EAs to
address vehicle routing problems [22]. Looking back, research on this has chiefly been con-
ducted for the generic case, but is seen increasingly for niche problem configurations as well
as real-world cases. Due to the flexibility of EAs in terms of problem setup constraints, real-
world application will most likely continue to increase ahead. Dynamic problems requiring
fast response times (as for instance in the case of real-time scheduling) is another area where
the use of EAs is expected to grow. This is due to the fact that former limitations related to
the high computational burden of EAs are being eradicated with technical development.

2.2.4 Other methods for truck dispatching
There is much research being done on truck dispatching in mining. This can be interpreted
as an indication of growing enthusiasm for more advanced methods for truck dispatching
in commercial circles and real-life mines as well. Many authors agree that transportation
costs make up as much as 50-60 percent of total operations costs in mines [2], which is why
a growing interest in performing these activities more e�ciently is highly motivated. Work
regarding truck dispatching has been geared towards both open-pit and undergroundmining,
with the former constituting a clearmajority of the performed research. Open-pit mines have
used dispatching systems for the last 45 years [14]. The problem of truck dispatching in an
open-pit mine is simpler since it does not have to consider routing and scheduling aspects in
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the same ways as in the case of underground mines. Even so, methodology developed around
open-pit mining could provide valuable insights also to the context of underground mining.

Munirathinam and Yingling have published a comprehensive review of the currently ex-
isting computer-based truck dispatching technologies for open-pit mines [17]. These are clas-
sified into the following overarching categories:

1. Systems that employ heuristic rules to make truck assignment decisions

2. Plan-driven dispatching systems

3. Constrained-assignment dispatching systems

Conclusions drawn from the survey establish that while systems based on heuristics are
easy to implement, they are limited in their contribution. Due to their simple nature, they
do not fully capture the multi-objective essence of the problem. Despite this, Munirathinam
and Yingling also claim that when applied in the right contexts, heuristic rules can be a supe-
rior dispatching methodology. For instance, one key area is that of very complex problems,
where other methods need to simplify the problem a lot to make it graspable, compromising
appropriateness and/or e�ectiveness. Another area where heuristic rules are e�ective is in
contexts that are very prone to unpredictable fluctuations, which can be the case of large and
complex mining operations.

The other two approaches to truck dispatching, plan-driven and constrained-assignment
dispatching systems, are both considered highly beneficial, and display many di�erent ad-
vantages respectively. However, the authors have identified a lack of studies comparing the
plan-based and constrained-assignment approaches, so that declaring a winner among the
two is di�cult.

Alarie and Gamache also provide a review of truck dispatching strategies in open-pit
mines [2]. They conclude their paper by listing the characteristics that are considered to
make up the ideal truck dispatching systems. Also here the plan-driven approach is brought
forward, in this article referred to as the "multi-stage approach". In short, the very core of
this approach is the two-plan structure [17]. The first component deals with short-term pro-
duction planning, while the second component deals with the dispatching procedure used to
make truck assignment decisions in real-time simultaneously.

Both White and Olson and Temeng et al. have developed mathematical programs that
build on the plan-driven approach [29], [27]. The mathematical two-stage dispatching pro-
gram developed by White and Olson is packaged as the trademark software "DISPATCH".
DISPATCH is today commercially available as DISPATCH Fleet Management System, with
the most recent version said to mathematically build upon the three pillars of linear pro-
gramming (LP), dynamic programming (DP) and Best Path (BP) [25]. DISPATCH has also
been updated to include real-time scheduling. Moreover, an adaption of DISPATCH now
exists that is specifically developed for the use in underground mines, o�ered by the same
supplier [24].

Truck dispatching strategies developed for underground mining specifically is, as men-
tioned above, a less exploited field of research. Gamache et al. present a graph-based ap-
proach to this built upon the Dijkstra’s shortest-path algorithm [14], [12]. Ozkarahan et al.
on the other hand have developed a mathematical model based on Mixed Integer Program-
ming (MIP) to solve this scheduling problem [20]. The problem is here modeled as a parallel
machine scheduling problem where MIP is employed to find a solution.
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Looking into a closely related field of research, scheduling automated guided vehicles
(AGVs) inmanufacturing showsmany similarities to scheduling trucks in undergroundmines.
Kim and Tanchoco present a method for conflict-free shortest-time AGV routing, a method
that seems well suited also for undergroundmine scheduling [15]. This is primarily due to the
use of bi-directional road segments, which makes the context similar to that of underground
mines with one-lane road sections. The algorithm proposed by Kim and Tanchoco is also
based on Dijkstra’s shortest-path algorithm [12].

As mentioned above, the most simple computer-based truck dispatching strategies build
on heuristic rules [17]. For a system like that, one truck is dispatched at a time, considering
nothing but the one greedy rule put in place. Examples of greedy heuristic rules for this
purpose, that have been examined as potential rules for deciding truck assignments in mines,
are the following:

1. Fixed truck assignment - each truck is assigned to one shovel only, and stays on the
same loop between the crusher and the one assigned shovel.

2. Minimising truck waiting time - a truck is dispatched to the shovel where it has to wait
the least time. This is achieved by minimising the di�erence between the time for the
shovel to get ready (finish loading of all trucks queued up) and the travel time for the
dispatched truck.

3. Maximise truck - a truck is dispatched to the shovel where it can expect to be loaded
with ore at the earliest future point in time. This builds upon the greedy rule above
(minmising truck waiting time) with the addition of the time for the shovel to load
the truck.

4. Minimising shovel waiting time - A truck is dispatched to the shovel that has been
waiting the longest, or that is expected to be available the soonest. This strategy is also
referred to as maximise shovel rule.

5. Maximising truck momentary productivity - A truck is dispatched based on where it
will maximise its truck momentary productivity. The truck momentary productivity
is defined as the ratio between truck capacity and truck cycle time.

6. Minimising shovel saturation - A truck is dispatched to the shovel with the least satu-
ration. Saturation is defined as the ratio between the number of trucks assigned to that
shovel and the number of trucks that should ideally have been assigned to that shovel.
This ideal number, referred to as the saturation number, is the number of trucks given
by the ratio of the travel time between the dispatching point and the shovel and the
servicing time per truck at the shovel.

7. Minimising deviation from shovel production target - A truck is dispatched to the
shovel that is lagging behind its output targets the most.

The seven heuristic rules briefly described above are the most common ones, which have
been investigated and evaluated in many di�erent studies. For more ingoing descriptions
and analysis, thorough work has been done by both Munirathinam and Yingling as well as
Tan and Ramini [17], [26].
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2.3 Previous work at UWA
This research project builds directly upon previous research conducted at UWA, and specifi-
cally on the most recent work by Cox et al. [7]. In this, the authors seek to examine the use of
EAs and CEAs for real-time dispatching and tra�c light scheduling in underground mines.
This section describes the design of the experiment and the EA as it was developed by Cox
et al., as well as the key findings. This constitutes the starting point for our study. Further
development of the EA as well as experiment setup specific to our project is elaborated on
under Approach, Section 3.

2.3.1 Experiment design
The study evaluates the use of evolutionary (and co-evolutionary) algorithms in three di�er-
ent contexts, with the overall mine set-up being the same as described in Section 1.2:

• Using an EA to develop the dispatching schedule, with tra�c lights regulated by simple
rules or fixed schedules.

• Using an EA to develop the tra�c light schedule, with dispatching decisions regulated
by simple rules or fixed schedules

• Using aCEA to evolve both the dispatching schedule and tra�c light schedule together

When tra�c lights were regulated by simple rules, greedy rules were applied (also called
greedy heuristics or heuristic rules). Tra�c lights regulated by fixed schedules meant regu-
lation by cyclic timers. This was in the documentation referred to as greedy lights (GL) and
cyclic lights (CL) respectively. The performance was assessed in terms of mine productivity,
i.e. the number of truckloads delivered to the crusher during a shift of 500 minutes. Eval-
uating fitness of solutions produced by EAs was done using proxy metrics. The three proxy
metrics used were:

• Minimise total truck waiting time (W)

• Minimise average truck cycle time (C)

• Minimise average crusher inactivity (I)

These proxy metrics are explained in closer detail under Section 3.4.1.
The three developed approaches were comprehensively compared to other truck dis-

patching technologies. Inspiration for these dispatching technologies was drawn from re-
lated academic work as well as solutions currently in use commercially. The three benchmark
scheduling tools that were chosen were:

• Best-H - a portfolio of seven commonly used greedy heuristics

• DISPATCH - an industry standard approach based on linear programming

• FCS - a flow-based approach based on linear programming

23



2. Background

2.3.2 Findings
Experiments were executed stepwise. First, it was observed that from the set of existing
benchmark approaches Best-H performed the best, which it did in combination with con-
trolling tra�c lights by cyclic timers (CL) (see Figure 2.4). Performance is here measured by
truckloads of ore being outputted over a shift, i.e. productivity of the mine.

Figure 2.4: Comparisons between several benchmark approaches to
dispatching scheduling, with tra�c lights regulated by cyclic timers
(CL) and greedy rules (GL) respectively. Averages of six problem
instances. Graph indicates that Best-H with cyclic timers generates
the highest productivity, i.e. number of truckloads.

When this was determined, Best-H was subsequently compared to all of the three EA
and CEA approaches developed by Cox et al., combined with both CL and GL tra�c light
regulation. What could be observed was that using EAs to generate the dispatching schedule
outperformed Best-H when using GL to regulate the tra�c lights, but did not yield any
remarkable results when being combined with CL. Furthermore, using the EA to develop
tra�c light schedules while keeping the dispatching schedule fixed, did on a general level
not perform better than Best-H.

However, the most prominent finding from this research were the results produced by
the CEA, seen in Figure 2.5. The CEA outperformed all other approaches, no matter what
proxy metric was used for evaluation. The biggest di�erence was seen in achieving a high
mine productivity with a low number of trucks, as well as reaching maximum productivity
with fewer trucks.

This study produced very satisfactory results, and left lots of openings for further inves-
tigation in future research. The article documenting this research concludes by suggesting
future paths of research within (1) modification and refinement of the problem setup, and
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Figure 2.5: Comparisons between the BEST-H-CL and CEA eval-
uated using three di�erent proxy metrics. Averages of six problem
instances. Graph indicates that the CEA performs better than Best-
H for all three proxy metrics in use.

(2) modification to the EA. Our project is based on the second of these two suggestions -
modifying the EA to further enhance its performance.
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Chapter 3

Approach

This chapter elaborates on the problem description from Section 1 by providing a closer look
into the scheduling problem and its intrinsic features and limitations, as well as the details
of the EA and CEA solutions. Thereafter, the suggested changes to the EA and CEA that
constitute this study are described, first as an overall theoretical concept and then as the
multitude of practical variations that were implemented. Lastly, some of the decisions made
around the experiment setup are disclosed. All information building up the section below is
obtained from three studies performed at UWA unless otherwise stated [7], [8], [9].

3.1 The scheduling problem
In the following section the simulation model is explained. Thereafter, the nature of the
scheduling problem is described, which is highly dependent of the setup of the simulator.
Finally, the concept of schedule management is covered, exhibiting the reason for real-time
scheduling and what that means in this context.

3.1.1 The simulation model
In order to compare the di�erent approaches for scheduling in underground mining, a sim-
ulation model was used. This model is the very same as was originally constructed for work
done by Cox et al. [9], and subsequently used for further experiments by the same team [8] [7].
The simulator is designed to represent an underground mine site, and is constructed based
on a network of timed automata (TA) [3]. Further documentation of the theoretical concepts
forming the foundation of the simulator can be found in the original article [9].

The simulator, designed to correspond to a real-life underground mine, has the overall
structure as depicted in Figure 3.1. It consists of four shovels on di�erent depths. A truck
gets a destination shovel at the time of departure from the crusher. At the shovel, ore is
loaded onto the truck. Thereafter, the truck travels the same route back from the shovel to
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the crusher at the surface, where the ore is unloaded. The downward sloping road sections
are one-lane, and the road sections branching o� towards the shovels are two-lane. Which
truck gets to traverse each one-lane section at each point in time is regulated by tra�c lights.
For each one-lane road section, there is a pair of tra�c lights that need to be regulated by a
schedule. When one of the two is green, the other is automatically red to ensure that collisions
will never occur.

These two components make up the essence of the scheduling problem; the scheduling of
the trucks’ destinations and the timing of the tra�c lights, designed to achieve the highest
mine productivity possible. The overall goal, maximising the mine productivity, is measured
in number of truckloads being delivered to the crusher during a shift. A shift is set to be 500
minutes, i.e. just over eight hours.

Figure 3.1: Model of an underground mine. A truck is given a desti-
nation shovel each time it leaves the crusher. Access to each one-lane
road is controlled by a pair of tra�c lights.

In this mine setup trucks are homogeneous, meaning they all have the same loading ca-
pacity and speed distribution. The trucks vary in their average speed depending on their state
(empty or full) and trajectory as in Table 3.1. The crusher and shovels are heterogeneous, they
vary in average service rates among themselves and depending on the problem instance, see
Problem instances below.

Table 3.1: Trucks’ average speeds.

trajectory contents speed (km/h)
level ground empty 15
level ground full 12

downhill (on decline) empty 15
uphill (on decline) full 6
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Problem instances
Six di�erent problem instances were generated for the original mine simulator, all with four
shovels and one crusher. For each problem instance, the lengths of the road sections as well
as the average service rates were generated randomly from the following ranges:

• Downward sloping road sections: 400 - 600 m

• Crosscut road section: 150 - 250 m

• Average filling rate at shovel: 9-17 minutes per truck

The average filling rates for all shovels together make up to the emptying rate at the
crusher, which is three minutes per truck. Thereby, the shovels and the crusher could all
theoretically work continuously and never stand idle. Shovels and crusher will never be held
back by one another, the bottleneck will always be the trucks and tra�c lights. Inspiration
for the mine setup was taken from a review by Rupprecht [23] in order to ensure staying well
aligned with reality.

3.1.2 Schedule management
The unpredictable mine
There is complexity to this scheduling problem in regards to a certain level of randomness
being incorporated in the simulation model. Activities performed in the mine di�er in terms
of time required for execution, to better reflect corresponding real-world activities. Times for
loading and unloading the trucks with ore, travelling the road sections and queuing for any
of the activities, are all randomly generated. As seen above, times to perform these activities
are specified with an average, but no further. Due to this, a future state of the mine is never
fully predictable. The current state of the mine on the other hand, i.e. where all the trucks
are and how far through the ongoing activity they have gotten, is always measurable. For
any point in time, every single truck can be assigned an e�ective position in the mine by a
state-value pair.

Real-time scheduling
When a schedule is developed, it is done based on a predicted future state of the mine. As
time passes, a discrepancy will arise between the predicted state of the mine and the state
of the mine as it actually is. The larger this discrepancy, the worse suited the schedule is for
the real state of the mine. Therefore, the schedule needs to be updated to find one that is
optimised for the current state of themine, i.e. find a new solution customised to the problem
setup as it looks at this specific point in time. When it is time to update the schedule (either
truck dispatching schedule, tra�c light schedule, or both), this is when the chosen scheduling
approach comes into play.

As briefly explained in Section 1, real-time scheduling in this context refers to the prac-
tice of updating the schedule/-s regularly. Here, the update occurs approximately every 15
minutes. The update frequency is set arbitrarily and is potentially subject to further research.
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3.2 Evolutionary algorithms to develop sched-
ules

This section explains the structure of the implementation of the software used to apply EAs
or CEAs to solve the problem explained above. As explained in Section 2.3.1, two di�erent
approaches have been used to tackle the scheduling problem. First, using an EA to schedule
truck dispatching and using cyclic timers for lights, and second, using a CEA to evolve the
two schedules together. The implementation was done as a part of the work done by UWA,
and the same setup is what is being used as a base for comparison in this study.

3.2.1 Evolutionary algorithm
For the EA, a population of solutions to the truck dispatching problem is maintained. The
population size is 100, which will be kept the same at all times. One wants the population
size to be large enough that the search space is explored, but at the same time not too large
which would cause the algorithm to be slow, hence 100 is a good compromise. The solution
representation is a list of di�erent shovel IDs (numbers ranging from 0 to 3) representing
the order in which trucks will be dispatched to the di�erent shovels. Each truck, no matter
how many there are in use, polls its next destination from the same list when it has finished
emptying a load of ore at the crusher and is about to begin a new cycle. Hence, a typical
solution will look something like this:

[1, 3, 0, 2, 3, 0, 1, 2...]
For the first generation of the EA run, generation zero, the solutions will all be generated

randomly.
The solutions are then evaluated by simulating over time H (see Section 3.2.3 below), and

using the fitness function. The fitness function in use is minimising the crusher inactivity time
and is further elaborated under Section 3.4.1. As such, the fitness returned by the fitness
function is the portion of time the crusher is expected to stand still during the time H with
the current solution in use, thus, the lower it is the better the solution. Because of the ran-
domness incorporated in the simulator as mentioned above, a solution could potentially get
"lucky" or "unlucky" in an evaluation. To ensure that each solution gets a fair fitness score,
20 simulations are completed for each one. The resulting fitness will be the average of the 20
simulation scores kept in a "fitness bucket". Upon creation, the solution is given 20 fitness
evaluations and for each generation it survives (see below) one new evaluation is added to the
bucket and the oldest one will be excluded.

An illustration of the process of creating the next generation is shown in Figure 3.2. After
being evaluated by the fitness function, the solutions are sorted by quality. The simulator
allows us to choose the elitism, the portion of each generation that is guaranteed to survive
to the next generation, in this case only the best one. The entire population is then used
as the base for reproduction and 100 o�spring are created and put in a selection pool. The
solutions from last generation that were not guaranteed to survive (all but the best one) will
be put in the same selection pool, making the size 199. The selection is then made and the
99 (population size: 100 - guaranteed survivors: 1) best solutions from the selection pool
are added to the next generation. Most likely, the new generation will be a mix of the best
solutions from last generation and the o�spring that were created with them as parents.
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Figure 3.2: Evolutionary algorithm process.

The process explained above will continue until termination is caused by one out of two
possible reasons. The first reason is improvement stagnation. When the improvement in
fitness has been less than 0.5 percent for the last 100 generations there is presumably little
value to be added by continuing the EA run, and thus the process is terminated. In cases when
a large number of trucks are in use (see Section 3.4.3), a second reason for break is necessary;
when fitness reaches the optimum value. Since the fitness function in this particular case
is minimising and the crusher inactive time cannot be less than zero, there is no point in
continuing to come up with new solutions as it cannot get better. The run is then terminated.
The optimum will never be reached for a full shift, however, for the simulation window H
(see Section 3.2.3), it can be.

The output from the EA run will be the solution with the best fitness in the last genera-
tion, and that will be put in use.

3.2.2 Co-evolutionary algorithm
The way the CEA works is in many ways similar to the EA. The big di�erence is however
that two separate populations are maintained, one for truck dispatching schedules and one
for tra�c light schedules. The population size for both populations is 100. The solution
representation for the truck dispatching schedule is the same as in the EA; a list of shovel IDs.
The solution representation for the tra�c light schedule is slightly di�erent as it contains
four di�erent sub-schedules, one for each pair of tra�c lights at each one-lane road section
in the mine. Each tra�c light sub-schedule is made up of a list of times (in seconds) that the
specific light pair is supposed to alter between green and red. In the solution the four lists
are combined into one long list, but when the schedules are to be used this has to be split
into the four parts. Just as in the EA, the solutions in the initial populations are generated
randomly.

To form a complete solution one member from each of the two populations is required,
which is how the fitness is evaluated. Each member of the first population is paired with a
number of collaborators (in this case one member) of the other population. The fitness that
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the pair generates gets assigned to them both. The schedule-pairs are evaluated 20 times in
order to reduce noise, and the resulting fitness is an average.

An illustration of the process is shown in Figure 3.3 below. For each of the two pop-
ulations a selection pool is created and o�spring based on the entire population is placed
there. In this case, all the solutions from the previous population survive and are also part
of the selection pool. After this, the fitness is evaluated as explained above, resulting in the
two populations again being filled with the 100 best solutions in a following generation. The
populations evolve separately from each other, only the fitness evaluation uses the combina-
tion.

Figure 3.3: Co-evolutionary algorithm process.

The process termination works the same way as with the EA, either stopping because of
improvement stagnation, or because the function has reached the optimal fitness. The output
of the CEA run is the best observed pairing of schedules and they will together be put into
use.

3.2.3 Simulation time
Considering the fact that each schedule will only be used approximately 15 minutes before
being replaced (see Schedule Management, Section 3.1.1), there is no reason to ever develop
schedules that cover a full shift. On the other hand, there are several reasons to develop
schedules longer than exactly 15 minutes: first, software optimising a schedule that is only to
be in use for the next 15 minutes sees no reason to leave the mine in a state that will provide a
beneficial starting position for the subsequent 15minutes. Nobody, not humans nor software,
has the knowledge of what a “good” starting position would be, why the simplest way around
this problem is to have the algorithm develop schedules that do consider the near future as
well. Second, the simulator is built in a way that it does not always update the schedule/-
s after exactly 15 minutes. For instance, the dispatching schedule will only have a chance
to update when a truck is about to depart from the crusher, thus requesting a new shovel
destination. This will occur after 15 minutes plus the additional time until a truck requests a
shovel destination again. There are also other reasons that might delay the schedule update.
To ensure developing schedules long enough to hedge for all of these potential delays, the
schedules are developed to be the same length as the longest possible cycle time for a truck
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in the mine, i.e. going from the crusher to a shovel and then back to the crusher again. This
schedule length is called H and is approximately 60 minutes (varying slightly depending on
the problem instance).

The overall goal, number of truckloads delivered to crusher, is di�cult to measure when
evaluating shorter time periods than the full shift (500 minutes). This due to the fact that the
outputs are integers that di�er very little between approaches (usually one or two truckloads).
Thence, approaches evaluated over shorter time periods might output the same productiv-
ity while actually di�ering in performance. Using proxy metrics (see below, Section 3.4.1)
when evaluating the schedules (solutions) is therefore another factor that enables developing
shorter schedules of time H.

3.3 Using previous schedules
Themine simulator and the EA as it was developed up until the last research project at UWA,
constituted the starting point for this project. It was from here that changes and add-ons to
the EA were designed and implemented.

As stated before, a new EA or CEA runs every 15 minutes to make sure the schedule in
use is up to date and not too a�ected by the randomness in the simulator. With the original
setup this means that every 15 minutes the old schedule is discarded and new schedules are
produced, starting o� by randomly constructing the first generation of the next EA/CEA
run.

However, considering the last generation of the previous run, it will contain the one
solution that was taken into use, and 99 other schedules presumably nearly as good as the
one that was chosen. This constitutes the main idea of this study; using the solutions from
the last generation of the previous run to construct generation zero in the next run, and by
doing so potentially improving performance of the algorithm.

When constructing the new schedules in the original approach, one of the key elements
is taking the current state of the mine into consideration (where the trucks are positioned
and how far along they are in their current activities) at the time of the update. If the so-
lutions that are saved from the previous run do not take this into account the results would
presumably be bad, as they are optimised for a di�erent state compared to the one the mine
is currently in. The key to this is to only use the solutions that would have resulted in the
same state of the mine after 15 minutes, meaning the solutions that match the one that was
actually chosen on the assignments that were completed before schedule update.

As explained in Section 3.2.3, the time that the solution is developed for is H (approx-
imately one hour). The first 15 minutes that have passed by the time of the next update
therefore needs to be cut o�. In order to again develop schedules of the correct length (H)
this will also mean that a new ending of the schedule needs to be added. The procedure is
visualized in Figure 3.4.
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Figure 3.4: Matching and fitting schedules.

3.4 Experiment setup
Decisions regarding experiment setup, non-specific to the spectra of approaches developed,
had to be made. Such are disclosed in the section below.

3.4.1 The proxy metric
As briefly covered in Sections 1.4 and 3.2.3, there are complications related to the EA opti-
mising by the overall goal, i.e. maximising productivity measured in truckloads of ore being
delivered to the shovel during a shift. Therefore, the predecessor to this study [7] examined
the use of proxy metrics. A proxy metric is a metric that can be measured instead of the over-
all goal, and by doing so also indirectly measuring the overall goal. Subsequently, maximising
or minimizing (depending on character) an adequate proxy metric will lead to maximising
truckloads of ore being delivered to the crusher (as is the main objective). Three di�erent
proxy metrics were suggested and examined in the study by Cox et al. [7]:

• Minimise average truck cycle time - Returns the average time for a truck to perform
a full cycle, i.e. the time between getting an assignment at the crusher, performing
the action and returning to the crusher. The simulation window is in this instance
extended so that a truck that has left the crusher within the original simulationwindow
H has enough time to return and thereby finalise its cycle.

• Minimise total truck waiting time - Sums up and returns the total waiting time for
all trucks, i.e. time spent queuing at shovels, crushers and passing points. Has the
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advantage that some e�ects of decisions can be observed immediately, thus a shorter
time horizon can be used.

• Minimise average crusher inactivity - Returns the average fraction of time the crusher
stands idle, i.e. is empty of ore to crush. This number is computed as the crusher idle
time divided by the time of the simulation. Here as well, the simulations window is
extended to wait for all trucks dispatched during the original simulation window H to
finalise their cycle.

In order to validate the use of the three proxy metrics, the correlation was examined
between the overall objective and each of the three proxy metrics respectively by Cox et al.
[7]. The findings were compiled into the three charts in Figure 3.5.

Figure 3.5: Plots demonstrating the correlation between total pro-
duction during a shift and the three proxy metrics respectively.

As can clearly be observed in the Figure 3.5, there is a strong correlation between each
of the proxy metrics and the overall objective. That can be seen as a validation of the use of
each and every one of these proxy metrics in place of the overall objective.

With the analysis and rationale from the precedent study as a starting point [7], the work
of evaluating and choosing one single proxy metric to center this new set of experiments
around began. In the documentation of the study it was recommended thatMinimising average
crusher inactivity should be the proxymetric of choicemoving forward [7, p. 25]. Furthermore,
as seen in Figure 3.5, this proxy metric displays the most clear correlation to the principal
objective. Therefore,Minimising average crusher inactivitywas chosen as the one and only proxy
metric, which will henceforth be referred to as MACI.

3.4.2 Problem instances
As mentioned in Section 3.1.1, six versions of the simulation model were designed, all with
slight variations in terms of lengths of road sections and average service rates of shovels. This
is to make up a set of problem instances by which to simulate and compare approaches. For
the EA experiments all six instances were used, but due to time limitations it was not possi-
ble to perform simulations across all six problem instances for the CEA. Three of them were
therefore chosen. When choosing three out of the six problem instances, the result files out-
putted from previous experiments performed by Cox et al. [7] were taken into consideration,
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and the problem instances that had generated the lowest productivity, thus subject to the
largest improvement potential, were chosen. Low productivity seems to be correlated with a
large size of the mine. The problem instances that were used in the CEA were number 2, 3
and 6.

3.4.3 Number of trucks
When performing the experiments, the behaviour of the mine was to be examined with dif-
ferent numbers of trucks in use. Each approach was to be examined for the following states
of the mine:

• Under-trucked - When there are so few trucks in use that peak productivity cannot
possibly be reached. This is never a desirable status quo in a real-life mine, but might
be the case temporarily if trucks break down.

• Saturated - When there are as many trucks in use, that peak performance can be
reached, but no more. A desired state to be in.

• Over-trucked - When there are more trucks in use than required to achieve peak per-
formance. This might eventually lead to decreased productivity due to more queues
and tra�c jams.

Since the di�erent problem instances vary in their setup parameters, di�erent numbers
of trucks are required to ensure all states are covered. For experiments on each approach and
each problem instance examined, ten di�erent numbers of trucks were tested. The di�erent
numbers of trucks tested for each problem instance are compiled into table 3.2.

Table 3.2: The di�erent numbers of trucks in use tested during ex-
periments, per problem instance.

No. of trucks instance 1 instance 2 instance 3 instance 4 instance 5 instance 6
11 x
12 x x x
13 x x x x x
14 x x x x x x
15 x x x x x x
16 x x x x x x
17 x x x x x x
18 x x x x x x
19 x x x x x x
20 x x x x x x
21 x x x x x
22 x x x
23 x
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3.5 Two phases of the study

3.5 Two phases of the study
Previous work has, as described in Section 2.3, evaluated the use of EAs to generate dispatch-
ing schedules and tra�c light schedules independently, as well as both of these together using
a CEA. This study has been divided into twomajor phases. Phase one is dedicated to address-
ing the research question with the approach of using EAs to generate a dispatching schedule,
while tra�c lights are controlled independently by cyclic timers. This approach will onward
be referred to as EA-RT-CL - Evolutionary Algorithm for Real-Time dispatch scheduling
with Cyclic Lights. Phase two further develops the work done in phase one by using an EA
to develop the tra�c light schedules as well. Thus, phase two evaluates our research question
using the approach of a CEA to generate both dispatching and tra�c light schedules. This
approach will onward be referred to as CEA-RTL - CEA for Real-time scheduling for Trucks
and Lights.

As described in Section 3.3, the general idea is to make use of the solutions in the last
generation of the previous EA/CEA run when constructing generation zero of the next run.
This can be done in many di�erent ways and this section aims to provide an overview of the
approaches that were used in this project.

3.5.1 Phase 1: EA-RT-CL
As mentioned above, the EA-RT-CL approach uses a single EA for the truck dispatching
schedules and cyclic timers for the tra�c lights. In this phase, three di�erent ways of im-
plementing the use of previous generations were tried. The details of each one are explained
below.

Approach 1.1

In approach 1.1 each of the relevant portions of the matching solutions are kept and get a
number of di�erent su�xes each. For instance, if there are 25 matching solutions and a
population size of 100, each saved "mid-section" would occur four times with four di�erent
su�xes, as shown in Figure 3.6. By doing so the hope is to avoid a situation where a randomly
generated su�x that happened to be "bad" ruins the chances for an otherwise good solution
to survive past the first generation.

Approach 1.2

Approach 1.2 instead adds one su�x to each of the matching middle-sections and uses the
resulting group of solutions (assuming there are less than 100 matches) to generate the rest of
the solutions needed to make up a population size of 100. Using the same example as above;
if there are 25 matching solutions, each of them will get one random su�x and the 25 would
then be the parents of 75 o�spring. The 25 matching solutions and the 75 o�spring of the
matching solutions together make up generation zero.
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3. Approach

Figure 3.6: Approach 1.1: Adding di�erent su�xes.

Approach 1.3
Approach 1.3 uses the same technique as in 1.1 with the di�erence that there is a limit put
in place, a maximum of the 40 best solutions are kept and used. If the number of matches
are fewer than 40, 1.3 will yield the same result as approach 1.1. If there are more than 40
matches, the 40 best ones will be kept and fitted with a number of di�erent su�xes, and the
rest will be discarded. Initial experiments showed that 1.3 would yield a di�erent generation
zero compared to what 1.1 would have in approximately 40 percent of cases, see Figure 3.7.
The underlying data is gathered from pre-experiments for one problem instance only and
can therefore only be considered an indicator.

From pre-experiments to experiments
Before running the rather time consuming simulations some pre-experimentswere conducted
to potentially rule out any approach that did not indicate significant results. It was found
that 1.3 displayed the most promising result compared to the original approach. Because of
the fact that 1.3 is a direct modification of 1.1, 1.1 was also found to be an interesting path
moving along with. Approach 1.2 however, did not show any significant results, either good
or bad compared to the other two, why this approach was discarded before large scale exper-
iments.

3.5.2 Phase 2: CEA-RTL
In the second phase of the project changes to the CEA-RTLwere implemented, evolving both
truck dispatching schedules and tra�c light schedules in parallel as explained in Section 3.2.2.
Just as in phase 1, three di�erent approaches were tried in the pre-experiments. Having seen
satisfactory results in phase 1, all three approaches were designed to be similar to the best
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Figure 3.7: A histogram of the number of solutions matching the
chosen one in the last generation of a EA run. This number exceeds
40 in approximately 40 percent of the cases.

one from the first phase, approach 1.3. The aim was to study the e�ect of applying the same
concept as approach 1.3 to both populations.

Approach 2.3.1
2.3.1 is very similar to approach 1.3 from phase one. Here, the initial truck dispatching sched-
ules are generated the same way as in 1.3; by saving the 40 best (or less) matches and adding
di�erent su�xes to them until the population size of generation zero is 100. The tra�c light
schedules are generated randomly, just as in the original approach.

Approach 2.3.2
2.3.2 builds directly on 2.3.1 with the di�erence that the same approach is used to generate
the generation zero of the tra�c light schedules as well. Constructing the generation zero
is done in the same way as earlier explained; by keeping the 40 best (or less) matches and
adding di�erent su�xes until the population size is 100.

Approach 2.4
In approach 2.4 the truck dispatching schedules are again generated by keeping the 40 best
(or less) matches and adding di�erent su�xes until the population size is 100. The tra�c
light schedules are generated by keeping the 40 best solutions from last run (best fitness),
regardless of whether they match the schedule that was taken into use. The solutions are still
re-fitted in time, removing the first part and adding a su�x at the end.
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From pre-experiments to experiments
In the pre-experiments it was found that 2.3.2 performed significantly worse and that its
performance was unstable (large standard deviation), compared to the other two approaches.
Therefore, it was decided that 2.3.2 would be discontinued after pre-experiments.
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Chapter 4

Evaluation

In this chapter some of the practical methodology around the experiment setup is briefly
described followed by the results of the experiments and related analysis. Throughout the
chapter, problem instance 2 is the one being showcased alongside the average of all six prob-
lem instances for the EA and the three problem instances (2, 3 and 6) for the CEA. The
problem instances display very similar results, and either one could just as well have been
chosen. For the complete results, see Appendix A.

The results and analysis are based on the research question:
Can information from previous runs of an evolutionary algorithm be usedwhen creating

generation zero in the following run of the evolutionary algorithm in order to improve its
performance?

The phrase "Improving performance" can be interpreted as either one of the following
three:

1. To increase overall productivity - An increased level of peak performance, i.e. max-
imised productivity in terms of number of truckloads being delivered to the crusher
during a shift.

2. To achieve better productivity using a smaller number of trucks - Reaching a higher
number of truckloads for cases when the number of trucks is lower than in a saturated
state of the mine (minimum number of trucks in order to reach 99% of peak perfor-
mance).

3. Less computational power required to run the evolutionary algorithm -A smaller num-
ber of generations required to be run through by the evolutionary algorithm to find a
solution, and thus less computational power and time required.

After developing and implementing the changes to the algorithm (see Section 3.5), ex-
periments were run in the simulator. The simulator and the algorithms to be evaluated were
programmed in Java, with the extension of the external library lpsolve to solve linear program-
ming problems [4].
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The simulation runs were set up as follows:

1. One full shift simulation represents a work shift of 500 minutes with a fixed number
of trucks

2. Ten di�erent number of trucks for each approach (original + experimental approaches)
were evaluated

3. Six and three di�erent problem instances for the EA andCEA respectively, with slightly
di�erent set-ups of the mine simulator (see Section 3.1.1), were run

4. 25 runs of each simulation setup were run. Results computed as the average of the
output for all 25 simulations

The simulations were run on multiple desktop computers in parallel, with as many as
30 running computers with six processes on each on occasions. The results of each approach
were compared to those of the original approach. They were all run during night time, spread
out on approximately four weeks.

4.1 Evolutionary algorithm
The results that were observed in Phase 1: EA-RT-CL are shown in tables and graphs below.
The two main areas that were examined were (1) productivity (number of truckloads) and
(2) number of generations.

4.1.1 Mine productivity
Being the overall objective of the mine, the productivity in terms of number of truckloads
is central when talking about performance of the EA. Table 4.1 and Figure 4.1 display the
productivity, i.e. number of truckloads by di�erent number of trucks for problem instance
2. Both approach 1.1 and 1.3 perform similarly compared to the original approach.

The largest di�erence can be seen for 15 trucks, where original is outperformed by 1.1 with
1.48 truckloads, and 1.3 with 1.28 truckloads. This is per full shift of 500 minutes. On average
(across the di�erent numbers of trucks), 1.1 deviates from original with 0.328 truckloads and
1.3 deviates from original with 0.244 truckloads. The average standard deviations (across the
di�erent numbers of trucks) for original, 1.1 and 1.3 are 0.535, 0.540 and 0.485 respectively.

Here, problem instance 2 is the one being portrayed, but the same trend can be seen for
all problem instances. Figure 4.2 shows the average productivity for all instances.

None of the approaches reach a significantly higher peak performance than the original
approach. In an under-trucked state of the mine, primarily around 14-15 trucks, the pro-
ductivity can be seen to be slightly better than original. However, it does not reach peak
performance with any fewer trucks than before.
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Table 4.1: EA. Problem instance 2. Productivity (number of truck-
loads), standard deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Prod St dev Prod St dev Di� Prod St dev Di�
14 137.88 0.99 137.44 0.98 -0.32% 138.40 0.75 0.38%
15 143.36 0.74 144.84 0.73 1.03% 144.64 0.84 0.89%
16 149.56 0.70 149.56 0.80 0.00% 149.44 0.75 -0.08%
17 152.76 0.65 153.08 0.63 0.21% 152.72 0.66 -0.03%
18 153.76 0.43 153.84 0.37 0.05% 153.92 0.39 0.10%
19 154.76 0.51 154.04 0.20 -0.47% 154.84 0.46 0.05%
20 154.92 0.27 155.04 0.45 0.08% 155.04 0.34 0.08%
21 155.04 0.20 155.04 0.34 0.00% 155.04 0.20 0.00%
22 155.00 0.57 154.92 0.39 -0.05% 155.04 0.45 0.03%
23 154.92 0.27 154.88 0.52 -0.03% 155.00 0.00 0.05%

Total 1511.96 1512.68 1514.08
Average 0.53 0.54 0.48
Di�. prod. 0.05% 0.14%
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Figure 4.1: EA. Problem instance 2. Average mine productivity by
the number of trucks in use.
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Figure 4.2: EA. Average of all six problem instances. Average mine
productivity by the number of trucks in use.
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4.1.2 Number of generations
Averages
Table 4.2 and Figures 4.3 and 4.4 show the average number of generations (by number of
trucks) that the EA requires to reach a solution (i.e. the number of generations that were run
before the EA was terminated by one of the two termination reasons described in Section
3.2.1). Figures 4.3 and 4.4 display problem instance 2 and the average of all six problem in-
stances respectively. Both 1.1 and 1.3 outperform the original approach and require a lower
number of generations for all di�erent numbers of trucks in use.

In total (counting the number of generations for all trucks for all six problem instances)
approach 1.1 requires 11.65 percent less generations to reach a solution compared to original.
For 1.3 the same number is 11.22 percent. The average standard deviation across all problem
instances and all trucks are 86.17, 82.68 and 83.69 for original, 1.1 and 1.3 respectively.

Table 4.2: EA. Problem instance 2. Number of generations, standard
deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Gen St dev Gen St dev Di� Gen St dev Di�
14 218.74 54.89 205.36 55.28 -6.12% 211.84 60.01 -3.15%
15 236.50 64.48 217.59 64.80 -8.00% 225.00 66.38 -4.86%
16 252.60 74.27 229.04 72.39 -9.33% 227.26 72.00 -10.03%
17 252.85 80.32 225.34 77.33 -10.88% 219.33 68.77 -13.26%
18 198.94 98.84 164.42 101.69 -17.35% 157.00 102.39 -21.08%
19 154.46 101.01 132.26 103.14 -14.37% 130.63 108.53 -15.43%
20 137.96 111.59 121.46 100.29 -11.96% 125.48 105.89 -9.05%
21 138.46 104.61 123.00 102.10 -11.17% 102.41 98.05 -26.04%
22 102.85 100.45 92.52 101.62 -10.04% 98.78 104.00 -3.95%
23 122.05 106.45 101.96 99.74 -16.46% 101.21 106.82 -17.07%

Total 1815.40 1612.94 1598.94
Average 89.69 87.84 89.28
Di�. gens. -11.15% -11.92%

45



4. Evaluation

Number of trucks

N
um

be
r g

en
er

at
io

ns

90

110

130

150

170

190

210

230

250

270

14 16 18 20 22

Original generations 1.1 generations 1.3 generations

Figure 4.3: EA. Problem instance 2. Average number of generations
required by the EA to find a solution, by the number of trucks in
use.
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Figure 4.4: EA. Average of all six problem instances. Average num-
ber of generations required by the EA to find a solution, by the num-
ber of trucks in use.

Distribution
In order to ascertain the witnessed gap between the average number of generations run by
the EA for the respective approaches, this was closer examined by being broken down on
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truck level. Looking at a specific case, Figure 4.5 shows the distribution of the number of
generations required to find a solution for 17 trucks in problem instance 2. The normal
distribution curve plotted is centered around a higher number for the original approach
compared to 1.1 and 1.3. It should be kept in mind that a low number is desirable.
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Figure 4.5: EA. Problem instance 2. 17 trucks. Distribution of num-
ber of generations required by the EA to find a solution, displayed
as histogram and normal distribution curves.

4.1.3 Analysis

The results from the EA were perceived as promising, primarily in regards to the observed
reduction in the number of generations required to reach a solution. Worth mentioning is
also the improvement in productivity for the under-trucked systems, as could be seen in
Figures 4.1 and 4.2.

On this basis, it seems increased performance cannot be seen in the form of the first "sub-
meaning" of the research question; increasing the peak performance in terms of number of
truckloads. Looking at the second however, an improvement could be observed as produc-
tivity increased in under-trucked systems. The peak performance still cannot be reached with
fewer trucks and a real life mine presumably seldom operates at such an under-trucked state
as where the improvement was seen, but the result is still perceived as interesting.

Looking at the number of generations, good results were observed. Both 1.1 and 1.3 show
a remarkable di�erence compared to original. "Sub-meaning" number three in regards to per-
formance improvement, decreasing the required computational power and time, can thus be
considered achieved. The correlation between computational power, number of generations
and run time is further investigated in Section 4.3.
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Standard deviation
As with all experiments, results need to be statistically proven with some degree of certainty,
in order to claim a definitive di�erence between approaches. One wants to be absolutely sure
that observed behaviours are not a product of coincidence. Some of the results produced in
this study show large deviations between simulations, leading to large confidence intervals
and thus they cannot be interpreted as absolute truths.

The most prominent result from the study is the observed di�erence in number of gener-
ations required to find solutions. As commented on in Section 4.1.3, a rather large di�erence
can be seen (a total decrease of 11.22 percent with approach 1.3 compared to original over all
problem instances). This however, is a comparison between the average numbers produced
by 25 full shift simulations. Figure 4.6 depicts the average number of generations for problem
instance 2 - same as in 4.3 with the addition of a 95 percent confidence interval (dotted lines)
for the EA (original and 1.3). Here, approach 1.3 is the only one plotted alongside original
since it displayed the largest di�erence, and is thus the most likely to avoid much overlapping
confidence intervals. However, this was not the case. The confidence intervals overlap a lot
and it can therefore not be guaranteed that the observed di�erences between the approaches
are not coincidental.

The more overlap of two confidence intervals (representing two independent groups),
the less likely it is for these two groups to be distinguishable by a certain variable. For ref-
erence, when comparing two independent groups, 95 % confidence intervals that display a
proportion overlap of 0.5 or less correspond to p < 0.05 [10]. In the same way, 95 % confidence
intervals that do not overlap but just touchmean p < 0.01. The proportion overlap is the over-
lap in absolute numbers divided by the average margin of error for the two groups. These
relationships are su�ciently accurate when both sample sizes are at least 10, and the margins
of error do not di�er by more than a factor of 2. Nonetheless, the confidence intervals in this
case are overlapping much more, rejecting statistical significance by any degree.

In order to statistically a�rm that the results are valid, a lotmore experiments would have
to be run (if possible at all). This would then ideally strengthen the validity of the conclusion,
but would presumably not lead to any new findings. Nevertheless, given the nature of this
area of science and especially the industry, the results do not need to be scientifically proven
in order to be perceived as interesting and potentially valuable.
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Figure 4.6: EA. Problem instance 2. Average number of generations
required by the EA to find the solutions, with a 95% confidence in-
terval.

4.2 Co-evolutionary algorithm
The results that were observed in Phase 2: CEA-RTL are shown in tables and graphs below.
The two main areas that were examined were (1) productivity (number of truckloads) and
(2) number of generations.

4.2.1 Mine productivity
In regards to mine productivity, i.e. number of trucks being delivered to the crusher during a
500 minute shift and subsequently the overall goal, interesting results were produced by the
CEA approaches. Opposed to what was observed in results from phase 1, a more significant
di�erence between the approaches was detected. The results from approach 2.4 proved to
be consistently lower than those of the other two approaches. The original approach and
2.3.1 performed very similarly. Table 4.3 and Figure 4.7 demonstrate exactly this for prob-
lem instance 2. These findings proved pervading throughout all three instances, as can be
interpreted from Figure 4.8 which displays the average across the three instances 2, 3 and 6.

The largest di�erence that can be seen in Figure 4.7 is for 15 trucks, where original per-
forms similarly to 2.3.1 and better than 2.4. The di�erence between original and 2.4 is here
2.16 truckloads. On average, for problem instance 2, 2.3.1 deviates from original by a decrease
of 0.096 truckloads and 2.4 deviates from original by a decrease of 0.680 truckloads (across
the di�erent number of trucks). This can be compared to the average standard deviations for
original, 2.3.1 and 2.4, which are 0.481, 0.475 and 1.104 respectively.
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Table 4.3: CEA. Problem instance 2. Productivity (number of truck-
loads), standard deviation and di�erence compared to original.

Original Approach 2.3.1 Approach 2.4
Trucks Prod St dev Prod St dev Di� Prod St dev Di�
14 140.80 0.5800 140.76 0.66 -0.03% 139.48 1.2600 -0.94%
15 147.08 0.57 147.20 0.71 0.08% 145.04 4.6000 -1.39%
16 151.52 0.77 151.48 0.59 -0.03% 150.96 0.9300 -0.37%
17 154.00 0.29 153.96 0.54 -0.03% 153.48 0.5900 -0.34%
18 154.52 0.51 154.64 0.49 0.08% 154.36 0.6400 -0.10%
19 154.84 0.37 155.00 0.41 0.10% 154.56 0.5800 -0.18%
20 155.00 0.41 155.16 0.47 0.10% 154.64 0.5700 -0.23%
21 155.08 0.4000 155.04 0.35 -0.03% 154.64 0.6400 -0.28%
22 155.20 0.41 155.04 0.20 -0.10% 154.80 0.4100 -0.26%
23 155.20 0.5 155.12 0.33 -0.05% 154.48 0.8200 -0.46%

Total 1523.24 1523.40 1516.44
Average 0.48 0.48 1.10
Di�. prod. 0.01% -0.45%
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Figure 4.7: CEA. Problem instance 2. Average mine productivity by the
number of trucks in use.

50



4.2 Co-evolutionary algorithm

Number of trucks

Pr
od

uc
tiv

ity
 (n

um
be

r o
f t

ru
ck

lo
ad

s)
 

130

140

150

160

14 16 18 20 22

Original productivity 2.3.1 productivity 2.4 productivity

Figure 4.8: CEA. Average of problem instances 2, 3 and 6. Average mine
productivity by the number of trucks in use.
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4.2.2 Number of generations
Averages
In phase 1, findings were seen regarding the number of generations required by the EA to
find a solution. For the CEA however, these results demonstrated an even bigger di�erence
between the approaches. The original approach and 2.3.1 perform very similarly, whereas 2.4
requires a lot less generations. This is depicted in Table 4.4 and Figure 4.9, where results for
problem instance 2 are plotted. These findings were seen across all three instances, which
Figure 4.10 (compiling the average of all instances) testifies to.

In total (counting the number of generations for all trucks for problem instance 2, 3
and 6) approach 2.3.1 proves no significant di�erence; a 0.26 percent increase compared to
original. For approach 2.4, a 33.84 percent decrease is the corresponding number. N.b. these
numbers di�er from the ones in the bottom of Table 4.4 because this is computed from three
instances together, as opposed to Table 4.4 which only displays problem instance 2. The
average standard deviation across all problem instances and all trucks are 127.24, 128.59 and
115.81 for original, 2.3.1 and 2.4 respectively.

Table 4.4: CEA. Problem instance 2. Number of generations, stan-
dard deviation and di�erence compared to original.

Original Approach 2.3.1 Approach 2.4
Trucks Gen St dev Gen St dev Di� Gen St dev Di�
14 385.15 91.74 381.35 101.05 -0.99% 268.64 87.71 -30.25%
15 403.09 105.53 403.37 103.26 0.07% 282.42 93.81 -29.94%
16 417.94 115.92 418.49 116.33 0.13% 290.63 92.45 -30.46%
17 395.42 115.07 395.93 131.28 0.13% 257.18 110.41 -34.96%
18 337.53 125.75 327.92 126.91 -2.85% 198.71 126.05 -41.13%
19 275.04 142.80 264.83 147.37 -3.71% 153.50 139.26 -44.19%
20 222.41 144.09 224.92 135.58 1.13% 129.03 137.82 -41.99%
21 231.81 142.21 227.32 141.27 -1.94% 100.74 129.60 -56.54%
22 232.70 136.54 222.06 146.15 -4.57% 114.56 130.32 -50.77%
23 237.70 137.41 223.34 141.08 -6.04% 127.30 137.61 -46.45%

Total 3138.79 3089.53 1922.71
Average 125.71 129.028 118.504
Di�. gens. -1.57% -38.74%
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Figure 4.9: CEA. Problem instance 2. Average number of gener-
ations required by the CEA to find a solution, by the number of
trucks in use.
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Figure 4.10: CEA. Average of problem instances 2, 3 and 6. Average
number of generations required by the CEA to find a solution, by
the number of trucks in use.

Distribution
Again, looking at a specific case, Figure 4.11 shows the distribution of the number of genera-
tions required to find a solution for 17 trucks in problem instance 2. The normal distribution
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curve plotted is centered around a lower number for approach 2.4 compared to the other two.
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Figure 4.11: CEA. Problem instance 2. 17 trucks. Distribution of
number of generations required by the CEA to find a solution, dis-
played as histogram and normal distribution curves.

4.2.3 Analysis
Many of the implemented changes were similar for the EA and the CEA as explained in
Section 3.5. Due to this, it was expected that similar results were to be seen for the CEA as
was for the EA. Looking into the results of the CEA however, these deviate somewhat from
the pattern seen in Phase 1.

Starting with the mine productivity, it was seen that changes made to the algorithm ac-
tually had the potential to make the productivity worse. Being the central objective in any
mine business, this is of course highly undesirable.

Approach 2.3.1 only used the previous truck dispatching populations and produced the
generation zero tra�c light schedules the same way as in the original approach (randomly).
This resulted in the productivity being roughly the same as for the original approach, thus
so far in line with the results from the EA approach 1.3. However, the improvement seen in
number of generations for the EA approach 1.3 could not be seen for the CEA. The number
of generations required to reach a solution for approach 2.3.1 was very similar to the original
approach. Hence, no real improvement could be witnessed at all, in spite of implementing a
change very similar to the one that produced good results for the simpler EA.

One theory to explain this behaviour is that when the tra�c light schedules are still
generated at random (in the beginning of each CEA run) the time it takes for them to evolve
until ceased improvement will be the same as in the original approach. Termination of the
CEA run will only happen when both populations have stopped improving, thus implicating
that the changes have to be implemented to both populations in order for any real change in
results to occur.
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A suggestion for further investigation is to explore what would happen if the opposite
was tried; producing generation zero truck dispatching schedules randomly and tra�c light
schedules using the previous solutions. An initial hypothesis is that this might generate some-
what of a result, opposing what was seen for approach 2.3.1. The reasoning behind this is the
following: Looking at the di�erent solution representations, the truck dispatching schedules
are limited in terms of what can happen as each position in the solution can only be one out
of four options (the four shovel IDs). The tra�c light schedules on the other hand, have a lot
more room for variation, as the "green times" are not limited to any number of options. The
"green times" (one on each position in the tra�c light schedule) can be any number up to a
high set limit. When the tra�c light schedules are generated randomly (as in approach 2.3.1),
they can potentially get relatively much worse compared to what truck dispatching schedules
can ever become. Consequently, this can put the CEA in a relatively bad starting point, hence
requiring to run through more generations until finding satisfactory solutions. Generating
the truck dispatching schedules randomly and using previous populations for the generation
zero tra�c light schedules will, with this reasoning, never put the CEA in such a bad place
as a starting point. The CEA might thus reach a good solution quicker.

In approach 2.4 changes were implemented for both schedule populations, although of a
di�erent character. Because of the good results seen in 1.3 the generation zero truck dispatch-
ing schedules are again developed with the same technique. For the tra�c light schedules on
the other hand, the best schedules from the previous CEA run are used, regardless of whether
or not they match the schedule that was last used. This proved to lower the required num-
ber of generations a lot. This fact somewhat reinforces the reasoning above; the tra�c light
schedules will need a lot of time to get to the desired quality, but when the best schedules
from the previous generations are used, the algorithm can begin evolving the schedules from
a better starting point. This enables them to reach the desired quality faster since most of
the "crazy" suggestions of timings have been discarded already.

It is noteworthy however, that the productivity seems to su�er from this approach, show-
ing a small general decrease and a somewhat unstable performance with a couple of remark-
able outliers.

One potential explanation to this behaviour lies in the implementation of the construc-
tion of the generation zero tra�c light schedules. When initially generating the schedules,
they are usually made slightly longer than required, to ensure always being of at least su�-
cient length. The simulations performed to evaluate fitness, however, will only evaluate over
the time H (approximately 60 minutes), potentially leaving the last part of the schedule un-
evaluated. In the original approach this does not a�ect the outcome since (1) the last part of
the schedule never gets used (there is a schedule update before that) and (2) all schedules are
discarded and new ones are generated randomly at the beginning of the next EA run. Some
of the changes implemented as a part of this study, primarily the re-scaling to fit time (ex-
plained in Section 3.3), will however take the very last part of the schedule into use. "Moving
back" the time frame by cutting o� the first part will result in the un-evaluated part becom-
ing included in the evaluation simulations. In some of these cases this last part of tra�c light
times will be particularly o�, causing the simulation to produce worse results.

Now, if bad solutions are produced when all schedules are generated at random, these
solutions would be discarded at an early stage, and the algorithm would move on to search in
other parts of the search space. The problematic di�erence with the changes implemented in
2.4 is that the same middle sections occur many times with di�erent su�xes. No completely
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new solutions are produced, potentially causing the CEA to get stuck in a narrow search
space that does not produce good solutions. Combining these two approaches and creating
a generation zero that consists of some random solutions and some that are kept from last
run the way they are in 2.4, could potentially produce a better result. This course of action
is hoped to mitigate the risk of narrowing the search space too much, at the same time as
keeping and utilising qualitative information. This is one idea for future work in the area.

Standard Deviation
Just as with the EA, in order to statistically a�rm any results the confidence intervals would
need to be completely separate from each other. Again, the most significant di�erence ob-
served is the number of generations for approach 2.4 compared to original, the total decrease
over problem instances 2, 3 and 6 being 33.84 percent. Figure 4.12 displays the same average
numbers for the CEA (original and 2.4) for problem instance 2 as Figure 4.9, with the addi-
tion of a 95 percent confidence interval (dotted lines). Despite the large di�erence between
the two curves, the confidence intervals overlap and thus it cannot be confirmed that the
di�erence showed in the experiments are not coincidental. As mentioned in Section 4.1.3,
in order to validate the results a lot more simulations would have to be run if possible at all.
Even so, these results, just as the results produced by Phase 1, are considered interesting and
valuable given the nature of this area of science.
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Figure 4.12: CEA. Problem instance 2. Average number of genera-
tions required by the CEA to find the solutions, with a 95% confi-
dence interval.

Instability in productivity for approach 2.4
Looking more closely at the mine productivity of the di�erent approaches, the same conclu-
sions, or lack thereof, apply. It cannot be stated for sure that the results in the graphs depict
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an absolute truth since the confidence intervals overlap.
Moreover, looking at the standard deviation for approach 2.4 in Figure 4.14, the lines

plotted here are wider apart than the ones belonging to the other approaches in the same
graph. For 15 trucks this gap is remarkably large, the underlying reason being two notable
outliers, see Table 4.5. These outliers are also visualized in Figure 4.15, where the variation is
displayed clearly. What this tells us is that 2.4 is potentially more unstable in terms of mine
productivity. It is more prone to produce outliers. This is likely due to the phenomenon
elaborated on in Section 4.2.3, where including un-evaluated parts of previous solutions can
lead to worse results because of a narrow and disadvantageous search space.

When examining the other problem instances for approach 2.4, scrutinizing also their
output for outliers, it was seen that this was never as severe a case for either problem instance 3
or 6. The results where slightly lower and more unstable than for approach 2.3.1 and original,
with occasional samples that could almost be classified as outliers, but the extreme drop
in productivity was never seen. Visualisations of this can be observed in Appendix A.2.2.
Nonetheless, even as only two out of 75 full shift simulations produced exceptionally low
output, that is reason for not moving forward with the CEA approach 2.4 until root causes
are identified and a safe and stable output can be expected.

Comparing the results for the CEA with the ones for the EA, it can be seen (Figure 4.13)
that the productivity for the EA is more stable, i.e. the confidence interval is more narrow.
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Figure 4.13: EA. Problem instance 2. Average number of truckloads
being delivered during a shift, with a 95% confidence interval.

57



4. Evaluation

Number of trucks

Pr
od

uc
tiv

ity
 (n

um
be

r o
f t

ru
ck

lo
ad

s)
 

130

140

150

160

14 16 18 20 22

Org output

2.3.1 
output

2.4 output

Figure 4.14: CEA. Problem instance 2. Average number of truck-
loads being delivered during a shift, with a 95% confidence interval.

Figure 4.15: CEA. Problem instance 2. Number of truckloads by
approach and number of trucks in use (25 samples per number of
trucks). Highlights the two outliers produced by approach 2.4 for
15 trucks.
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Table 4.5: Approach 2.4. Problem instance 2. 15 trucks. Productivity
(number of truckloads).

No. simulation Productivity
1 147
2 147
3 147
4 147
5 146
6 147
7 147
8 146
9 146
10 147
11 146
12 145
13 129
14 145
15 146
16 147
17 148
18 147
19 131
20 146
21 146
22 146
23 145
24 146
25 146
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4.3 Run time and number of generations
Decreasing the number of generations is presumably closely related to limiting the required
computational power, as it means fewer calculations will be required. Reducing the required
computational power is of little use if it does not mean that calculations can be completed
in a shorter amount of time. In the following section, the notion of assuming a correlation
between the number of generations and computational power and run time is investigated.

The primary metric used when measuring the required computational power for the dif-
ferent setups was the number of EA or CEA generations before termination of the run. Num-
ber of generations has the benefit of being a very exact way of measuring, as the output is an
exact number for each run. However, the overall value that we want to achieve with decreased
computational power is decreased run time. Measuring the run time directly is di�cult due
to the fact that it is generally dependent on an array of other factors. For instance, it will
vary depending on the type of computer used and the amount of processes running in par-
allel. E�orts were made to mitigate these factors in order to also produce time-based results
that could be analysed. Most of the experiments were run during night time and on the same
desktop computers across a time period of approximately four weeks. Most of the time six
processes were running in parallel, with some exceptions. Although not exact, the time-based
results were collected and compared to the number of generations to confirm that they were
in fact correlated.

When plotting the average number of generations alongside the average run time for a
full shift (both by number of trucks), it can be seen that the two graphs display a very similar
shape and follow one another another closely. Figure 4.16 and 4.17 depict this for the single
EA. However, what is stated above is not true for 14 and 15 trucks. This indicates that one
should not trust the connection between generations and run time blindly, even though it
is consistently present in a large majority of the cases. On the other hand, these exceptions
should not be cause of toomuch concern, as theymay be a result of the error sources described
above. The corresponding numbers (number of generations and run times for a full shift by
number of trucks) for the CEA, can be found consolidated into Figure 4.18. Here, the above
described reasoning is followed consistently.

In figure 4.19 the average number of generations and the average run time per run of the
CEA is plotted. The link between these two can be seen as more relevant since it in the end is
the run time for a EA/CEA run that is to be minimised. The run time for the full 500-minute
shift includes start-up times etc. that would not exist in real mining operations. Therefore,
it is reassuring that the correlation between number of generations and run time per CEA
run is present as well.
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Figure 4.16: EA. Problem in-
stance 2. Average number of gen-
erations per number of trucks in
use.
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Figure 4.17: EA. Problem in-
stance 2. Average run time for a
full shift (500min) per number of
trucks in use.
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Figure 4.18: CEA. Problem in-
stance 2. Average number of
generations and average run time
for a full shift (500 minutes) per
number of trucks in use.
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Figure 4.19: CEA. Problem in-
stance 2. Average number of gen-
erations and average run time for
a single CEA run per number of
trucks in use.

Figures 4.20 and 4.21 depict the correlations between the number of generations (the
average number of generations of all EA runs during one simulation) and the run time for
the corresponding simulation. Figures 4.22 and 4.23 depict the corresponding for the CEA.
As can be seen, the two are closely related and a clear correlation can be observed. This
confirms that although run time is the more interesting metric in this context, number of
generations can be trusted as an indicator of time and computational power.
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Figure 4.20: EA. Problem in-
stance 2. Approach 1.3. Correla-
tion between number of genera-
tions and run time.
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Figure 4.21: EA. Problem in-
stance 2. All approaches together.
Correlation between number of
generations and run time.
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Figure 4.22: CEA. Problem in-
stance 2. Approach 2.4. Corre-
lation between number of gener-
ations and run time.
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Figure 4.23: CEA. Problem in-
stance 2. All approaches together.
Correlation between number of
generations and run time.
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Chapter 5

Discussion

This chapter discusses how the results and findings can be seen from a greater perspective,
and whether they may add value to the industry and academia.

5.1 Value of increasing efficiency
The main finding from the study is increased performance in terms of less computational
power required to complete the EA and CEA runs. Being able to reach the same solution in
a shorter amount of time is intuitively advantageous, but will it add value to the application?

Computational power is presumably not a major bottleneck to a mining company and
with the rate of technology improvement even less so. However, looking at the results from
the EA, it can be seen that the same productivity can be achieved with great security and
stability even after our changes to the EA were implemented. Therefore, there does not seem
to be any (currently known) reasons not to implement these e�ciency-enhancing alterations
to the EA. For the CEA it was seen (for approach 2.4) that the number of generations could be
decreased by a lot (in total 33.84 percent for problem instance 2, 3 and 6). But as this entailed
a slight indication of the productivity su�ering, the savings in time and computational power
would probably not outweigh the (risk of) income loss.

Considering the use of this kind of scheduling method in a real-life mine, it is highly
dependent on the updating of the schedules being more or less instantaneous. Being able
to produce the new schedules instantly ensures that the state of the mine that the calcula-
tions are based on has not changed when the schedule is put to use. Due to this, making the
algorithms more e�cient is a step in the right direction.

Furthermore, considering the larger view of the impact of e�cient algorithms and the
role they play in the quality of the solutions, the frequency of the schedule updates needs to
be considered. The current frequency, 15 minutes, is an arbitrarily chosen number that could
potentially be decreased, increased or bemade dependent on some other variable in themine.
The industry standard approach DISPATCH updates its suggested schedule prior to every
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single truck dispatch. Given an e�cient implementation of the EA, this possibility could be
investigated for this approach as well. To sum up, future work should include optimisation
of the schedule update frequency in one way or another.

5.2 Connection to related work
Apart from considering whether the findings motivate implementation of our changes to the
EA/CEA as a standard forUWAgoing forward, one can consider the value these findings have
in a wider context. Starting from the theoretical knowledge gathered from related work in
the Literature Review (Section 2.2), the findings can be put in relation to what is said about
EAs and alternative dispatching or scheduling technologies today.

As mentioned in Literature Review (Section 2.2), there are several reasons for choosing
EAs to solve complex multi-objective problems over other approaches. They are suitable for
handling many constraints simultaneously since they find solutions empirically, as opposed
to e.g. linear programming-based scheduling technologies that are otherwise widely used.
The EAs main drawback is that they require much computational power, an ever decreasing
hurdle due to continuous technological development. Even so, if this hurdle can be pushed
further down by other means than only awaiting technical development, that is of course of
value.

Based on the same reasoning as above, using an EA to solve the problem of scheduling
in mines also seems to be a sensible way to go. EAs can handle even large and complicated
mine setups, where the only other feasible option is greedy heuristics as the problem setup
gets complex enough. Greedy heuristics have disadvantages, as elaborated in Section 2.2, that
EAs are not subject to. To sum up, the main issue limiting the scope of when EAs are the
suitable option, is when they do not meet e�ciency requirements. Thus, any fall forward in
terms of e�ciency should be embraced. Even as it is questionable if the approaches developed
in this study should be put in use as they are today (e.g. considering the CEA is lacking in
productivity), there should be no hesitation as towhether to have focus and resources directed
here in the future. With slight fine-tuning, as described in Section 6, valuable results are
anticipated for the specific problem and hopefully for the use of EAs in a greater context.

When considering how these findings can add value to EAs in a wider context, other
competing approaches have to be considered. Even today, there are other ways to construct
the very first generation in an EA run, in order to start o� in a better place than one ran-
domly generated. An example of this is the local search engine implemented for this purpose
by Mendes et al. [16]. How these other potential approaches would compare to one another
in terms of e�ciency increase, but also di�culty level of implementation, would be an in-
teresting research question for future work.

5.3 Connection to real life application
As mentioned in Section 1.3, the vision throughout this project has been to deliver value to
the mining industry; to at some point have the findings spread to a place where they can
contribute, rather than being consigned to oblivion within the academic environment of the
university. The outlook of moving forward with the research to perform experiments in real
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underground mines was discussed with a couple of the originators of the UWA research. The
research group dedicated to this at UWA has continuously collaborated with Micromine, a
mining software company specialising in mining software. The purpose of this is to stay an-
chored to reality and to keep an open gateway to the mining industry. Even so, real mine
experiments are considered being a long way down the road. There are several hurdles that
must be crossed before real-life experiments are viable. First, the mine simulator is too ab-
stract and generic to correctly represent a real mine altogether. Also, further complexities
need to be considered and incorporated into the simulator, such as machine breakdowns or
sta� unavailability. In addition, since mine operations are large and subject to vast monetary
turnover, management are usually very risk averse. An algorithm would have to be very ro-
bust and trustworthy to ever be let in through the doors of a mining company. In conclusion,
there are several barriers that are more or less di�cult to climb. However, in the end it all
boils down to manpower at the research project, which seems to be limited in the near future.

A large proportion of the research at UWA is financed by mining money. There are many
large mining corporations in Western Australia, all with vast amounts of money and motives
for investing in academic research. UWA have had relationships with such actors since more
than twenty years back, which has led to the rise of a variety of projects at the university.
The original ideas for such projects can stem from either UWA, a financing mining com-
pany or a third party. In this particular case the initial idea originated from Micromine, the
software developer mentioned above. Micromine market themselves as a cutting-edge min-
ing software developer, making their motivation a little ahead of the actual mine operators’.
Nonetheless, Micromine (UWA’s gateway to the real mines) collaborate with some progres-
sive mining companies. Therefore, hope for an industry pull for real-life experiments and
consequently implementation of EAs into the mining context prevails.
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Chapter 6

Conclusion

The main findings from the experiments and the answer to the research question are as fol-
lows: The use of previous solutions from the last EA run in a single EA will result in the
same peak performance compared to generating the initial schedules at random. It will in-
crease productivity for systems with fewer trucks than in a saturated state and it will decrease
the required computational power. For the approaches tried for the CEA, the peak perfor-
mance will be slightly lower, as well as the productivity in an under-trucked system. The
computational power will however show a massive decrease although this is still not enough
to motivate a compromise with the decrease in productivity.

The findings of this study will contribute to the work at UWA going forward, and will
hopefully be one component out of many to enhance the EA used for mine scheduling pur-
poses. A recurrently mentioned drawback with EAs is the high computational power bur-
den, why any way to increase e�ciency should always be of interest. Thereby, our hope is
that these findings could prove relevant even to other applications of EAs, and stand strong
among contending techniques to successfully construct initial generations. Being the algo-
rithm with the best results from previous studies, the CEA is the most interesting algorithm
to take further, and there are still a lot of options to explore before the use of previous gen-
erations is discarded. The next steps would first and foremost consist of:

1. Implement an approach that only uses the previous generations for the light schedules

2. Make sure that the refitting in time does not mean inclusion of un-evaluated pieces of
schedule

3. (for EA andCEA both) Combine the use of previous solutions with random generation
of schedules and by doing so broadening the search space and preserving quality

4. Find a way to optimise the schedule updating frequency (potentially dynamically), this
is a natural extension of the focus of improving the algorithm’s e�ciency.
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Appendix A

Complete results

A.1 Evolutionary algorithm
A.1.1 Summary results
Productivity

Table A.1: EA. Problem instance 1. Productivity (number of truck-
loads), standard deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Prod St dev Prod St dev Di� Prod St dev Di�
12 134.20 1.30 134.44 1.24 0.18% 134.76 1.07 0.42%
13 140.48 1.02 140.92 0.80 0.31% 139.36 0.93 -0.80%
14 145.24 0.65 145.40 0.69 0.11% 145.32 0.88 0.06%
15 150.48 0.85 151.00 0.69 0.35% 150.96 0.82 0.32%
16 153.88 0.77 153.84 0.46 -0.03% 153.86 0.64 -0.01%
17 154.84 0.37 154.64 0.56 -0.13% 154.84 0.46 0.00%
18 154.84 0.37 154.84 0.37 0.00% 154.96 0.34 0.08%
19 155.00 0.49 155.00 0.28 0.00% 155.00 0.28 0.00%
20 155.20 0.49 155.40 0.49 0.13% 155.56 0.50 0.23%
21 155.52 0.50 155.36 0.56 -0.10% 155.60 0.49 0.05%

Total 1499.68 1500.84 1500.22
Average 0.68 0.61 0.64
Change 0.08% 0.04%
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A. Complete results

Table A.2: EA. Problem instance 2. Productivity (number of truck-
loads), standard deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Prod St dev Prod St dev Di� Prod St dev Di�
14 137.88 0.99 137.44 0.98 -0.32% 138.40 0.75 0.38%
15 143.36 0.74 144.84 0.73 1.03% 144.64 0.84 0.89%
16 149.56 0.70 149.56 0.80 0.00% 149.44 0.75 -0.08%
17 152.76 0.65 153.08 0.63 0.21% 152.72 0.66 -0.03%
18 153.76 0.43 153.84 0.37 0.05% 153.92 0.39 0.10%
19 154.76 0.51 154.04 0.20 -0.47% 154.84 0.46 0.05%
20 154.92 0.27 155.04 0.45 0.08% 155.04 0.34 0.08%
21 155.04 0.20 155.04 0.34 0.00% 155.04 0.20 0.00%
22 155.00 0.57 154.92 0.39 -0.05% 155.04 0.45 0.03%
23 154.92 0.27 154.88 0.52 -0.03% 155.00 0.00 0.05%

Total 1511.96 1512.68 1514.08
Average 0.53 0.54 0.48
Change 0.05% 0.14%

Table A.3: EA. Problem instance 3. Productivity (number of truck-
loads), standard deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Prod St dev Prod St dev Di� Prod St dev Di�
13 131.76 0.65 133.60 1.10 1.40% 134.16 0.97 1.82%
14 138.48 0.75 140.08 0.84 1.16% 138.52 0.90 0.03%
15 145.84 0.88 146.92 0.89 0.74% 146.44 1.13 0.41%
16 151.56 0.75 151.76 0.59 0.13% 151.84 0.67 0.18%
17 153.32 0.73 153.80 0.49 0.31% 153.84 0.78 0.34%
18 153.84 0.54 154.12 0.65 0.18% 154.12 0.52 0.18%
19 154.20 0.49 154.36 0.56 0.10% 154.12 0.43 -0.05%
20 154.76 0.65 155.00 0.57 0.16% 154.88 0.43 0.08%
21 155.20 0.57 155.08 0.39 -0.08% 155.16 0.46 -0.03%
22 155.20 0.57 154.96 0.45 -0.15% 155.20 0.49 0.00%

Total 1494.16 1499.68 1498.28
Average 0.66 0.65 0.68
Change 0.37% 0.28%
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A.1 Evolutionary algorithm

Table A.4: EA. Problem instance 4. Productivity (number of truck-
loads), standard deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Prod St dev Prod St dev Di� Prod St dev Di�
11 131.48 0.94 132.00 1.52 0.40% 133.04 1.78 1.19%
12 135.96 0.66 138.40 0.85 1.79% 138.24 1.07 1.68%
13 144.40 1.02 145.16 0.61 0.53% 145.16 0.92 0.53%
14 150.04 0.82 150.80 0.63 0.51% 150.72 0.83 0.45%
15 153.88 0.91 153.84 0.67 -0.03% 154.16 0.73 0.18%
16 155.04 0.45 155.28 0.66 0.15% 155.36 0.56 0.21%
17 155.68 0.47 155.80 0.40 0.08% 155.64 0.48 -0.03%
18 155.68 0.47 155.60 0.49 -0.05% 155.64 0.48 -0.03%
19 155.72 0.45 155.80 0.40 0.05% 155.72 0.45 0.00%
20 155.72 0.45 155.72 0.66 0.00% 155.44 0.50 -0.18%

Total 1493.60 1498.4 1499.12
Average 0.66 0.69 0.78
Change 0.32% 0.37%

Table A.5: EA. Problem instance 5. Productivity (number of truck-
loads), standard deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Prod St dev Prod St dev Di� Prod St dev Di�
12 130.56 0.92 130.48 0.85 -0.06% 130.08 1.13 -0.37%
13 137.48 0.70 138.00 0.89 0.38% 137.76 1.07 0.20%
14 143.92 0.89 144.32 0.97 0.28% 144.68 0.73 0.53%
15 150.44 0.98 150.12 1.11 -0.21% 150.16 0.73 -0.19%
16 153.48 0.57 153.56 0.50 0.05% 153.44 0.64 -0.03%
17 155.16 0.46 155.16 0.46 0.00% 155.24 0.43 0.05%
18 155.12 0.43 155.36 0.56 0.15% 155.40 0.49 0.18%
19 155.32 0.55 155.44 0.50 0.08% 155.48 0.50 0.10%
20 155.36 0.48 155.56 0.50 0.13% 155.44 0.50 0.05%
21 155.52 0.50 155.48 0.50 -0.03% 155.56 0.50 0.03%

Total 1492.36 1493.48 1493.24
Average 0.65 0.68 0.67
Change 0.08% 0.06%
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A. Complete results

Table A.6: EA. Problem instance 6. Productivity (number of truck-
loads), standard deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Prod St dev Prod St dev Di� Prod St dev Di�
13 132.12 1.03 134.32 1.16 1.67% 133.64 0.79 1.15%
14 138.72 0.83 140.52 0.98 1.30% 140.52 0.98 1.30%
15 145.48 0.85 146.96 0.72 1.02% 145.52 1.10 0.03%
16 151.52 0.64 151.96 0.96 0.29% 152.00 0.85 0.32%
17 153.68 0.55 153.84 0.61 0.10% 153.60 0.49 -0.05%
18 154.64 0.69 154.40 0.57 -0.16% 154.72 0.53 0.05%
19 155.00 0.00 155.08 0.39 0.05% 154.92 0.39 -0.05%
20 155.12 0.43 155.00 0.40 -0.08% 154.84 0.46 -0.18%
21 154.96 0.34 155.12 0.43 0.10% 154.92 0.48 -0.03%
22 155.16 0.37 155.16 0.54 0.00% 154.84 0.46 -0.21%

Total 1496.40 1502.36 1499.52
Average 0.57 0.68 0.65
Change 0.40% 0.21%
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Figure A.1: EA. Problem instance 1. Average mine productivity for
the approaches respectively by the number of trucks in use.
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Figure A.2: EA. Problem instance 2. Average mine productivity for
the approaches respectively by the number of trucks in use.
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Figure A.3: EA. Problem instance 3. Average mine productivity for
the approaches respectively by the number of trucks in use.
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Figure A.4: EA. Problem instance 4. Average mine productivity for
the approaches respectively by the number of trucks in use.
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Figure A.5: EA. Problem instance 5. Average mine productivity for
the approaches respectively by the number of trucks in use.
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Figure A.6: EA. Problem instance 6. Average mine productivity for
the approaches respectively by the number of trucks in use.
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A. Complete results

Number of generations

TableA.7: EA. Problem instance 1. Number of generations, standard
deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Gen St dev Gen St dev Di� Gen St dev Di�
12 213.08 59.30 191.32 51.40 -10.21% 194.78 51.24 -8.59%
13 227.13 62.23 203.91 56.15 -10.22% 210.88 62.92 -7.15%
14 236.04 65.45 218.79 65.14 -7.31% 212.15 62.01 -10.12%
15 258.07 80.04 225.21 74.20 -12.73% 226.92 67.58 -12.07%
16 226.52 89.25 213.24 69.53 -5.86% 203.25 75.93 -10.27%
17 163.14 97.87 145.62 99.12 -10.74% 154.34 99.27 -5.40%
18 122.66 102.18 115.36 107.00 -5.95% 119.27 102.96 -2.76%
19 113.36 104.18 106.07 104.39 -6.43% 104.37 104.29 -7.92%
20 90.42 108.75 128.83 102.21 42.48% 119.63 103.08 32.31%
21 135.02 101.49 113.76 109.79 -15.74% 120.92 100.25 -10.44%

Total 1785.42 1662.11 1666.50
Average 87.07 83.89 82.95
Change -6.91% -6.66%

Table A.8: EA. Problem instance 2. Number of generations, stan-
dard deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Gen St dev Gen St dev Di� Gen St dev Di�
14 218.74 54.89 205.36 55.28 -6.12% 211.84 60.01 -3.15%
15 236.50 64.48 217.59 64.80 -8.00% 225.00 66.38 -4.86%
16 252.60 74.27 229.04 72.39 -9.33% 227.26 72.00 -10.03%
17 252.85 80.32 225.34 77.33 -10.88% 219.33 68.77 -13.26%
18 198.94 98.84 164.42 101.69 -17.35% 157.00 102.39 -21.08%
19 154.46 101.01 132.26 103.14 -14.37% 130.63 108.53 -15.43%
20 137.96 111.59 121.46 100.29 -11.96% 125.48 105.89 -9.05%
21 138.46 104.61 123.00 102.10 -11.17% 102.41 98.05 -26.04%
22 102.85 100.45 92.52 101.62 -10.04% 98.78 104.00 -3.95%
23 122.05 106.45 101.96 99.74 -16.46% 101.21 106.82 -17.07%

Total 1815.40 1612.94 1598.94
Average 89.69 87.84 89.28
Change -11.15% -11.92%
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A.1 Evolutionary algorithm

Table A.9: EA. Problem instance 3. Number of generations, stan-
dard deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Gen St dev Gen St dev Di� Gen St dev Di�
13 210.07 53.12 202.01 57.94 -3.84% 203.25 58.70 -3.24%
14 224.99 55.96 221.83 68.45 -1.41% 207.09 61.39 -7.96%
15 257.30 74.60 221.57 63.84 -13.89% 231.22 74.02 -10.14%
16 262.30 78.08 222.40 71.74 -15.21% 222.95 70.55 -15.00%
17 235.89 85.57 181.50 89.64 -23.06% 166.43 88.19 -29.44%
18 163.61 105.35 98.41 99.63 -39.85% 131.42 102.41 -19.67%
19 126.57 105.63 96.27 95.46 -23.94% 92.74 98.91 -26.73%
20 162.08 95.11 148.80 94.50 -8.19% 155.74 95.21 -3.91%
21 132.75 98.88 134.99 97.98 1.68% 132.33 98.47 -0.32%
22 145.83 95.80 136.57 95.91 -6.35% 126.91 99.83 -12.97%

Total 1921.39 1664.35 1670.09
Average 84.81 83.51 84.77
Change -13.38% -13.08%

Table A.10: EA. Problem instance 4. Number of generations, stan-
dard deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Gen St dev Gen St dev Di� Gen St dev Di�
11 213.32 52.81 185.92 50.08 -12.85% 185.67 47.39 -12.96%
12 218.47 59.67 202.49 59.22 -7.32% 205.90 59.09 -5.76%
13 246.16 68.50 214.54 62.89 -12.85% 217.38 62.62 -11.69%
14 256.26 78.90 218.65 70.01 -14.68% 227.00 69.67 -11.42%
15 250.67 77.65 213.22 64.66 -14.94% 219.45 70.76 -12.45%
16 180.30 97.80 166.46 94.50 -7.68% 148.87 99.85 -17.44%
17 146.96 111.59 114.86 102.38 -21.84% 114.79 102.87 -21.89%
18 149.92 113.36 94.02 101.68 -37.29% 106.68 104.74 -28.84%
19 112.47 116.14 101.61 105.73 -9.66% 123.05 104.77 9.41%
20 99.45 106.40 127.24 100.00 27.94% 107.90 102.78 8.50%

Total 1873.98 1639.01 1656.70
Average 88.28 81.11 82.45
Change -12.54% -11.06%
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A. Complete results

Table A.11: EA. Problem instance 5. Number of generations, stan-
dard deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Gen St dev Gen St dev Di� Gen St dev Di�
12 197.82 45.87 191.11 53.89 -3.39% 185.76 46.02 -6.10%
13 215.47 55.16 201.48 57.15 -6.49% 202.97 55.63 -5.80%
14 243.77 65.06 203.71 60.34 -16.43% 208.77 59.98 -14.36%
15 262.32 74.29 226.52 68.63 -13.65% 227.51 73.29 -13.27%
16 254.74 75.14 217.78 73.54 -14.51% 207.60 74.43 -18.51%
17 165.44 107.06 129.23 100.02 -21.89% 144.97 102.44 -12.38%
18 111.83 104.03 88.53 97.16 -20.84% 115.54 101.17 3.32%
19 122.64 102.61 105.99 100.75 -13.58% 114.75 99.78 -6.44%
20 99.42 102.04 89.06 99.52 -10.42% 104.23 103.10 4.84%
21 112.29 104.04 97.50 101.65 -13.17% 92.76 100.90 -17.39%

Total 1785.75 1550.91 1604.86
Average 83.53 81.27 81.67
Change -13.15% -10.13%

Table A.12: EA. Problem instance 6. Number of generations, stan-
dard deviation and di�erence compared to original.

Original Approach 1.1 Approach 1.3
Trucks Gen St dev Gen St dev Di� Gen St dev Di�
13 203.65 48.14 189.02 50.54 -7.19% 185.07 47.16 -9.12%
14 224.02 60.89 200.92 59.81 -10.31% 198.81 56.53 -11.25%
15 246.97 75.00 207.89 58.71 -15.82% 222.44 65.98 -9.93%
16 252.00 72.10 216.81 64.25 -13.96% 216.38 61.96 -14.13%
17 238.29 69.83 213.15 69.87 -10.55% 206.34 72.12 -13.41%
18 197.95 99.90 192.63 78.23 -2.69% 163.74 96.65 -17.28%
19 174.55 102.93 145.63 101.59 -16.57% 144.48 105.36 -17.23%
20 161.79 103.51 120.05 103.38 -25.80% 113.13 106.85 -30.08%
21 152.23 101.83 128.76 96.55 -15.42% 127.07 98.64 -16.53%
22 128.47 102.40 117.20 101.40 -8.77% 135.29 98.75 5.31%

Total 1979.92 1732.06 1712.75
Average 83.65 78.43 81.00
Change -12.52% -13.49%
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Figure A.7: EA. Problem instance 1. Average number of generations
for the approaches respectively by the number of trucks in use.
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Figure A.8: EA. Problem instance 2. Average number of generations
for the approaches respectively by the number of trucks in use.
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Figure A.9: EA. Problem instance 3. Average number of generations
for the approaches respectively by the number of trucks in use.
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Figure A.10: EA. Problem instance 4. Average number of genera-
tions for the approaches respectively by the number of trucks in use.
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FigureA.11: EA. Problem instance 5. Average number of generations
for the approaches respectively by the number of trucks in use.
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Figure A.12: EA. Problem instance 6. Average number of genera-
tions for the approaches respectively by the number of trucks in use.
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A. Complete results

A.2 Co-evolutionary algorithm
A.2.1 Summary results
Productivity

Table A.13: CEA. Problem instance 2. Productivity (number of
truckloads), standard deviation and di�erence compared to origi-
nal.

Original Approach 2.3.1 Approach 2.4
Trucks Prod St dev Prod St dev Di� Prod St dev Di�
14 140.80 0.5800 140.76 0.66 -0.03% 139.48 1.2600 -0.94%
15 147.08 0.57 147.20 0.71 0.08% 145.04 4.6000 -1.39%
16 151.52 0.77 151.48 0.59 -0.03% 150.96 0.9300 -0.37%
17 154.00 0.29 153.96 0.54 -0.03% 153.48 0.5900 -0.34%
18 154.52 0.51 154.64 0.49 0.08% 154.36 0.6400 -0.10%
19 154.84 0.37 155.00 0.41 0.10% 154.56 0.5800 -0.18%
20 155.00 0.41 155.16 0.47 0.10% 154.64 0.5700 -0.23%
21 155.08 0.4000 155.04 0.35 -0.03% 154.64 0.6400 -0.28%
22 155.20 0.41 155.04 0.20 -0.10% 154.80 0.4100 -0.26%
23 155.20 0.5 155.12 0.33 -0.05% 154.48 0.8200 -0.46%

Total 1523.24 1523.40 1516.44
Average 0.48 0.48 1.10
Change 0.01% -0.45%
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Figure A.13: CEA. Problem instance 2. Average mine productivity
for the approaches respectively by the number of trucks in use.

88



A.2 Co-evolutionary algorithm

Table A.14: CEA. Problem instance 3. Productivity (number of
truckloads), standard deviation and di�erence compared to origi-
nal.

Original Approach 2.3.1 Approach 2.4
Trucks Prod St dev Prod St dev Di� Prod St dev Di�
13 136.28 0.61 136.40 0.76 0.09% 133.32 0.9500 -2.17%
14 142.76 0.6 142.88 0.83 0.08% 141.20 0.7600 -1.09%
15 148.52 0.7100 148.36 0.70 -0.11% 147.48 0.8700 -0.70%
16 152.88 0.67 152.72 0.68 -0.10% 152.32 0.7500 -0.37%
17 154.24 0.52 154.32 0.48 0.05% 154.08 0.4900 -0.10%
18 154.72 0.54 154.80 0.50 0.05% 154.64 0.4900 -0.05%
19 155.08 0.49 154.96 0.36 -0.08% 154.76 0.4400 -0.21%
20 155.24 0.44 155.28 0.46 0.03% 154.72 0.6800 -0.33%
21 155.12 0.33 155.04 0.35 -0.05% 154.96 0.7900 -0.10%
22 155.36 0.49 155.08 0.49 -0.18% 154.60 0.9100 -0.49%

Total 1510.20 1509.83 1502.08
Average 0.54 0.56 0.71
Change -0.02% -0.54%

Table A.15: CEA. Problem instance 6. Productivity (number of
truckloads), standard deviation and di�erence compared to origi-
nal.

Original Approach 2.3.1 Approach 2.4
Trucks Prod St dev Prod St dev Di� Prod St dev Di�
13 136.12 0.6 136.20 0.71 0.06% 133.88 2.19 -1.65%
14 142.44 0.51 142.44 0.58 0.00% 141.24 1.42 -0.84%
15 147.64 0.57 147.72 0.61 0.05% 146.96 0.73 -0.46%
16 152.52 0.59 152.52 0.59 0.00% 151.92 1.35 -0.39%
17 154.16 0.37 154.04 0.61 -0.08% 153.56 0.82 -0.39%
18 154.80 0.41 154.72 0.54 -0.05% 153.68 0.9 -0.72%
19 155.00 0.41 154.88 0.44 -0.08% 154.52 0.65 -0.31%
20 155.08 0.28 155.16 0.47 0.05% 154.36 0.81 -0.46%
21 155.12 0.33 155.20 0.50 0.05% 154.52 0.92 -0.39%
22 155.24 0.44 155.20 0.50 -0.03% 154.36 0.86 -0.57%

Total 1508.12 1508.08 1499.00
Average 0.45 0.56 1.07
Change 0.00% -0.60%
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A. Complete results
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Figure A.14: CEA. Problem instance 3. Average mine productivity
for the approaches respectively by the number of trucks in use.
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Figure A.15: CEA. Problem instance 6. Average mine productivity
for the approaches respectively by the number of trucks in use.
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A.2 Co-evolutionary algorithm

Number of generations

Table A.16: CEA. Problem instance 2. Number of generations, stan-
dard deviation and di�erence compared to original.

Original Approach 2.3.1 Approach 2.4
Trucks Gen St dev Gen St dev Di� Gen St dev Di�
14 385.15 91.74 381.35 101.05 -0.99% 268.64 87.71 -30.25%
15 403.09 105.53 403.37 103.26 0.07% 282.42 93.81 -29.94%
16 417.94 115.92 418.49 116.33 0.13% 290.63 92.45 -30.46%
17 395.42 115.07 395.93 131.28 0.13% 257.18 110.41 -34.96%
18 337.53 125.75 327.92 126.91 -2.85% 198.71 126.05 -41.13%
19 275.04 142.80 264.83 147.37 -3.71% 153.50 139.26 -44.19%
20 222.41 144.09 224.92 135.58 1.13% 129.03 137.82 -41.99%
21 231.81 142.21 227.32 141.27 -1.94% 100.74 129.60 -56.54%
22 232.70 136.54 222.06 146.15 -4.57% 114.56 130.32 -50.77%
23 237.70 137.41 223.34 141.08 -6.04% 127.30 137.61 -46.45%

Total 3138.79 3089.53 1922.71
Average 125.71 129.028 118.504
Change -1.57% -38.74%

Table A.17: CEA. Problem instance 3. Number of generations, stan-
dard deviation and di�erence compared to original.

Original Approach 2.3.1 Approach 2.4
Trucks Gen St dev Gen St dev Di� Gen St dev Di�
13 384.44 94.98 386.05 101.15 0.42% 262.22 80.50 -31.79%
14 420.62 104.43 431.39 100.72 2.56% 288.06 95.50 -31.52%
15 448.34 113.48 455.88 117.40 1.68% 290.74 93.27 -35.15%
16 426.99 123.31 425.76 116.20 -0.29% 299.90 100.90 -29.76%
17 341.62 136.73 339.20 140.62 -0.71% 255.01 120.70 -25.35%
18 308.34 147.27 345.17 126.11 11.94% 200.98 127.89 -34.82%
19 311.58 132.14 275.93 144.39 -11.44% 180.13 132.78 -42.19%
20 223.30 140.75 228.17 145.55 2.18% 158.24 140.93 -29.14%
21 224.46 134.87 231.44 139.16 3.11% 157.08 132.68 -30.02%
22 235.05 145.60 246.62 131.91 4.92% 112.28 134.30 -52.23%

Total 3324.74 3365.61 2204.64
Average 127.36 126.32 115.95
Change 1.23% -33.69%
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A. Complete results

Table A.18: CEA. Problem instance 6. Number of generations, stan-
dard deviation and di�erence compared to original.

Original Approach 2.3.1 Approach 2.4
Trucks Gen St dev Gen St dev Di� Gen St dev Di�
13 344.69 93.54 344.65 89.37 -0.01% 237.84 81.15 -31.00%
14 366.92 97.08 373.94 101.87 1.91% 270 94.18 -26.41%
15 404.27 106.65 408.22 114.24 0.98% 282.87 98.03 -30.03%
16 396.02 125.73 400.00 130.46 1.00% 295.16 104.6 -25.47%
17 310.35 134.9 315.89 145.64 1.79% 254.61 107.47 -17.96%
18 278.04 153.76 290.36 144.86 4.43% 226.75 115.1 -18.45%
19 236.63 149.69 246.83 142.68 4.31% 202.22 129.04 -14.54%
20 211.73 145.63 239.51 145.09 13.12% 143.36 134.08 -32.29%
21 248.79 139.53 221.35 143.14 -11.03% 141.53 138.24 -43.11%
22 246.34 140.02 236.20 146.76 -4.12% 108.8 128.04 -55.83%

Total 3043.78 3076.95 2163.14
Average 128.65 130.41 112.99
Change 1.09% -28.93%
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Figure A.16: CEA. Problem instance 2. Average number of gener-
ations for the approaches respectively by the number of trucks in
use.
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A.2 Co-evolutionary algorithm
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Figure A.17: CEA. Problem instance 3. Average number of gener-
ations for the approaches respectively by the number of trucks in
use.
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Figure A.18: CEA. Problem instance 6. Average number of gener-
ations for the approaches respectively by the number of trucks in
use.
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A. Complete results

A.2.2 Result analysis
Stability analysis of output
Performed for CEA only, since the CEA was suspected to be prone to produce outliers.
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Figure A.19: CEA. Problem instance 2. Number of truckloads by
number of trucks in use and approach (25 samples per number of
trucks). Highlights the two outliers produced by approach 2.4 for
15 trucks.
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Figure A.20: CEA. Problem instance 3. Number of truckloads by
number of trucks in use and approach (25 samples per number of
trucks). Displays a lower productivity for 2.4.
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A.2 Co-evolutionary algorithm
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Figure A.21: CEA. Problem instance 6. Number of truckloads by
number of trucks in use and approach (25 samples per number of
trucks). Displays both a lower productivity and unstability for 2.4
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Kan användning av gamla scheman
underlätta sökningen efter nya?

POPULÄRVETENSKAPLIG SAMMANFATTNING Hedda Malmström, Sofia Tenerz

Att schemalägga lastbilsrutter i gruvor är ett avancerat problem vars svårighetsgrad
växer snabbt i takt med antalet lastbilar och komplexiteten i vägsystemen under jordy-
tan. Tidigare forskning har använt sig av artificiell intelligens för att producera sche-
man för lastbilarna. Att räkna fram helt nya körplaner tar tid, men genom att använda
information från redan använda scheman kan man ofta få likvärdiga resultat, snabbare.

Det finns många metoder som kan användas för
schemaläggning, både i det generella fallet och
när man pratar om gruvor. Klassiska metoder
är antingen deterministiska, dvs. man räknar ut
det verkligt optimala schemat, eller heuristiska,
dvs. man använder en enkel prioriteringsregel
(t.ex. lastbilar får åka i den ordning de kom). För
ett väldigt komplext problem kan en determinis-
tisk metod behöva tio- eller hundratals år för att
komma fram till ett resultat om det någonsin ens
är möjligt. Genom artificiell intelligens kan man
arbeta empiriskt och testa sig fram och på så sätt
ofta nå bättre lösningar.

En algoritm som tidigare använts för att pro-
ducera lastbilsscheman i gruvor kallas “evolu-
tionär algoritm” och efterliknar sättet som na-
turen förädlar arter; de starkaste individerna över-
lever och får föröka sig. Detta sätt att söka efter
lösningar på ett problem har visat sig vara bra,
resultatet är oftast bättre än vad man kan ås-
tadkomma med heuristiska och deterministiska
metoder.
En av nackdelarna med att använda evolu-

tionära algoritmer är att det krävs förhållande-
vis mycket beräkningskraft och tid för att komma

fram till en lösning. Jämför med hur lång tid det
tagit för mänskligheten att komma dit vi är idag!
För att uppnå bästa möjliga resultat måste man

dessutom uppdatera körplanerna ofta. Genom att
ta det gamla schemat som utgångspunkt när man
söker efter nästa kan man korta ner tiden det tar
att hitta en ny plan för hur lastbilarna ska köra.
Det höga värdet på malmen som bryts gör det
emellertid inte värt att göra avkall på gruvans pro-
duktivitet för att spara in datakraft.
När man använder sig av evolutionära algorit-

mer är utseendet hos den första generationen av
individer i en population avgörande för hur den
slutgiltiga lösningen ser ut. Är alla “föräldrar”
korta finns det dåliga förutsättningar för att de-
ras “avkommor” ska bli långa, trots att det kanske
hade varit positivt om maten hänger på höga träd!
Det är därför viktigt att tänka efter när man
sätter förutsättningarna för algoritmens sökning.
Denna studie har visat att man kan effektivis-
era sökandet efter lösningar genom att utgå ifrån
gamla scheman, och därmed begränsa mängden
nya egenskaper i den första generationen. Effek-
tivitetsökningen kan dessutom ofta uppnås utan
att kompromissa på produktiviteten!
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