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Abstract

This paper evaluates whether a deep reinforcement learning (DRL) approach can be imple-
mented, on the Swedish stock market, to optimize a portfolio. The objective is to create and
train two DRL algorithms that can construct portfolios that will be benchmarked against the
market portfolio, tracking OMXS30, and the two conventional methods, the naive portfolio,
and minimum variance portfolio. We evaluate all the portfolios on a five-year period, from
the start of 2016 to the end of 2020, in terms of returns and risk-adjusted returns. The two
DRL algorithms implemented are Advantage Actor-Critic (A2C) and Deep Deterministic
Policy Gradient (DDPG), they are also compared against each other.

The results of this study show that the A2C constructed portfolio significantly outperform
the market and all of the other benchmark portfolios, in terms of returns and risk-adjusted
returns. The A2C portfolio also outperforms the DDPG constructed portfolio. Even though
the DDPG constructed portfolio performs less than the A2C constructed portfolio, it still
significantly outperforms all of the other benchmarks on the whole testing period. Thus,
concluding that a DRL approach can be implemented, on the Swedish stock market, to
optimize a portfolio.

Moreover, the study shows that the two DRL agents can pick up on market trends and
profit from them. However, applying the methods in a real-world environment does come
with some data-processing caveats. Even though the models may come with caveats linked
to them, the results of this study underline the usefulness of machine learning methods in
portfolio management.
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1 Introduction

AI is the new electricity. It will
transform every industry and create
huge economic value.

Andrew Ng (2019)

Portfolio management is a heavily researched and attractive field in finance, for investors
on the market and academics alike. One of the main goals for the actors on the field is to
find the optimal portfolio that balances risk and returns while outperforming the market
portfolio. Thus, investors on the market aim to maximize the Sharpe ratio, a measure
for risk-adjusted return, introduced by Nobel laureate Sharpe (1966). To solve the portfolio
management problem and find the optimal portfolio, several methods to construct a portfolio
by assigning the right weights to the right assets have been introduced and proposed over
the years. The most popular method presented, and still used to this day, introduced by
Markowitz (1952), is the modern portfolio theory (or mean-variance analysis). The procedure
of the method focuses on optimizing the risk-return trade-off in a diversified portfolio and, in
turn, creating a portfolio less volatile than the sum of its compounds. However, the method
has received criticism for being founded on assumptions not warranted by the empirical
evidence. Thus, investors prefer more heuristic weighting techniques, techniques that are
easier to implement, e.g. the naively diversified portfolio, that assigns equal weights to
all assets, or the minimum variance portfolio, that aims to minimize the variance of the
portfolio.

Other investors and academics are believers of the efficient market hypothesis (EMH),
developed by Fama (1970), a theory that states that asset prices reflect all information
available. Thus, it is impossible for an investor to purchase or sell assets for other than their
fair value, making it impossible to beat the market portfolio through different stock-picking
methods. Therefore, believers of the EMH stick to market capitalization-weighted portfolios,
e.g. index funds that track a stock index like the Swedish stock market OMXS30, based on
a market capitalization-weighting technique.

Other than conventional methods, portfolio managers often make use of more advanced
methods by combining engineering methods and advanced statistical methods. The financial
industry has been highly computerized during the last couple of years. The digitization of
the industry has brought a lot of advantages and profits to the industry, making it way more
efficient than it once was. Therefore, it is only a question of when and not if, more advanced
models from the fields of artificial intelligence and machine learning will start being the norm
in the financial industry.

Machine learning is a scientific field focusing on algorithms to develop models based on
sample data. The popularity of implementing machine learning methods in different indus-
tries has surged through the years. A current attractive subfield, called deep reinforcement
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learning (DRL), of machine learning, is a model that combines two other subfields of machine
learning. DRL combines artificial neural networks (ANN), used as function approximators,
with reinforcement learning (RL), a training method that rewards/penalizes desired/unde-
sired behavior. Recent developments made by Google DeepMind have made the field even
more attractive for various industries. These developments made it possible for the first
system, Deepmind´s Alphago, to beat the world champion at the board game Go. Thus,
questions of whether DRL could be efficient and profitable in industries like finance are
starting to arise.

The implementation of RL to the financial field was first initiated by researchers like
Neuneier (1996) and Moody et al. (1998), who use two different approaches to implement
the models in a financial market, in which both succeeded. More recent research (Xiong et
al. (2018), Noguer i Alonso & Srivastava (2020)) uses a DRL approach to solve the portfolio
management problem. They show that a portfolio constructed with the help of DRL can
outperform the market and other benchmark portfolios. The application of DRL in portfolio
management has an advantage compared to other methods, considering that the model
bypasses predicting future prices. Instead, the model skips through this phase and directly
optimizes the desired portfolio performance, depending on the reward function provided.
Thus, the investor can use the model for their own desired objective (Fischer, 2018).

It is interesting to study whether the approach can be applied to the Swedish stock market
since previous research have been focused on the American market. Therefore, this study
aims to create two DRL agents, constructed using daily data from the Swedish stock market,
and evaluate whether the method could be a useful tool within portfolio management. We
will be working with 28 stocks from the OMXS30 with data collected from 2000-2020. We
will evaluate two portfolios constructed with the help of two DRL algorithms, Advantage
Actor-Critic (A2C) and Deep Deterministic Policy Gradient (DDPG) depending on the same
neural network called Long Short-Term Memory (LSTM). As stated above, the Sharpe ratio
is a common objective for investors to maximize. Therefore, we use a reward function closely
linked to the Sharpe ratio, introduced by Moody et al. (1998) called the differential Sharpe
ratio. The models are tested on a five-year-long period and benchmarked against commonly
used portfolio construction methods, i.e. the market portfolio, minimum variance portfolio,
and naive portfolio. Moreover, this study aims to detect whether the two models can pick up
on market trends and anomalies since making profits on trends and anomalies is an essential
aspect of efficient strategies on the market and an objective for many investors.

The results of this paper show that a DRL approach can be successfully applied to solve
the portfolio management problem. The results show that the two DRL models outperform
all the proposed benchmarks, in terms of returns and risk -adjusted returns, making them
efficient on the Swedish stock market. The efficiency of the two DRL models on the market
also provides some evidence that the models can pick up on market trends and make profits
on said trends, something that conflicts with even the weakest assumptions of the EMH.

The disposition of this thesis is organized as follows: section 2 presents the conventional
weighting techniques used as benchmarks to the portfolios constructed by the use of DRL
algorithms. The components of the DRL method and the method itself are presented later
on in the section. Moreover, two crucial measures are introduced, along with the efficient
market hypothesis, later implemented in the analysis. Section 3 provides an insight into
previous research. Section 4 presents the empirical data, followed by section 5 which gives
an overview of the methodology of the executed experiment. Section 6 presents the results
in conjunction with an analysis. The thesis ends with concluding remarks in section 7.
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2 Theoretical prerequisites

In this section, we present all the theoretical prerequisites behind this paper. First, we
introduce the conventional methods used as benchmarks to our deep reinforcement learning
models. Later on, we present all the background behind the machine learning deployed in
this study. Lastly, we introduce the Sharpe ratio, used for evaluating the models, and the
efficient market hypothesis, used for further discussion of the performance of the models.

2.1 Conventional Methods

Today, portfolio managers on the market use several conventional methods to construct a
portfolio. In this paper, we present and use three popular and commonly used methods
in portfolio management as benchmarks to our models: The minimum variance portfolio,
which relies on Modern Portfolio Theory, the Naive portfolio, and the Market capitalization-
weighted portfolio (OMXS30).

2.1.1 Modern portfolio theory

Modern portfolio theory, or mean-variance analysis, is the most popular model in portfolio
optimization and has been since presented by Markowitz (1952). The model approaches the
portfolio construction problem by first separating efficient portfolios from inefficient ones and
then determining the risk-return opportunities available to the investor. Markowitz (1952)
does this by computing the Minimum-Variance Frontier, a set of optimal portfolios that offer
the highest expected return for a defined level of risk, or the other way around. The model
uses the portfolio variance and mean to compute the Efficient Frontier. The portfolio mean
and variance are defined as:

E(rP ) =
N∑
i=1

wiµi (2.1)

σ2
P =

N∑
i=1

N∑
j=1

σi,jwiwj (2.2)

Where E(r) is the expected mean return of the portfolio, wi is the amount invested in
security i, µi is the return of asset i. The portfolio variance, σ2

P , consists of the weights of
some asset i and some other asset j, as well as the covariance between the two assets denoted
as σi,j and expressed as:
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σi,j = E([Ri − E(Ri)][Rj − E(Rj)]) (2.3)

Or

σi,j = ρi,jσiσj (2.4)

Where ρi,j stands for the correlation coefficient and σi and σj stands for the standard
deviation of each asset. With the help of these definitions, the mean-variance efficient port-
folio for any targeted expected return can be constructed and plotted in the mean-variance
frontier:

Figure 2.1: Illustration of the efficient frontier when combining risky assets. The market portfolio
is located on the frontier. (Bodie et al., 2014, p.220)

The portfolios located on the minimum-variance frontier, at the global minimum-variance
portfolio and upward, provide the best risk-return combinations. Therefore, the part of
the frontier that lies above the global minimum-variance portfolio is known as the efficient
frontier. Figure 2.1 shows that all of the individual assets lie to the right of the efficient
frontier. This indicates the existence of a portfolio with the same risk but a higher return.
Therefore, a risky portfolio containing only one risky asset is inefficient. For the portfolios
located on the lower part of the minimum-variance frontier, there is a portfolio with the same
risk associated with it but a greater expected return located directly above it. Therefore, the
part of the frontier that lies beneath the Global minimum-variance portfolio is considered
inefficient (Bodie et al., 2014).

The model assumes that all investors are rational and risk-averse, prefer certainty over
uncertainty. Moreover, the model assumes that investors prefer higher returns over lower
returns. Therefore, the optimal portfolio constructed under the modern portfolio theory
focuses on minimizing the variance, subject to the constraints that the weights of the portfolio
sum up to one and the portfolio’s return at least achieves the target return (Markowitz, 1952).
Short-selling restrictions are introduced by adding a constraint to the optimization problem,
where the weights of each asset in the portfolio must be positive. The construction of the
optimal portfolio can be stated as a mathematical optimization problem:
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min
w

1

2
wTΩw (2.5)

Subject to

wTµ ≥ rp, (2.6)

w ≥ 0 (2.7)

Where w is the portfolio weight vector and µ the vector of the expected return of each
asset in the portfolio, with rP denoting the target return and 1N a vector of ones, Ω is the
covariance matrix for the returns on the assets in the portfolio.

The MPT helps us understand important aspects of portfolio management, the concept
of an efficient portfolio, and the bellow presented mean-variance efficient portfolio used as a
benchmark in this study, the minimum variance portfolio.

2.1.2 Minimum Variance Weighting

The minimum variance portfolio is a crucial segment of the MPT, minimizing the portfolio’s
volatility by assigning weights to the least volatile assets. The minimum variance portfolio is
heuristic-based, independent of expected returns, and has the lowest risk of all mean-variance
efficient portfolios. Therefore, the portfolio is positioned on the very left tip of the efficient
frontier, as seen in figure 2.1.

The optimization setup is as follows,

argmin
w

(wTΩw) (2.8)

2.1.3 Naive Diversification

The naive diversification strategy involves holding equal weights in each risky asset consid-
ered. Therefore, the weights of each asset in the ”naive portfolio” are defined as:

wi = 1/N

Where N is the amount of risky assets. This strategy does not utilize any optimization
of the portfolio and completely ignores the available data.

2.1.4 Market capitalization weighting (OMXS30)

A simple technique to implement when constructing a portfolio is the market capitalization
weighting method. When stock prices fluctuate, the portfolio automatically re-balances and
assigns the largest weights to the largest companies. The portfolio can be interpreted as the
market portfolio (Zhang et al., 2009). The market capitalization weights are specified as:

wi =
pi · ni∑n
i=1 pi · ni

(2.9)

where pi is the price and ni the number of outstanding shares of stock i at the time of
rebalancing.
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2.2 Machine Learning Models

To understand the background and application of deep reinforcement learning, the model
used in this paper, one must understand the concept of the models’ constituents. The
constituents of the model are two other forms of machine learning: artificial neural network
and reinforcement learning.

2.2.1 Artificial Neural Network

Artificial neural network (ANN) is a form of machine learning that uses a layered represen-
tation of data. The concept behind ANN is loosely based on the human brain. The model
is fed with some data, called the input, which is the first layer of the model. The input is
then transformed as it goes through the next layer, called a hidden layer. The network can
consist of a single hidden layer or several hidden layers. The hidden layers transform the
input into an output, known as the last layer and the model target.

The term deep learning refers to the multi-layer ANN models. In the multilayered net-
work, all neurons in a particular layer are connected to all neurons in a subsequent layer.
The connections in the network can never skip a layer or form loops backward since the in-
formation flow is of feedforward type. A feedforward type works in the way that the output
from one layer of neurons feeds forward into the next layer of neurons.

Figure 2.2: Overview of a fully connected multilayer feedforward neural network with multiple
hidden layer.(IBM, 2020)

Figure 2.2 shows the architectural layout of a multilayer feedforward neural network
for the case of three hidden layers. The multiple neuron units in the ANN connect with
the help of weights. The structure of a single neuron, also known as a perceptron, can be
mathematically defined as (Heaton, 2011) :

y = f

(∑
i

(wi ∗ hi) + b

)
(2.10)
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Where y represents the output, w represents the weights, h represents the input values,
b represents the bias term and f represents the activation function. The activation function
helps the model approximate virtually any function. The actual output of the model is
defined by the outputs from the previous layers, which are multiplied with the corresponding
weights and then summed together with the bias term and passed on to the activation
function.

A loss function, L, is introduced to help approximate the accuracy of the feedforward
ANN. The loss function is measured as the error between the predicted output and the
expected output of the network. As the loss function decreases, the robustness of the network
increases (Heaton, 2011). The most commonly used loss functions are the Mean Absolute
Error (MAE) and the Mean Squared Error (MSE), defined as:

LMAE =
1

N

N∑
k=1

|ŷk − yk| (2.11)

LMSE =
1

N

N∑
k=1

(ŷK − yK)
2 (2.12)

ANNs learn by processing different examples, known as the training process. They con-
tain a known input and result. The model learns by determining the difference, known as
the error, between the output of the model and the target output given. The model does
this with the help of a backpropagation algorithm, which aims to optimize the weights by
tracking the error term back to the neuron units. The model does this by computing the
partial derivative of the loss function for the neuron weights and biases and adjusting them
to minimize the loss function. The partial derivatives are given by:

[
∂L

∂w1,1

, ...,
∂L

∂wn,m

,
∂L

∂b1
, ...,

∂L

∂bn
] (2.13)

The definitions above help us understand how the ANN employed in our DRL models
approximate the policy and value functions presented below. In this study, we employ an
ANN called Long Short-Term Memory (LSTM), an ANN that can process not only single
data points but also entire sequences of data. The network has three constituents: a cell, an
input gate, an output gate and a forget gate. The cell remembers values over arbitrary time
intervals and the gates regulate the flow of information into and out of the cell.

2.2.2 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning that trains models to make a
sequence of decisions. RL allows an agent to learn to achieve a goal in an uncertain, poten-
tially complex environment. The agent faces a game-like situation. The model implements
a trial-and-error method to solve the problem. To get the machine to reach a preferred
solution, the agent receives either rewards or penalties for the actions it performs.

The main objective of RL is that it follows a Markov decision process, used to model the
environment in reinforcement learning (Littman & Szepesvári, 1996). One can define the
process as a sequence of states that is Markov if and only if the probability of moving to
the next state depends only on the present state and not on the previous state. The formal
definition of the process is:
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Definition 2.2.1 A Markov desicion proccess is a tupple (S,A,P,γ,R),where:

• S is a finite set of states

• A is a finite set of actions

• P is the state transition probability matrix: P [St+1 = s‘|St = s, At = a]

• γ ∈ [0, 1] is called the discount factor.

• R : S × A → IR is a reward function

The goal of RL is to maximize the expected value of the return by choosing the optimal
policy and value function. A policy, µ, is the thought process behind picking an action. It
is a function that maps the states to the actions (Littman & Szepesvári, 1996). If the policy
is deterministic, then we have:

µ : S → A (2.14)

at = µ(st) (2.15)

The goal is to maximize the expected return where the return, Gt, is a summation of all
the discounted rewards received by the agent from time step t onwards:

Gt = Rt+1 + γRt+2 + ... =
∞∑
k=0

γkRt+k+1 (2.16)

The value function, Vµ(s), estimates the expected return starting from a specific state:

Vµ(s) = Eµ[Gt|St = s] = Eµ[
∞∑
k=0

γkRt+k+1|St = s] (2.17)

The action-value function Qµ(s, a) is the expected return starting from state s, taking a
specific action, a, and then following the policy µ:

Qµ(s, a) = Eµ[Gt|St = s, At = a] = Eµ[
∞∑
k=0

γkRt+k+1|St = s, At = a] (2.18)

With the help of the Bellman equation, the value function can be decomposed into two
parts: the immediate reward, Rt+1, and the discounted value of the successor state, γVµ(s

′):

Vµ(s) = Eµ[Gt|St = s] = Eµ[
∞∑
k=0

γkRt+k+1|St = s]

= Eµ[Rt+1 + γ

∞∑
k=1

γkRt+k+1|St = s]

= Rt+1 + γEµ[
∞∑
k=1

γkRt+k+1|St = s] = Rt+1 + γVµ(s
′)
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The Bellman Equation for the action-value function can similarly be written as:

Qµ(s, a) = Rt+1 + γQµ(s
′, a′) (2.19)

The reward can be maximized by finding the optimal Value function, a function that
yields maximum value compared to all other value functions. The Bellman Optimality
Equation expresses that the value of a state under an optimal policy must be equal to the
expected return from the best action in that state:

V ∗(s) = max
a

Qµ∗
(s, a) = max

a
E[Rt+1Vµ(s

′)|St = s, At = a] (2.20)

Q∗(a, s) = E[Rt+1 + γ max
a′

Q∗(s′, a′)|St = s, At = a] (2.21)

There are three major approaches to reinforcement learning:

• Critic-only approach: In the critic-only approach, the agent takes an action based
on a value function, Q. With the help of Q, the agent can analyze the state of the
environment and from there base its decision on the best outcome.

Q∗(at, st) = E[Rt+1 + γ max
at+1

Q∗(st+1, at+1)|st = st, at = at] (2.22)

• Actor-only approach: In the actor-only approach, the agent senses the state of the
environment and acts directly. The agent acts without the need of a value function to
compute and compare expected outcomes of different actions. The model achieves this
by specifying the policy as a set of parameters, θ:

at = µθ(st) (2.23)

• Actor-Critic approach: The actor-critic approach, the approach implemented in this
study, aims to combine the advantages of the critic-only and the actor-only methods.
The model does this by simultaneously deploying an actor, determining the agent´s
action given the current state of the environment, and a critic, evaluating the selected
decision of the agent.

2.2.3 Deep Reinforcement Learning

Deep reinforcement learning (DRL) combines neural networks with reinforcement learning.
The neural network helps the agent from the RL algorithm learn how to reach its goal by
approximating the policy and the value function. Figure 2.3 depicts an overview of a DRL
model. DRL utilizes both function approximation and target optimization. The advantage
of DRL is that the algorithms can take in large inputs of data and decide what actions to
perform to optimize the objective.

The DRL algorithm is frequently used in fields such as robotics, video games, and natu-
ral language processing. The efficiency of DRL made it possible for the first system, Deep-
mind´s, to beat the world champions of the Go board game. This was done with the help
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of DeepMind´s Alphago, a single system that taught itself from scratch how to master the
game.

There are two commonly used deep actor-critic algorithms, Deep Deterministic Policy
Gradient (DDPG) and Advantage Actor-Critic (A2C). The DDPG, introduced by Lillicrap
et al. (2015) is an algorithm that learns the Q-function and the policy. DDPG uses off-
policy data and the Bellman equation to learn the Q-function used to learn the policy. The
A2C algorithm uses multiple agents to avoid using a replay buffer. Thus, each agent works
independently, with different data samples, to interact with the same environment (Mnih et
al., 2016).

Figure 2.3: Overview of a deep reinforcement learning model relying on a fully connected multilayer
feedforward neural network with one hidden layer. (Mao et al., 2016)

2.3 Sharpe Ratio

The Sharpe ratio is a financial measure introduced by Nobel laureate Sharpe (1966). The
Sharpe ratio measures the performance of an investment´s, one single security or portfolio
of securities, return compared to its risk. Sharpe (1966) defines the ratio as:

SP =
E[rP − rf ]

σP

(2.24)

Where rP is defined as the portfolio return, and rf is the risk-free return. σP is defined as
the standard deviation (risk) of the excess return of the portfolio. Therefore, the definition
concludes the additional amount of return that the investor receives per unit of increase in
risk. (Sharpe, 1966).

2.3.1 Differential Sharpe Ratio

The differential Sharpe ratio was derived by Moody et al. (1998) as a measure for on-
line methods that find approximate solutions to stochastic dynamic programming problems,
optimization of trading systems performance. Moody et al. (1998) states that to make re-
inforcement learning more efficient the influence of the return at time t on the Sharpe ratio
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needs to be calculated 1. This result is obtained by deriving the differential Sharpe ratio.
The differential Sharpe ratio, Dt, is the derivative of the Sharpe ratio for period t, St, for a
first-order exponential moving average decay rate η in the first and second moments of the
returns:

Dt ≡
∂St

∂η
=

Bt−1∆At−1∆Bt

Bt−1 − A2
t−1

(2.25)

Where At and Bt are exponential moving estimates of the first and second moments of
the returns for period t, Rt:

At = At−1 + η∆At = At−1 + η(Rt − At−1) (2.26)

Bt = Bt−1 + η∆Bt = Bt−1 + η(R2
t −Bt−1) (2.27)

2.4 Efficient Market Hypothesis

The Efficient market hypothesis (EMH) had its breakthrough after a paper published by
Fama (1970), reviewing empirical and theoretical research on the theory. The EMH states
that asset prices reflect all information available on the markets. Therefore, performing
excess market returns is impossible for investors on an efficient market since assets always
trade at their fair value. According to the EMH, one can only outperform the market by
purchasing riskier assets. A market is classified as efficient if the prices always fully reflect all
available information. The EMH divides the efficiency of the market into three ”information
subsets” Fama (1970):

• Weak form efficiency: A market where all historical prices and public information
of an asset reflect the current asset price. Thus, depending on historical data as a
prediction tool is of no use to an investor.

• Semi-strong form efficiency: A market where prices incorporate the information
described in the weak form, as well as all new public information. Thus, price ad-
justments happen rapidly, making all fundamental and technical analyses useless for
excess return.

• Strong form efficiency: the highest form of efficiency, including and containing both
previous subsets. A market where prices fully reflect all public and private information
at any given time. Thus, making insider information useless for excess return.

1The efficiency of the differential Sharpe ratio, when applied to RL, is discussed more thoroughly in
section 3.2.2
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3 Previous research

There is vast literature available on the topic of portfolio optimization, both on popular
portfolio optimization methods and the application of deep reinforcement learning in the
area. Therefore, this section focuses on the conventional models used as benchmarks and on
the most relevant works that have applied reinforcement learning in portfolio optimization.

3.1 Conventional Methods

One of the most popular approaches to construct and optimize a portfolio follows the pro-
cedure presented by Markowitz (1952) called Mean-variance analysis or Modern Portfolio
Theory (MPT). The MPT focuses on optimizing the risk-return tradeoff in a diversified
portfolio and creating a portfolio less volatile than the sum of its compounds. Despite its
popularity and contribution to Markowitz winning the Nobel prize in Economics, the model
has faced criticism. According to the critics, The assumptions underlying the theory are not
warranted by the empirical evidence (Maillard et al., 2010). According to Merton (1980), the
solution of the mean-variance analysis tend to be overly sensitive to the input parameters,
such that small changes can lead to significant variations in the composition of the portfolio.
The sensitivity of the solution is most notable in expected returns.

DeMiguel et al. (2009) further issues a more practical criticism towards the modern
portfolio theory. DeMiguel et al. (2009) evaluate the out-of-sample performance of the mean-
variance portfolios and compare them to the outcome of portfolios constructed using naive
diversification, equal share in each asset (1/N). The results show that the estimation errors
for the optimized portfolios are so high that none of them consistently outperformed the
naively diversified portfolio in risk-adjusted return. DeMiguel et al. (2009) and other studies
(Leung et al., 2012) have also introduced improvements to the modern portfolio theory.
However, according to Maillard et al. (2010), investors prefer more heuristic-based portfolio
construction methods, simple techniques that are easy to implement and do not depend on
expected returns. Thus heuristic techniques are more robust. The naive portfolio, the market
capitalization portfolio, and the minimum variance portfolio are examples of such heuristic
methods. Therefore, we choose to incorporate these heuristic based weighting techniques
as benchmarks to our DRL models in this study. However, the minimum variance portfolio
suffers from the lack of portfolio concentration, an issue that the naive portfolio solves since
it has equal weights in all the shares. However, the drawback of the naive portfolio is that it
can suffer from a lack of diversification in risk if the risks assigned to each asset are severely
different (Maillard et al., 2010).

As stated before, believers of market efficiency, as described by Fama (1970), are drawn
to the market portfolio, which is often based on the market capitalisation technique. The
EMH states that different technical asset selection strategies can not outperform the market
portfolio without including extra risk to the portfolio (Fama, 1970). Thus, we include the
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market capitalization weighted portfolio (OMXS30), since it can be interpreted as the market
portfolio (Zhang et al., 2009), as a benchmark to our model to evaluate whether our DRL
models are a good fit on the Swedish stock market.

All of the conventional methods mentioned above are widely popular and still widely
used by investors on the market. However, over the last years, more complex strategies by
implementation of machine learning have taken space in the portfolio management literature.

3.2 Application of Deep Reinforcement Learning

Researchers have divided opinions regarding the application of deep reinforcement learning
to real-world problems. Several researchers mentioned below have successfully applied a
DRL approach to solving real-world financial problems. Other researchers criticize the DRL
approach to real-world problems. A common criticism of neural networks and deep reinforce-
ment learning is that they require too much training to be efficiently applied to real-world
environments (Oleinik, 2019). This will, be an alluring point in this paper since we take a
deep reinforcement learning approach to solve a real-world problem by testing the proposed
portfolio optimization strategy on the OMXS30.

There are three main methods used when implementing a DRL method in financial re-
search: critic-only, actor-only, and actor-critic approach (Fischer, 2018). Thus the literature
on previous research done in the area is also divided into these three sections. In this section,
literature on previous research done with the help of the three mentioned approaches are
reviewed and compared.

3.2.1 Critic-Only

The critic-only approach consists of only one agent called the critic. The agent decides on
the subsequent action based on the value function, Q. With the help of Q, the agent can
analyze the state of the environment and base its decision on the best outcome.

The application of reinforcement learning to portfolio management was first introduced
by Neuneier (1996) who used a critic-only approach. Neuneier (1996) formalized the port-
folio allocation problem as a Markovian decision problem. The problem was solved using a
reinforcement learning framework. In this paper, the framework was used for approximating
the value function. The value function, in turn, was used by the agent to decide between
two strategies: choosing at each time step between currency pairs (U.S. dollar or Deutsche
Mark) and choosing between a risky asset (DAX Index) or holding the risk-free equivalent
(German government bonds). Neuneier (1996) concludes that one can successfully apply a
reinforcement learning approach to solve the portfolio management problem. More recent
research (Lucarelli & Borrotti, 2020), unlike Neuneier (1996), uses deep reinforcement learn-
ing with the critic-only method. The difference between the two methods is that the latter
uses a neural network to approximate the Q-value function. The use of an ANN shows that
one can minimize the mean squared error compared to only using reinforcement learning
(Yang et al., 2020). Although, even when applying DRL, the critic-only approach is not
practical for a portfolio with several stocks. Since prices are continuous, the method only
works with discrete and finite state and action spaces. Therefore, the critic-only approach is
not suitable for implementation in this study and one must look to other DRL approaches
to construct a portfolio with several assets.
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3.2.2 Actor-Only

Moody et al. (1998), contrary to Neuneier (1996), use an actor-only approach (also called a
Recurrent reinforcement learning, RRL), an approach where the agent senses the state of the
environment and acts directly without the need of a value function to compute and compare
expected outcomes of different actions. Moody et al. (1998) used the RRL to optimize the
differential Sharpe ratio, based on Sharpe (1966) measure of risk-adjusted returns, to trade a
single financial security. Instead of proposing the traditionally used Sharpe ratio as a reward
function to the method, Moody et al. (1998) suggests the use of the differential Sharpe ratio
as a reward function. The reason behind the use of the differential Sharpe ratio, according
to Moody et al. (1998), is its many benefits regarding efficient online optimization:

• Simplifying the use of recursive updating: The calculation of At and Bt from
(2.26) and (2.27) enables the recursive updating of the exponential moving Sharpe
ratio forthright. Thus, recomputing the average and standard deviation of returns for
the entire trading period is unnecessary for updating the Sharpe ratio, an advantage
that is of good use in a study like this one.

• More efficient out-of-sample performance: The differential Sharpe ratio outper-
formed the running and moving average Sharpe ratios in the out-of-sample perfor-
mance.

• Straightforward interpretation: The use of the differential Sharpe ratio enables
the interpretation of how risk and reward affect the Sharpe ratio. Since Dt isolates the
contribution of the current return to the exponential moving average Sharpe ratio.

The benefits reported by the study of using the differential Sharpe ratio as reward function
has led to the choice of implementing the measure as a reward function in this study. Moody
& Saffell (2001) extends their previous studies and makes further investigation about their
direct policy optimization method by introducing a differential downside ratio to better
separate undesirable downside risk from the preferred upside risk. The result obtained in
the paper shows that RRL can be successfully applied to optimize a portfolio consisting of
only one risky asset and one risk-free asset. Other researchers built on the RRL approach by
either expanding the model (Maringer & Ramtohul, 2012) or varying the decision function
(Almahdi & Yang, 2017). When it comes to more recent research, a deep reinforcement
learning model is used instead of conventional reinforcement learning models. Instead of
having the ANN learn the Q-value, as in the critic-only approach, the ANN learns the policy
itself. Gold (2003) uses RRL to compare single-layered networks with two-layered networks,
finding that the single-layer network outperforms the two-layer network.

An advantage to the actor-only approach is that it solves the problem of handling contin-
uous action space environments. However, the RL algorithms generate an output of discrete
trading signals on an asset. Therefore, the algorithms are limited to single-asset trading, in
line with the former research (Moody et al. (1998), Moody & Saffell (2001)) implementing
the said approach, and therefore not applicable to general portfolio management problems,
where trading agents manage multiple assets, which is done in this study.

3.2.3 Actor-Critic

The actor-critic approach, the approach that is used in this study to construct two DRL
portfolios, aims to combine the advantages of the critic-only and the actor-only methods.

14



The combination is done by simultaneously using an actor and a critic. The actor determines
the agent´s action, given the current state of the environment, and the critic evaluates the
selected decision. The neural network in this approach approximates both the policy and
the Q-value function.

Recent algorithmic developments from Google DeepMind, have made it possible to solve
the continuous action space problem. This progress was made by developing previous al-
gorithms, created by Silver et al. (2014), called Deterministic Policy Gradients method. A
method that targets modeling and optimization of the policy directly by using off-policy
data. From this, Google DeepMind has devised a policy-gradient actor-critic algorithm
called Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al., 2015). They solve the
continuous action space problem, using a neural network to approximate the action policy
function while training a second network to estimate the reward function. Therefore, we
implement the DDPG model in this study to construct one of our tested portfolios.

Mnih et al. (2016) on the other hand, developed an asynchronous actor-critic framework,
called advantage actor-critic (A2C). Mnih et al. (2016) show that the asynchronous version
of the actor-critic framework outperforms current state-of-the-art frameworks while needing
half the training time. The A2C method also improves the neural network´s attribute
of approximating the functions. Thus, we have chosen to implement the A2C method to
construct the second portfolio evaluated in this study.

Xiong et al. (2018) and Noguer i Alonso & Srivastava (2020) use deep reinforcement learn-
ing for optimizing portfolios and comparing the optimized portfolio to traditional portfolio
optimization models, e.g. the minimum variance portfolio. Xiong et al. (2018) do this with
the help of the third approach, the actor-critic approach. The algorithm used by Xiong et al.
(2018) is the DDPG developed by the researchers mentioned above. The DDPG models large
state and action spaces, a target network that stabilizes the training process and experience
replay that removes the correlation between samples and increases the use of data. Xiong et
al. (2018) found that the DRL network outperformed both the index used as a benchmark
(Dow Jones Industrial Average) and the min-variance portfolio allocation method in both
accumulated return and Sharpe-ratio. Noguer i Alonso & Srivastava (2020) obtain similar
results, where their algorithm outperforms both the minimum variance portfolio and several
other conventional strategies, including the naive strategy.

Kang et al. (2018), contrary to Xiong et al. (2018), uses the asynchronous actor-critic
algorithm mentioned above to solve the portfolio management problem. Kang et al. (2018)
found that the A2C outperforms the S&P 500 while also observing that the framework only
needs half the training period to converge much faster than usual DRL frameworks. However,
Kang et al. (2018) also found that the model was more effective during the training period
than the testing period. In this study, we did not find that the A2C model was more effective
during the training period than the testing period.

In this study, we also benchmark our DRL constructed portfolios, using the DDPG like
Xiong et al. (2018) and the A2C like Kang et al. (2018), against conventional methods as in
the above mentioned papers. However, we do this on the Swedish stock market, which has
not been done in previous research.

Yang et al. (2020) implements three DRL algorithms for automated stock trading to
compare the three strategies against each other as well as against the Dow Jones Industrial
Average (DJIA30). The three algorithms used are the two algorithms mentioned above, A2C
and DDPG, and Proximal Policy Optimization. All three DRL algorithms outperformed the
market when comparing returns and risk-adjusted returns. The A2C outperformed the
DDPG in both returns and risk-adjusted returns, in line with the results of this study.
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4 Empirical Data

4.1 Description of Data-set

The stocks from the OMXS30 index were initially selected to comprise the dataset used. The
OMXS30 is a market index containing the 30 most traded stocks on the Nasdaq Stockholm
stock exchange. The index is market-value-weighted, meaning that the weights assigned
to the components depend on the total market value of their outstanding shares. The
constituents are revised two times a year, in January and July. However, this research
disregards the changes of stocks included in the index. We obtained the data from Yahoo!
Finance. Our data ranges from 01/01/2000 to 31/12/2020 and contains daily observations.
The stocks selected are from the index composition in 2020 since this will be the end of the
period. The restriction imposed is accepted not to impact the outcomes since the purpose of
this paper is to evaluate and compare portfolio optimization models, not to create mimicking
portfolios of the index. Further, by selecting the constituents of the index included at the
end of the period, the issue of survivorship bias is evaded (Sharpe, 1966).

Figure 4.1 shows the closing price for OMXS30 from 2000 to 2019:

Figure 4.1: Chart over closing price for OMXS30, 2000-2019. Data obtained from Swedish House
of Finance
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4.2 Data Pre-Processing

This research disregards the changes of stocks included in the index, as explained above.
Therefore, we had to do some data pre-processing to fit the model. A few of the chosen
companies had been listed on the exchange later than 2000, which constitutes missing data.
We cannot train a high-quality model without removing the stocks with missing data points.
Therefore, the final data set contains 28 companies in total (see Appendix A.1).

The experiment of this study has three stages, training, validation, and testing. In the
training stage, the algorithms generate well-trained trading agents. The key parameters,
such as learning rate, number of episodes, and others, are adjusted in the validation stage.
In the testing stage, we evaluate the performance of the trading agents.

The data set is split into chronological order to produce reliable results since actual
trading actions are always implemented with the current data. If we were to do it in a
non-chronological way, a look- ahead-bias to the test set would occur, which would lead to
unreliable results. Therefore, we split the data set into these three periods, as shown in
figure 4.2: The training period, from 01/01/2000 to 31/12/2014, the validation period, from
01/01/2015 to 31/12/2015, and finally the testing period, from 01/01/2016 to 31/12/2020.

The lengths of the validation and trading periods are in line with previous research (Xiong
et al., 2018). However, in this study we choose a longer training period.

Figure 4.2: Data splitting.
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5 Methodology

5.1 Assumptions

Some assumptions were made when constructing the portfolios.
Short-sales constraints are implemented in this study. This is also a reasonable assump-

tion since not all fund managers are allowed to take short positions.
Transaction costs are not taken into consideration in this study. Transaction costs are

very much present in the real world and important for systematic trading strategies. How-
ever, they are assumed negligible in the construction of each portfolio and assumed to not
exceeded the profits of the strategies. Instead of transaction costs, a turnover statistics is
deployed to compare the number of transactions between each portfolio.

No margin trading when it comes to the construction of the portfolios. Self-financing of
each portfolio is assumed. Therefore, there is no inflow or outflow of equity to the portfolios
except for the initial value of the portfolio.

5.2 Rebalancing

The frequency of which the portfolios in this study are rebalanced, the realignment of the
portfolio asset weights, is of importance to the discussion regarding the portfolio turnover
later on in the study.

All portfolios are rebalanced monthly, except for the market capitalization portfolio,
which is in line with previous research on portfolio evaluation (Maillard et al., 2010). The
market capitalization portfolio is rebalanced every six months at the same dates as the
OMXS30 index, January and July.

5.3 The DRL Models

State

The state space, S, is a finite set of states that defines the observations that the agent
receives from the environment. In this study, we acquaint the agent with the environment
by choosing several states rather than just a single one. The first state incorporated into
the model is the covariance matrix, a frequent feature used within portfolio management to
compute the associated standard deviation of a portfolio. The covariance matrix in portfolio
construction can help determine which stocks to include in the portfolio. The covariance
measures in what direction stocks move in. If the covariance between two stocks is positive,
they move in the same direction. However, if it is negative, they move in opposite directions.
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One of the most frequently used features, closing price, pt, is incorporated into the model.
Using the closing price as a state to the models is of great importance in this study since it
contradicts the assumption of the EMH regarding the use of historical data as an indicator
for future returns (Fama, 1970).

The state tensor, st, represents the state. A tensor is a mathematical object comparable
to but more general than a vector. The input to the model at the end of period t is a
tensor, st, of rank 3 with shape (d, n, f) where d is a fixed amount defining the length of the
observation in days, n is the number of stocks in the environment, and f is the number of
features. An array of components that are functions of the coordinates of a space represents
the tensor.

Action

As explained previously, the action space, A, is a finite set of actions available to the agent
from the state, S. In this paper the action represents the portfolio weight for each stock.
Since short-sales constraints is implemented, a is within [0, 1]. The action, at is represented
with the weight vector, wt, thus

∑n
i=0 ai,t = 1

State transition probability

In this study, the actions taken by the agent assume not to affect the state transition pre-
sented in section 2.2.2. This assumption holds since the agent´s policy is updated based on
the observed reward in each step. Thus, since market data is very noisy and the environment
too complex, the transition probability function remains unknown for the portfolio manage-
ment problem. Therefore, we define all state transitions in a state transition matrix, P .
Each row in P describes the transition probabilities from one state to all possible successor
states. The summation of each row is equal to one:

P11 ... P1d
...

. . .
...

Pd1 ... Pdd

 (5.1)

Reward Function

We define the reward of the model as the Sharpe ratio for periods t = [1, ..., T ]. The
corresponding reward function, r(s, a, s‘), will be the differential Sharpe ratio, Dt, defined
as:

Dt ≡
∂St

∂η
=

Bt−1∆At−1∆Bt

Bt−1 − A2
t−1

(5.2)

Employing the differential Sharpe ratio as a reward function is motivated by Moody et
al. (1998) since they found that maximizing the differential Sharpe ratio yields more consis-
tent results than maximizing profits. They also found that agents trained to maximize the
differential Sharpe ratio achieve better risk-adjusted returns than those trained to maximize
profit.
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Algorithms

In this paper, we implement an ANN to help build two deep actor-critic structures by approx-
imating the value function, Q(s, a), and learning the policy, µ, for the portfolio optimization
task. The two model-free reinforcement learning algorithms employed in this paper are the
Advantage Actor-Critic (A2C) and Deep Deterministic Policy Gradient (DDPG). We use a
gradient descent optimization algorithm called ADAM (Kingma & Ba, 2014) to learn and
update the ANN weights.

Both algorithms rely on the same deep neural architecture, Long Short Term Memory
(LSTM). The LSTM is an ANN that can process not only single data points but also entire
sequences of data. The LSTM is practical in this study since we use arrays of data.

5.4 Benchmark Portfolio Strategies

Market Capitalization Weighted Portfolio

We construct the market capitalization-weighted portfolio by collecting data and weight of
each constituent from the capitalization-weighted index, OMXS30. The market capitaliza-
tion data used for each stock at each re-balancing date is supplied by Yahoo Finance.

Minimum Variance Portfolio

The minimum variance portfolio is constructed by minimizing the portfolio´s variance by
solving the problem in (2.8). We also include our constraints to the problem,

such that

{
1Tw = 1,

w ≥ 0
(5.3)

This portfolio is referred to as MV in the next section.

Naive Portfolio

The Naive portfolio is constructed by equally weighting each stock from the index. Thus,
the weight for each share is 1

n
where n is the number of stocks in the index.

5.5 Performance Measures

In this study, we implement eight different performance measures to evaluate the five dif-
ferent portfolio construction strategies. Performance statistics, discussed below, correlation,
concentration and turnover. The chosen measures are in line with previous research within
the area of portfolio evaluation (Maillard et al., 2010). The mentioned measures should
provide an in-depth discussion of the differences between the compared portfolio strategies.
They should also tell whether DRL is a competitive and valuable strategy in the area.

The Swedish risk-free interest rate for the whole period 2000-2020, obtained from the
Swedish national bank, is used whenever a risk-free rate is needed for the performance
measures.
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Annual return

Annual return is the annualised geometric average return. The Annual return for each
portfolio was calculated using the bellow formula (CAGR=compound annual growth rate):

CAGR =

((
Final value

Initial value

) 1
years

)
− 1 (5.4)

Cumulative Return

Cumulative returns are cumulative sum of the daily returns. It can also be calculated as a
single number, based on the final and initial value:

CR =
Final value− Initial value

Initial value
(5.5)

Annual volatility

The annual volatility (standard deviation) is the annualised volatility. The annual volatility
of the portfolio was calculated by multiplying the daily volatility by

√
252, since there are

usually 252 trading days.

Sharpe ratio

The Sharpe ratio and the calculation of the measure is explained thoroughly in section 2.3.

Maximum drawdown

Maximum drawdown is the largest peak-to-through downturn of the portfolio value. The
maximum drawdown of each portfolio was calculated as:

MDD(T ) = max{0, max
t∈(0,t)

P (t)− P (T )} (5.6)

Where T is the time at the end of the period and P (t) is the stock price at time t.

Calmar ratio

The Calmar ratio is similar to the Sharpe ratio, it aims to provide risk-adjusted return. The
Calmar ratio of the portfolios was calculated using the following formula:

CalR =
E(r)

MDD
(5.7)
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5.6 Significance

With the help of the performance measures above, the different strategies can be evaluated
and compared. However, we must test the significance of the performance measures to
compare the methods in a correct and meaningful way. This study aims to conclude whether
DRL can be successfully applied to portfolio management. Thus, the results of the two
algorithms will be compared to the benchmarks and each other and tested for significant
differences. For this, a classical one-sample t-test is conducted. The formula for the t-
statistics is:

t(µ̂k) =
µ̂k − µ0√

σ̂2
k

√
n (5.8)

Where µ0 is the mean of the benchmarks, n is the number of observations, and k is one
of the DRL strategies. If the null hypothesis is true, there exists no significant difference
between the measures. Thus, the two hypotheses are specified as follows:

H0 : µ̂k = µ0

H1 : µ̂k > µ0

If the confidence interval includes zero, we can say that there is no significant difference
between the means of the two populations at a given level of confidence.
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6 Empirical Analysis

In this section, the results of the study are presented and illustrated with the help of graphs
and descriptive tables. All of the results are first interpreted to get a better understanding
of the outcome so that an analysis can be done later on in the section.

6.1 Performance During a Longer Period

We start by presenting the main results of this study, being the performance of the different
portfolios during the whole testing period. In figure 6.1, We illustrate the cumulative returns
of all five portfolios. The A2C portfolio has the highest cumulative return of all the portfolios,
followed by the DDPG portfolio. The two DRL constructed portfolios follow each other
almost identically during the whole period. However, the A2C portfolio outperforms the
DDPG at the end of the period. The naive and minimum variance portfolios generate
similar cumulative returns, and both exceed the OMXS30, which has the lowest cumulative
returns out of all portfolios.

Figure 6.1: Cumulative returns for the five portfolios during 2016-2020.
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In table 6.1, we present the statistics for all five portfolios. The annual return shows how
much the portfolio has grown or shrunk in one year. The A2C portfolio (16,7%) and the
DDPG portfolio (15.3%) had the highest average annual return over the testing period. The
OMXS30 (6.35%) had the lowest average annual return. The annual volatility measures how
risky the portfolios are and how volatile the returns of the portfolios are. The A2C portfolio
(19.9%) and the naive portfolio (19.2%) had the highest annual volatility, and the minimum
variance portfolio (18.5%) had the lowest annual volatility. The Sharpe ratio measures risk-
adjusted return. Thus, a higher Sharpe ratio is preferred over a lower Sharpe ratio. The A2C
(0.879) has the highest Sharpe ratio, and the OMXS30 (0.421) has the lowest. The Calmar
ratio is another measure for risk-adjusted returns but as a function of the expected annual
rate of return and the maximum drawdown, characterized as the maximum loss from peak
to trough over a given period. Thus, the portfolio with the higher ratio performed better
on a risk-adjusted basis, which in this case was the A2C (0.531) followed by the DDPG
(0.489), the OMXS30 (0.198) had the lowest Calmar ratio. When it comes to the maximum
drawdown, a lower value is preferred over a higher one. The minimum variance portfolio
(-30.9%) had the lowest maximum drawdown. The Naive portfolio (-33.4%) had the highest
maximum drawdown.

Table 6.1: Risk and return statistics over a five year period. From 2016-2020. The highest (absolute)
value in each column is in bold.

Portfolio
Annual
return
(%)

Cumulative
return
(%)

Annual
volatility

(%)

Sharpe
ratio

Calmar
ratio

Maximum
drawdown
(%)

A2C 16.7 116 19.9 0.879 0.531 -31.5
DDPG 15.3 104 19.1 0.842 0.489 -31.3
OMXS30 6.35 35.8 18.9 0.421 0.198 -32.0
Minimum Variance 9.47 57.0 18.5 0.582 0.294 -30.9
Naive Diversification 9.69 58.6 19.2 0.579 0.290 -33.4
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6.2 Performance During a Bullish Period

To get a better understanding of the model and its efficiency on the market, we zoom in
on the testing period and present the outcome during a bullish period on the market. As
a bullish period, we chose 2019 since the OMXS30 had the highest annual return during
2019 out of all the years included in the testing period. During the bullish period, the A2C
portfolio outperformed all the other portfolios in terms of cumulative return, presented in
figure 6.2. However, the DDPG portfolio did not exceed the naive and the minimum variance
portfolio during this period. It performed just slightly better than the two benchmarks in
terms of returns but less in terms of risk-adjusted returns. Once again, all the portfolios
outperformed the index, which had the lowest cumulative return. In table 6.2, we can see
similar results as in table 6.1, with A2C exceeding all of the other portfolios in terms of
annual return, Sharpe ratio, and Calmar ratio. However, this time DDPG (14.9%) had the
highest annual volatility.

Figure 6.2: Cumulative returns for the five portfolios during 2019.

Table 6.2: Risk and return statistics in 2019. The highest (absolute) value in each column is in
bold.

Portfolio
Annual
return
(%)

Cumulative
return
(%)

Annual
volatility

(%)

Sharpe
ratio

Calmar
ratio

Maximum
drawdown
(%)

A2C 39.6 38.6 14.8 2.33 3.66 -10.8
DDPG 32.3 31.6 14.9 1.95 2.49 -13.0
OMXS30 28.7 27.8 14.2 1.85 2.47 -11.6
Minimum Variance 30.9 30.1 13.6 2.05 2.86 -10.7
Naive Diversification 32.1 31.3 14.6 1.99 2.60 -12.4
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6.3 Performance During a Bearish period

To broaden the understanding of the model and its efficiency on the market, since we eval-
uated it during a bearish period, we also have to evaluate it during a bearish period. As
a consequence of the Covid-19 pandemic, 2020 was a turbulent year on the market. Thus,
we chose 2020 as the evaluation year. During the turbulent periods, February to May, the
minimum variance portfolio did better than the other portfolios. However, the A2C and the
DDPG portfolios recovered and outperformed the rest at the end of the year. During this
turbulent period, the OMXS30 performed better than the other two benchmarks. In table
6.3, we see similar results as earlier, the A2C performing better in terms of annual return,
Sharpe ratio, and Calmar ratio. The minimum variance portfolio (-28.3%) has once again
the lowest drawdown, and the naive portfolio (-32.2%) has the highest drawdown.

Figure 6.3: Cumulative returns for the five portfolios during 2020.

Table 6.3: Risk and return statistics in 2020. The highest (absolute) value in each column is in
bold.

Portfolio
Annual
return
(%)

Cumulative
return
(%)

Annual
volatility

(%)

Sharpe
ratio

Calmar
ratio

Maximum
drawdown
(%)

A2C 11.4 11.4 29.1 0.519 0.367 -31.2
DDPG 8.81 8.81 28.5 0.440 0.276 -31.9
OMXS30 4.69 4.67 28.4 0.305 0.146 -31.9
Minimum Variance 3.77 3.77 25.8 0.274 0.134 -28.2
Naive Diversification 4.04 4.04 28.7 0.283 0.126 -32.2
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6.4 Hypothesis Testing

Furthermore, it is of interest whether the two DRL strategies have a mean significantly
different from the benchmark portfolios. As already described, we use a t-test to test the
mean difference. In table 6.4, the p-values from the t-tests comparing the mean of the A2C
portfolio to all the other portfolio means are presented. The A2C portfolio is considered to
have a significant, at 1%, greater mean for both the annual return and the Sharpe ratio than
all other portfolios.

Table 6.4: Hypothesis testing for the Annual return and Sharpe ratio during the five year period
against A2C, using the one sample t-test.

Annual Return Sharpe Ratio
Portfolio p-value (t-Test) Portfolio p-value (t-Test)
A2C - A2C -
DDPG 0.0064∗∗∗ DDPG 0.0035∗∗∗

OMXS30 0.0001∗∗∗ OMXS30 0.0001∗∗∗

Minimum Variance 0.0001∗∗∗ Minimum Variance 0.0001∗∗∗

Naive Diversification 0.0001∗∗∗ Naive Diversification 0.0001∗∗∗

In table 6.5, we present the p-values from the t-tests comparing the mean of the DDPG
portfolio to all the other portfolio means. Similar results as in table 6.4 are presented, except
for the fact that the mean for annual return and Sharpe ratio of the DDPG is considered to
be less than or equal to the means of A2C.

Table 6.5: Hypothesis testing for the Annual return and Sharpe ratio during the five year period
against DDPG, using the one sample t-test.

Annual Return Sharpe Ratio
Portfolio p-value (t-Test) Portfolio p-value (t-Test)
DDPG - DDPG -
A2C 0.8772 A2C 0.5123
OMXS30 0.0001∗∗∗ OMXS30 0.0001∗∗∗

Minimum Variance 0.0001∗∗∗ Minimum Variance 0.0001∗∗∗

Naive Diversification 0.0001∗∗∗ Naive Diversification 0.0001∗∗∗
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6.5 Correlation

In table 6.6, we present the correlation coefficients for the portfolios. The correlation coeffi-
cients show how well portfolios correlate to one another. In general, all portfolios correlate
highly to one another, with correlation coefficients ranging from 0.91 (A2C and minimum
variance) to 0.98 (minimum variance and naive diversification). All the portfolios are highly
correlated with the market, but the naive portfolio (0.97) has the highest correlation to the
market and the mean-variance (0.94) has the lowest.

Table 6.6: Portfolio correlation over the whole testing period, 2016-2020.

Portfolio
Annual
Return
(%)

Annual
Volatility

(%)

Correlations

OMXS30 A2C DDPG MV Naive

OMXS30 6.35 18.9 1.00 0.96 0.95 0.94 0.97
A2C 16.7 19.9 1.00 0.92 0.91 0.93
DDPG 15.3 19.1 1.00 0.92 0.94
MV 9.47 18.5 1.00 0.98
Naive 9.69 19.2 1.00

The correlation coefficients are the Pearson’s correlation coefficients calcu-
lated as the covariance of the two portfolios divided by the product of their
standard deviations.

6.6 Concentration

The portfolio concentration was evaluated using the average Herfindahl-Hirschman Index
(HHI) value. The HHI is usually used to measure the size of firms in relation to the industry
they are in. In this thesis and the stock portfolio context, it is used as a concentration
measure, measuring how many different types there are in a data-set, and how evenly the
weights are distributed among these. A lower HHI value is preferred.

In table 6.7 the average HHI values are presented. The portfolios with the lowest average
HHI values are the Naive portfolio (0.00) since it has uniform weights after each rebalancing
day, and the A2C portfolio (0.04). The minimum variance portfolio (0.20) had the highest
HHI value.

Table 6.7: Portfolio concentration over the
whole testing period, 2016-2020.

Portfolio Average HHI Value

A2C 0.04
DDPG 0.06
OMXS30 0.08
Minimum Variance 0.20
Naive Diversification 0.00

Average HHI is the average of the daily
Herfindahl-Hirschman Index (HHI) values,
calculated as described in A.2
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6.7 Portfolio Turnover

As mentioned before, transaction costs are not implemented, in absolute value, in this study.
Instead, we measure the effect of the transaction costs in terms of portfolio turnover. The
portfolio turnover shows how frequently the assets are bought and sold in relation to the
average portfolio value. The portfolio turnover can therefore be used as a proxy for trans-
action costs since the two of them are closely correlated (Dow, 2007). Thus, the portfolio
turnover can describe how a portfolio performs in comparison to the market portfolio when
adjusted for transaction costs. As noted before the market portfolio is known for having a
low portfolio turnover, which can be seen in table 6.7, due to the way it rebalances infre-
quently. Thus, the market portfolio is a good benchmark in terms of a portfolio with low
transaction costs/turnover.

In table 6.7 the average annual portfolio turnover is presented. The portfolio with the
lowest average annual turnover is the OMXS30 (0.06) followed by the Naive portfolio (0.21)
and the A2C portfolio (0.27). The portfolios with the highest average annual turnover were
the minimum variance portfolio (0.64) and the DDPG portfolio (0.32).

Table 6.8: Portfolio turnover over the whole testing
period, 2016-2020.

Portfolio Average annual turnover

A2C 0.27
DDPG 0.32
OMXS30 0.06
Minimum Variance 0.64
Naive Diversification 0.21

The annual portfolio turnover is defined as:
Minimum of securities bought or sold

Average portfolio value . The average an-
nual turnover was calculated as the average of these
annual turnovers.
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6.8 Discussion

In this study, different performance measures have been implemented to evaluate the two
portfolios constructed with the help of the two DRL algorithms, A2C and DDPG, on the
Swedish stock market. The DRL constructed portfolios were then benchmarked against the
market capitalization portfolio, i.e., the portfolio tracking the OMXS30 index, the mean-
variance portfolio, and the naive portfolio. The outcomes of the two DRL algorithms are
also compared and discussed.

Advantage Actor-Critic (A2C)

The rationale behind the A2C method is to implement several deterministic agents working
simultaneously, in the same environment but independently, to update gradients. The A2C
has an actor-critic architecture and uses a neural network as a function approximator. The
actor outputs the policy for a state, a vector of probabilities for each action. The critic
outputs the value of a state. Therefore, the A2C is stable and efficient for stock trading
and portfolio construction. We can detect the efficiency and stability of the A2C in this
study. The A2C outperforms all of the benchmarks, and the DDPG, in both returns and
risk-adjusted returns. The results also show that the A2C is more robust in balancing risk
and return, considering that it has the highest Sharpe ratio and Calmar ratio in all of
the tests performed. After performing the t-test, we can conclude that the A2C method
generates significantly higher returns and balances risk and return better than the other
portfolios. However, the model generates higher annual volatility than the benchmark port-
folios, indicating that it chooses to include more high-risk assets in the portfolio. It also has
a higher maximum drawdown than the market and the minimum variance portfolio but a
lower drawdown than the naive portfolio.

The A2C portfolio highly correlates with the index, the second-highest correlation out of
all the other portfolios. It has the lowest average HHI value, except for the naive portfolio.
Finally, the portfolio keeps a low portfolio turnover, slightly higher than the market.

In conclusion, the A2C method succeeded constructing a portfolio that outperforms all
of the proposed benchmarks, including the DDPG constructed portfolio, in terms of return
and risk-adjusted performance. The results of this study are in line with previous research
(Yang et al., 2020).

In addition the A2C algorithm converges (2 min 44s) much faster than the DDPG (18
min 50 s) when training the models, in line with Mnih et al. (2016).

Deep Deterministic Policy Gradient (DDPG)

The rationale behind the DDPG algorithm is the combination of frameworks for Q-learning
and policy gradient to deterministically map states to actions for a more efficient fit of the
continuous action space environment. The DDPG constructed portfolio outperformed all
of the benchmarks during the five years and the bearish period, in terms of returns and
risk-adjusted returns. However, during the bullish period, it only did slightly better than
the other benchmarks. The results in terms of robustness for balancing risk and returns
show similar results for the DDPG portfolio as it has a significantly higher Sharpe and
Calmar ratio during the two above-mentioned periods. However, during the bullish period,
the portfolio has a lower Sharpe ratio than the minimum variance portfolio and the naive
portfolio, it also has the lowest Calmar ratio out of the three. The model has the lowest
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Calmar ratio since it also has the highest maximum drawdown during the bullish period.
The poor performance of the DDPG during this period may result from the fact that it is a
short period, only one year. Therefore, the model might need a prolonged period to perform
better, which it does when testing it on the five years.

The DDPG portfolio had a high correlation to the market, but compared to the other
portfolios, it only had a higher correlation than the minimum variance portfolio. However,
0.95 is still considered a high correlation. The portfolio has a slightly lower HHI value than
the market but slightly higher than the A2C. Finally, the portfolio keeps a low portfolio
turnover. However, it has a higher turnover than the market, A2C, and naive portfolio
turnover.

In conclusion, the DDPG constructed portfolio outperforms the proposed benchmarks,
but not the A2C portfolio, in terms of return and risk-adjusted returns during the whole
period. However, the method produces some turbulent results during shorter periods of
testing.

Caveats and Market Efficiency

The proposed approach implemented in this study does have some caveats linked to it. These
caveats can affect the overall performance and efficiency of the models in the real world.

First, the testing period could be extended past five years to assess the long-term value
of the portfolio built by the algorithms in a more robust and significant way. The market
capitalization-weighted tracking portfolios have a long history of performance. Their holdings
are also infrequently rebalanced. The infrequent rebalancing leads to low transaction costs,
a factor not implemented in the presented models, which is not realistic in the real world
where transaction costs are very much present. However, we include portfolio turnover as
a proxy measure for the transaction costs. This study does not implement margin trading
either, which is present in reality as a fund tracking an index will have inflow and outflow
of capital. However, margin trading is often not implemented in studies. The management
of the algorithms in a real-world environment comes with its implications. Keeping up with
data engineering could become difficult since data must be fed in time and must be correct
and up to date for the model to make efficient decisions. The approach in this study only
proposes monthly portfolio updates, compared to the high-frequency trading conducted by
some portfolio managers in the real world, where decisions are made every second. Therefore,
it is critical to note that the models do not consider price changes occurring when the market
is closed. The models also do not consider a company going into bankruptcy and stopping
trading on the market.

More than evaluating the performance of the models on the Swedish stock market, this
study aims to detect whether the models can pick up market trends and make profits on
these. Considering the portfolio performance observed for the A2C and DDPG algorithms,
it seems that the models can pick up on market trends. This conflicts with the efficient
market hypothesis presented in section (2.4). The fact that the models use historical closing
prices and other appropriate factors to learn shows that it even conflicts with the weakest
form of the above-mentioned hypothesis. It is also important to note that the proposed
approach is not frequently used in the real world. Thus, the above-average performance of
the models could depend on the fact that the models are narrowly used by investors on the
market. Therefore, if more investors on the market start using the models frequently, the
excess return over the market portfolio may be arbitraged away, which would be in line with
the EMH.
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7 Conclusion

The objective of this study was to evaluate whether a deep reinforcement learning approach
can be applied to optimize a stock portfolio on the Swedish stock market. Therefore, two
DRL algorithms, A2C and DDPG, relying on the same artificial neural network called LSTM,
were implemented to construct two portfolios. The portfolios consisted of 28 stocks from
the OMXS30 index and were benchmarked against commonly used weighting techniques in
portfolio management. The different strategies were evaluated with the help of different
performance measures.

This study concludes that a DRL approach can be applied to the Swedish stock market for
constructing an optimized portfolio based on the portfolio performance observed for the A2C
and DDPG algorithms. Both of the DRL constructed portfolios significantly outperformed
all of the conventional benchmarks in terms of risk and returns statistics over a five-year
period. The results of this study are in line with similar previous research conducted in the
area (Xiong et al. (2018), Yang et al. (2020), Noguer i Alonso & Srivastava (2020)) where
the DRL portfolios could be implemented as a portfolio management tool and outperform
conventional methods.

When compared to each other, the A2C outperforms the DDPG in all the tests. The
A2C achieves higher cumulative returns (+12%) and higher risk-return ratios (+0.037 in
Sharpe ratio, +0.042 in Calmar ratio).

The two DRL methods also seem to pick up market trends and profit from them. A
result which conflicts with the efficient market hypothesis. However, it is critical to note
that the methods come with some caveats when implementing them in the real world. There
exist data engineering that needs to be tweaked for the models to be efficient and profitable
in a real-world environment.

Even though the models may come with implications, the results of this study underline
the usefulness of machine learning methods in portfolio management.

To further investigate the application of DRL methods in portfolio management, future
research could incorporate a richer source of data, which could lead to more robust and
complete results. A richer source of data could be an extended testing period, a broader
index, or including more financial factors, e.g., financial news, as inputs to train the models.
In this study, we implemented the differential Sharpe ratio as a reward function to the
models, future research could implement different reward functions and evaluate whether
another reward function could generate better results.
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Appendix A

A.1 Data-set

Table A.1: Complete list of stocks, data acquired from Yahoo Finance

Company Ticker Sector
ABB Ltd ABB Industrials
Assa Abloy B ASSA B Industrials
Astra Zeneca AZN Healthcare
Atlas Copco A ATCO A Industrials
Atlas Copco B ATCO B Industrials
Autoliv Inc. SDB ALIV SDB Consumer Cyclical
Boliden BOL Basic Materials
Electrolux B ELUX B Consumer Cyclical
Ericsson B ERIC B Technology
Getinge B GETI B Healthcare
Hennes & Mauritz B HM B Consumer Cyclical
Hexagon AB B HEXA B Technology
Investor B INVE B Financial Services
Kinnevik B KINV B Financial Services
Nordea Bank NDA SE Financial Services
Sandvik SAND Industrials
Securitas B SECU B Security & Protection Services
SEB A SEB A Financial Services
Skanska B SKA B Industrials
SKF B SKF B Industrials
SSAB A SSAB A Basic Materials
Svenska Cellulosa AB SCA B Basic Materials
Svenska Handelsbanken A SHB A Financial Services
Swedbank A SWED A Financial Services
Swedish Match SWMA Consumer Defensive
Tele2 B TEL2B Communication Services
Telia Company TELIA Communication Services
Volvo B VOLV B Industrials
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A.2 Herfindahl-Hirschman Index

The concentration of the portfolio is computed using the Herfindahl-Hirschman Index. It is
defined as follows. Let (w1, w2, . . . , wn) be a sequence of n weights, where wi ∈ [0, 1]. The
definition of the Herfindahl-Hirschman Index is:

H =
n∑

i=1

w2
i , (A.1)

with H ∈ [ 1
n
, 1] and

∑n
i=1 wi = 1.

In this study, we use a modified HHI, to scale the statistics onto [0, 1]:

H∗ =
H − 1

n

1− 1
n

(A.2)

the modified HHI, takes the value 1 for a perfectly concentrated portfolio and 0 for the
Naive portfolio with uniform weights.
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A.3 Pseudo Code A2C

Figure A.1: Pseudo code for the A2C

algorithm, Wang et al. (2018)
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A.4 Pseudo Code DDPG

Figure A.2: Pseudo code for the DDPG

algorithm, Chollet et al. (2015)
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