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Abstract

In this work, we examine a novel method for the determination of proton beam waist loca-
tions using beam position monitors. Based on the lattice of the final transport line section
of the European Spallation Source linac, a simplified version of the beam line composed
of quadrupole magnets and correctors is constructed in Python using a matrix formalism.
With a known set of Courant-Snyder parameters at the final position of the beam line
and a known beam emittance, a set of final beam centroid positions are calculated lying
over the 1σ phase space ellipse at that point. Applying the initial condition that all beam
centroids are initially placed at the origin, the necessary corrector strength values required
to transport the centroids to their final positions along the ellipse are then calculated by
solving a coupled system of equations. Beam centroid trajectories are then plotted along
with the beam envelope. Space charge effects are shown to be negligible for this work,
meaning that beam centroid waist positions will coincide with envelope waist positions.
Two BPMs position readings are then used to calculate the waist location. The method
presented in this work reliably determines waist locations with the most significant devi-
ations from benchmark values being 0.03m for the design lattice and 0.14m for a lattice
featuring significant quadrupole errors.
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1. Introduction

The European Spallation Source (ESS) is a research facility located in Lund, Sweden, con-
sisting of a 600m long linear accelerator, or linac, a rotating tungsten core, and a series
of experimental stations. Protons are accelerated to speeds of almost 95% the speed of
light before colliding with the tungsten target, generating large amounts of high-energy
neutrons via a process known as spallation. The neutrons are then guided into various
other sections of the facility, each containing its own set of optics and diagnostics. There,
scientists will be able to use the neutrons to study issues ranging from environmental
science and archaeology to the physics of complex materials.

The linac itself consists of several sections, illustrated below in Fig. 1. Protons are gen-
erated at an ion source with an energy of 75 keV and are transported along the Low
Energy Beam Transport (LEBT) to the first acceleration station, the Radio Frequency
Quadrupole (RFQ). In the RFQ the proton beam is accelerated to 3.6MeV and bunched.
The beam then continues along the Medium Energy Beam Transport (MEBT) which con-
tains enough diagnostics to match it to the next accelerating structure, the Drift Tube
Linac (DTL). The DTL is a 39m long accelerating structure that bring the proton beam
energy up to 90MeV. The end of the DTL also marks the end of the normal conducting
linac, and from this point on-wards, accelerating structures are of the superconducting
(SC) type, operating at 2K. The first superconducting structures are the Spokes which
accelerate the beam to 216MeV, followed by the Medium-β section, further accelerating
the protons to 570MeV. The final accelerating structure, the High-β section, brings the
beam to its nominal energy of 2GeV. At the end of the linac, the High-Energy Beam
Transport (HEBT) guides the proton beam to the dogleg, and also acts as a contingency
space for possible upgrades. The dogleg is a vertical chicane, which brings the proton
beam up to the target level. The Accelerator to Target (A2T) is the final transport line,
focusing and preparing the beam to pass through an aperture within a separating wall
before it collides with the tungsten target.

Figure 1: Schematic of the ESS Linac [3]

This work treats the last and final section, the A2T, which is a transfer line. No acceler-
ation occurs in the A2T, and therefore protons enter this section at their nominal energy
of 2GeV. The main diagnostics available at the end of the A2T are two Beam Position
Monitor (BPM)s, the first of which is 3m before the separating wall and the second which
is located exactly at the wall position. Further details are given in Section 2.2 Fig. 4. The
separating wall imposes an aperture restriction, where the beam must form a waist at that
position. An example of waist formation is shown in Fig. 2. The longitudinal position of
the waist depends directly on the quadrupole magnet settings in the A2T, and as such, if
there are any errors in the beam line, the waist position will shift. The goal of this work
is to investigate the viability of determining the beam waist longitudinal position using
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only the two final BPMs.

Figure 2: Longitudinal trajectories (in black) and beam envelope (in red) along the A2T lattice.

The following chapter of this work will explore the chosen coordinate system, the A2T
and then proceed with the necessary transverse beam dynamics and equations of motion
required for modelling the A2T. It then proceeds with the matrix formalism of the A2T
elements and the beam line. The third chapter contains the methods and programs used
in order to perform the simulations. The fourth chapter includes the main results of this
work. The fifth, and final, chapter is dedicated to a discussion of the results and their
implications, as well as the future outlook.
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2. Transverse Beam Dynamics on a Transfer Line

This section will first examine the A2T and present a short derivation of the transverse
beam dynamics equations relevant for this work. The derivation for the matrix represen-
tation of the quadrupole and correcter magnets will be presented, along with the matrix
representation and construction of the complete beam line.

2.1. Coordinate System
Our choice of coordinate system defines displacements and angles on the transverse posi-
tions with respect to a design trajectory. Let the longitudinal displacement along the de-
sign trajectory be denoted by s. The transverse phase space coordinates (u, u′), u ∈ {x, y}
are used, where u′ is defined as:

u′ ≡ du

dt

dt

ds
=
du

ds
=
vu
vs

=
pu
ps
≈ pu

p
,

u′′ ≡ d2u

ds2
.

(1)

The coordinate u′ is the ratio of transverse to longitudinal momenta, and can be inter-
preted as the angle between the particle velocity vector and the s coordinate unit vector.
u′′ is then simply its derivative with respect to s. The substitution of the independent
variable t → s is warranted as the amplitude u and angle u′ of a particle trajectory are
critical, and therefore the derivatives of u with respect to the reference trajectory s are
desired. The subsequent simplifications are justified by the application of the paraxial ap-
proximation [8], wherein the transverse momenta px and py are assumed to be relatively
small in comparison to pz, and so the total momentum p can be approximated by:

p =
√
p2x + p2y + p2s ≈

√
p2s ≈ ps . (2)

This approximation is well suited for high-energy beams as beam divergence is relatively
small [6].

Figure 3: Coordinate system diagram including a test particle trajectory.

In summary, a coordinate system of (u, u′, s) is chosen, where u, u′ are the displacement
and angular divergence, respectively, from a design trajectory, with the coordinate s
representing the longitudinal displacement along the beam line. An illustration of the
chosen coordinate system is shown in Fig. 3.
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2.2. A closer Look at the ESS A2T Lattice
The A2T is the final section of the ESS linac, before the proton beam collides with the
target. The purpose of this section of the linac is to successfully guide the proton beam
through an aperture in the wall separating the accelerator from the target. It achieves
this by using a set of 6 quadrupole magnets for beam focusing, and 4 corrector magnets
to ensure a proper beam centroid trajectory. Also included is a set of 6 BPMs and 8
raster magnets. The raster system is used to increase the beam footprint on the target
and reduce the peak energy deposition on the target outer shell. For the purposes of this
thesis, only the quadrupole magnets, correctors and the final two BPMs will be considered.

Figure 4: Diagram of the A2T, including the BPM positions, horizontal and vertically focusing
quadrupole magnets (QH and QV, respectively), correctors (COR), the raster system (RST), and the

separating wall aperture location.

In accelerator beam lines, quadrupole magnets control beam sizes by focusing the beam
along the transverse planes. The quadrupoles are situated within the linac such that
the design trajectory passes through their centers. Along this line, by construction, the
quadrupole field is zero. A particle entering the quadrupole along the design trajectory
will exit the quadrupole with its trajectory unaltered. A particle with some transverse
offset with respect to the magnetic axis will undergo a deflection which is linearly pro-
portional to the offset direction and amplitude [10]. The quadrupole acts as a magnetic
focusing lens.

In this work, the magnetic fields are assumed to be dependent on the longitudinal displace-
ment s such that the fields assume a constant value within the length of the magnets, while
assuming a value of 0 in magnet free sections. This results in a piece-wise step-function
distribution for the magnetic fields. In reality, fringe fields exist towards the ends of the
fields, forming transitional regions between the field and field-free regions. The result of
treating the fields as step-functions is referred to as the hard-edge model, and greatly
simplifies the mathematical treatment of magnetic elements. [9].
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Figure 5: Perspective view of the quadrupole (left) and corrector (right) element designs.

The structure of the quadrupole and corrector magnets are presented above in Fig. 5.
A result from Maxwell’s equations [9] shows that quadrupole magnets focus only in one
plane. Consider a positively charged particle moving through a quadrupole with some
horizontal offset x > 0. It will experience a deflection toward the center, which is the
focusing effect. A positively charged particle moving through that same quadrupole with
a vertical offset y > 0 will instead be deflected upward, increasing the vertical offset and
leading to defocusing. The geometry displayed in Fig. 5 shows an upright quadrupole,
and rotating the quadrupole by 90◦ results in a reversal of the quadrupole polarity, and
thereby swapping the focusing and defocusing planes [9].

The A2T is also equipped with horizontal and vertical correctors. Corrects are elements
which deliver an angular kick du′ to a charged particle without altering the transverse
position u. The kick is applied such that the direction of the kick is perpendicular to both
the particle trajectory and the field lines. Correctors generate dipole fields, with a horizon-
tal corrector generating a field in the y direction and a vertical correcter in the x direction.

A Beam Position Monitor (BPM)s usually consists of a number of stacked capacitor plates.
When a charged particle beam passes through a BPM, a voltage is induced in the element,
and the signal is digitized. The transverse position u can then be measured.

2.3. Single-Particle Dynamics
Consider a charged particle moving in the s-direction with transverse coordinates (x, y),
a velocity v and charge q. The force experienced by the particle when in the presence of
an electromagnetic field is given by the Lorentz force equation:

dp
dt

= q (E + v×B) (3)

where E and B are the external electric and magnetic fields, respectively. For high energy
accelerators, the electric field component E in Eq. (3) is a result of accelerating structures.
The A2T features no accelerating structures nor any elements acting on the longitudinal
coordinate. This allows for the immediate setting of E to 0, and for taking vs to be
constant:

dp
dt

= q (v×B) . (4)

Performing the cross product in Eq. (4) yields:
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dpx
dt

= q(vyBs − vsBy),
dpy
dt

= q(vsBx − vxBs) . (5)

In most high energy sections of hadron linacs, and other high energy machines, it is
uncommon to have elements which generate magnetic fields with Bs components. At the
ESS, solenoids are used to focus the beam in the low energy sections of the linac, where
they are still effective. For the high energy sections, such as the A2T, quadrupoles are
more efficient for both focusing and transport [3]. Setting Bs = 0 and Taylor expanding
Bx and By along s for small displacements in the transverse coordinates, while keeping
only the linear terms:

Bx = B0 +
∂Bx

∂y
y +

∂Bx

∂x
x+

�
�
�
�1

2

∂B

∂y
y2...

By = B0 +
∂By

∂x
x+

∂By

∂y
y +

�
�

�
��1

2

∂B

∂x
x2...

(6)

Assuming a planar accelerator with no dipole terms, we set B0 = 0, and assuming in-

dependent and uncoupled motion in the transverse planes, we set
∂Bx

∂x
=
∂By

∂y
= 0 by

construction.
Plugging Eqs. (1) and (6) into Eq. (4) yields:

x′′ = −q
p
By = −

q

p

(
∂By

∂x
x

)
x′′ +

q

p

∂By

∂x
x = 0, (7)

and for the vertical plane

y′′ − q

p

∂By

∂x
x = 0 . (8)

From the Maxwell equation in the absence of current density, ∇ ×B = 0, we have that
∂By

∂x
=

∂Bx

∂y
= G. Setting K =

q

p
G, we obtain the final equations of motion in both

planes, which are known as Hill’s equations [4]:

x′′ +Kx = 0,

y′′ −Ky = 0 .
(9)

2.4. Matrix Formalism
The focusing parameter K is a constant with a good approximation inside a quadrupole
magnet and 0 everywhere else [4]. The transverse equations of motion derived above are
second-order linear differential equations and their solutions can therefore be written in
matrix form: [

u
u′

]
=

(
a b
c d

)[
u0
u′0

]
(10)
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where (u0, u′0) are the initial position and angular divergence, respectively. The 2 × 2
matrix is designated the transfer matrix M. The matrix formalism therefore allows us,
given an initial condition, to obtain the particle amplitude and angular divergence at any
point in the transfer line by calculating the product of the matrices of the elements in
between two given points of interest. This transformation is then applied to the initial
coordinates.

2.4.1. Quadrupole Transfer Map
Eq. (9) is the differential equation of a harmonic oscillator with a spring constant K. Using
the Ansatz:

x(s) = α1 cos (ωs) + α2 sin (ωs) (11)

Then, the first two derivatives are given by:

x′(s) = −α1ω sin (ωs) + α2ω cos (ωs)

x′′(s) = −α1ω
2 cos (ωs)− α2ω

2 sin (ωs)

⇒ x′′(s) = −ω2x(s) .

(12)

A general solution for ω =
√
K is:[

x
x′

]
=

[
α1 cos (

√
Ks) α2 sin (

√
Ks)

−α1

√
K sin (

√
Ks) α2

√
K cos (

√
Ks)

] [
x0
x′0

]
. (13)

Applying the boundary conditions:

s = 0 =⇒

{
x(0) = x0

x′(0) = x′0
→

{
x(0) = α1x0

x′(0) = α2

√
Kx′0

→ α1 = 1, α2 =
1√
K

. (14)

The final solution is then:

MQ =

 cos (
√
KL)

1√
K

sin (
√
KL)

−
√
K sin (

√
KL) cos (

√
KL)

 . (15)

The solution Eq. (15) is valid for K > 0, so by a similar method, we seek an additional
solution for the case K < 0 of the form:

x(s) = α1 coshωs+ α2 sinhωs, ω =
√
|K| . (16)

Applying the same initial conditions, the final solution is then:

MQ =

 cosh (
√
|K|L) 1√

|K|
sinh (

√
|K|L)

−
√
|K| sinh (

√
|K|L) cosh (

√
|K|L)

 . (17)

Due to the geometry of the quadrupole magnetic field, as discussed in Sect. 2.2, a quadrupole
focusing along one transverse plane will automatically result in defocusing along the or-
thogonal transverse plane. This is reflected in the sign change ofK, whereK < 0 indicates
a vertically focusing quadrupole and K > 0 a horizontally focusing quadrupole.
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2.4.2. Drift Space Transfer Map
Drift sections contain no external fields, so obtaining the drift section transfer matrix is
straight forward. Taking the limit of Eq. (15) as K → 0 yields the transfer matrix for a
drift section:

MD =

(
1 L
0 1

)
. (18)

The action of a drift space on a particle’s coordinates is given by:(
1 L
0 1

)(
u0
u′0

)
=

(
u0 + u′0L

u′0

)
. (19)

2.4.3. Corrector Transfer Map
The kick strengths are given by:

dx′ = −q
p
BL, dy′ =

q

p
BL . (20)

Where q is the particle charge, p the momentum, B the magnetic gradient and L the
element length. Correctors are not typically represented by transfer matrices, however, a
mathematical "trick" will be used where we expand the dimensions of the transfer matrix
from a 2× 2 into a 3× 3 matrix, and include the corrector contribution given in Eq. (20)
as element r23 and write

MC =

 1 0 0
0 1 du′

0 0 1

 . (21)

The corrector transfer matrixM has the following action on the coordinates of a particle
propagating through it: 1 0 0

0 1 du′

0 0 1

 u0
u′0
1

 =

 u0
u′0 + du′

1

 . (22)

Since the corrector transfer matrix has a shape of 3× 3, matrix algebra demands that we
expand the other element’s transfer matrices into 3×3 shapes. We then add an additional
row and column consisting of 0 entries in the off-diagonals and 1 in the third diagonal
entry. For example, the newly shaped drift section transfer matrix is given by:

MD =

 1 L 0
0 1 0
0 0 1

 . (23)

2.4.4. Transfer Line Lattice
Through the use of the transfer matrices derived above, analysing the path of a charged
particle through a beam line is straight forward. Given an arbitrary number of drift spaces,
quadrupole magnets and correctors, we can represent a given sequence of elements by a
series of transformation matricesMi. The beam line lattice is then simply equal to the
product of the individual element transfer matrices.

For example, the action on a particle’s coordinates propagating through the following
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sequence; FODO, where F denotes a focusing quadrupole, O a drift space, and D a defo-
cusing quadrupole, is given by

Mtotal =MO · MD · MO · MF . (24)

From Eq. (10), the particle coordinates are then transformed by the composite transfer
mapMtotal (

u(s)
u′(s)

)
=Mtot(s|s0)

(
u0(s)
u′0(s)

)
. (25)

where s0 is the initial position at the focusing quadrupole, and s the position at the final
drift space. The apparent reversal of the transfer map order is a necessary consequence
of elementary matrix algebra.

The derived transfer maps for the three beam line elements feature no cross terms. This
implies that motion in the transverse planes is effectively uncoupled and independent. This
allows for the independent treatment of each plane, with the caveat that the normalised
quadrupole gradientsK must flip signsK → −K to reflect the change in focusing direction
when changing transverse plane.

2.5. Beam Emittance and the Twiss Parameters
Propagating particles contained in the beam, which have slightly different initial condi-
tions, through a transfer line lattice will result in a number of trajectories over which it is
possible to define a beam envelope, see Fig 2. The envelope defines the beam distribution
along the longitudinal direction on the transfer line and a good approximation for it in
phase space is an ellipse, the area of which is given by ε. Given that we consider the
transverse planes of motion independently, the parameter ε will be denoted εx and εy for
the horizontal and vertical planes respectively.

The general equation for an ellipse centered at the origin in the horizontal (x, x′) plane
can be written as:

γx2 + 2αxx′ + βx′2 = A2 (26)

where the parameters γ, α and β are known as the Courant-Snyder parameters and to-
gether they determine the orientation of the phase space ellipse, as shown in Fig. 6.
The parameter β is a function obtained from Eq. (9) when assuming a solution of the form

x(s) = A
√
β(s) cos(φ(s)), (27)

while the parameters α and γ are functions of β:

α ≡ −1

2

dβ

ds
, γ ≡ 1 + α2

β
. (28)

At this point, we separate single- and multiple-particle dynamics. A describes the am-
plitude dependence on initial conditions for a single particle. A is constant along the
transfer line but each individual particle has a different value for it. The emittance ε is
related to A by ε = A2.
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Figure 6: Horizontal phase-space ellipse described by Eq. (26) including relations for several important
points along the ellipse.

For a collection of particles at a position s along the beam line, it is possible to define
an area which will enclose most of the particles. For example, 68.2% or 1σ assuming a
Gaussian distribution. This area carries the special significance of the beam emittance,
and is equal to the area enclosed by the phase-space ellipse ε. The beam emittance is a
constant of motion.
The function β(s) describes the amplitude dependence of the particle motion on the lattice,
and it is has a direct dependence on the quadrupole strengths. Its value will therefore
vary along the transfer line.

2.6. Space Charge
Particle motion in the linac depends not only on applied external fields, but also on
fields induced by the Coulomb interactions of charged particles within the beam. As the
beam current increases, these Coulomb interactions become increasingly important. The
charged particles produce mutually repulsive electric fields and also attractive magnetic
fields. The resulting electric and magnetic fields generate Lorentz forces which act in
opposition to the net focusing given by the lattice [1]. Consider a uniform, cylindrical
beam with N particles per unit length, and with a radius r. Charged particles within
(a < r) the beam will experience a net space charge force given by:

F (a) =
q2N

2πε0γ2
a

r2
. (29)

The repulsion force present in high density beams is called space charge. Space charge is
an important effect for low energy beams. The forces experienced by charged particles due
to space charge Lorentz forces are inversely proportional to the Lorentz factor squared,
shown in Eq. (29). For ultra-relativistic beams, the Lorentz factor is large (γ � 1), and
space charge effects can then be considered negligible [1, 7].
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3. Software and Methods

This section briefly summarises the software used and the methods implemented to cal-
culate the required corrector strengths and the beam waist position.

3.1. Python
A Python program was written in order to simulate the beam centroid trajectories through
a simplified model of the ESS A2T beam line. Given the Twiss parameters at the aperture
located at the end of the A2T and the emittance, the program paints the phase space
ellipses in the (x, x′) and (y, y′) planes and plots a number of points along them. These
points are then back-propagated through the beam line to the transverse position (0, 0)
at the beginning of the beam line. The kick values for the correctors in the beam line are
calculated, as explained in the section 3.3, and finally the particles are then sent through
the beam line with the calculated corrector strengths. These trajectories are then plotted.

The Python code in its entirety is found in the Appendices.

3.2. OpenXAL
OpenXAL [5] is an open-source development environment used for creating accelerator
physics applications and scripts [2], which is used in the control room at the ESS in order
to develop various applications. Simulations performed in OpenXAL include additional
effects such as space charge and will act as benchmarks against the simulation results
obtained from the Python code.

3.3. Corrector Solving Method
In order to place the beam centroid over the calculated ellipses on the (x, x′) and (y, y′)
planes at the wall the beam has to be displaced along the A2T. The corrector strengths
used to kick the beam causing those displacements need to be pre-calculated. In this
section the general method used to find the strength values is outlined.

From Eq. (26) and a known set of Courant-Snyder parameters, a phase-space plot is gen-
erated at the end of the beam line. From this, a set of i equidistant points (ui, u′i) which
lie along the ellipse given by Eq. (26) is obtained. These points are then back-propagated
through the reversed beam line R∗T to the origin:

R∗T (STk)

(
ui
u′i

)
=

(
u0
u′0

)
=

(
0
0

)
(30)

where (ui, u
′
i) and (u0, u

′
0) are the final and initial particle positions respectively in each

transverse plane. From this relation, we obtain a system of equations of the form:{
aST1 + bST2 + cST3 + dST4 = 0

eST1 + fST2 + gST3 + hST4 = 0
(31)

The corrector strength values STi are calculated using a linear equation system solver
module in Python. As there are 4 distinct correctors and only 2 equations, the system
is under-determined and no independent solution exists. To alleviate this, a variety of
couplings for the correctors are simulated. Coupling here entails, for example, that the
first and third correctors have some multiple of the same strength value, as do the second
and fourth correctors, respectively. The coupling scheme that minimises the maximum
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corrector kick strength is considered desirable.

As an example, we consider the case ST2 = αST1, ST4 = βST3. We then solve:{
(a+ bα)ST1 + (c+ dβ)ST3 = 0

(e+ fα)ST1 + (g + hβ)ST3 = 0 .
(32)

For each initial condition i we obtain a solution for Eq. (32), which is in turn plugged into
the beam line and propagated. The trajectories of these particles are then plotted.

3.4. Trajectory Waist Position Determination
The collection of centroid trajectories created with the corrector strengths calculated in
Sect. 3.3 bear little resemblance to the envelope at the start of the A2T (see Sect. 4.3 ),
but those correctors will force them to match the envelope at the separating wall. Since
there are no external fields between the last quadrupole and the wall, and assuming space
charge effects are negligible, the trajectories and the envelope behaviour should also match
in that entire region. Therefore, it should be possible to estimate the waist position of the
trajectory envelope, which in turn should coincide with the waist position of the beam
envelope, using the BPMs located between the last quadrupole and the wall in the A2T.

The final two BPMs are located at the positions 19.6m and 22.6m, respectively. For each
beam centroid trajectory, the transverse positions u are measured at each BPM. A line
is then traced between them. A straight line is a good fit as these positions are located
after the final quad, and are therefore propagating through a drift space. For each point s
between the two BPMs, the maximum position value u among all trajectories is measured
and plotted, forming an envelope curve. The minimum of this curve is the waist position.

Figure 7: Illustrative example of waist reconstruction from BPM position measurements. The blue lines
indicate BPM positions. The various coloured lines are linear fits between measured positions at the

BPMs. The red line indicates the maximum position values u for each point along s.
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4. Results

The first part of this section deals with space charge effects, and their impact on this
thesis’ results, before moving on to the main results of the project; determination of
corrector strength values the beam waist location. Finally, lattice errors are considered
and examined.

4.1. Effects of Space Charge
In this work, beam centroids are plotted in order to infer beam waist positions, which
are beam envelope properties. Centroids do not experience space charge effects, while the
beam envelope is indeed affected by space charge. This could then potentially lead to
mismatched beam waist positions for the envelope and centroid trajectories.

A qualitative analysis of the ratio between the quadrupole magnet force and the force
generated by space charge effects is therefore necessary, as the beam in the A2T can not
be considered ultra-relativistic (γ ≈ 3).

From Eq. (29), assuming a beam of radius r, let a = x, x > r, and for the space charge
force we obtain:

FSC =
q2N

2πε0γ2
x

r2
. (33)

The strength of the quadrupole is given by Eq. (3). Performing the cross product yields:

Fquad = qvs

(
∂Bx

∂y
y − ∂By

∂x
x

)
. (34)

Having defined G = ∂Bx

∂y
= ∂By

∂x
and since the particle is at a = x =⇒ y = 0, then we

have:

Fquad = −qvsGx = −qβcGx . (35)

Assuming an average gradient of G ≈ 1, an average beam size of r ≈ 2mm, a beam charge
of 2 · 10−8 C/m, a normalised velocity β = 0.94 and a Lorentz factor γ ≈ 3, taking the
quotient of the two forces yields:∣∣∣∣ FSC

Fquad

∣∣∣∣ = qN

2πε0βcγ2G

1

r2
≈ 10−2 . (36)

Space charge effects can therefore safely be neglected. This is further strengthened by
Fig. 8 below, which shows an OpenXAL[5] simulation where the evolution of the 1σ beam
envelope is plotted in both transverse planes for zero current and at a nominal 62.5mA
current. The first case implies no space charge effects, and is practically indistinguishable
from the nominal current plot. This confirms our decision to neglect space charge.
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Figure 8: Benchmark simulation demonstrating the 1σ envelope evolution through the beam line in
both the x and y plane, with and without space charge effects represented by full (red) and zero (black)

current envelope lines, respectively.

4.2. Courant-Snyder Parameters and Beam Emittance
The given Courant-Snyder parameters, as well as the assumed beam emittance, which are
used throughout the simulations presented in the following section, are shown below in
Table 1:

Table 1: Courant-Snyder parameter values at the aperture position and beam emittance used to plot
phase space ellipses in Fig. (9)

Parameters Horizontal Vertical

α -0.0165 -0.0222
β [m] 0.2640 2.115

ε [mm mrad] 1.0798× 10−7 1.2302× 10−7

Plugging these values into Eq. (26) produces the following phase space plots at wall aper-
ture (where the last BPM is located):

Figure 9: Phase space ellipses defined by the Courant-Snyder parameters at the aperture.

For the calculation of the correctors strengths show in the next session, 50 equidistant
points lying along each of these ellipses are then back propagated through the beam line to
the beginning of the A2T with the initial condition (u, u′) = (0, 0) for the beam centroid.
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4.3. Corrector Strength Simulations
There are 4 correctors in the A2T, and in this thesis they are modeled as thin lenses.
In physical accelerators, correctors have a non-zero length, and the angular kick du′ will
be applied along the length of the element. This model instead assumes that the full
angular kick du′ is applied at the center of the corrector. This allows for a much simpler
implementation of the correctors.

A vital part of this project was to demonstrate that the corrector strengths can be accu-
rately calculated, within a margin of error, and that these corrector strengths will yield
correct trajectories which coincide at the waist. The calculated strengths must also lie
beneath the limit of 1.08mrad due to power supply constraints.

For each transverse plane, the correctors were coupled according to three distinct schemes
designated cases 1 through 3. The schemes are presented below in Table 2 and the results
for each coupling scheme are plotted in Fig. 10. They show that, regardless of the chosen
coupling scheme, the calculated strengths are consistently below the limit of 1.08mrad
for both transverse planes. The cases featuring the lowest maximum corrector strengths
are considered the most desirable, and that is case 2 for the (x, x′) plane, and case 3 for
the (y, y′) plane. These two cases are then used in the following simulation sections.

Table 2: Corrector coupling schemes of each case along with the associated max correcter strength value.

Case 1st Coupling 2nd Coupling Max. Corrector Strength [mrad]
(x, x′) (y, y′)

1 ST4 : ST1 ST2 : ST3 0.131 0.266
2 ST4 : ST3 ST2 : ST1 0.056 0.457
3 ST4 : ST2 ST1 : ST3 0.076 0.184

Figure 10: Comparison of the maximum corrector strengths of the various coupling schemes in each
plane. The red dotted line represents the physical limit for the maximum corrector strength value.

4.4. Trajectory Simulation and Waist Position Determination
At the position s = 22.6m, the beam passes through the aperture wall separating the
A2T from the target. The separating wall represents an aperture restriction, and as such,
the proton beam has a waist at that position by design.
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The envelope of the beam is proportional to the beam size at each location in the beam
line according to the relation σ =

√
βε, as shown Fig. 6, and is nothing more than a

measurement of the spread of a collection of many single-particle trajectories. A single
centroid trajectory evolves as a single-particle following Eq. (27), and thus a collection of
centroid trajectories, given that the boundaries conditions are correctly set, should emu-
late the beam envelope and present a waist at the same position s.

It was shown in Sect. 4.3 that space charge effects are negligible for the beam in the
A2T. Using the method detailed in Sect. 3.4, we determine the trajectory envelope waist
position between the last two BPMs in the A2T. We expect this position to coincide with
the beam envelope waist position. This is demonstrated in the following trajectory plots
shown in Fig. 11 for the design lattice settings, where the beam forms a waist at the final
BPM position. The coincident beam waists in Fig. 11 demonstrate that the assumptions
and approximations used in this work are valid and correct.

Figure 11: Trajectory plots for the select correcter couplings from section 4.3 showing coincident waist
formation of beam centroid trajectories and beam envelope.

4.5. Lattice Error Study
This section examines the effect of errors in the transfer line lattice. Two different error
sources are considered. The first method is by significantly altering the focusing strength
of one of the last quads in the beam line, causing a visible shift in the waist position. The
second method is to introduce small amounts of variation in each individual quadrupole
magnet strength in the A2T. The effects on the trajectories are then analysed.

The results from the first method are plotted below in Fig. 12 and 13. The location of the
beam waist position is determined entirely by the β function, and by extension, the beam
line lattice. The ability to identify the beam waist position in the presence of significant
error in the beam line lattice is an important result as that implies the method is adequate
for real beam line lattices, and not just for ideal cases.

In Fig. 12, a 5% error is introduced to the normalized gradient K of the sixth quadrupole,
and this results in a longitudinal shift of the waist from s = 22.60m to s = 22.03m in
the (x, x′) plane and s = 22.74m in the (y, y′) plane. The opposing directions of these
two shifts is a consequence of the polarity reversal in the quadrupole gradients between
the transverse planes. A stronger final quadrupole leads to the formation of a premature
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Figure 12: Longitudinal shifting of waist position due to a 5% error in the sixth and final quadrupole
magnet strength.

waist while a weaker final quadrupole causes a delayed waist to form.

A similar situation is seen in Fig. 13, where a 5% error has been induced in the fifth
quadrupole. In the (x, x′) plane, the waist is shifted to s = 22.37m. In the (y, y′) plane,
the waist is shifted to s = 19.79m. The vertical plane in Fig. 13 shows the largest deviation
in waist position estimation when compared to the envelope values. This is possibly due
to the fact that the waist in this case is very close to the last quadrupole position, thus
pushing our initial assumptions to the limit.

Figure 13: Longitudinal shifting of waist position due to a 5% error in the fifth quadrupole magnet
strength.

The second method for introducing errors to the beam line lattice is by implementing
random noise in the quadrupole magnets throughout the beam line. The error values are
generated by a standard implementation of Gaussian noise, where a σ value is chosen and
then multiplied by a random number between 0 and 1, and then by a random choice of 1
or -1.

The particle trajectories are plotted along with the envelope of the design beam line lattice
as a comparison. Amplitude variation on the gradients of of 5% and 10%, respectively,
are plotted in Fig. 15 below.
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Figure 14: Longitudinal shift of waist position in the (x, x′) plane due to a 5% (left) and 10% (right)
noise effect in all six quadrupole magnet strengths.

Figure 15: Longitudinal shift of waist position in the (y, y′) plane due to a 5% (left) and 10% (right)
noise effect in all six quadrupole magnet strengths.

A variation of 5% resulted in minor shifts of the waist position from s = 22.6m to 22.33m
in the horizontal plane and to 22.70m in the vertical. For the 10% variation simulation,
waist positions shifted to 22.24m in the horizontal plane and to 20.46m in the vertical.
The directions of the observed shifts depend on the random choice of -1 or 1, and so
are not indicative of successive iterations. Only the magnitude of the observed shift is
therefore relevant.

Table 3 provides a summary of the beam waist positions obtained both from the waist
determination method and from the benchmark simulations for Figs. 11, 12 and 13. It
should be noted that the plotted benchmark envelopes for the variational lattice are those
of the design lattice simply to act as a visual guide. Table 3 therefore only includes the
waist determination method beam waist positions.
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Table 3: Beam waist positions along with their beam envelope benchmark values.

Case
Waist longitudinal positions [m]

from Trajectory from Envelope
Horizontal Vertical Horizontal Vertical

Design Lattice 22.58 22.47 22.61 22.47
5% error in 5th quad. 22.37 19.79 22.42 19.65
5% error in 6th quad 22.03 22.74 22.08 22.71
5% error in all quads 22.33 22.70 - -
10% error in all quads 22.24 20.46 - -
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5. Conclusions and Outlook

The goal of this thesis was to establish the viability of determining the proton beam waist
position using a set of known Courant-Snyder parameters at the aperture, a known beam
emittance ε and the main diagnostic tools available at the end of the A2T, those being
two BPMs. A simplified version of the A2T beam line was constructed in Python and
several simulations were performed.

The corrector strengths calculated in order to create the desired trajectories, were far be-
low the the maximum value limit, regardless of the case, and produced good results. The
coupling method used also allows only a subset of possible solutions and a natural exten-
sion would be to allows different corrector combinations or use a more advance method
to solve the set of equations for the correctors.

The results from the waist determination method detailed in section 3.4 were compared to
envelope waist positions obtained from benchmark OpenXAL[5] simulations. The method
determined waist positions in the horizontal plane with deviations on the order of a few
centimeters.
The effect of error propagation in the quadrupole magnets was examined using two distinct
methods. For the first method, introducing significant errors in the final two quadrupoles
resulted in longitudinally shifted waist formations. This is an unlikely scenario as a 5%
error in the normalized gradient of a critical quadrupole magnet would be immediately
noticeable during commissioning. It does however serve as an indicator of the viability of
the method in the presence of significant errors.

When variations were introduced in the magnetic gradient of all six quadrupole magnets,
similar results to the previous simulations were seen. A 5% variation produced trajectories
which were almost identical to the design lattice trajectories. A 10% variation produced
significantly larger waist position shifts as expected. This indicates that beam waist po-
sitions are still able to be reliably determined using the novel method when significant
fluctuations in the magnetic element’s strengths are present in the lattice.

This work could be further extended by extending the error study to include; the mea-
surement errors of the BPMs, errors in correctors kick applications and also in the beam’s
initial position. Another effect that is worth studying is determining the minimum shift
in waist position that we are able to measure.

We have examined the viability of using BPMs in order to measure beam parameters other
than position. We have demonstrated that the method accurately and reliably locates the
proton beam waist positions in both ideal beam lines and in beam lines featuring signif-
icant quadrupole errors. This means that facilities such as the ESS can further optimise
their usage of BPMs as diagnostic tools.
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Appendices
A. Python code

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import sympy
4 import random
5

6 ### Courant -Snyder Parameters ###
7

8 ### x - x’ Plane ###
9 #alpha = -0.0165

10 #beta = 0.2640
11

12 ### y - y’ Plane ###
13 alpha = -0.0222
14 beta = 2.115
15

16 gamma = (1 + alpha **2)/beta
17

18 epsilon_x = (0.3194*10**( -6))/2.958
19 epsilon_y = (0.3639*10**( -6))/2.958
20

21 ########## Element Transfer Maps ##########
22 ### Drift Section ###
23 def driftscn(L):
24 return [(sympy.Matrix ([[1, L, 0], [0, 1, 0], [0, 0, 1]]), L)]
25

26 ##### Quadrupole Magnets #####
27 def Quad(l, k):
28 if k >= 0:
29 M = [(sympy.Matrix ([[np.cos(np.sqrt(k)*l), np.sin(np.sqrt(k)*l)/

np.sqrt(k), 0],
30 [-np.sqrt(k)*np.sin(np.sqrt(k)*l), np.cos(np.sqrt(k)*l),

0], [0, 0 , 1]]),l)]
31 elif k < 0:
32 M = [(sympy.Matrix ([[np.cosh(np.sqrt(abs(k))*l), np.sinh(np.sqrt

(abs(k))*l)/np.sqrt(abs(k)), 0],
33 [np.sqrt(abs(k))*np.sinh(np.sqrt(abs(k))*l), np.cosh(np.

sqrt(abs(k))*l), 0], [0, 0, 1]]),l)]
34 return M
35

36 ### Corrector Magnets ###
37 def steerer(dx):
38 return [(sympy.Matrix ([[1, 0, 0], [0, 1, dx], [0, 0, 1]]), 0)]
39

40 ### One -Turn Function
41 def oneturn(beamline):
42 M = np.eye (3)
43 l = 0
44 for i in beamline:
45 M=i[0] @ M
46 l += i[1]
47 return [(M, l)]
48

49 ### Trajectory Plotting Function ###
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50 def Trajectory(x, xp , beamline ,long_pos , waist):
51 L_2 = 1
52 particle = [(np.array ([[x], [xp], [1]]) , 0)]
53 beamline = beamline + 5* driftscn (1)
54 for i in beamline:
55 particle.append ((i[0] @ particle [-1][0], particle [ -1][1] + i[1])

)
56 plt.plot ([i[1] for i in particle], [i[0][0]*1000 for i in particle

], color=’black ’, linewidth =0.75)#, label=’Trajectories ’ if i[1] == 0
else "")

57 plt.grid (True)
58 plt.xlabel(’s [m]’)
59 plt.ylabel(’y [mm]’)
60 plt.ylim(-4, 4)
61 plt.xlim(0, 27.5)
62 BPM93 = float(particle [100][0][0])
63 BPM94 = float(particle [110][0][0])
64 #waist in X
65 z = np.polyfit ([19.79 ,22.6] ,[ BPM93 , BPM94],1)
66 p=np.poly1d(z)
67 for j in range(len(long_pos)):
68 if waist[j]<p(long_pos[j]):
69 waist[j]=p(long_pos[j])
70 return waist
71

72 def beamline_gen(ST1 , ST2 , ST3 , ST4 , x, xp, k_list):
73 xf = np.array ([[x], [xp], [1]])
74 ##### Parameter choices #####
75 L = 1
76 LQ = 0.8
77 beamline = steerer(ST1) + 10* driftscn ((0.59*L)/10) + Quad(LQ , k_list

[0]) + 10* driftscn ((0.5*L)/10) + Quad(LQ, k_list [1]) + 10* driftscn
((2.5*L)/10) + Quad(LQ, k_list [2]) + 10* driftscn ((0.5*L)/10) + Quad(
LQ , k_list [3]) + 10* driftscn ((0.55*L)/10) + steerer(ST2) + 10*
driftscn ((5.16*L)/10) + steerer(ST3) + 10* driftscn ((4.501*L)/10) +
Quad(LQ, k_list [4]) + 10* driftscn ((0.415*L)/10) + steerer(ST4) + 10*
driftscn ((0.275*L)/10) + Quad(LQ, k_list [5]) + 10* driftscn ((2.82*L)
/10)

78 r_beamline = beamline [::-1]
79 OTM = oneturn(r_beamline)
80 M = OTM [0][0] @ xf
81 return M
82

83 ########### Steerer solving #############
84 def circle_plot(alpha , beta , epsilon , n):
85 r = np.sqrt(epsilon*beta)
86 t = np.linspace(0, 2*np.pi,n)
87 x = r*np.cos(t)
88 y = r*np.sin(t)
89 xp = (y - alpha*x)/beta
90 fig , ax = plt.subplots (1)
91 ax.plot(x*1000 , xp *1000)
92 plt.xlabel(’u [mm]’)
93 plt.ylabel("u’ [mrad]")
94 plt.grid(True)
95 plt.show()
96 return [x, xp]
97
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98 def beamline_final(x, xp, plane=’y’):
99 ST1 , ST2 , ST3 , ST4 = sympy.symbols(’ST1 , ST2 , ST3 , ST4’)

100 k = 1
101 xi = np.array ([[0], [0], [1]])
102 ST_list = []
103 ST_max = []
104 ST_maxmax = []
105 points = []
106

107 ##### Element Length Parameters #####
108 L = 1
109 LQ = 0.8 # Quadrupole
110

111 ##### Quadrupole Gradients #####
112 B0 = np.array ([ -3.40464 ,1.57147 ,6.0093 , -7.877 , -6.96187 ,8.56988])
113 p0 = 2775054522.1322517*1e-9
114 brho = 3.3357* p0
115

116 if plane == ’x’:
117 k_list = B0/brho
118 elif plane ==’y’:
119 k_list = -1*B0/brho
120

121 n_list =[]
122 long_pos=np.arange (19.79 ,25.6 ,0.001)
123 waist=np.zeros(len(long_pos))
124

125 ##### Variational Quadrupole Gradients #####
126 for i in k_list:
127 noiseSigma = 0.05*i
128 noise = i + random.choice ([-1,1])*noiseSigma*np.random.rand (1,1)
129 n_list.append(noise [0][0])
130

131 for i in range(len(x)):
132 R = beamline_gen(ST1 , ST2 , ST3 , ST4 , x[i], -xp[i],k_list)
133 eq1 = sympy.Eq(R[0]. subs({ST1:ST3 , ST4:ST2}), 0)
134 eq2 = sympy.Eq(R[1]. subs({ST1:ST3 , ST4:ST2}), 0)
135 result = sympy.solve ([eq1 , eq2], (ST3 , ST2))
136 ST2_k , ST3_k = result[ST2], result[ST3]
137 ST4_k , ST1_k = ST2_k , ST3_k
138

139 # Lattice choice: pick 1 #
140 # Design lattice #
141 final_lattice = steerer(ST1_k) + 10* driftscn ((0.59*L)/10) + Quad

(LQ , k_list [0]) + 10* driftscn ((0.5*L)/10) + Quad(LQ, k_list [1]) + 10*
driftscn ((2.5*L)/10) + Quad(LQ , k_list [2]) + 10* driftscn ((0.5*L)/10)
+ Quad(LQ, k_list [3]) + 10* driftscn ((0.55*L)/10) + steerer(ST2_k) +
10* driftscn ((5.16*L)/10) + steerer(ST3_k) + 10* driftscn ((4.501*L)/10)
+ Quad(LQ, k_list [4]) + 10* driftscn ((0.415*L)/10) + steerer(ST4_k) +
10* driftscn ((0.275*L)/10) + Quad(LQ, k_list [5]) + 10* driftscn ((2.82*

L)/10)
142 # Lattice with variations #
143 final_lattice = steerer(ST1_k) + 10* driftscn ((0.59*L)/10) + Quad

(LQ , n_list [0]) + 10* driftscn ((0.5*L)/10) + Quad(LQ, n_list [1]) + 10*
driftscn ((2.5*L)/10) + Quad(LQ , n_list [2]) + 10* driftscn ((0.5*L)/10)
+ Quad(LQ, n_list [3]) + 10* driftscn ((0.55*L)/10) + steerer(ST2_k) +
10* driftscn ((5.16*L)/10) + steerer(ST3_k) + 10* driftscn ((4.501*L)/10)
+ Quad(LQ, n_list [4]) + 10* driftscn ((0.415*L)/10) + steerer(ST4_k) +
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10* driftscn ((0.275*L)/10) + Quad(LQ, n_list [5]) + 10* driftscn ((2.82*
L)/10)

144

145 Trajectory (0, 0, final_lattice ,long_pos , waist)
146 OTM = oneturn(final_lattice)
147 M = OTM [0][0] @ xi
148 points.append(M)
149 ST_list.append ([(np.array ([[ST1_k , ST2_k], [ST3_k , ST4_k ]]))])
150 ST_max.append(max(abs(ST1_k), abs(ST2_k), abs(ST3_k), abs(ST4_k)

))
151 X = np.array ([x[i], xp[i]])
152 k += 1
153 ST_maxmax.append(max(ST_max))
154 print(ST_maxmax)
155 ind = np.where(waist==np.min(waist))[0]
156 print(’waist position = ’,long_pos[ind [0]])
157 plt.axvline(x=long_pos[ind[0]], label=’Waist position ’)
158 return M, X, ST_list , ST_maxmax , final_lattice , points #, S_list
159

160 x, xp = circle_plot(alpha ,beta , epsilon_y , 50)
161 M, X, ST_list , ST_maxmax , final_lattice , points = beamline_final(x, xp)
162

163 ### Loading envelope data and plotting ###
164 envelope_plot=np.loadtxt(’envelopes (1).txt’)
165 plt.plot(envelope_plot [0], envelope_plot [2], label=’Envelope ’, color=’

red’)
166 plt.vlines(x=22.6 , ymin=-5, ymax=5, linewidth =2, color=’b’, linestyle=’-

’, label=’BPM position ’)
167 plt.vlines(x=19.6 , ymin=-5, ymax=5, linewidth =2, color=’b’, linestyle=’-

’)
168 plt.legend(loc=’lower left’)
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Determination of the beam transverse waist position using BPMs readings at
ESS
G. Fahlström, N. Milas, R. Miyamoto and T. Shea

The European Spallation Source (ESS), currently under construction in Lund, Sweden,
will be the world’s most powerful neutron source. This work treats the last and final
section of the ESS linac, the Accelerator to Target (A2T), a transfer line, meaning no
acceleration takes place, and therefore protons enter this section at their nominal energy
of 2 GeV. The main diagnostics available at the end of the A2T are two Beam Position
Monitor (BPM)s, the first of which is 3 m before the wall that separates the accelerator
and target areas, and the second which is located exactly at the wall position. The
separating wall imposes an aperture restriction, where the beam envelope must form a
waist. The longitudinal position of the waist depends directly on the magnet settings in
the A2T, and as such, if there are any errors in the beam line, the waist position will
shift. The goal of this work is to investigate the viability of determining the beam waist
longitudinal position using only the two final BPMs. Assuming a known set of Courant-
Snyder parameters at the final position of the A2T and a known beam emittance, a set of
final beam centroid positions are calculated lying over the 1sigma phase space ellipse at
that point. Applying the initial condition that all beam centroids are initially placed at
the origin, the necessary corrector strength values required to transport the centroids to
their final positions along the ellipse are then calculated. Beam centroid trajectories are
then compared with the beam envelope. Space charge effects are shown to be negligible for
this session of the linac, meaning that the centroid envelope waist positions will coincide
with the beam envelope waist positions. The two BPMs position readings are then used
to calculate its longitudinal location. In this paper, a complete error study of the method
is presented together with a discussion on its limitations.




