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Abstract

Cavity quantum electrodynamics (QED) is a theory that is used for describing the interaction
between matter and cavity modes. Not until relatively recently, cavity QED has been extended
to the study of photosynthetic light-harvesting complexes (LHCs). Multiple phenomena unique
to strongly cavity-coupled molecular systems have also been observed in LHCs in cavities. Of
such phenomena, one is the formation of highly coherent states delocalized among thousands
of molecules. These states have a partial light character, and are known as molecular polari-
tons. In this thesis, I explore the formation of polaritons by computationally modelling the
light-harvesting complex 2 (LH2) of the purple bacterium Rhodopseudomonas acidophila in a
microcavity. I also show the possibility of energy transfer between noninteracting LH2s via
coupling to a cavity, providing a potentially new way in which photosynthetic energy transfer
pathways could be artificially optimized.
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Popular science description

The world around us is a colorful place to behold. Behind this colorful splendor is a fine interplay
between light and matter, in which some materials absorb certain wavelengths of light which we
perceive as colors that other materials do not. Absorption of light can be properly understood
through the framework of quantum mechanics: in an absorption event, a quantum of light – a
photon – is absorbed by electrons in a molecule, after which the molecule gains the energy of
the absorbed photon. The molecule is then said to be in an excited state. In the case of plants
and algae and some microbes that are capable of photosynthesis, the characteristic green hue
is caused by special light-absorbing pigments, the chlorophylls. The wavelengths of light that
are absorbed by these pigments are crucial for making photosynthesis and consequently most
of life on earth possible.

Multiple chlorophyll molecules close to each other can interact as a group, leading to striking
changes in the wavelengths of light that are absorbed. In such circumstances it is no longer
possible to determine with certainty which of the chlorophylls partake in the absorption event
– it is as if all of the chlorophylls act as a single excited entity. Such collective quantum states
of matter are called excitons. It turns out that there is a photosynthetic group of bacteria, the
purple bacteria, which harness a special light absorbing structure called LH2. The wavelengths
that the LH2 absorbs can only be explained using the theory of excitons, giving a hint of the
importance of quantum mechanics in biology.

The story does not end with excitons, however. Over the last few years, researchers have
become increasingly more interested in investigating the properties of pigments in cavities, that
is, between two mirrors. When light of suitable wavelength is shone into the cavity, the light
not only excites the molecules in the cavity but also partakes in the excited state itself. Such an
excited state, which is partially light and partially matter, is known as a polariton. A polariton
is a highly delocalized state, meaning that all of the excited molecules in the cavity are a part
of it. It is like a tensed bowstring, which remains tensed by the action of light.

In my thesis, I explore these light-matter states in the case of the LH2 of the purple bacterium
Rhodopseudomonas acidophila. I explain the observed absorption properties of the LH2 inside
a cavity with computational models. I also take a step further and investigate what happens
after the excitation of polaritons: how do they finally break down and where does their energy
transfer? It is already known that polaritons harness many interesting properties, such as the
capability of enhancing chemical reactions. Furthermore, the quantum properties of groups of
molecules are known to be enhanced in cavities. In addition to validating more well known
properties of polaritons involving LH2s, I show that the delocalized nature of the polaritons
enable energy to be transferred between spatially separated LH2s. My thesis might thus offer
tools for not only obtaining a clearer understanding on the significance of quantum mechanics
in biology, but also for potential applications related to utilizing photosynthesis – perhaps in
solar powered technologies of the future.
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1 Introduction

Photosynthesis is initiated by absorption of a photon by a light-harvesting complex (LHC), a
photosynthetic protein-pigment complex, which then transfers the solar energy to the reaction
center [1]. In the reaction center, the primary energy conversion step, charge separation, takes
place, and it is the charge separation that drives all the subsequent reactions of photosynthesis,
culminating in synthesis of organic compounds [1, 2]. Not only does photosynthesis sustain life
on Earth, it has a potential to be utilized in viable, new renewable energy sources of the future
[1]. For this reason, thorough understanding of photosynthesis is an important goal not only in
fundamental, but also in applied science context.

As a rather new emerging field, cavity quantum electrodynamics extended to biological systems
has opened up new ways to study the role of quantum coherence in natural photosynthetic
energy transport [3]. In particular, utilizing cavities with modes that are strongly coupled
to the photosynthetic organism could provide means to alter the energy transfer pathways
within the organism [4]. To this end, optical microcavities have been shown to induce strong
coupling in a variety of different systems, including inorganic systems such as quantum dots
and semiconductors, but also in organic molecules such as LHCs of green sulfur bacteria [4].

LHCs consist of light-absorbing molecules, or chromophores, typically attached to a protein
structure [5]. In most cases, interactions between neighbouring chromophores prevents the
excitation of only one chromophore [6]. Instead, the coupling of neighbouring molecules to
each other brings about the formation of delocalized energy eigenstates, Frenkel excitons [7].
By definition, a Frenkel exciton constitutes one or more delocalized electron-hole pairs in such
a way that for any given pair, the electron and the hole are located in the same molecule [8].
The missing electron in the highest occupied molecular orbital of an excited molecule can then
be considered the hole, which together with the electron in the excited electronic state forms
the electron-hole pair [8].

Frenkel excitons appear in groups of weakly bound molecules, called aggregates, such as bio-
logical chromophore complexes, where the overlap between the electronic wavefunctions of the
constituent molecules is negligible [8]; the chromophores involved in a given Frenkel exciton
do not have to be in contact with each other in order for the excited state to be delocalized
[6]. Frenkel excitons, however, are not the only group of excitons. Charge transfer excitons are
induced in cases where the wavefunctions of the molecules overlap more significantly [8] so that
the excited electron will be localized in a neighbouring molecule with respect to the hole [9].
On the other side of the spectrum, the electron-hole pair in Wannier-Mott excitons is separated
by a much larger distance than the spacing between neighbouring molecules or atoms [8]. Such
excitons are often encountered in inorganic semiconductors [9].

The LHC of purple bacteria is know as the light-harvesting complex 2 (LH2), the chromophores
of which are bacteriochlorophyll a (Bchl a) molecules. The LH2 of purple bacteria is a protein-
pigment complex, which includes two Bchl a ring structures, B800 and B850, which contain 9
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and 18 Bchls, respectively. The Bchls in the B800 ring are more widely separated by ∼ 2 nm,
whereas the short (∼ 0.9 nm) spacing of the Bchls in the B850 ring induces the formation of
highly delocalized exciton states. The energies of the excitons in the B850 ring vary from the
excited B800 states, so that B800 absorbs light at 800 nm and B850 at around 850 nm. [10,
11]

If the LHC is coupled to a cavity mode, the optical properties of the system can change
drastically. The tuning of the cavity is determined by the spacing of the mirrors and the
incident angle of the light which is used to excite the LHC [12–14]. The cavity can couple to
the molecules strongly, leading to macroscopic coherent states involving hundreds of thousands
of excitons [15, 16]. The states also include one or more occupied photonic cavity modes,
and are consequently known as polaritons [14–16]. Molecular polaritons thus are characterized
by the mixing, or hybridization of the photonic and the molecular states [4, 17]. Because the
molecules in the cavity absorb light cooperatively with the cavity mode, new absorption bands,
the lower polariton (LP) and upper polariton (UP) branches appear in spectra [14, 15]. Between
the LP and UP branches is a branch of states sometimes known as the middle polariton (MP)
branch [18]. The states in the MP branch are known as dark states if the molecules in the
cavity do not interact with each other [7], because the transitions to these states from the
ground state are forbidden [17]. However, the interactions between the Bchl a molecules in the
LH2 imply that the visibility, or the absorption intensity of the MP branch has to be evaluated
in the case of LH2s in a cavity. Furthermore, the macroscopic coherence of polariton states
involving multiple LH2s has not yet been shown.

In this thesis, I will describe how the visibility of polaritons is related to the photon component
of the polaritons. Such an approach of determining polaritonic visibility will give rise to the LP,
UP and MP absorption branches for isolated LH2s in a cavity within the framework of cavity
quantum electrodynamics. I will also show the possibility of exciting multiple noninteracting
LH2s via exciting a single polaritonic branch. The delocalized polariton states involving multiple
noninteracting photosynthetic units will also open up a door to the possibility of energy transport
from one unit to another via the coupling to the cavity alone. Subsequent studies could be
applied to whole organisms coupled to a cavity mode, and reveal new ways in which energy could
be collected or delivered not only with photosynthetic pigments, but also with optoelectronic
materials in general [16, 19].

The structure of this thesis is as follows. In Section 2.1 I describe the theoretical background
of excitons and how they relate to the conventional spectrum of the LH2 outside of the cavity.
In Sections 2.2-2.4 I extend the theory to the case of the cavity coupled to the LH2, and give
precise definitions for the molecular polaritons of different cavity-LH2 systems. In Sections 2.5
and 2.6 I describe a theory of energy transfer with and without the cavity when the LH2s do
not interact with each other. Simulations of the models are described in Sections 3 and 4, and
finally a discussion followed by a conclusion section are given in Sections 5 and 6.
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2 Theory and Background

Photosynthetic light-harvesting complexes act as Frenkel excitons upon excitation by light [8].
Because a Frenkel exciton is a delocalized system of intramolecular electron-hole pairs, it can
be expressed as a linear combination of the excited electronic states of the molecules as

|α⟩ =
∑
m

cα(m) |m⟩ . (2.1)

Here, |m⟩ is a state in which one or more molecules are excited and the rest are in their ground-
states [5, 8], and the factors, cα(m) , are the probability amplitudes of each such excited
state. The number of excited molecules corresponds to the number of photons absorbed by
the aggregate [8]. In this thesis, the focus is on the more common case where only one of
the molecules in the states, |m⟩, is excited. The formation of multiply excited states requires
very high light intensities, which increases the probability of multiple photons hitting a single
chromophore nearly simultaneously [20]. Double excitations can also be induced by two near
simultaneous laser pulses as in time-resolved spectroscopy techniques [21]. In the case of single
excitations, the number of the states, |m⟩, corresponds to the number of molecules in the
aggregate, and it is convenient to denote the index, m, as the index of the excited molecule
in question. Consequently, the states |m⟩ are commonly known as the site basis states [6, 22].
Because a Frenkel exciton forms upon electronic excitation of a chromophore aggregate, it is
an eigenstate of the electronic Hamiltonian [5]. In order to find the energies and the probability
amplitudes, cα(m), characterizing the excitonic states, the electronic Schrödinger equation for
the system in question in the basis of the singly excited molecular states has to be solved.

2.1 The Hamiltonian of Frenkel Excitons

The Hamiltonian of a molecular aggregate consisting of Nm molecules is given as

Ĥagg =
∑
m

Ĥm +
1

2

∑
m

∑
n ̸=m

V̂mn, (2.2)

where Ĥm are the Hamiltonians for each individual molecule labelled with m, and where V̂mn are
the potential energy operators between the molecules m and n. The intramolecular Hamiltonians
include the kinetic and potential energies of the nuclei and the electrons in each molecule,
whereas the intermolecular potentials include the Coulomb interactions between the molecules.
[8]

One can assume that the dimensions of the molecules are negligible compared to the inter-
molecular separations. Using such an approximation simplifies the contribution of the operators
V̂mn in the site basis {|k⟩}, so that the interactions between the molecules upon excitation
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become interactions between molecular point dipoles, leading to an approximation known as
the dipole-dipole approximation. With the dipole-dipole approximation, one arrives at the
electronic Hamiltonian of Frenkel excitons,

Ĥ =
∑
k

Ek |k⟩ ⟨k|+
∑
l

∑
k ̸=l

Vkl |k⟩ ⟨l| . (2.3)

The orthonormal site basis states |k⟩ are of the form

|k⟩ = |e(k)⟩
∏
k′ ̸=k

|g(k′)⟩ , (2.4)

where |e(k)⟩ and |g(k′)⟩ are the excited and ground states of the molecules k and k′, respec-
tively. The energies Ek, also known as the site energies [6], are the energies of the excited
chlorophylls k, whereas the interactions between the point dipoles are

Vkl =
1

4πϵ

{µk · µ∗
l

|xkl|3
+ 3

(µk · xkl)(µ
∗
l · xkl)

|xkl|5
}
, (2.5)

where xkl is the position vector from the center of mass of the molecule k to the center of mass
of the molecule l, ϵ is the permittivity of the medium and µk is known as the transition dipole
moment of the molecule k,

µk = ⟨e(k)|µ̂k|g(k)⟩ , (2.6)

with the relevant dipole moment operator

µ̂k = −e
∑
i∈k

r̂ik. (2.7)

The summation refers to all of the electrons in the molecule k with the electronic position
operators r̂ik. [6, 8]

From Eq. 2.5 it follows that V ∗
kl = Vlk, so H has to be Hermitian. Specifically, if the molecular

wavefunctions are real-valued, the matrix of the Hamiltonian will be a real and symmetric.
Without loss of generality, (ψa + ψ∗

a)/2 = Re(ψa) or (ψa − ψ∗
a)/2i = Im(ψa) can always be

chosen to be the solution to the Schrödinger equation with the same eigenvalue as ψa [23].
Hence, I will assume real-valued wavefunctions, transition dipole moments and matrix elements
of the Hamiltonian in the following sections.

The absorption intensity for a given transition depends on the square of the transition dipole
moment of the exciton [19, 24]. The ground state of the aggregate is the product state in
which all of the chlorophylls are in their ground states. Thus, the transition dipole moment of
a transition from the ground state to the excitonic state given by Eq. 2.1 is

µα = ⟨α|µ̂|g⟩ =
∑
m

cα(m) ⟨m|µ̂|g⟩ , (2.8)
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where µ̂ is the dipole moment operator of all the chlorophylls,

µ̂ =
∑
n

µ̂n. (2.9)

The terms ⟨m|µn|g⟩ with n ̸= m obey

⟨m|µ̂n|g⟩ = ⟨g(n)|µ̂n|g(n)⟩ ⟨e(m)|g(m)⟩
∏

i ̸=m,n

⟨g(i)|g(i)⟩ = 0, (2.10)

which reduces Eq. 2.8 into

µα =
∑
m

cα(m) ⟨e(m)|µ̂m|g(m)⟩ =
∑
m

cα(m)µm. (2.11)

The absorption intensity of the excitonic transition should thus obey the dependence

Aα ∼ |µα|2. (2.12)

Furthermore, each absorption peak of a given |G⟩ → |α⟩ transition should be broadened due
their finite lifetime [25] and to the coupling of the electronic transitions to the nuclear motions
of the system and the surroundings [8, 20]. [8]

2.2 Hamiltonian of an LH2-cavity polariton

The Hamiltonian of a chlorophyll-protein complex affected by light includes the system (S) of
chlorophylls in the complex, vibrational reservoir (R) and light (L), and is given as

H = HS +HS−R +HR +HS−L +HL (2.13)

[26] [27]. The Hamiltonian of the chlorophylls, HS, can be written as the Frenkel exciton
Hamiltonian, whereas the reservoir with the Hamiltonian HR represents the vibrational normal
modes of the system, or the intra-pigment vibrations and the vibrational motion of the protein
and the solvent [26]. The reservoir plays a role in describing the energy transfer dynamics after
an excitation event [26, 28]. One can approximate the contribution of HS−R to the electronic
system explicitly as small diagonal disorder elements, δEn, so that the site energies will be
transformed as En → En + δEn [22]. This represents the variations in the local electrostatics
environments of each chlorophyll [26], and explicitly accounts for the broadening of absorption
peaks (Section 2.1). Assuming identical pigments, En can be written as a constant energy,
E, for all n. The time-dependent behaviour of HS−R also induces transfer between excited
electronic states, which will be explored more thoroughly later in this thesis.

The eigenstates of the photonic Hamiltonian, HL, of a given cavity mode can be expressed
as the number states, |n⟩, where n is the number of photons occupying the cavity mode [27,
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29]. The corresponding photon energies are En = (n+ 1
2
)h̄ω, where ω is the frequency of the

cavity mode [27, 29]. Only the energy difference between transitions dictates which wavelength
will be absorbed, so it is convenient to set the ground state energy of the cavity mode and
the chlorophylls to zero. Due to the finite time the photons occupy the cavity, the energy
of the cavity is broadened. It is possible to take this cavity broadening into account already
when constructing the Hamiltonian [18], but I will take a simpler approach and completely
characterize the cavity with only a single mode. The frequency of this mode can be determined
with Maxwell’s equations for a beam of monochromatic light that hits the cavity at an incident
angle, θ, giving

ω =
c

nr

√
π2

d2
+

2π

λ
sin θ, (2.14)

where nr is the refractive index of the medium inside the cavity, c is the speed of light, d
is the cavity width and λ is the wavelength of the incident light [12–14]. The corresponding
wavelength supported by the cavity mode is λcavity = 2πc/ωnr.

As a thought experiment, one can start with an LH2 inside a cavity but in the absence of
photons. The system will be in the ground state state |n = 0, G⟩, where |G⟩ refers to the
molecular ground state and |n = 0⟩ to the number state of the unoccupied cavity mode [18].
Exciting the LH2 requires using photons of energy close to, but not necessarily equal to the
energy difference between the excited and the ground state of the LH2 [30]. As photons having
such energies enter the cavity, the system will initially be in the state |n = Nc, G⟩. If one of the
photons excites the LH2 from the ground state to an arbitrary excited state |k⟩, the system will
be in the state |n = Nc − 1, k⟩, where the molecule k is excited. Because quantum mechanics
is a probabilistic theory, there is a specific probability amplitude that characterizes the excited
state |n = Nc − 1, k⟩. As any of the molecules can become excited, a suitable state to represent
the LH2 inside the cavity with photons is thus a superposition of the states |n = Nc, G⟩ and
|n = Nc − 1, k⟩.

Using the notation |Nc, G⟩ and |Nc − 1, k⟩ for the orthonormal states |n = Nc, G⟩ and
|n = Nc − 1, k⟩, respectively, the Hamiltonian of the LH2-cavity polariton is

H = h̄ω |Nc, G⟩ ⟨Nc, G|+
∑
k

J1,k |Nc, G⟩ ⟨Nc − 1, k|

+
∑
k

Jk,1 |Nc − 1, k⟩ ⟨Nc, G|+
∑
k ̸=l

Vkl |Nc − 1, k⟩ ⟨Nc − 1, l|

+
∑
k

Ek |Nc − 1, k⟩ ⟨Nc − 1, k| ,

(2.15)

where h̄ω is the energy of a photon in the cavity mode, and the last two terms correspond
to the Frenkel exciton Hamiltonian of Eq. 2.3. As written for example in [18] and [19], the
matrix element ⟨Nc, G|H|Nc, G⟩ corresponds to the energy of a single photon, h̄ω, instead of
Nch̄ω. This can be understood by regarding the state |Nc − 1, G⟩ as the initial state before
excitation, so that the spectroscopically relevant energy of the photons is then the energy
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difference between the polariton and |Nc − 1, G⟩: Nch̄ω − (Nc − 1)h̄ω = h̄ω. The number
states |Nc − 1⟩ do not affect the couplings Vkl, which thus can be taken as the couplings of
the point dipole chlorophylls.

The couplings J1,k and Jk,1 are due to the coupling of the electromagnetic field to the transition
dipole moments of the chlorophylls via the system-light interaction HS−L. The electric field
with a wavelength of ∼ 800 nm does not vary much over a single LH2 complex [11], allowing
the light-matter interaction to be approximated as

HS−L = −Ê(X0) · µ̂(r), (2.16)

where Ê(X0) is the electric field operator evaluated at the center of mass of the LH2, and where
µ̂(r) is the dipole-moment operator of the electrons,

µ̂(r) = −e
∑
i

r̂i (2.17)

[8, 29, 31]. The field operator Ê is a function of the photon annihilation and creation operators,
â and â†, respectively, which operate the relevant number states as â |Nc⟩ =

√
Nc |Nc − 1⟩ and

â† |Nc − 1⟩ =
√
Nc |Nc⟩ [29]. Working with the dipole moment operator in a similar way as in

Section 2.1 and setting the origin to X0, the matrix elements J1,k and Jk,1 obtain the form

J1,k = Jk,1 = −E cos(θk)|µk| = −Eµk,xi
, (2.18)

where the angle θk is the angle between the polarization of the cavity mode and the molecular
transition dipole moment, µk,xi

is the component of µk in the direction of the polarization
of the cavity mode and the scalar E has the dimensions of an electric field and depends on
the square root of the number of photons and the number of molecules,

√
Nc and

√
Nm,

respectively. The scalar E also depends on the inverse of the square root of the volume of the
cavity, which favours strong coupling in small microcavities. Strong coupling is a requirement
for the formation of true polaritons with part molecular and part light character, which I will
show later in this thesis. Hence, cavities with large volumes do not support the formation of
polaritons. For brevity, I will refer to using Eq. 2.18 as calculating the polariton in the molecular
picture. For more details, see [8, 12, 18, 29, 31–35].

In a population of randomly oriented LH2s, the orientations of the transition dipole moments
vary from one LH2 to another. As will be justified later in this thesis, most of the differently
directed LH2s likely contribute to the absorption spectrum roughly similarly. Hence, I assume
that for each k, there exists some value cos(θk) that correctly predicts the averaged contribution
of multiple differently oriented LH2s to the spectrum. For a population of LH2s, the correct
form of the matrix elements is then

J1,k = Jk,1 = Ecos(θk)|µk|. (2.19)

For convenience, I have included the negative sign in Eq. 2.18 to the expression of cos(θk).
The contribution of an arbitrary chlorophyll to the energy of the polariton due to coupling
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with the field does not depend on the location of the chlorophyll within the LH2, but only on
the direction of its transition dipole moment. Consequently, if the chlorophylls interact with
the electric field independently of each other, the averages cos(θk) in Eq. 2.19 in a randomly
oriented population of LH2s will be the same for all k.

The eigenstates of the Hamiltonian given in Eq. 2.15 are known as polaritons [12, 32]. To
simplify notation, I will use Nc = 1c for the remainder of the thesis. The polariton states will
then be of the form

|J⟩ = cJ(0) |1c, G⟩+
∑
m

cJ(m) |0c,m⟩ . (2.20)

The squares of the constants cJ(0) and cJ(m) are called the Hopfield, or mixing coefficients, and
represent the optical and material character of the polariton, respectively [4, 12]. Consequently,
I refer to |cJ(0)|2 as the photonic and |cJ(m)|2 as the molecular Hopfield constants of the
polariton state |J⟩. As implied by [14] and [36], the visibility of a polariton is determined by
the photonic Hopfield coefficient, |cJ(0)|2:

AJ ∼ |cJ(0)|2. (2.21)

I will also follow this practice in this thesis, and neglect any dependence of AJ on the molecular
transition dipole moments.

An intuitive way to understand the visibility relation 2.21 is as follows. For a polariton to
become excited, a photon of suitable energy must first get inside the cavity. This is possible
as long as the photonic Hopfield coefficient of the polariton is non-zero. Inside the cavity, the
photon automatically becomes coupled to the molecules via the polaritonic Hamiltonian given
in Eq. 2.15, and no further dependence of the transition intensity on the transition dipole
moments is needed. In other words, the dipole moments of the molecules indirectly affect the
transition intensity via the photonic Hopfield coefficient, which depends on the eigenstates of
the Hamiltonian. One can hence think of the light outside the cavity as interacting only with
the cavity mode and thus with the polariton via the Hopfield coefficient and regard the light
inside the cavity as interacting with the molecules as separate entities. The notion of absorbance
when |cJ(0)|2 ≈ 1, however, is difficult to understand. Perhaps the relation 2.21 is not complete
and should be complemented with some factor that depends on the molecular transition dipole
moments. An intuitive modification of the relation 2.21 would be to multiply the photonic
Hopfield coefficient with the square of the transition dipole moment of the molecular part of
the polariton. I do not investigate such an approach in this thesis.

The multiple eigenstates of the polaritonic Hamiltonian all have different energies. In order to
excite a polariton, the photons that hit the cavity have to match the energy of one of these
polaritons. The frequency of the cavity in Eq. 2.15, however, is fixed, and differs from the
energy of the polaritons. This is not a contradiction, because if a photon of suitable energy
excites a polariton, the photon will afterwards be involved in the polariton state (Eq. 2.20),
since the occupied cavity mode is a part of the polariton. In this way, energy conservation is
obeyed.



Theory and Background 14

2.3 Coupling the cavity mode to the excitonic states

I have previously described how excitons arise from the collective interactions of the transition
dipole moments of the molecules. One can also make an assumption that the cavity field does
not interact with the individual molecular dipole moments independently, but instead interacts
with the dipole moment of the excitons as given by Eq. 2.11. When coupling the cavity mode to
the excitons, one has to use the basis {|1c, G⟩ , |0c, α⟩}, where |α⟩ are the 27 different exciton
states of LH2 and |1c, G⟩ is the photonic state. In this basis, the Hamiltonian will be

H = h̄ω |1c, G⟩ ⟨1c, G|+
∑
α

J1,α |1c, G⟩ ⟨0c, α|

+
∑
α

Jα,1 |0c, α⟩ ⟨1c, G|+
∑
α

Eα |0c, α⟩ ⟨0c, α| ,
(2.22)

where Eα is the energy of the exciton |α⟩.

Within a given LH2, the relative directions of the molecular transition dipole moments, µm,
depend on the orientation of the LH2 complex in the laboratory frame (Fig. 1 c). Assuming
that the cavity mode supports a wavelength (cf. Eq. 2.14) that is very long compared to the
size of an LH2 complex so that the cavity interacts with whole LH2 units via excitons instead
of individual, independent chlorophylls, the couplings to the field in a population of LH2s will
be given as

J1,α = E ′|µα|, (2.23)

where E ′ is the coupling constant including any dependence on the directionality of the polar-
ization and µα is the transition dipole moment of the exciton as given by Eq. 2.11. Eq. 2.23
implies that on average, the angle between the polarization and the excitonic transition dipole
moment is the same for each exciton. Such an assumption can be understood by noting that
in a population of randomly oriented LH2s, no direction is inherently favoured over the other
so the contribution of an arbitrary exciton to the energy of the system only depends on the
magnitude of the transition dipole moment of the exciton state |α⟩. I will refer to calculating
the polaritons with Eq. 2.23 as using the excitonic picture.

If the picture of independent excitons is correct, the terms cos(θk) given in Eq. 2.19 can be
obtained via a change of basis from excitons to the site basis:∑

α

J1,α |1c, G⟩ ⟨0c, α| =
∑
α

∑
k

cα(k)J1,α |1c, G⟩ ⟨0c, k| . (2.24)

Comparing Eq. 2.24 with Eq. 2.15 and 2.19 gives

J1,k =
∑
α

cα(k)J1,α = E ′
∑
α

cα(k)|µα| = E|µk|cos(θk). (2.25)

Assuming the equality E = E ′, it then follows that

cos(θk) =

∑
α cα(k)|µα|
|µk|

. (2.26)
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Any difference between the constants E and E ′ will be included in the expressions of cos(θm);
the assumption E = E ′ will always give the correct form of the coefficients J1,k after the change
of basis. For the rest of this thesis, E = E ′ is always assumed.

The eigenstates of the Hamiltonian given in Eq. 2.22 are the polariton states of the form

|J⟩ = cJ(0) |1c, G⟩+
∑
α

cJ(α) |0c, α⟩ , (2.27)

where the excitonic basis is used instead of the site basis. I refer to the corresponding Hopfield
constants as the photonic and excitonic Hopfield coefficients. As with the molecular picture,
the absorption signals of the polaritons expressed in the excitonic picture can also be expected
to obey the relation 2.21. In this thesis, I refer to polaritons calculated both in the molecular
and excitonic picture simply as molecular polaritons.

2.4 Polaritonic Hamiltonian of two noninteracting LH2s

The Hamiltonian of two LH2s or two groups of LH2s can be formed by using either the molecular
or the excitonic basis. In the site basis, extra states |0c, k⟩ have to be used for the molecules in
the other LH2, whereas with the excitonic basis, extra states |0c, α⟩ that are formed from the
excitons in the other LH2 have to be used. Due to the fluctuations of the local environments of
the bacteriochlorophylls, diagonal disorders δEn to the energies of each chlorophyll n in both
LH2s have to be included (cf. Section 2.2). The only difference between the matrix elements
corresponding to the two LH2s comes then from the use of different diagonal disorders in the
chlorophyll sites of the two LH2s (Appendix A). The couplings between the second LH2 and
the cavity are consequently also different.

In this thesis, I assume no direct interactions between the two LH2s, meaning that the matrix
elements ⟨a|H|b⟩, where |a⟩ includes the site state or the exciton of one LH2 and |b⟩ the site
state or the exciton of the other, are zero. Any significant differences between the simulations
with one or two LH2s are thus due to the coupling to the cavity. In order to keep the coupling
strength at a similar magnitude, the coupling constants E ′ and E can be assumed to be
unchanged. One can justify such an assumption by either regarding the two LH2s as being
two groups of LH2s characterized by different disorders or as being a part of a bigger group of
LH2s. The same can be said when applying the excitonic picture to the couplings.

2.5 Relaxation of excitons

After a light absorption event, an exciton of an LH2 is excited. Such a situation is clearly far
from a thermodynamic equilibrium. Energy will then start to transfer from the exciton to the
surrounding environment and vice versa, until a thermodynamic equilibrium is again reached.
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An important factor for this relaxation of excited electronic states is coupling to the vibrational
degrees of freedom of the surrounding environment, also known as the heat bath. A relaxation
process via vibrational coupling can be understood within the framework of a model termed as
the surface hopping model. [8]

In the surface hopping model, the electronic eigenstates are regarded as potential energy sur-
faces, which are solved adiabatically as a function of the nuclear coordinates, R. The evolution
of the electronic system, however, is affected by the time-dependent change of the nuclear
coordinates. Thus, the time-dependent Schrödinger equation of the electrons,

ih̄
∂

∂t
Ψ(r,R(t), t) = (HS +HS−R(r,R(t)))Ψ(r,R(t), t), (2.28)

is to be solved non-adiabatically by taking the time-dependent behaviour of the nuclear co-
ordinates into account. The hops, or transfers from one electronic state or adiabatic surface
to another occurs thus via the system-bath coupling, HS−R(r,R(t)). As with the coupling
between electrons and an external electromagnetic field, a transfer can occur if the energy of
the interacting phonons is close to resonance of the energy difference between the initial and
final electronic states. However, if the density of phonons is negligible at levels corresponding
to the electronic energy difference, surface hopping will essentially not occur. In the following
discussion, this density is given by the product D(E)n(E, T ), where D(E) is the density of
states and n(E, T ) the Bose-Einstein distribution of the phonons at energy E and at temper-
ature T . The coupling strength itself has to also be nonzero, which in the following discussion
is given by a factor j0. [8]

A complete quantum description of the relaxation process can be formulated by utilizing the
theory of open quantum systems. By definition, a quantum system that can exchange energy
with the surroundings is an open quantum system [37]. In the case of LH2, the environment
can be regarded as the nuclei of the chlorophylls and the protein in which the photosynthetic
pigments are embedded [6], and energy is exchanged with the vibrational normal modes of the
environment [28]. The open system is the chlorophyll rings of multiple LH2s, each of which
can be in different electronic states. The vibrational states of the proteins of LH2s can also
differ from one LH2-complex to another. It is nevertheless possible to deal with the different
electronic and vibrational states of the LH2s statistically and derive equations of motion for the
different populations of the electronic states of the LH2 [38]. Let pα be the population of the
exciton |α⟩. The equations of motion are then

ṗα =
∑
β

(Wβαpβ −Wαβpα)−
pα
τexc

, (2.29)

where Wβα is the exciton transfer rate from the state |β⟩ to |α⟩ and τexc is the lifetime of the
exciton |α⟩ before decaying to the ground state [28]. An α → α type transfer does not occur,
so Wαβ = 0 for α = β.

Two processes that play an important role in driving the decay to the ground state are internal
conversion (IC) and fluorescence. Internal conversion is due to the same physical principles
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as the surface hopping between excited states [8, 20], whereas in fluorescence, the molecular
unit loses its excitation energy via a concurrent, spontaneous emission of a photon [20]. Eq.
2.29 without the transfer to the ground state is referred to as the Pauli master equation [8,
38]. The Pauli master equation with the rate constants Wαβ involves transfers that are due
to the coupling to the vibrational modes of the bath, whereas the decay to the ground state
is due to other processes, such as spontaneous emission. Assuming that the phonon bath is
large enough to remain in thermal equilibrium thorough the relaxation process, only a negligible
fraction of the phonons will have energies corresponding to the transition between the ground
and first excited electronic states. Thus, transfers between the exciton and the ground state
via vibrational coupling can be ignored.

The vibrational quanta of energy of the bath are phonons, which in thermal equilibrium obey
the Bose-Einstein distribution,

n(E, T ) =
1

exp(E/kBT )− 1
, (2.30)

where kB is the Boltzmann constant, E is the phonon energy and T is temperature [39]. The
density of states of the phonon modes also vary with energy. A form of the density of phonon
states that has been used successfully in recreating experimental results in LH2 studies is of the
form

D(E) =
E2

E3
0

exp(− E

E0

), (2.31)

where the parameter E0 determines the shape of the distribution. With the help of Redfield
theory, the rates can then be written as

Wαβ =

{
2π
h̄
(1 + n(Eαβ, T ))J(Eαβ)

∑
n |cα(n)|2|cβ(n)|2, Eαβ > 0

2π
h̄
n(−Eαβ, T ))J(−Eαβ)

∑
n |cα(n)|2|cβ(n)|2, Eαβ < 0,

(2.32)

where the energy difference between the excitons is Eαβ = Eα−Eβ, the expansion coefficients
cα(n) of the exciton α are given in Eq. 2.1 and J(Eαβ) is the spectral density of the phonons,

J(Eαβ) = j0D(Eαβ). (2.33)

The amplitude j0 depends on the coupling strength between the system and the bath. [8, 28,
40]

It is intuitive that the rate depends on the number density of phonons with energy |Eα,β|
via the product n(|Eα,β|, T )J(|Eα,β|). The rate towards lower energies, however, is faster.
The difference in the magnitude of the rates towards states of higher or lower energy can be
understood by first observing that without the decay to the ground state, the solution to the
system of equations 2.29 predicts with ṗα = 0 the relation

pα =
Wβα

Wαβ

pβ (2.34)
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[38]. Without loss of generality, let now Eα,β < 0. Using Eq. 2.32 and noting that J(−Eα,β) =
J(Eβ,α), one arrives at the principle of detailed balance,

pα =
Wβα

Wαβ

pβ =
1 + n(Eβ,α, T )

n(−Eα,β, T ))
pβ = e−Eα,β/kBTpβ (2.35)

[8, 38]. As is stated in [38] and motivated in [41], this implies that in equilibrium, the system
obeys Boltzmann statistics with

pα =
e−Eα/kBT

Z
, (2.36)

where Z is the partition function, which does not include the electronic ground state. The
Boltzmann distribution arises because of the constant number of LH2s, so that only energy can
be exchanged between the system and the environment; a canonical ensemble describes the
thermodynamics of the system [39]. Consequently, the relaxation eventually causes states with
the lowest energies to be mostly populated (cf. Section 2.5).

The system of equations of motion given by Eq. 2.29 can be cast in a matrix form,

ṗ = Rp, (2.37)

where

R =

−
∑

β W1β − 1/τexc W21 W31 · · ·
W12 −

∑
β W2β − 1/τexc W13 · · ·

· · ·

 . (2.38)

The solution is then given as
p(t) =

∑
i

cie
λitui, (2.39)

where ui and λi are the eigenvectors and corresponding eigenvalues of the matrix R [42].
Assuming that the eigenvectors are linearly independent as in the case of real-valued and distinct
eigenvalues [42], the coefficients ci can be solved from the initial value problem,

p(0) =
∑
i

ciui. (2.40)

Let the matrix U be such that Uij = [ui]j, and let the vector c contain the coefficients ci. The
solution for the coefficients is then

c = U−1p(0). (2.41)

2.6 Relaxation of polaritons

In order to simulate polaritonic relaxation, a few changes have to be introduced to the excitonic
relaxation model. First of all, the rate constantsWαβ have to be replaced by rate constantsWJJ ′
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for transfer between polaritons |J⟩ and |J ′⟩. Interaction between cavity photon and phonons
can be neglected, because the energy of the photon is far from the vibrational levels that are
significantly populated. Hence, the rate constantsWJJ ′ cannot depend on the photonic Hopfield
coefficients, |cJ(0)|2 via the surface hopping model. As for the sum

∑
n |cα(n)|2|cβ(n)|2 in Eq.

2.32, the easiest way to carry out the simulation is construct the polaritonic Hamiltonian with the
site basis so that the coefficients cα(n) can simply be replaced by the polaritonic counterparts,
cJ(n).

Because the heat bath does not interact with the field, the decay to the ground state for
each polariton due to internal conversion and fluorescence will be slower by an amount that
depends on the photonic Hopfield coefficient. On the other hand, the photonic component of
the polariton can be presumed to undergo a decay due to the cavity lifetime. As done in [20],
the decay rate can thus be assumed to be the sum of the rates due to IC and cavity lifetime.
Instead of 1/τexc, the decay rate constant of polariton |J⟩ can hence be written as

1/τ(J) = |cJ(0)|2
1

τcavity
+
∑
n

|cJ(n)|2
1

τexc
, (2.42)

where |cJ(0)|2 and |cJ(α)|2 are the photonic and molecular Hopfield coefficients, respectively.
It is known that the rate of fluorescence can change in a cavity [27], which consequently can
change τexc. For simplicity, I will regardless assume that τexc remains unaltered in a cavity.

If the medium within the cavity does not affect the speed of light, the cavity lifetime can be
written as

τcavity =
nd

c(1−R)
, (2.43)

where n is the average number of times a photon is refected inside a cavity, d is the distance
between the mirrors of the cavity, c is the speed of light and R the reflectivity of the mirrors
[27]. Assuming a reflectivity of 0.8, a photon bounces on average 4 times in the cavity before
exiting. Assuming d = 300 nm, the cavity lifetime is then on the order of 20 fs. Such a fast
decay due to the cavity would cause polaritons with even a moderate photonic character to
decay essentially instantaneously to the ground state before any relaxation to the other states
can occur. However, in a system of thousands of LH2s, there will presumably be many more
dark states with close to zero photonic Hopfield coefficients than true polariton states [15].
These states correspond to the states of the LH2 outside of the cavity (cf. dark states in Fig.
6), and likely contribute to an even faster relaxation away from the true polariton states before
the cavity decay. One can thus assume that the relaxation from an excited polariton to these
dark states has already taken place, and start the simulation from one of the dark states.
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3 Simulations involving excitons in the LH2

3.1 Reconstruction of the spectrum of the LH2

The absorption spectrum of the LH2 of the purple bacterium Rhodopseudomonas acidophila
was constructed from the numerically obtained eigenvalues and eigenstates of the matrix rep-
resentation of the Frenkel exciton Hamiltonian (Eq. 2.3). Without accounting for the diagonal
disorders (cf. Section 2.2), the diagonal terms of the Hamiltonian were set to 12500 cm−1

energy equivalent units of wavenumbers, 1/λ [25], with the corresponding wavelength of λ =
800 nm. This value matches the absorption of the B800 chlorophylls, which are known to
absorb rather independently of each other [11]. Diagonal disorders were also included via a
Gaussian distribution centered on 0 with a variance of 60 and 100 cm−1 for the B800 and B850
chlorophylls, respectively (see Appendix A). The disorders slightly broadened the spectrum by
splitting the energies of such states that were otherwise degenerate (not shown). Unless oth-
erwise specified, the same diagonal disorders have also been used in the other computations
presented in this thesis.

The off-diagonal elements Vkl specified by Eq. 2.5 and further evaluated in [8, 43] were provided
by Tönu Pullerits from the Department of Chemical Physics, Lund. The positions of the center
of masses of the chlorophyll units were set to the positions of the heavy Mg atoms in the center
of the chlorophyll molecules by referring to the atomistic structure of the LH2 of the purple
bacterium Rhodopseudomonas acidophila [11] (Fig. 1 c). The directions of the transition dipole
moments corresponding to transitions from the ground state to the lowest unoccupied state
(LUMO) were specified as in [44]. The partial LH2 spectra were computed by using only the
B800 or B850 chlorophylls (Fig. 1 a-b) and the complete LH2 spectrum was computed with all
of the chlorophylls together with the couplings between the B800 and B850 chlorophylls (Fig.
1 d). The relative absorption intensity of each eigenstate was obtained with the formulae 2.11
and 2.12.
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Figure 1: The absorption spectra of the B800 (a) and B850 (b) rings, the relative positions and
orientations of the Bchl a transition dipole moments in the B800 and B850 rings (c) and the computed
and experimental absorption spectra of the LH2 (d). Each absorption signal in the stick-spectra was
broadened with Lorentzian distributions centered at the absorption wavelengths of the signals with
a half-width at half-maximum (HWHM) of 6 nm. The continuous spectra were then obtained from
summing up the contributions of each individually broadened signals. The energies of the states,
including those with negligible visibility, are marked with small black lines on the wavelength-axis,
so that the B800 states are centered near 800 nm (a) and the B850 states more widely distributed
in energy (b). The magnitudes of the transition dipole moments in c are equal, and not related to
the spatial dimensions. The experimental spectrum is provided by Fan Wu from the Department of
Chemical Physics, Lund.

3.2 Relaxation of the excitons in the LH2

Relaxation of excitons was simulated by numerically solving the relevant equations in Section
2.5 with an initial population corresponding to the excited state of B800 with the highest
visibility and with the temperature set to 293 K. In order to evaluate the time-evolution of
the populations of B800 and B850 in all of the excitonic states simultaneously, the following
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definitions were used
pB800(t) =

∑
α,m∈B800

cα(m)pα(t) (3.1)

pB850(t) =
∑

α,m∈B850

cα(m)pα(t). (3.2)

The value of the parameter j0 in Eq. 2.33 was optimized to 850h̄, so that the relaxation from
B800 to B850 took about 0.7 ps at room temperature (Fig. 2 inset) - a characteristic which has
been obtained in previous experimental studies [45]. The parameter E0 was set to 100 cm−1 as
in [28] and the exciton lifetime to the experimental value τexc = 200 ps, which was provided by
Fan Wu from the Department of Chemical Physics, Lund. In order to verify the fast relaxation
of 0.7 ps from B800 to B850 and the slower decay to ground state, the simulation was run
separately for 7 and 600 picoseconds (Fig. 2).

Figure 2: Relaxation of a population of excitons in the B800 state towards the B850 states (left) and
the following decay of the populations towards the ground state (right). The grey horizontal lines are
the Boltzmann distributed populations given by Eq. 2.36 for each state. Only the 5 lowest energies
of the B850 states together with the energy of the initially excited B800 state are shown on the right,
rounded to the nearest tens for clarity. The populations of some of the other B800 states increase in
the beginning, but remain close to 0 when Boltzmann distributed. The populations of B800 and B850
are determined with Eqs. 3.1-3.2 and shown during the first 7 ps in the inset (left). After 0.7 ps, the
population of B850 has reached approximately two thirds, or a factor of 1 − 1/e from its maximum
value, and after 200 ps the populations of the B850 states have further decayed by a factor of 1/e
(right).
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4 Simulations involving LH2-cavity polaritons

4.1 Comparison between the molecular and the excitonic pictures

The dispersion curve of the polaritons was constructed as a set of absorption spectra with
varying cavity wavelength both in the molecular picture by coupling the cavity to the transition
dipole moments of individual chlorophylls as described in Section 2.2 and also by coupling the
cavity to excitons as described in Section 2.3. The absorbance, or visibility of each polariton was
determined from the relation 2.21. In all simulations, the magnitudes of the transition dipole
moments of the chlorophylls, |µk|, were set to 1 while the coupling constants E and E ′ involved
in Eqs. 2.18, 2.19 and 2.23 were set to 50 cm−1. To assess the effect of the directionality
of the LH2s to the polaritonic spectrum, a single LH2 with the geometry specified in Fig. 1 c
was used and the direction of the polarization of the cavity mode was varied via employing Eq.
2.18 in specifying the coupling to different molecules in the LH2 (Fig. 3). For comparison, the
spectrum of a population of LH2s was computed with the excitonic picture and by changing the
basis to the site basis with the help of Eqs. 2.25-2.26 (lower right part of Fig. 3). The average
values cos(θk) for different molecular sites varied with Ecos(θk) ranging from -100 cm−1 to 94
cm−1. LP, MP and UP branches were distinguished as in [18], corresponding to a combination
of the dispersion curve of the photonic component and the nondispersive behavour of the B800
and B850 rings.
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Figure 3: Dispersion curves of a single LH2 in a cavity with the geometry shown in Fig. 1 c when the
polarization of the cavity mode is parallel to the x, y or z-axis, and the dispersion curve of a population
of LH2s computed with the excitonic picture. The heatmaps were obtained by computing the spectra
multiple times for different polaritonic Hamiltonians with a fixed cavity wavelength corresponding to
the energy h̄ω in Eqs. 2.15 and 2.22, determining the absorption intensity from the visibility relation
2.21 and otherwise following the same practice as outlined in Fig. 1 including the use of HWHM of 6
nm. The absorption intensities ranging from about 10−2 to 10 units are not comparable between the
different plots. The energy of the cavity is shown as a diagonal line, whereas the energies of the B800
and B850 peaks are shown as two horizontal lines. Upper polariton (UP), middle polariton (MP) and
lower polariton (LP) branches can be distinguished as in [18].

4.2 The formation of polaritons with a single LH2 in a cavity

To get insight on the formation of the dispersion curve, the energies of the 28 different polari-
tons, or eigenstates of the polaritonic Hamiltonian (Eq. 2.22), were plotted as a function of
cavity wavelength with the excitonic picture and with a single LH2 as previously (Fig. 4 b). The
HWHM was adjusted to 10 nm and the dispersion curve together with multiple snapshots with
a fixed cavity wavelength were plotted with the excitonic picture (Fig. 4 a and c). The excitonic
character in the polaritonic branches was investigated by introducing Hopfield coefficients for
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B800 and B850 as
|CB800|2 =

∑
J,α,n∈B800

|cJ(0)|2|cJ(α)|2|cα(n)|2 (4.1)

|CB850|2 =
∑

J,α,n∈B850

|cJ(0)|2|cJ(α)|2|cα(n)|2 (4.2)

|Ccavity|2 =
∑
J

|cJ(0)|4, (4.3)

where |cJ(0)|2 and |cJ(α)|2 are the photonic and excitonic Hopfield coefficients, respectively,
and |cα(n)|2 the expansion coefficients of the excitons (Fig. 4 d). The summations include the
polaritons |J⟩, polaritonic excitons |0c, α⟩ and molecules n in either the B800 or the B850 ring.

Figure 4: The dispersion curve of the LH2 in a cavity computed with the excitonic picture (a),
the energies of the 28 polaritons as a function of cavity wavelength (b), the absorption spectra with
different cavity wavelengths (c) and the plots of the Hopfield coefficients of B800, B850 and the cavity
(d). The polariton energies do not cross, which is seen in the avoided crossings in b. The HWHM
used in obtaining a and c is 10 nm. The plots b and d do not take broadening into account, which can
be seen from the abrupt avoided crossings in b and in the discontinuous and oscillatory behaviour in
d at wavelengths where the avoided crossings occur. The energies of some of the dispersionless states
(horizontal lines in b) correspond to the energies of the B800 states in Fig. 1 a, whereas the other
dispersionless states correspond to the B850 states in Fig. 1 b.
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4.3 The formation of polaritons with two LH2s in a cavity

In order to investigate the possibility of exciting multiple LH2s with the excitation of a single
polariton branch, the dispersion curve was constructed again with the excitonic picture and
with the same coupling constant, but using two LH2s in the Hamiltonian instead of one (Fig.5
). The diagonal disorders used in the molecular sites of the two LH2 are shown in Appendix A.
In order to evaluate the delocalization of the polaritons among the two LH2s, LH2 a and LH2
b, the following Hopfield constants were introduced:

|CLH2a|2 =
∑

J,α∈LH2a

|cJ(0)|2|cJ(α)|2 (4.4)

|CLH2b|2 =
∑

J,α∈LH2b

|cJ(0)|2|cJ(α)|2, (4.5)

where for example α ∈ LH2a refers to all of the excitonic Hopfield coefficients of the excitonic
LH2 a states. The contribution of the LH2 a and LH2 b to the three polaritonic branches was
calculated by plotting the respective Hopfield coefficients as a function of cavity wavelength and
including only the polaritons with energies at the wavelengths λ ≥ 850 nm (LP), 800 < λ <
850 nm (MP) and λ ≤ 800 nm (UP) (Fig. 5).
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Figure 5: The dispersion curve of two LH2s in a cavity computed with the excitonic picture (upper
left) and the Hopfield coefficients of the cavity and the two LH2s when restricted to the polaritonic
eigenstates of the LP, MP and UP branches. The diagonal disorders in the two LH2s are given in
Appendix A. A HWHM of 10 nm and a coupling constant E′ of 50 cm−1 are utilized.

4.4 The delocalization and the brightness of individual polaritons

In order to make the following calculations easier, the site basis with the excitonic picture was
used with otherwise the same parameters as previously, including the use of the same diagonal
disorders for the two LH2s. To compare the polaritonic states with the excitonic states that
were computed outside of the cavity in Section 3.1, the dark polaritonic B800 and B850 states
that do not contribute to the polaritonic dispersion curve were computed with two LH2s as a
function of cavity wavelength from the following definitions

|C̃B800(J)|2 =
∑

m∈B800

|cJ(m)|2(1− |cJ(0)|2), (4.6)
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|C̃B850(J)|2 =
∑

m∈B850

|cJ(m)|2(1− |cJ(0)|2), (4.7)

where |cJ(0)|2 is the photonic Hopfield constant and the sums over the molecules in B800 and
B850 include both of the LH2s. The contributions of the B800 and B850 states to the bright
polariton states, or the polariton branches, was evaluated with otherwise similar expressions,
but with the photonic Hopfield constants, |cJ(0)|2, in place of the factors 1 − |cJ(0)|2. The
dark polariton states corresponded roughly to states close to the energies of the B800 and B850
excitons outside the cavity, whereas the B850 ring contributed to the polariton branches more
than the B800 ring (Fig. 6, cf. Fig. 1 and Fig. 4 b).

The delocalization of the LH2 a and LH2 b in the polaritons was evaluated with the following
expressions of the occupancies in the two LH2s,

OCCLH2a(J) =
∑

m∈LH2a

|cJ(m)|2 (4.8)

OCCLH2b(J) =
∑

m∈LH2b

|cJ(m)|2. (4.9)

The dark polariton states appeared to be highly localized, corresponding to the energies of the
LH2 outside the cavity, whereas bright states involved delocalization among the LH2s (Fig. 6).
Furthermore, several polariton states contributed to the visibility of any given polariton branch
(Fig. 6).
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Figure 6: The contribution of the B800 and B850 rings to the dark (black) and bright (orange)
polaritons, and the occupancies in the LH2 a and b together with the photonic Hopfield constants
(yellow) from the lowest energy state to the highest at cavity wavelength of 780 nm (below). The
cavity was scaled by a factor of 10 in the plot below. The dark states were plotted with Eqs. 4.6-4.7
and the bright states in otherwise the same way but using the photonic Hopfield constants in place of
the factors 1−|cJ(0)|2. To make the states appear more clearly in the heatmaps, they were broadened
with a HWHM of 0.5 nm. The magnitudes higher than 1 are due to slight overlap of dark states,
whereas the vertical bright lines in the upper right corners of the heatmaps depicting the bright states
are due to the erratic behaviour at avoided crossings and the corresponding Lorentzian tails. The small
amount of brightness in the dark states is negligible due to the logarithmic scale used in the heatmaps
of the bright states.
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4.5 Cavity-mediated energy transfer between two LH2s

Relaxation between the two LH2s introduced previously was simulated with and without the
cavity (Fig. 7). The Hamiltonian of the two LH2s outside the cavity was constructed otherwise
similarly as previously, except that the matrix elements involving the photonic states |1c, G⟩
were omitted (Section 2.4). When cavity was included, a fixed cavity wavelength of 780 nm
was used. The Hamiltonians were constructed in the site basis so that the couplings between
the molecules and the cavity were obtained via a change of basis from the excitonic to the site
basis with E =50 cm−1 as in Section 4.1 (Eqs. 2.25-2.26).

As motivated in Section 2.6, the initially populated state was chosen to be a dark state having
occupancy of close to unity in one of the LH2s (LH2 a). The occupancies in the two LH2s were
determined with Eqs. 4.8-4.9. The parameters were otherwise kept the same as in the case of
a single LH2 described in Section 3.2. To evaluate the transfer from LH2 a to LH2 b explicitly,
the following definitions were used for the populations of the two LH2s:

pLH2a(t) =
∑

J,m∈LH2a

cJ(m)pJ(t) (4.10)

pLH2b(t) =
∑

J,m∈LH2b

cJ(m)pJ(t), (4.11)

where the index J refers to different polariton or exciton states depending on whether the cavity
is included. A cavity decay with a lifetime of 14 fs was included in the simulations. A clear
transfer between the LH2s in the cavity was observed with strong coupling regardless of the
cavity decay, whereas the transfer and the cavity decay was less significant with weaker coupling
and absent outside of the cavity (Fig. 7).
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Figure 7: Relaxation from one LH2 (LH2 a) to another (LH2 b) starting from a state with the seventh
lowest energy of about 11980 cm−1 or ∼ 835 nm and with a predominant LH2 a character (right)
when the cavity wavelength is 780 nm. The occupancy in the cavity is given by the photonic Hopfield
constants of each state (yellow), and scaled by a factor of 10. All of the seven lowest energy states
are B850 states (Fig. 6) with a slight photon character in the states 1,3 and 5 in the LP branch (Fig.
6). The coupling constant E (see Section 2.3 and Eq. 2.23) is lower by a factor of 1/2, 1/4 and 1/16
in the three cases below the one with E= 50 cm−1. The cavity lifetime is set to 14 fs, and without
the cavity, the slight decay is only due to the exciton lifetime (τexc). Odd dark states belong to LH2
a and even dark states to LH2 b, which is a coincidence due to the slight differences in the diagonal
disorders in the LH2 a and b chlorophyll sites: from the bottom of Fig. 6, it can be seen that such
an alternating pattern is not always followed. The differences in E can be thought to arise e.g. from
varying the volume of the cavity (Section 2.2).

5 Discussion

Light-matter states appear in cavities as a photon with a suitable energy excites the system
from a state |Nc, G⟩ into the polariton state. The physical understanding of the determination
of the absorption signal and the excitation mechanism of the polariton branches, however,
remains elusive. The rigorous quantum electrodynamical treatment of absorption as outlined
in [35] poses difficulties in the case of cavities, because the field modes inside and outside
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the cavity have to be treated separately. Thus, an intuitive understanding of the absorption
happening directly via a resonant photon entering the cavity appears as a good starting point
for understanding the phenomenon, as I have shown in this thesis.

The formation of polaritons requires strong coupling between the cavity and the molecular
components, which is not possible if the occupied cavity mode is not close to resonant with
the molecular energy levels for coherent energy exchange between the cavity and the molecules
to occur [46]. As can be seen from the lack of hybridization when the polarization of the
cavity mode is approximately perpendicular to the transition dipole moments of the molecules
(cf. Figs. 3 and 1 c), a strong enough interaction is also required. Strong coupling causes the
excitons with significant transition dipole moments to obtain photonic character, resulting in
the appearance of the polariton branches. Because of the mixture of photonic and molecular
character, the dispersion curves of polaritons are also mixtures of the dispersion curve of the
cavity and the nondispersive behaviour of the molecular states. In the case of LH2s studied in
this thesis, the LP and UP branches exhibit the photonic linear dispersion relation far from the
excitonic levels, and the three polariton branches appear as the energy of the cavity approaches
that of the excitons. With low cavity energies, for example, the MP and UP branches correspond
to the energies of the B800 and B850 levels with significant transition dipole moments but then
shift closer to the diagonal cavity dispersion curve with increasing photon character. [4, 17]

The molecular picture in which I treated the LH2 as a single molecular unit with well-defined
directionality appears to agree rather well with the excitonic picture in which the cavity was
coupled to the excitons of a group of LH2s (Fig. 3). An exception is the case with the
polarization being perpendicular to the molecular transition dipole moments. I believe that in a
population of randomly oriented LH2s, the probability of an LH2 to be oriented perpendicularly
to the polarization would be very low: there are many more orientations corresponding more
closely to the x- and y-cases in Fig. 1 so that the effective spectrum would nevertheless be
the same as with the excitonic picture. With regard to the change of basis, I could have
obtained the same spectra as those that I constructed with the molecular picture also by using
the excitonic basis with the directed LH2 simply because the change of basis does not affect
the spectral observables [47]. On the other hand, the use of the site basis makes most of the
computations in this thesis not only computationally significantly quicker for the computer, but
also mathematically simpler. For example, the Hopfield constants of the B800 and B850 (Eqs.
4.1-4.2) could have as well been computed with the site basis and with the sums of the form∑

n |cJ(n)|2 instead of
∑

α,n |cJ(α)|2|cα(n)|2.

Since the strong coupling is induced via coupling of the cavity to the transition dipole moments,
the stick spectra that specify the magnitudes of the transition dipole moments as in Fig. 1
can be used to evaluate which molecular structures contribute most to the formation of the
polariton branches. In the case of the LH2, the B850 excitons have the greatest transition
dipole moments. This is not a coincidence, because the 18 chlorophylls in the B850 ring
are significantly closer to each other than the chlorophylls in the B800 ring, contributing to
delocalized excitons involving multiple B850 chlorophylls [11]. In fact, approximating the B850
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chlorophylls as point dipoles might be a slightly crude one and is presumably the reason for the
small but noticeable difference in the position of the B850 peak in the experimental spectrum
(Fig. 1 d). A more accurate spectrum could be also be obtained by averaging spectra over
multiple sets of disorders, which in effect occurs in the nature [20]. In any case, it appears that
the B850 peak is approximately twice the size of the B800 peak because there are twice as
many B850 chlorophylls contributing to the transition dipole moments as B800 chlorophylls.

Because the cavity couples to the transition dipole moments, it is understandable that the B850
states contribute most to the coupling between the excitons and the cavity and the consequent
mixing of the polariton states (Figs. 6 and 4 d). The Hopfield constants defined for the B800
and B850 rings also clearly verify the requirement for the cavity to be close to resonant with
the excitons for the mixing to occur (Fig. 4 d). The apparent coupling to the dark states of
B850 in the UP branch, however, is likely a consequence of not including cavity broadening, or
the uncertainty in the energy of the photon already in the Hamiltonian as in [18]: a photon that
is never fully resonant with an exciton with a negligible transition dipole moment would likely
also not mix with it. Similarly, the avoided crossings between the dark states and the polariton
branches in Fig. 4 b and the erratic and discontinuous behaviour of the Hopfield constants at
the regions where the anticrossings occur would likely also disappear after the inclusion of the
cavity broadening to the Hamiltonian.

In the case of two LH2s instead of one, the slight differences in the excitonic energies due to the
different energy disorders smooths out the plots of the Hopfield constants slightly (Fig. 5). The
two LH2s contributed about equally to the visibility of the polaritonic branches, confirming the
possibility of forming macroscopic states involving hundreds of thousands of LH2s that may be
far away from each other within the volume of the cavity (Fig. 5). Furthermore, the individual
states exhibited clear delocalization among the two LH2s in the polariton branches, validating
that such macroscopic states would likely involve coherent states (Fig. 6).

The delocalized states played a crucial role in making the energy transfer from one LH2 to
another possible (Fig. 7). This is exemplified by the lack of transfer in two noninteracting LH2s
outside of the cavity, which involve excitonic states that are either localized at one LH2 or
the other. With delocalization, the overlap of wavefunctions between the polaritons that are
strongly coupled to the cavity makes the transfer from the initial state localized at LH2 a to
other states with LH2 b character possible via the phonon bath that is shared by the localized
and delocalized states (cf. Eq. 2.32 and Section 2.6). Because the delocalization requires
the presence of the cavity, the transfer can be characterized as being cavity mediated. The
population in the initial LH2 always remained higher than in the LH2 accepting the energy,
because the seven states with the lowest energies and consequently highest populations had
on average higher occupancy in the initial LH2 (cf. Figs. 7 and 2). Because the delocalized
states appear at the polariton branches with partial photonic character, cavity decay upon the
energy transfer cannot completely be avoided. Intriguingly however, some of the states in the
polariton branches are delocalized even in the absence of photon character (see also Fig. 6).
It appears as if excitons can also mix with unoccupied cavity modes, which presumably is an
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indication of a complete energy transfer from the cavity to the molecules. The inclusion of only
a single cavity mode to the model, however, is an approximation in and of itself. More general
approaches exist [14] and could have an effect on the relaxation dynamics.

6 Conclusion

With the help of numerical computations, I have shown how the central properties of molecular
polaritons, namely strong coupling and mixing between the molecules and the photon modes,
become evident in the photosynthetic light harvesting complexes placed in a cavity. With such
fundamental knowledge on the ’anatomy’ of the molecular polaritons of LH2 and the cavity, I
have further laid a framework with which energy transfer between LH2s can be studied theo-
retically. Importantly, I have built the models from ground up, starting from the reconstruction
of the well known spectrum of the LH2 outside of the cavity, recreating the known relaxation
dynamics from the weakly coupled B800 to the strongly coupled B850 ring within the LH2
and finally using the same parameters with simulations of polaritons when applicable. A logical
next step would be to test the relaxation dynamics of LH2-cavity polaritons with time-resolved
spectroscopy methods [21].

Strong coupling to a cavity mode is well known to be a fundamental requirement for the
formation of polaritons also with biological molecules [4, 46]. I have further pointed out the
correlation between the magnitudes of the transition dipole moments of the excitons and the
extent to which the cavity mixes with different molecular structures in which the excitons form.
Specifically, the B850 ring appears to contribute most to the mixing, exhibiting delocalized
excitons with the greatest transition dipole moments. The apparent coupling to the dark B850
states with negligible transition dipole moments, however, is most likely an artifact of the model,
which could be avoided if cavity broadening were to be included.

The simulations I have carried out show a possible mechanism with which the energy transfer
between photosynthetic molecules could be altered: via phonon-mediated surface hopping be-
tween highly delocalized molecular polaritons and localized dark states. The manifold of dark
states that remains uncoupled with the cavity is expected to initiate a fast relaxation away from
the excited polariton branch before the cavity decays. The unavoidable relaxation to states of
lower energy then leads to occupying polaritonic branches of lower energy. The coherence that
is initially lost can then be regained via energy transfer from localized states to again highly
delocalized, macroscopic states involving thousands of LH2s.

Due to the dependence of strong coupling to the number of chromophores in the cavity, polari-
ton states could potentially be formed by utilizing only a few bacteria, each with multiple LHCs,
in the cavity [4]. The bacterium Rhodopseudomonas acidophila whose LHC I studied in this
thesis has a width of about 1 µm and a length of 2-5 µm [48], making the incorporation into a
microcavity viable [4]. The potential to transfer energy between well separated molecules in the
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cavity might also make energy transfer between whole photosynthetic bacteria possible. Excess
light can be harmful to photosynthetic organisms, which avoid photodamage by dissipating
excess excitation energy away from the photosynthetic molecules [49]. The cavity-mediated en-
ergy transfer between photosynthetic bacteria and the related delocalized states might alleviate
such photodamage via distribution of excitations among multiple bacteria.
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A Disorders used in the simulations

Disorders a (cm−1) Disorders b (cm−1)
228 189
66 118
-11 -31
21 48
94 89
23 11
208 229
-129 -126
-44 -76
-54 -50
-106 -129
23 5
91 82
-44 -21
49 10
43 88
172 199
-24 -47
-46 -39
54 40
-20 2
30 8
252 271
-64 -87
155 157
-18 -7
-29 25

Table 1: The diagonal disorders used in the simulations for each chlorophyll in the LH2 ring. Disorders
a are the default disorders used in all other simulations other than those which involved two LH2s.
Disorders b are the disorders of the extra LH2. Every third row in the table is a disorder of a chlorophyll
in the B800 ring, whereas every 2 preceding terms are the disorders of two chlorophylls in the B850 ring
closest to the B800 chlorophyll. Due to symmetry of the B800 and B850 rings, the specific ordering
of these groups of 3 disorders within the LH2 is expected to have negligible effect on the spectra.
To preserve the correct shape of the LH2 spectrum outside the cavity, the Disorders b were obtained
from Disorders a via addition of random numbers to each element from a gaussian distribution with a
variance of 30 cm−1.
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