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Abstract

On the financial markets, there are a large number of financial instruments. Two of these in-
struments is the European and Bermudan option, where the Bermudan option can be seen as
a discrete version of the American option. Meaning, if one can price the Bermudan option one
can also estimate the price of an American option. A method used to estimate the Bermudan
option price is the Least-square Monte Carlo approach. It is a numerical approach that uses
simulated values of the underlying asset and fits a polynomial for each date exercise is possible.
The function is used to estimate the holding value of the option, by which one can determine
whether to exercise the option. Using four different price movement models to simulate the
value of the underlying asset, European option prices were estimated using the standard Monte
Carlo method and Bermudan option prices were estimated using the Least-square Monte Carlo
approach. The results show that the pricing of the European options frequently results in op-
tions prices outside the ASK/BID-spread. It also shows tendencies towards better estimations
using price movement models containing more parameters, but that these models do not always
show better results. Probably, it is because of external problems such as parameter fitting.
The results also show that the Least-square Monte Carlo approach works sufficiently well when
pricing the Bermudan option, but that in some cases incorrect estimations are made stemming
from the fitted polynomials. To conclude, the Monte Carlo based option pricing methods are
considered to work and result largely in satisfactory estimations, but contain problems such as
the choice and fitting of polynomials and parameter calibration.

Keywords: Option, Monte Carlo *, Least-square *, Black-Scholes, Merton, Heston, Bates
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1 Introduction

In this section the background for the project, its problem formulation, deliminations, and earlier
studies conducted on the subject are presented.

1.1 Background

There is a ceaseless development of the financial instrument’s prices, and therefore a need for traders
to develop superior methods to value these assets and make a profit from them. One instrument
whose pricing is particularly complex is options, which is a contract between an option holder and a
option issuer. The holder have the right to buy or sell an underlying asset at a future date for a pre-
determined price. For a trader that want to issue an option, for which there are no current market,
there is a need to set a correct price on the option. If prices are already available, there may be a need
to control that they are reasonable, regardless of whether the trader intend to issue or buy the option.

One method to price options is through Monte Carlo simulations, which is the approach we will
take on in this paper to price European and Bermudan stock index options. Four different models
will be used to simulate the underlying asset’s price. The simplest is the Black-Scholes-Merton
model, in which one assumes the stock index follows a Geometric Brownian motion (a model using
constant volatility). We will also consider two extensions of this model, which are the Merton Jump
Diffusion (MJD) model and the Heston model. In the MJD model, random jumps in the stock
indexes are added, while in the Heston model we take into account that the volatility is stochastic.
The last model that is considered in this paper is Bates model, which includes both random jumps
and stochastic volatility. A variance reducing technique will also be implemented and tested for the
examined types of options.

1.2 Problem formulation

This thesis aims to price European and Bermudan stock index options for the OMXS30 index
through Monte Carlo Based option pricing methods, with several models for the underlying asset
price movements. Doing this, can one see a difference in performance between methods and models
for stock price movements used, and to what extent the European & Bermudan options are correctly
priced. Furthermore, do we see any improvement in performance if variance reducing techniques are
implemented when performing the Monte Carlo-based option pricing.

1.3 Deliminations

The project conducted is restricted to one underlying asset and one single day, which mainly is due
to existing limitations concerning computational power and access to needed data, for instance on
Bermudan stock index option prices. The number of configurations and alternations of the methods
used in the project was also restricted due to limitations concerning computational power and the
scope of the project.

1.4 Earlier studies

Both the fields of Monte Carlo-based statistical methods and financial derivatives are extensively
researched. In the extension, we get the field of financial engineering using Monte Carlo-based
methods. Since many financial derivatives have no closed solution for their price, more and better
methods for pricing these using for example Monte Carlo-based methods will always be sought after.
When it comes to pricing European options, the Nobel prize-winning contribution of Robert C.
Merton and Myron S. Scholes in collaboration with Fischer Black, was a tremendous leap forward
for the world of academics, the world of finance and society at large [16]. A backside of the Black-
Scholes-Merton model is that one of its assumptions is that the underlying asset moves according
to a geometric brownian motion, and could be considered too crude and imprecise for real-world
applications. Later, Peter Carr and Dilip B. Madan developed a way of pricing a European option
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for any price movement of the underlying asset that is used [10][9]. However, this does not apply
to options other than European options. A method that (now) manages to estimate the price of
American-style options is the Monte Carlo-based option pricing. Other popular methods used when
pricing options include binomial trees and partial differential equation (PDE) methods.

In 1977, the Irish economist Phelim Boyle developed the first Monte Carlo-based method for option
pricing [4]. By simulating paths for the underlying asset price, and averaging the discounted payoff
for all the paths at the time of maturity, he could estimate a price for the option. The method was at
first only applicable for European options, but in 1996, M. Broadie and P Glasserman utilized Monte
Carlo methods in the pricing of Asian options. Oppose to American and European options, the price
of Asian options depends on the average price of the underlying asset during a certain time period
[6]. In the same year, the so-called Least-square Monte Carlo approach was introduced by Jacques
F. Carriere to price American-style options, which are contracts that allow the holder to exercise the
option continuously during the option’s lifetime. Francis Longstaff and Eduardo Schwartz improved
on this method by, among other things, excluding paths that are Out of the Money (OTM) in the
option pricing algorithm and applying it to derivatives with several underlying factors [21].
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2 Theory

In this section, we outline the theories and principles needed and used in this thesis. The overall
themes we will discuss are Option theory, Monte Carlo theory, Stock price motion models, and
Monte Carlo based option pricing

2.1 Option theory

In the following subsection, we outline the basic principles concerning options and options theory.
Furthermore, the theory surrounding asset price movement and the Black-Scholes-Merton differential
equation are outlined and explained.

2.1.1 Types of options

Firstly there are two types of options - call and put options. The call option gives the holder the
right to buy the underlying asset at one or more specified point-/s in time for a predetermined price
to the option issuer. The put option gives the holder the right to sell the underlying asset at one or
more specified point-/s in time for a predetermined price to the option issuer. The predetermined
price is called the strike price or the exercise price. The last date the holder is permitted to exercise
the option is called the expiration date. The remaining time to the expiration date is called Time
to Maturity. In European contracts, the option can only be exercised on the expiration date itself,
whereas American options can be exercised any time up until and on the date of expiration [15] (p.
23-45). Because of the possibility of early exercise, the price of an American option is greater than
or equal to the one of an European option with the same underlying asset, strike price and time
to maturity [14]. Furthermore, there are option types called Bermudan options, which are options
that can be exercised on predetermined point-/s in time up until and including the expiration date
[15] (p. 620-645). A Bermudan option can be viewed as an American option with finite and discrete
points in time the option can be exercised. Consequently, the price is less or equal to the one for an
American option, but larger than or equal to the price of an European option [14].

A stock index tracks changes in the value of a hypothetical portfolio of stocks. The weight of a
stock in the portfolio at a particular time equals the proportion of the hypothetical portfolio in-
vested in the stock at that time. The percentage increase in the value of the stock index over a small
interval of time is set equal to the percentage increase in the value of the hypothetical portfolio [15]
(p. 71-98). A stock index option is an option with an index as the underlying asset. These are often
European type options, where one contract usually is to buy 100 times the index at the specified
strike price and settlement is always in cash (rather than receiving the actual asset) [15] (p. 235-255).

The typical appearance of the option price functions for an European put and American put option
with the same underlying asset and strike price (which in this case is 10) are demonstrated in figure
1 with the corresponding payoff function. One property to take notice of is that they are convex
and non-increasing [17].
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Figure 1: Plot of payoff function and prices for an European and American put option with strike
price 10 [17].
Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under
the Creative Commons Attribution International License (CC BY 4.0)

2.1.2 Brownian motion

A stochastic process is the name of a family of random variables. We can denote the stochastic
process as {Z(t), t ≥ 0}, where the variable’s position in the mathematical space is Z(t) at time t,
and the change in the variable’s position is ∆z = ε

√
∆t, where ε ∼ N(0, 1), during a small time pe-

riod ∆t . The process is then called a Brownian motion process if the following properties are fulfilled:

(i) Z(0) = 0
(ii) Each increment of {Z(t), t ≥ 0}, which we denoted ∆z, are stationary and independent.
(iii) Z(t) ∼ N(0, ε2t) for all t > 0 [26]

A standard Brownian motion process is modelled by a basic Wiener process, in which we assume
ε follow a normal distribution with the mean equal to 0, and variance equal to 1. If we denote a
Wiener process with the time step ∆t→ 0 by dz, the Generalized Wiener process can be described
as [31]:

dx = adt+ bdz (1)

Consequently, the change of the variable’s position is then described by:

∆x = a∆t+ bε
√

∆t (2)

Here, a is referred to as the drift rate and b2 as the variance rate.

2.1.3 Itô’s process & Itô’s lemma

Suppose that the value of a variable x follows the process:

dx = a(x, t)dt+ b(x, t)dzt (3)
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, called the Itô’s process. Here z is a Wiener process and a and b are functions of x and t, where x
has a drift rate of a [31] and a variance rate of b2 [15] (p. 324-342) [31].

Itô’s lemma shows [31][34] that a function G = G(t, x) follows the process [15] (p. 324-342):

dG = (
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2)dt+

∂G

∂x
b dzt, (4)

where z is a Wiener process.

This gives that G follows the Itô’s process with a drift rate of (∂G∂x a+ ∂G
∂t + 1

2
∂2G
∂x2 b

2) and a variance

rate of (∂G∂x )2b2.

Replacing equation (3) with the equation:

dS = µSdt+ σSdzt. (5)

It then follows from Itô’s lemma that the function G = G(t, S) follows the process [15] (p. 324-342)
[31][34]:

dG = (
∂G

∂S
µS +

∂G

∂t
+

1

2

∂2G

∂S2
σ2S2)dt+

∂G

∂S
σS dzt (6)

2.1.4 Black-Sholes-Merton

The idea underlying the Black-Scholes-Merton (BSM) differential equation is that the equation must
be satisfied by the price of any financial derivative dependent on a non-dividend-paying stock. The
BSM differential equation is derived through setting up a riskless portfolio consisting of a position
in the derivative and a position in the underlying asset. In absence of arbitrage opportunities, the
return from the portfolio must be the risk-free interest rate, which leads to the BSM differential
equation [15] (p. 324-375).

The assumptions made when deriving the BSM differential equation are [15] (p. 324-375):
1. The stock price follows a Geometric Brownian motion.
2. The short selling of securities with full use of proceeds is permitted.
3. There are no transaction costs or taxes. All securities are perfectly divisble.
4. There are no dividens during the life of the derivative.
5. There are no riskless arbitrage opportunities.
6. Security trading is continuous.
7. The risk-free rate of interest, r, is constant and the same for all maturities.

When deriving the BSM model we first consider a derivative’s price at a time t, and the time
T is the maturity date [15] (p. 343-375). This leads to that the time to maturity is T-t.
We assume the stock price process follow the model [15] (p. 324-342), which is a Geometric Brownian
motion:

dS

S
= µdt+ σdzt (7)

, which gives:
dS = µSdt+ σSdzt (8)

, where µ is the stock’s expected rate of return, σ is the volatility of the stock price, dt is a short
period of time, and the variable z follows a Wiener process. Now suppose that f is the price of a call
option, or another financial derivative, contignent on S, then equation (6) gives the equation [15] (p.
343-375):

df = (
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2)dt+

∂f

∂S
σS dzt (9)
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If we discretize (9) we get:

∆f = (
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2)∆t+

∂f

∂S
σS∆z, (10)

where ∆z = ε
√

∆t, with ε ∈ N(0, 1).

If we construct a portfolio where we go short in 1 option and we go long in ∂f
∂S stock underly-

ing the option the value of the portfolio becomes:

Π = −f +
∂f

∂S
S (11)

The change in value of the portfolio for a small time frame then becomes:

∆Π = −∆f +
∂f

∂S
∆S (12)

Substitute equation (10) and the discretized version of equation (8) into equation (12) gives:

∆Π = −(
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2)∆t− ∂f

∂S
σS∆z +

∂f

∂S
µS∆t+

∂f

∂S
σS∆z (13)

Simplifying equation (13) gives:

∆Π = (−∂f
∂t
− 1

2

∂2f

∂S2
σ2S2)∆t (14)

It follows from equation (6) that since it does not contain ∆z it must be riskless during time ∆t, and
hence it must have the same rate of return as other short-term risk-free securities so not to violate
the assumption of no riskless arbitrage opportunities [15] (p. 343-375). This imply that:

∆Π = rΠ∆t, (15)

where r is the risk-free interest rate. Substituting equations (11) and (14) into equation (15) and
simplify resulting expression gives:

rf =
∂f

∂t
+ r

∂f

∂S
S +

1

2

∂2f

∂S2
σ2S2 (16)

Equation (16) is called BSM differential equation and have many different solutions depending on
the different derivatives that is defined and the underlying asset. The different derivatives depend
on which boundary conditions that are used, i.e. the specification of the value of the derivative at
the boundaries of possible values of S and t [15] (p. 343-375).

A way of solving BSM differential equation is through the of risk-neutral valuation approach. Since
BSM differential equation does not contain any variables that are affected by risk preferences (current
stock price, time, stock price volatility and the risk-free rate are all independent of risk preference),
we can use any risk preferences when evaluating f. Making the assumption of a risk-neutral world,
the expected value of a European call option at maturity becomes [15] (p. 343-375):

Ê[max(ST −K, 0)], (17)

and the expected value of a European put option at maturity becomes [15] (p. 343-375):

Ê[max(K − ST , 0)] (18)

Here Ê denotes the expected value in a risk-neutral world. In this risk-neutral world, the Euopean
call (c) and put (p) option prices is the expected value discounted at the risk-free rate, which gives
[15] (p. 343-375):

c = e−rT Ê[max(ST −K, 0)] (19)
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p = e−rT Ê[max(K − ST , 0)] (20)

Solving equation (16) for a non-dividend-paying stock maturing at time T gives [15] (p. 343-375):

c = S0N(d1)−Ke−rTN(d2)

p = Ke−rTN(−d2)− S0N(−d1)

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

d2 =
ln(S0/K) + (r − σ2/2)

σ
√
T

= = d1 − σ
√
T

(21)

2.1.5 Problems using Black-Scholes-Merton

Problems arise when one wants to either price other options than non-dividend-paying European
options, use other models for stock price movements than the Geometric Brownian motion, or both
at the same time. We then get pricing formulas that are vastly more complicated than those defined
by equation (21), or get no closed formed expression for the price of the option at all [15] (p. 324-
342)[15] (p. 646-676) [23]. An alternative way of pricing different types of options with different
models for stock price movements is then to use a Monte Carlo based option pricing method.

2.1.6 Continuous dividend yield

If we have dividend payments from the underlying asset, we can derive a no dividend paying model
equivalent to the dividend paying one. If we assume that we have continuous dividend yield, one
can show that equation (8) instead becomes [5]:

dS = (µ− q)Sdt+ σSdzt, (22)

where q is the dividend yield. Which means that equation (21) becomes:

c = S0e
−qTN(d1)−Ke−rTN(d2)

p = Ke−rTN(−d2)− S0e
−qTN(−d1)

d1 =
ln(S0/K) + (r − q + σ2/2)

σ
√
T

d2 =
ln(S0/K) + (r − q − σ2/2)

σ
√
T

= d1 − σ
√
T

(23)

2.1.7 Time coherent interest rates model

We define a time coherent interest rate model as:

er0,iT0,ieri,jTi,j = er0,jT0,j , (24)

where i < j

For two options with different time to maturity we define one time of maturity Ti and another Tj .
Inserting these times of maturity and corresponding yields in equation (24) allows us to calculate a
yield between time i and j according to:

eri,jTi,j =
er0,jT0,j

er0,iT0,i
(25)
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The yield between t = 0 and t = i composed with the yield between t = i and t = j gives us a
coherent yield curve between t = 0 and t = j.

If one have additional options with time of maturity k, where k > j, then using the options with
time to maturity j and k and the same calculations as in equation (25) gives us the yield between
t = j and t = k. Composed with the yield curve calculated earlier we get a yield curve between
t = 0 and t = k. This can be done repeatedly for more options with different time to maturity.

2.2 Monte Carlo theory

In the following subsection we outline and define the mathematical foundation on which the Monte
Carlo based option pricing rely on, and that are used in this thesis.

2.2.1 Law of Large numbers

For i.i.d. sequences of one-dimensional random variables X1, X2, ..., let X̄n =
∑n
i=1Xi/n. The weak

law of large numbers states that X̄n converges in probability to µ = E{Xi}, if E{|Xi|} < ∞. The
strong law of large numbers states that X̄n converges almost surely to µ if E{|Xi|} < ∞. Both
results hold under the more stringent but easily checked condition that var{Xi} = σ2 <∞ [12] (p.
1-20).

2.2.2 Central limit theorem

If X1, X2, ..., Xn are n random samples drawn from a population with overall mean µ and fi-
nite variance σ2, and if X̄n is the sample mean, then the limiting form of the distribution, Z =

limn→∞
√
n
(
X̄n−µ
σ

)
, is a standard normal distribution [22].

2.2.3 Monte Carlo method basic principle

We define the expectation of a function of a random variable as E{h(X)}. Let f denote the density
of X, and µ denote the expectation of h(X) with respect to f . When an i.i.d. random sample
X1, ..., Xn is obtained from f , we can approximate µ by a sample average [12] (p. 151-200):

µ̂MC =
1

n

n∑
i=1

h(Xi)→
∫
h(X)f(X)dx = µ (26)

as n → ∞, by the strong law of large numbers. Further let v(x) = [h(x) − µ]2, and assume that
h(X)2 has finite expectation under f . Then the sampling variance of µ̂MC is σ2/n = E{h(X)/n},
where the expectation is taken with respect to f [12] (p. 151-200).

2.2.4 Control variates variance reduction

The control varites variance reduction technique is a technique used improve an estimate by relating
the estimate to some correlated estimator of an integral whose value is known. Suppose we want to
estimate µ = E{h(X)}, and we know the related quantity θ = E{c(Y )} which can be determined
analytically. Let (X1, Y1), ..., (Xn, Yn) denote pairs of random variables observed independently as
simulation outcomes, which gives cov(Xi, Xj) = cov(Yi, Yj) = cov(Xi, Yj) = 0 when i 6= j. Then

the normal Monte Carlo estimators are µ̂MC = 1
n

∑n
i=1 h(Xi) and θ̂MC = 1

n

∑n
i=1 c(Yi). If µ̂MC is

correlated with θ̂MC one wants to adjust µ̂MC accordingly . This suggest a control variate estimator
looking like [12] (p. 151-200):

µ̂CV = µ̂MC + β(θ̂MC − θ), (27)

where β is the parameter to be chosen. If we take the variance of equation (27) then we get:

var(µ̂CV ) = var(µ̂MC) + β2var(θ̂MC) + 2βcov(µ̂MC , θ̂MC) (28)
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Minimizing equation (28) with respect to β gives:

β = −cov(µ̂MC , θ̂MC)

var(θ̂MC)
(29)

One can see it as the control variate estimator is the fitted value on a regression line at the mean
value of the predictor, and the standard error of this control variate estimator is the standard error
of the fitted value from the regression [12] (p. 151-200).

2.3 Option pricing by Carr and Madan

A general formula for pricing any options in a complete and arbitrage-free market is [10]:

Vt(K) = e−r(T−t)EQ[H(St)] (30)

Vt(K) = Option value at time t with strike price K
T = Time to maturity
EQ = Expectation under risk neutrality
H(St) = Option payoff

Peter Carr and Dilip B. Madan developed a formula to solve equation (30) for the pricing of European
options. The result is presented below [9]:

Ct(k) =
e−αk

π

∫ ∞
0

e−ivkψ(v)dv

ψt(v) =
e−r(T−t)Φ(v − (α+ 1)i)

α2 + α− v2 + i(2α+ 1)v

(31)

Ct(k) = European call option price function
k = ln(K), where K is the strike price
α = damping factor
r = interest rate of a risk free asset
Φ = Risk neutral characteristic equation

The risk neutral characteristic function Φ differs depending on the model for stock price movement
that is used.

2.4 Stock price motion models

In the following subsection different Stock price motion models are outlined and defined, as well as
their specific characteristics, similarities and differences.

2.4.1 Black-Scholes model

What in this project will be referred to as the Black-Scholes model is the price movement model
presented in equation (7).

2.4.2 Merton Jump Diffusion model

The Merton Jump Diffusion model, or Merton model, is one extension of the ordinary BSM model.
It aims to capture the effect unexpected events may have on the stock prices. New information on
the market may cause a stock’s price to drastically decline or rise, and these discontinuities does the
BSM model not account for. In 1976, Merton introduced a new model to capture this phenomena.
It consists of lognormal jumps, driven by a Poisson process, while the diffusion is modelled by a
Geometric Brownian motion. These two processes are independent of each other. The equations for
the stock price movement is presented below [23]:
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dS(t)

S(t)
= (r − λj̄)dt+ σdW (t) + jdq(t)

j̄ = (eµj+
σ2j
2 − 1)

(32)

S(t) = Stock price at time t.
r = interest rate of a risk free asset.
dW (t) = Geometric Brownian motion
dq(t) = Poisson process.
λ = intensity of the jumps.
j = coefficient for the jump size.
j̄ = mean of log jump.
σj = standard deviation of log jump.

The value of λ affect the volatility and kurtosis, which is a measure of the tail-size in the prob-
ability distribution. The jump parameter k affect the skewness, which is a measure of the steepness
of the probability distribution [18]. The model can be utilized to price options by the use of the
method developed by Carr and Madan, which is presented in (31). The characteristic function for
the MJD model is [23]:

ΦMerton (φ) = ΦBS(φ) exp(λ(T − t)(eiφµJ−φ
2σ2
J/2 − 1− iφ(eµJ+σ2

J/2 − 1)))

ΦBS(φ) = exp

(
iφ

[
ln(S(t)) +

(
r − σ2

2

)
(T − t)

]
− φ2σ2

2
(T − t)

)
φ(u) = E[exp(iu · log(S(T )))]

(33)

2.4.3 Heston model

Unlike the BSM model, in which the volatility of the stock price is assumed to be constant over
time, does the Heston model utilize stochastic volatility. The model’s equation for the movement of
the stock price is described as follows [29][1]:

dS(t)

S(t)
= rdt+

√
V (t)dW1(t)

dV (t) = κ(θ − V (t))dt+ σ
√
V (t)dW2(t)

ρdt = dW1(t)dW2(t)

(34)

S(t) = price of the underlying asset at time t
r = interest rate of a risk free asset√
V (t) = asset price volatility at time t

σ = volatility of
√
V (t)

θ = mean of the long term squared volatility
κ = mean-reversion rate back to θ
dt = indefinitely small time step (0← ∆t)
W1(t) = Brownian motion for asset price
W2(t) = Brownian motion for asset’s price variance
ρ = correlation coefficient for the two Brownian motions

One major advantage with the Heston model is that it captures the so called volatility smiles,
which is the phenomena where options further Out of the Money (OTM) or In the Money (ITM)
is accompanied with higher implied volatility. In this case, implied volatility is an estimate of an
option’s volatility based on the volatility of other options on the market. If we were to compare
implied volatility against strike price, where the options’ expiration date and underlying asset is the
same, the graph would be concave. This is unlike the BSM model, for which the graph would be a
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straight line due to the assumption of constant volatility [28]. The correlation coefficient ρ affects
the skewness of the smile, while the volatility parameter θ influence the kurtosis [18].

In Equation (34), the correlation coefficient ρ varies between -1 and 1, but in reality it tends to
be negative due to the leverage effect. The negative relationship between the asset return and its
volatility implies that declining prices tends to be accompanied with increasing volatility and vice
versa. Another phenomena the model captures is the tendency for the asset price volatility to revert
back to the long run variance with the rate k [23].

When pricing option based on the stock price movement suggested by Heston, one can utilize the
method developed by Carr and Madan. The formulas (31) are used with the risk neutral character-
istic equation for the Heston model, which is presented below [23]:

ΦHeston (φ) = exp (C +DV0 + iφ ln(S(t)))

C = riφ(T − t) +
κθ

σ2

[
(κ+ λV olRisk − ρσiφ+ d) (T − t)− 2 ln

(
1− ged(T−t)

1− g

)]
D =

κ+ λVolRisk − ρσiφ+ d

σ2

(
1− ed(T−t)

1− ged(T−t)

)
g =

κ+ λVolRisk − ρσiφ+ d

κ+ λVolRisk − ρσiφ− d

d =

√
(κ+ λVolRisk − ρσiφ)

2
+ σ2 (iφ+ φ2)

φ(u) = E[exp(iu · log(S(T ))), V (t)]

(35)

λV olRisk in the equation is the risk premium the stakeholders demand as compensation for the
volatility of the asset price, but in a risk-neutral world it is equal to zero.

2.4.4 Bates Model

A combination between the Heston model and MJD model was introduced by David Bates in 1996,
which takes both stochastic volatility and random jumps into account in the modeling of the stock
price movement. The stock price movement is described by the following equations [18]:

dS(t)

S(t)
= (r − λj̄)dt+

√
V (t)dW1(t) + jdq(t)

dV (t) = κ(θ − V (t))dt+ σ
√
V (t)dW2(t)

ρdt = Cov(W1(t)W2(t))

(36)

S(t) = price of the underlying asset at time t
r = interest rate of a risk free asset
λ = intensity of the jumps
j = coefficient for the jump size.
j̄ = mean of log jump.√
V (t) = asset price volatility at time t

σ = volatility of
√
V (t)

θ = mean of the long term squared volatility
κ = mean-reversion rate back to θ
dt = indefinitely small time step (0← ∆t)
W1(t) = Brownian motion for asset price
W2(t) = Brownian motion for asset’s price variance
q(t) = Poisson process
ρ = correlation coefficient for the two Brownian motions
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The characteristic equation for the Bates model is [23]:

ΦBates (φ) = exp (C +DV0 + iφ ln(S(t))) ·A

A = exp(λ(T − t)(eiφµJ−φ
2σ2
J/2 − 1− iφ(eµJ+σ2

J/2 − 1)))

φ(u) = E[exp(iu · log(S(T ))), V (t)]

(37)

The formulas for C and D are given in (35)

2.5 Parameter calibration

To use the models mentioned in section 3.3, the parameters need to be calibrated as they are usually
unknown beforehand. The idea is to use the Carr and Madan method (31) and the characteristic
equation for each model based on some parameters that we estimate. We then compare these prices
with the market option prices. If the price evolution corresponds well, we use the estimated param-
eters in the models when pricing options with Monte Carlo methods.

To determine the parameters, one may use the weighted least square method. The idea is to
determine the parameters that minimize the squared distance between the option prices calculated
with the model’s closed-form formula and the observed prices on the market. We introduce the
following equations and notations to explain the problem mathematically [20]:

LWLS
t (θ) =

t∑
s=1

Ns∑
i=1

λs,i
(
c?s (Ki, τi)− cModel

s (Ki, τi; θ)
)2

θ̂t = arg min
θ∈Θ

LWLS
t (θ)

(38)

LWLS
t = Objective function, i.e. sum of squared residuals.

c?s = Market price.
cModel
s = Predicted price by the model.
θ = Vector of parameters in each model.
θ̂ = Vector of parameters that minimizes the problem function.
λs,i = Weights

The Market price is approximated as the middle-value between the bid and ask price. The choice
of the weight λ can vary, but to receive minimal variance one should set it as the inverse of the
residuals’ variance. One can also choose λ as to be proportional to the inverse of the bid-ask spread,
or simply use a constant [20].

Oftentimes, the problem function may not be convex and inherit several local minimum points.
In this case, it is not assured that a certain solution θ̂ is the optimal one, as it will depend on which
parameters we start with. To get closer to the global minimum, one can utilize sequential parameter
calibration. The idea is to start with a set of parameters at time t = 1 and minimize the objective
function for the observations at this time. The resulted vector-matrix θ̂1 is then used as a start
point for the optimization problem when including observations of the option prices at both time
t = 1 and t = 2. The resulting vector θ̂2 is then the starting point at time t = 3 and so on. The
goal is to get closer to a global minimum by sequentially updating the parameter vector.

2.6 Monte Carlo based option pricing

In the following section the basic principles used, when options are priced by the Monte Carlo
method, are outlined and discussed.
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2.6.1 Monte Carlo based option pricing methodology

When using Monte Carlo-based option pricing we start by looking at equations (19) and (20) again.
These equations tell us that the present value of a call and put option, under the assumption of a
risk-neutral world, is equivalent to its discounted expected pay-off. This is the basis for option pric-
ing through Monte Carlo methods. A payoff is received by sampling price paths of the underlying
asset, and the expected payoff is estimated by discounting the value with the risk-free rate. This
is finally used to obtain the value of a derivative dependent on the underlying asset [15] (p. 472-515).

The basic principle when pricing options with the Monte Carlo method is as follows [15] (p. 472-515)
[15] (p. 646-676):

1. Sample a random path for the underlying asset in a risk-neutral world.
2. Calculate the payoff from the derivative.
3. Repeat step 1 and 2.
4. Discount the payoffs to present time.
5. Calculate the mean of the sampled discounted payoffs to get an estimate of the value of the
derivate.

By combining equations (30) and (26), with the Law of large numbers and the basic principle
when pricing options with the Monte Carlo method, this can be written as [15] (p. 472-515) [15] (p.
646-676):

1. Sample a random path for the underlying asset in a risk-neutral world.
2. Calculate if the is any early exercise of the option, and then calculate the payoff from the same.
The payoff from the option at exercise time T for iteration i can be written as:

i. cT,i = max(ST,i −K, 0) for a call option
ii. pT,i = max(K − ST,i, 0) for a put option.

3. Repeat step 1 and 2, n times.
4. Discount the payoff to present time gives the discounted payoff:

i. ct,i = e−r(T−t) max(ST,i −K, 0) for a call option
ii. pt,i = e−r(T−t) max(K − ST,i, 0) for a put option.

5. estimate the value of a:
i. call option as Ct = 1

n

∑n
i=1 ct,i

ii. put option as Pt = 1
n

∑n
i=1 pt,i

2.6.2 The Least-square approach

When estimating the price of an option, for which there are several dates for possible exercise, one
need to estimate the value of being able to perform early exercise. There are several possible meth-
ods of doing this, one of which is the Least-square Monte Carlo (LSM) approach.

The idea behind the LSM approach is at each time point when the holder can exercise the op-
tion, compare the payoff for immediate exercise with the expected payoff for continued holding.
This is done for all simulated price paths. There are multiple versions of the LSM approach, but
it is the version developed by E. Schwartz and F. Longstaff that will be utilized and somewhat
expanded in this paper. We start by defining the value of an American option [8]:

F = max(u(S, t), F̃ )

F̃ = max
t<τ<T

E′
[
e−r(τ−t)u(S(τ), τ) | S(t) = S

] (39)

F = Value of the American option
u(S, t) = Payoff for exercise at time t and stock price S
F̃ = Payoff for postponed exercise
E′(...) = Risk neutral expectation
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r = risk free interest rate
τ = The time of future payoff
T = Time of maturity

The first step of the LSM algorithm by Longstaff and Schwartz is to simulate N random paths
for the stock price (Skn, tn), where 1 ≤ k ≤ N and tn = ndt. k is the price trajectory index and n
denotes the time index. The first iteration is done at the second to last time point the holder can
exercise the option, which is the time point before the time of maturity. Therefore, we can assume
that F kn+1 = F (Skn+1, tn+1) is known. We define the current asset value as X = Skn and the expected
future value as Y k = e−rdtF (Skn+1, tn+1). To increase the accuracy of the conditional expectation
function near the stock prices for which exercise is relevant, only ITM trajectories are included. The
regression of Y is performed conditional on a finite number of basis functions p1(X), p2(X), ..., pm(X)
such that the squared residuals is minimized, yielding the following expression for the conditional
expectation function:

E(Y |X) =

m∑
j=0

ajpj(X) (40)

For each ITM path, E(Y |X) is compared with the payoff received by early exercise u(S, t). The
holder should exercise the option immediately if E(Y |X) < u(S, t), and keep the option alive to a
future state if E(Y |X) > u(S, t). If the option is decided to be exercised at a certain time point,
the possible future payoffs will be set to zero. Proceed recursively, we now consider the third last
time point and examine whether the holder should exercise the option early or keep it alive, then
the forth and so on. The option price is estimated by the average of the discounted future payoffs
F̃ [21]. Note, it is not the conditional expected payoffs E(Y |X) that are discounted. These values
are simply used in the decision of keeping the option alive or exercise it at another point in time.
Since the LSM algorithm utilizes the stock prices from the simulated stock price paths (denoted
from both simulated price and volatility movements when working with stochastic volatility mod-
els), rather than the stock prices and corresponding volatilities at each time point, we can apply the
same algorithm when working with stochastic volatility models [7].

There are several alternative basis functions to use in the regression of the conditional expecta-
tion function. Longstaff and Schwartz mention a few proper alternatives in their paper, among
which this paper focuses on regressions based on polynomial of power functions (41), Hermite poly-
nomial (42), weighted Laguerre polynomial (43) [2] [21], and Non-weighted Laguerre polynomial
(44).

pi(X) = Xi (41)

pn(X) = (−1)nex
2 dn

dXn
e−x

2

(42)

pn(X) = exp(−X/2)
eX

n!

dn

dXn

(
Xne−X

)
(43)

pn(X) =
eX

n!

dn

dXn

(
Xne−X

)
(44)

As (43) shows does each component of the weighted Laguerre polynomial include a negative ex-
ponent of the stock price. Unless a proper change of variables is implemented, there might arise
computational scaling problems and consequently inaccuracy in the fitted expectation function. An
appropriate choice for the put option case is to divide all cash flows and prices with the strike price.
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Then, the objective of fitting a function is limited to the area of L = S
K ∈ [0, 1], in which the basis

function decreases with S. This is a desired property, since the conditional expectation function for
a put option should be decreasing in S. However, for the call option, another variable change is
needed since its expectation function increases as S increases. It would be a bad fit to represent an
increasing function with decreasing components. Therefore, we introduce the variable L = K

S and
divide the payoffs with the stock price, thus transforming the problem to the same area as in the
put-option case. More precisely, we fit the function on a compact area for which it is decreasing in L.

For an American put option, if the conditional expectation function is fitted correctly, it should
behave like the price function plotted in figure 1. The price is based on future realized cash flows,
which is why it is a proper representation of the continuation values. A similar appearance of the
function is expected for a Bermudan put option as well, since it is simply an American-style option
with discrete time points where the holder can exercise the option.

2.6.3 Exercise Boundary

A property of the time constant volatility models’ payoff functions is quasi-linearity. A consequence
is that it is possible to predetermine an exercise boundary, which can be used in the comparison
procedure at each time step for any option we wish to price. A problem of the ordinary LSM algo-
rithm is that the estimated expectation functions tend to be bad representations of the continuation
values when it is based on only a few numbers of ITM trajectories. To get a better fit and decision
basis on whether to exercise the option early or at a later point in time, we can determine criteria for
when to exercise the option beforehand. To begin with, instead of expressing the prices and payoffs
in absolute terms, they are put as a relative value. More specifically, the payoff function for a put
option can be rewritten as u(S,K) = K · u( SK , 1). For a call option, it is instead transformed in the

following way u(S,K) = S ·u(1, KS ), to get the desired properties for the regression of the expectation
function (see section 3.5.2). These transformations also mean the definition set, let us call it D, is
on the form D ∈ [0.1]. The start values for the price simulation are spread out around the strike
price to get more trajectories ITM. Start values for a put option should be below its true stock price
and the opposite for a call option. Then, at each point in time, a conditional expectation function is
fitted. By simulating many trajectories at proper start points, these functions are (hopefully) good
estimates of the continuation values. The stock price for which the expectation function intersects
the payoff function in each time point forms the so-called optimal exercise boundary. If there are
several intersects, the one that is ITM and closest to the strike price is the one of interest. In the
pricing procedure, new trajectories are simulated for the price of the underlying asset, where the
start value is set to the initial price of the underlying. Then, starting from the first point in time, the
underlying asset’s price is compared with the corresponding critical price in the exercise boundary.
For a put, if the underlying asset’s price is below the corresponding critical price, the holder should
exercise the option at this point. For a call option, the opposite criteria apply. Since the values in
the exercise boundary are in relative terms, it is possible to use it as a stopping criterion for options
with different strike prices and time to maturity, as long as the dynamics of the underlying asset
price has constant volatility.

For the Black-Scholes model, the exercise boundary precisely before the option expires approaches
the limits max(r/q, 1) ·K for the call option and max(min(r/q, 1), 0) ·K for the put option. These
limits are true when the underlying price movement model of the underlying asset follows the Black-
Scholes model. Another way of determining the exercise boundary precisely before the option expires,
and a way that holds true regardless of the price movement model of the underlying asset, is to think
of the limit as the price of the European option at this point in time. Imagine a discretized timeline
with the possibility to exercise the option at each discrete point. At the second to last point, the
value of the option can be represented by the European option price since there is no point at which
one can exercise the option between the second to last and the last point in time. This in turn
must lead to that the exercise boundary precisely before the option expires can be calculated by
finding the value for which the pay-off function equals the value of the European option. Another
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property of the exercise boundary is that it is a concave and monotonically increasing function of
time to maturity for the call option, and a convex and monotonically decreasing function of time to
maturity for the put option [32].

For stochastic volatility models, the exercise boundary needs to include both the price and volatility
of the underlying asset. This means that a multinomial base function needs to be fitted, which
depends on the asset price and the volatility. When this multinomial base function is fitted, one can
determine an exercise boundary that is dependent on both the price and volatility of the underlying
asset.

2.6.4 Option pricing with control variates

When pricing European options, the underlying assets provide a source of control variates. Suppose
we are working with the risk-neutral measure and that the interest rate is r, and dividend yield q.
If S(t) is an asset price, then e−(r−q)tS(t) and E[e−(r−q)tS(t)] = S(0) [13]. Suppose we are pricing
options with S as the underlying asset and the discounted pay-off Yi = φ(Si(T )) = e−rT max(Si(T )−
K, 0) for a call option and Yi = φ(Si(T )) = e−rT max(K − Si(T ), 0) for a put option. From
independent replications of Si we can form the control variate estimator of the European option
price as [13][19]:

V̂CV =
1

N

N∑
i=1

(φ(Si(T ))− β∗(Si(T )− S(0)e(r−q)T ))

β∗ =
Cov(φ(Si(T )), Si(T ))

var(Si(T ))

(45)

The estimator for the Bermudan option, where ti is the time of exercise, becomes:

V̂CV =
1

N

N∑
i=1

(φ(Si(ti))− β∗(Si(T )− S(0)e(r−q)T ))

β∗ =
Cov(φ(Si(ti)), Si(T ))

var(Si(T ))

(46)

This is a control variate that is usable for all contracts but not always efficient [19]. When pricing
Bermudan options, an alternative way of reasoning is that the price of the European option can
be used. The European options mean value can analytically be calculated and can therefore be
seen as known, and the estimated values of the Bermudan and European options is correlated (see
chapter 3.2.7) [11][24]. Then, if V̂ Eu is the estimated value of the European option and V Eu is the
value of the European option derived from the closed form solution we can form the control variate
estimator, where ti is the time of exercise, of the Bermudan option price as:

V̂CV =
1

N

N∑
i=1

(φ(Si(ti))− β∗(V̂ Eu − V Eu)

β∗ =
Cov(φ(Si(ti)), V̂

Eu)

var(V̂ Eu)

(47)

Here the call option can be written as:

β∗ =
Cov(φ(Si(ti)), e

−rT max(Si −K, 0))

var(e−rT max(Si −K, 0))
, (48)

and the put option can be written as:

β∗ =
Cov(φ(Si(ti)), e

−rT max(K − Si, 0))

var(e−rT max(K − Si, 0))
(49)
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3 Methodology

In this section, the implementations and approaches, as well as assumptions and delimitations, are
explained.

3.1 Implementation

To be able to price European and Bermudan stock index options, and going forward be able to an-
swer the questions posed in the problem formulation, a literature study was initially conducted. Here
suitable models and approaches were chosen and further researched. The result of this literature
study is outlined in the theory part of this thesis (see chapter 2). During this phase, suitable data
and tools were also collected. The data includes index prices and European stock index option data
for OMXS30 between the dates 1992-May-24 - 2010-August-31. Tools used in this thesis include
MATLAB and Excel, where all code that was used was written by the authors, except opt price.m
which was provided by Magnus Wiktorsson. The file opt price.m is a file used to analytically calcu-
late the European option prices and is implementable for all the price movement models used in the
project.

Estimations of option prices for the European and Bermudan stock index option prices were done for
four different price movement models. These were the Black-Scholes model, Merton model, Heston
model, and Bates model (see chapter 2.4). For all of these, we used models adjusted for continu-
ous dividend yield (see chapter 2.1.6), and a time coherent interest rate model (see chapter 2.1.7).
Initially, the parameters of the models were calibrated with help of collected data according to the
theory on parameter calibration (see chapter 2.5). Here, the sequential calibration was done over one
day (effectively not making it sequential, or sequential with a length of one). This to be able to have
the same number of days that the parameters are calibrated for for all models, as the same time one
does not need to handle that in the Heston and Bates model the variance is as a process and therefor
can take on different values for different days. The weights λ were set to one for one of the group
of simulations, and to the inverse of the ASK/BID-spread for another. The option prices for both
the European and Bermudan-style options where calculated according to Monte Carlo based option
pricing methodology (see chapter 2.6.1). For the Bermudan, the LSM approach was implemented to
calculate possible early exercises of options (see chapter 2.6.2). The basis functions examined where
a third degree polynomial of power functions (41), the first four Hermite polynomials (42), the first
four Laguerre polynomials (44) and the first four weighted Laguerre polynomials (43), from which
one or several where chosen to conduct simulations with. The discretized time jumps used in the
calculations were one day, and the Bermudan style option were assumed to be able to be exercised
at each of these with exception for when t = 0.

In addition to the standard LSM approach, the normalized exercise boundary approach was stud-
ied and implemented in the pricing of Bermudan options (see chapter 2.6.3). When calculating
the normalized exercise boundaries for the models with deterministic volatility (Black-Scholes and
Merton), for each day, a polynomial is fitted and the intersection between the polynomial and the
pay-off function is calculated to determine the normalized exercise boundary. This is done with the
first four weighted Laguerre polynomial and parameter weights set to one. When the intersection
is calculated the non-linear least square function (lsqnonlin in MATLAB) is used, and the limit of
the first intersection is set to 1. The limits of the following intersections is set to the value of the
previous intersection. When calculating the normalized exercise boundaries for the models with
stochastic volatility (Heston and Bates), for each day, a multinomial is first fitted. Then for 100
evenly spread volatilities between 0 and 1 the intersection between the multinomial and the pay-off
function is calculated to determine the normalized exercise boundary. This is done with a multi-
nomial of second degree and parameter weights set to one. The non-linear least square function
(lsqnonlin in MATLAB) is used to calculate the intersections. Here, no transformation is done to
get the same definition set for the call and put options. The limit (lower limit for the call option
and upper limit for the put option) of the first intersection is set to 1. For the call option, the limit
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of the following intersections is the one which is the greatest of the last intersection calculated the
same day or the intersection calculated for the corresponding volatility the previous day. For the
put option, the limit of the following intersections will be the smallest value of the last intersection
calculated the same day or the intersection calculated for the corresponding volatility the previous
day.

Simulations were also replicated using control variates as a variance reducing technique (see chapter
2.2.4 & 2.6.4), for the Black Scholes model to be able to evaluate the effect of the implementation
of control variates. Here, MATLAB was used to implement above described methodologies, and the
resulting data was collected, plotted and analyzed with MATLAB and Excel.

The results were presented (see chapter 4) and analyzed (see chapter 5), to try to answer the
questions posed in the problem formulation (see chapter 1.2). Finally a discussion were conducted
and conclusions were drawn (see chapter 6) based on the presented results and the analysis.

3.2 Assumptions and limitations

There are two major limitations primarily affecting this project. Firstly, access to data is restricted
when it comes to market data concerning options. The data available to the public provided by
Nasdaq Nordic concerning options are only daily data and not historical data. Accessing the data
from elsewhere has proven to be difficult, and often very costly. Consequently, the project has been
restricted to center around data provided by the authors’ supervisor. Secondly, computational power
and access to computer units have inhibited the project’s progress and success during the course.
The restricted computer power has restricted the accuracy of the calculations, while the number of
computer units accessible has put a limit on how many calculations, simulations, and other tasks,
could be performed simultaneously.

There are several assumptions made when deriving the theory concerning both the options and the
price movements of the underlying asset, which all can be found in chapter 2. Furthermore, we have
assumed a Bermudan option that can be exercised at the end of each day, i.e. at t = 1, t = 2,...,
t = T .
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4 Results

In this section, the results are presented, as well as the meaning of the results and how they were
obtained.

4.1 Basis functions

The choice of basis functions was examined by comparing the appearance of the conditional ex-
pectation functions for put options with varying numbers of ITM paths the regressions are based
on. At first, the functions are plotted with about 100 ITM trajectories and then increased to a
number between approximately 1000. This was done for the following sets of basis functions: Power
polynomials, Hermite polynomials, non-weighted Laguerre polynomials, and the weighted Laguerre
polynomials, all with four components. The plots of the expectation function fitted on a set of
weighted Laguerre polynomial is shown in figure 2 and 3, while the rest can be found in appendix
(figure 12 - 19). The plots are taken at random points in time for arbitrary put options.

Figure 2: Plot of realized continuation values, function for immediate payoff and the conditional ex-
pectation function regressed on a set of the first four weighted Laguerre polynomials. The regression
is based on 86 ITM trajectories.
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Figure 3: Plot of realized continuation values, function for immediate payoff and the conditional ex-
pectation function regressed on a set of the first four weighted Laguerre polynomials. The regression
is based on 963 ITM trajectories.

4.2 Exercise boundary

When the behavior of the exercise boundaries was examined, it was found that the limits of
the exercise boundary precisely before maturity were not met. For example if we set r = 0.03,
q = 0.01 and K = 1 we expect that the exercise boundary for the call option should approach
max(0.03/0.01, 1) · 1 = 3 and for the put option max(min(0.03/0.01, 1), 0) · 1 = 1, precisely before
maturity. When the exercise boundary were calculated for a call and put option with 365 days to
maturity, with r = 0.03 and q = 0.01, with the weighted Laguerre polynomials as basis functions,
exercise boundaries according to figure 4 and 5 where acquired. When r < q, the limit of the exercise
boundary precisely before maturity were met for the call option but instead not for the put option.
It was found that due to the behavior of the Monte Carlo simulation, it is highly unlikely to get
points in the desired area to get the right limit precisely before the maturity of the call option when
r >> q or of the put option when r << q. For r = 0.03 and q = 0.01 we expect the exercise
boundary for the call option to be 3 precisely before maturity of the option.
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Figure 4: Plot of estimated exercise boundary for a Bermudan call option with 365 days to maturity,
where r = 0.03 and q = 0.01 - implemented with weighted Laguerre polynomial basis functions

Figure 5: Plot of estimated exercise boundary for a Bermudan put option with 365 days to maturity,
where r = 0.03 and q = 0.01 - implemented with weighted Laguerre polynomial basis functions
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Figure 6: Plot of the pay-off function (green line), estimated pay-offs (blue dots), the fitted polyno-
mial (blue line) estimating the continuation value for a Bermudan call option, and the root where
the pay-off function equals the fitted polynomial (red x) - precisely before maturity of the option

4.3 Option pricing

The European and Bermudan options for June 25, 2007, were priced using four different price move-
ment models (Black-Scholes, Merton, Heston and Bates), Laguerre polynomials as basis functions
and the parameter weight set to one, yielding option prices according to figure 43-50 (see appendix).
The percentages of estimated European option prices that are observed inside the ASK/BID-spread
can be seen in table 1. The percentages of Bermudan option prices that are estimated to be larger
or equal to the corresponding European option’s price, and the mean percentage deviation in prices
between the Bermudan and European options can be seen in table 2.

Table 1: Table of the proportion (%) of European option prices (analytical pricing) that are inside
the ASK/BID-spread when calibrating the parameters, the proportion (%) for estimated European
option prices (Monte Carlo pricing) that are inside the ASK/BID-spread, the mean (absolute) devi-
ation (%) from the market mean prices for the estimated prices (Monte Carlo pricing), and the mean
(absolute) deviation (%) from the nearest price of the market ASK/BID-prices for the estimated
prices (Monte Carlo pricing), for June 25, 2007 - implemented with parameter weight set to one

Statistic
Price model

Black-Scholes Merton Heston Bates

Proportion (%) of options inside ASK/BID (analytical pricing) 9.02 % 65.57 % 88.52 % 89.34 %
Proportion (%) of options inside ASK/BID (Monte Carlo pricing) 9.02 % 2.46 % 77.87 % 61.48 %

Mean deviation (%) from market mean (all options) 26.93 % 38.20 % 11.14 % 11.37 %
Mean deviation (%) from market mean (options outside ASK/BID) 28.97 % 39.09 % 25.79 % 12.85 %
Mean deviation (%) from market mean (options inside ASK/BID) 6.26 % 2.54 % 6.97 % 10.43 %
Mean deviation (%) from ASK/BID (options outside ASK/BID) 21.28 % 38.89 % 13.80 % 9.26 %
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Table 2: Table of the proportion (%) of estimated Bermudan option prices that are larger or equal to
estimated European option prices and the mean (absolute) deviation (%) from the European option
prices, for June 25, 2007 - implemented with weighted Laguerre polynomial basis functions and the
parameter weight set to one

Statistics
Price model

Black-Scholes Merton Heston Bates

Proportion (%) of options for which VBer ≥ VEU 54.92 % 59.02 % 61.48 % 59.02 %
Proportion (%) of options for which CBer ≥ CEU 3.51 % 12.28 % 17.54 % 12.28 %
Proportion (%) of options for which PBer ≥ PEU 100.00 % 100.00 % 100.00 % 100.00 %

Mean deviation (%) between VBer and VEU 7.58 % 7.50 % 7.04 % 6.95 %
Mean deviation (%) between CBer and CEU , for CBer ≥ CEU 0.06 % 0.57 % 0.39 % 0.57 %
Mean deviation (%) between CBer and CEU , for CBer < CEU 0.57 % 0.32 % 0.28 % 0.32 %
Mean deviation (%) between PBer and PEU , for PBer ≥ PEU 13.52 % 13.18 % 12.94 % 12.74 %
Mean deviation (%) between PBer and PEU , for PBer < PEU - - - -

The Least-square approach was used to estimate normalized exercise boundaries for the Bermudan
options and four different price movement models (Black-Scholes, Merton, Heston and Bates), im-
plemented according to the methodology outlined in chapter 3.1, yielding the normalized exercise
boundaries according to figure 23-42 (see appendix). The European and Bermudan options for June
25, 2007, was priced using four different price movement models (Black-Scholes, Merton, Heston and
Bates) and the previously calculated exercise boundaries, yielding option prices according to figure
59-62 (see appendix). The percentages of Bermudan option prices that are estimated to be larger
or equal to the corresponding European option’s price, and the mean percentage deviation in prices
between the Bermudan and European options can be seen in table 3.

Table 3: Table of the proportion (%) of estimated Bermudan option prices that are larger or equal to
estimated European option prices and the mean (absolute) deviation (%) from the European option
prices, for June 25, 2007 - implemented with exercise boundaries and the parameter weight set to
one

Statistics
Price model

Black-Scholes Merton Heston Bates

Proportion (%) of options for which VBer ≥ VEU 49.18 % 46.72 % 8.20 % 8.20 %
Proportion (%) of options for which CBer ≥ CEU 0.00 % 0.00 % 0.00 % 0.00 %
Proportion (%) of options for which PBer ≥ PEU 92.31 % 87.69 % 15.38 % 15.38 %

Mean deviation (%) between VBer and VEU 4.05 % 1.76 % 5.29 % 0.59 %
Mean deviation (%) between CBer and CEU , for CBer ≥ CEU - - - -
Mean deviation (%) between CBer and CEU , for CBer < CEU 0.91 % 0.77 % 0.82 % 0.79 %
Mean deviation (%) between PBer and PEU , for PBer ≥ PEU 7.13 % 2.73 % 2.19 % 0.01 %
Mean deviation (%) between PBer and PEU , for PBer < PEU 0.56 % 0.55 % 10.50 % 0.48 %

The European and Bermudan options for June 25, 2007, was priced using four different price move-
ment models (Black-Scholes, Merton, Heston and Bates), Laguerre polynomials as basis functions
and the parameter weight set to the inverse of the ASK/BID-spread, yielding option prices accord-
ing to figure 51-58 (see appendix) The percentages of estimated European option prices that are
observed inside the ASK/BID-spread can be seen in table 4. The percentages of Bermudan option
prices that are estimated to be larger or equal to the corresponding European option’s price, and
the mean percentage deviation in prices between the Bermudan and European options can be seen
in table 5.
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Table 4: Table of the proportion (%) of European option prices (analytical pricing) that are inside
the ASK/BID-spread when calibrating the parameters, the proportion (%) for estimated European
option prices (Monte Carlo pricing) that are inside the ASK/BID-spread, the mean (absolute) devi-
ation (%) from the market mean prices for the estimated prices (Monte Carlo pricing), and the mean
(absolute) deviation (%) from the nearest price of the market ASK/BID-prices for the estimated
prices (Monte Carlo pricing), for June 25, 2007 - implemented with the parameter weight set to the
inverse of the ASK/BID-spread

Statistic
Price model

Black-Scholes Merton Heston Bates

Proportion (%) of options inside ASK/BID (analytical pricing) 8.20 % 56.56 % 87.70 % 95.08 %
Proportion (%) of options inside ASK/BID (Monte Carlo pricing) 8.20 % 3.28 % 80.33 % 49.18 %

Mean deviation (%) from market mean (all options) 27.03 % 39.10 % 10.85 % 11.24 %
Mean deviation (%) from market mean (options outside ASK/BID) 28.87 % 40.34 % 24.76 % 11.94 %
Mean deviation (%) from market mean (options inside ASK/BID) 6.45 % 2.74 % 7.45 % 10.51 %
Mean deviation (%) from ASK/BID (options outside ASK/BID) 21.80 % 40.39 % 14.29 % 9.76 %

Table 5: Table of the proportion (%) of estimated Bermudan option prices that are larger or equal to
estimated European option prices and the mean (absolute) deviation (%) from the European option
prices, for June 25, 2007 - implemented with weighted Laguerre polynomial basis functions and the
parameter weight set to the inverse of the ASK/BID-spread

Statistics
Price model

Black-Scholes Merton Heston Bates

Proportion (%) of options for which VBer ≥ VEU 54.92 % 59.84 % 56.56 % 59.84 %
Proportion (%) of options for which CBer ≥ CEU 3.51 % 14.04 % 7.02 % 14.04 %
Proportion (%) of options for which PBer ≥ PEU 100.00 % 100.00 % 100.00 % 100.00 %

Mean deviation (%) between VBer and VEU 8.02 % 8.15 % 7.42 % 7.49 %
Mean deviation (%) between CBer and CEU , for CBer ≥ CEU 0.20 % 0.44 % 0.46 % 0.63 %
Mean deviation (%) between CBer and CEU , for CBer < CEU 0.57 % 0.36 % 0.31 % 0.34 %
Mean deviation (%) between PBer and PEU , for PBer ≥ PEU 14.19 % 14.21 % 13.64 % 13.73 %
Mean deviation (%) between PBer and PEU , for PBer < PEU - - - -

4.4 Control variates

The European and Bermudan options for June 25, 2007, were priced using the Black-Scholes price
movement model, Laguerre polynomials as basis functions and implementing two different control
variates (the underlying asset and the European option), yielding option prices according to figure
63-65 (see appendix). Variances for the European and Bermudan option prices using different
control variates can be seen in table 6. The percentage of estimated European option prices that
were observed inside the ASK/BID-spread and the mean deviation from the market mean prices,
using the underlying asset as control variate, is 13.11% and 25.40% respectively. The percentage
of Bermudan option prices that are estimated to be larger or equal to the corresponding European
option’s price, and the mean percentage deviation in prices between the Bermudan and European
options can be seen in table 7.

Table 6: Table of variances of estimated option prices for the European and Bermudan options for
June 25, 2007 - implemented with Black-Scholes price movement model, Laguerre polynomial basis
functions, the parameter weight set to one, the underlying asset as control variate for the European
options and two different control variates for the Bermudan options

Option
Control variate

No control variate Underlying asset European option

European option 59.67 25.99 -
Bermudan option 47.95 27.26 44.59
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Table 7: Table of the proportion (%) of estimated Bermudan option prices that are larger or equal
to estimated European option prices and the mean (absolute) deviation (%) from the European
option prices, for June 25, 2007 - implemented with Black-Scholes price movement model, Laguerre
polynomial basis functions, the parameter weight set to one, the underlying asset as control variate
for the European options and two different control variates for the Bermudan options

Statistics
Control variate for Bermudan options

Underlying asset European option

Proportion (%) of options for which VBer ≥ VEU 64.75 % 59.02 %
Proportion (%) of options for which CBer ≥ CEU 24.56 % 12.28 %
Proportion (%) of options for which PBer ≥ PEU 100.00 % 100.00 %

Mean deviation (%) deviation between VBer and VEU 7.91 % 8.39 %
Mean deviation (%) between CBer and CEU , for CBer ≥ CEU 0.93 % 0.36 %
Mean deviation (%) between CBer and CEU , for CBer < CEU 0.43 % 0.82 %
Mean deviation (%) between PBer and PEU , for PBer ≥ PEU 13.76 % 14.43 %
Mean deviation (%) between PBer and PEU , for PBer < PEU - -
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5 Analysis and discussion

In this section the results are analyzed and discussions concerning the results and the analysis of
the same are held.

5.1 Least-square Monte Carlo approach

When simulating the value of the underlying asset as a GBM, we noticed that the choice of basis
functions including four terms did not have a major effect on the expectation functions. It had a
larger impact, although small, when the regression was made with only a few ITM trajectories, but
that the resulting prices barely varied across the different basis functions. On this account, only
one set of basis functions were used for the subsequent results when varying the models for the
underlying asset price movement. The first four terms of the Weighted Laguerre polynomials were
selected, which is aligned with Longstaff and Schwartz proposal of basis functions. Since they also
found that the numerical results do not change when including more than three basis functions [21],
we expect that this choice is sufficient.

At some points in time, there arose problems concerning the regressed expectation functions. First
of all, for some options with a short time to maturity and/or an initial underlying asset price that
lies far OTM, their price was estimated to be zero. The explanation is that none of the trajectories
became ITM during the options lifetime, thus yielding no payoffs the price could be estimated from.
In reality, no one would issue an option with the price zero, so these results are not trustworthy. The
problem lies in the methodology of Monte Carlo rather than the LSM approach itself. Although
the expectation function in most cases could be fitted, they did frequently not comply with the
appearance of the payoff function for an American-style option (see figure 1). Problems of larger
scale tend to occur when the number of ITM trajectories were few, which is exemplified in figure 2,
12, 13 and 14. They are plots of the conditional expectation functions regressed on a set of Power
polynomials, Hermite polynomials, Laguerre polynomials, and weighted Laguerre polynomials re-
spectively, together with the 86 realized discounted cash flows the regressions are based on. For
some prices of the underlying, the functions misjudge the continuation values. For instance, in the
situations illustrated in figure 2 and figure 12 and 14 in the appendix, the value of the expectation
function is larger than the immediate payoff for many stock prices for which the opposite should
apply. One can see that problems in the curvature appear in the areas where there only are a few
realised discounted cash flows. In these areas, the amount of points the expectation function is be
regressed on are not sufficient to fit a function according to the theory. In 2, the graph is increasing
in a small section where the underlying asset price approaches 1, but the theory suggests that the
graph is monotonically decreasing. The regressed Hermite polynomial in figure 13 lacks intersects
with the payoff function, yielding larger function values for all stock prices that are ITM at this
point in time. In these cases, the function will overvalue the continuation values for all stock prices
that lie below the point where the intersect should have been. A significant improvement are seen
when the number of ITM trajectories is increased, which is demonstrated in figure 3, and the fig-
ures 16 - 19 in appendix. As seen are the differences in the graphs’ appearance not as noticeable,
and they behave more like what is expected from the theory. However, even for a large number of
ITM trajectories, the expectation functions occasionally appeared with unwanted properties. For
instance, all of the expectation functions have several intersects and consequently misjudge some
of the continuation values. The desired property is to only have one intersection, which should be
for the stock price from which the American option price is larger than the payoff (see figure 1).
The problem of a nonexistent intersection could also arise for many iterations, which then result in
overvalued continuation values for all stock prices.
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5.2 Exercise Boundary

The Exercise Boundary approach was implemented to solve some of the problems with the LSM
approach, one of which is the potential lack of ITM trajectories. By running many simulations
of the value of the underlying asset from proper start values for put and call options respectively,
we received more trajectories on which the conditional expectation function could be regressed.
Consequently, better expectation functions were fitted. In the one variable-case, a set of Weighted
Laguerre polynomials were used as a basis function, and for the two-variable case a second-order
power multinomial. The idea of the Exercise Boundary approach is to use the value of the stock
price for which the payoff function intersects the expectation to evaluate when the holder should
exercise the option. With the Matlab command lsqnonlin, the stock price that minimizes the dis-
tance between the function lines is returned. Therefore, even when there is a lack of intersection,
the stock price for which we believe there should be an intersection is selected anyway. If there are
several intersects, the one of interest is the one closest to the strike price. Another advantage is
that the method is not concerned with the polynomial’s behavior far from the intersect, since the
estimate of when to exercise the option is solely dependent on the chosen breakpoints. As seen in
the examination of the expectation functions, they do frequently appear with unwanted properties.
All of these defects do not necessarily need to be a problem in the exercise boundary approach, since
we only care about calculating a proper breakpoint.

The exercise boundaries are obviously very dependent on the selected breakpoints between the
payoff functions and the expectation functions at the points in time where exercise is possible, since
it is these points the boundary consists of. Which points that are selected depends on several things,
first of all the method used to localize them. The one used in this paper is the non-linear least square
method (in MATLAB lsqnonlin), but other methods, such as fminbnd, can also be used. These may
yield another point on the curve depending on the behavior of the expectation function. In addition,
the selected value will also depend on the previous one. This is because the methods start at some
given point in the search for the intersect, which we have chosen to be the previous intersect. Also,
the realized discounted cash flows the expectation function is regressed on will be dependent on
the previous intersect, since it will determine where the payoffs are located in the payoff matrix
from which the continuation values are calculated. Therefore, since all the breakpoints are strongly
dependent on one another, the error from one poorly chosen intersect will spread to the subsequent
ones. In this manner, the method is very sensitive to the regression of the expectation functions
near the breaking point of interest, and the method used to calculate this point.

To test whether the exercise boundaries we formed were reasonable or not, the result from vary-
ing values of r and q were compared with the theory of how the boundary should behave for an
American option (see chapter 2.6.3). Since Bermuda options are American-styled options with fi-
nite dates of early exercise, the limits of the exercise boundaries should be close to the limits of
the exercise boundaries of the corresponding American option. In our testing (see chapter 4.2),
the limits precisely before maturity were not always met. The reason is that the simulation of the
stock prices does not reach the area of interest with our initial choice of starting point, which is
demonstrated in figure 6. The simulation can be forced into the desired area, which is by choosing
the start point dependent on the values of r and q. Otherwise, not enough trajectories are in the
area in which we wish to regress a good polynomial in. However, it was also found that problems
related to the degeneration of the fitted polynomial and to the lack of points in the area of interest
could be amplified, resulting in the exercise boundary taking incorrect values far from the date of
maturity to a greater extent than before. The initial exercise point calculated (the point in time
closest to the time of expiration) can also be forced to follow the theoretical limit of this point (see
chapter 2.6.3). This however does not solve the problem of lack of simulated points in the area of
interest, for which one needs to regress a good polynomial. The same problems were also found
when using other basis functions, for instance, the unweighted Laguerre polynomial basis functions.
It was found that when using unweighted Laguerre polynomials and weighted Laguerre polynomials
as basis functions, the fitted polynomial estimating the continuation value behaves similarly to one
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another for days close to maturity of the option. So, just like for the ordinary LSM approach, the
choice of basis functions does not have a major impact on the breakpoint when there are many
ITM trajectories the expectation function is regressed on. It was found that when calculating the
normalized exercise boundaries for the models with deterministic volatility there were signs of these
problems (see figure 7).

Figure 7: Plot of estimated call option normalized exercise boundaries for June 25, 2007 - im-
plemented with the Black-Scholes price model, weighted Laguerre polynomial basis functions, the
parameter weight set to one, and estimated with 500,000 iterations

When we simulate the underlying value with a model using stochastic volatility we expect the
boundary to decrease with the volatility for the put option, and the opposite for the call option. This
behavior is clearly noticeable for only some of the exercise boundaries calculated with the Heston
model (see figure 8). For the Bates model, this behavior is noticeable for even fewer calculated
exercise boundaries. For a call option, the exercise boundary should decrease as we get closer to
the expiration date, and the opposite for the put option. However, all options’ exercise boundaries
exhibit constant values for some periods as the time to maturity decreases (see figure 9). In summary,
Bates model seems to perform worse than Heston when trying to create an exercise boundary. As
mentioned in the previous section, there are complications already in the one-variable case, which
are amplified when the expectation function is represented by a multinomial. Factors that might
be the cause of the problems are incorrect parameters for the underlying asset price movement,
improper basis functions for the expectation function, and methods to find the breakpoints.
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Figure 8: Plot of estimated put option normalized exercise boundary, with time to maturity 32
days, for June 25, 2007 - implemented with the Heston price model, multimonial basis functions,
the parameter weight set to one, and estimated with 500,000 iterations

Figure 9: Plot of estimated call option normalized exercise boundary, with time to maturity 32
days, for June 25, 2007 - implemented with the Bates price model, multimonial basis functions, the
parameter weight set to one, and estimated with 500,000 iterations

5.3 Option pricing

When pricing European options with the different models using Laguerre polynomials as basis func-
tions and the parameter weight set to one according to our simulations the Heston model performs the
best, in terms of the proportion of estimated European option values that are inside the ASK/BID-
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spread (see figure 10). The Heston model is then followed by Bates model, Black-Scholes model, and
Merton model. This is in contrast to when looking at the proportion of the European options that
are inside the ASK/BID-spread when calibrating the parameters. Here we can see that Bates model
performs the best, followed by Heston model, Merton model, and Black-Scholes model. The same
ordering of which model performs the best does not hold if one looks at how much the estimated
option prices deviates from market mean prices or the ASK/BID-spread. If we look at the mean
deviation from the market mean, the performance of the Bates and Heston models are the best
and quite similar, followed by Black-Scholes model and Merton model. We can also see that, for
instance, Bates model, deviates less from the market mean prices than the Heston model when only
looking at option prices outside the ASK/BID-spread, but vice versa holds for option prices inside
the ASK/BID-spread. It also holds that for the Bates model, options outside the ASK/BID-spread
deviate less from the ASK/BID-spread than the options outside the ASK/BID-spread for the Hes-
ton model. It is worth noting here that when calibrating the parameters, the mean deviation of the
analytically calculated option price from the nearest edge of the ASK/BID-spread is smallest for the
Bates model, followed by the Merton model, Heston model, and Black-Scholes model. This could be
part of the explanation of why the above-mentioned results look like they do. If we get analytical val-
ues close to the edge of the ASK/BID-spread when calibrating the parameters, it is also more likely
to get estimated values outside the same spread when simulating the values. The behavior of these
models holds in these regards, even when one sets the parameter calibration weight λ to the inverse
of the ASK/BID-spread. Finally, we note that there seem to be a problem when we use a model
that include price jumps. This can be seen when one compares the proportion of options inside the
ASK/BID-spread when simulating option prices with the same when the parameters are calibrated,
respectively for the Merton and Bates model. The difference between these values is significantly
larger for Merton and Bates model than they are for Black-Scholes and Heston model. One possible
explanation to why this is the way could be that the parameter calibration is harder for these models.

Figure 10: Plot of estimated European option prices and the markets ASK- & BID-prices for June
25, 2007 - implemented with the Heston price model and the parameter weight set to one

When pricing the Bermudan options, we barely have any way of controlling whether the prices are
correct, and therefore no way of comparing the models’ performance. This is due to the lack of
market data on the Bermudan option prices with this particular underlying asset. What we can do
is compare the different models and see if any of their price estimations clearly deviates from the
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others’ estimations. We can also make sure that the estimated Bermudan option prices follow the
theory concerning how the prices should behave in relation to the European option prices. Since we
have chosen to estimate option prices for which r > q every day up until maturity, we expect that
the Bermudan call option price should be approximately equal to the European call option price.
When pricing the Bermudan options with the different models using weighted Laguerre polynomials
as basis functions and the parameter weight set to one, we can see that the Bermudan put option
prices are larger or equal to the corresponding put option prices for all models. The mean deviation
from the European option prices lies between 6.95 − 7.58% for the four models. The big differ-
ence between the models can be seen if we look at the proportions of Bermudan call options that
are estimated to be larger or equal to the corresponding European option price, ranging between
3.51−17.58%. Although, if we look at how much the estimated Bermudan call option prices deviate
from corresponding European call option prices we can see that a mean absolute deviation range
between 0.06 − 0.57%. This leads us to think that it is likely that the Bermudan call option price
should be equal to the European call option prices, and that the differences stem from the Monte
Carlo method and the LSM approach. When pricing the Bermudan options with the parameter
weight instead set to the ASK/BID-spread, we get results leading us to the same conclusions. This
with some differences in the exact values compared with when the parameter was set to be one, but
not large enough to draw any other major conclusions. In the end, we want to say that the Heston
model performs the best (see figure 11), with a small margin, followed by Bates and Merton model
and finally Black-Scholes model. Although, it is worth noticing that the differences are so small that
they could be considered to be neglectable.

Figure 11: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Heston price model, weighted Laguerre polynomial basis functions and the parameter weight
set to one

When pricing options using exercise boundaries (calculated as described in chapter 4.3), we can
see that the results are worse than when using the standard LSM approach. The thought when
using this method was that the results should be better since we can eliminate incorrect decisions
regarding early exercises due to the behavior of the fitted polynomial. The results indicate that the
approach works but, although worse than the LSM approach. The determination of the exercise
boundaries poses a whole new set of problems, especially when it comes to models with a stochastic
variance, which need to be solved for the approach to work better than the standard LSM approach.
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Some of these problems have already been discussed (see chapter 5.2).

A general problem with the more advanced models, or the models with more parameters, is that the
more parameters one have the harder it gets to correctly calibrate the model. For one thing, there are
more starting values when calibrating the model that can result in different parameter choices. We
are not ensured to find the global minimum of the least square problem, but only a local minimum.
This leads to that the more parameters you have, the harder it gets to find ”the best minimum”. It
also holds that with more parameters more data is required to fit the data, and therefore one needs
more data to correctly estimate the parameters for the more advanced models. Since we only use
data from one day when calibrating our parameters this could result in non-optimal calibrations.

5.4 Control variates

Using control variates as a variance reducing technique simulated with the Black-Scholes model,
the results show that when using the underlying asset as control variate the variance is reduced
for the estimation of both the European options and the Bermudan options. It also shows that
when using the European option as control variate for the Bermudan option, one sees no significant
reduction in the variance of the estimated Bermudan option price. When we look at the proportions
of the Bermudan option prices that are estimated to be larger or equal to the European option
prices, the results show that usage of both the control variates results in that a larger proportion of
Bermudan option prices follow this equality. Although, there is a problem when using the European
option as a control variate for the Bermudan option. When the Bermudan option is estimated to
be worth less than the corresponding European option the deviation is larger than when not using
any control variate. This may be explained by that if we use a control variate that doesn’t reduce
the variance significantly the error could be amplified when controlling each estimation. One could
also implement the usage of multiple control variates when pricing options [33], but in the interest
of limiting this thesis somewhat this is not researched further.
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6 Conclusion

In this section, conclusions that can be drawn from the analysis of the results are presented. This
is also compared to the problem formulation which here is answered.

The aim to successfully price European and Bermudan stock index options is judged to be fulfilled.
Whether we can see a difference in performance between methods and models is another question,
even though the use of any of them works. Regarding the performance, if we look at the proportion
of estimated European option prices inside the ASK/BID-spread, we can conclude that the Heston
model outperforms the rest. If we instead look at the estimated Bermudan option prices, it is not
known which of the models perform the best due to the lack of price data. In a comparison of the
two different methods, it is clear to say that the ordinary LSM approach performs better. With
that said, the usage of the exercise boundaries has the theoretical potential of performing sufficiently
good, if not better, in case one could solve the added problems faced with using this method. The
models perform differently, but the ordering of performance was not as predicted. The probable
reason is external problems, such as the calibration of parameters, and not the model itself. Finally,
implementing control variates have proven to work as a variance reducing technique. However, how
well it works highly depends on the choice of control variate and how one calculates the same.

All in all, the questions posed in the problem formulation are considered to be answered in the
affirmative for the most part. When this not is the case, the general conclusion is that it is most
likely due to external factors that cause added problems, not sourcing from the main model or
method in itself.
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7 Future work

In this section the authors’ thoughts on what future research and work that needs to be conducted
are presented. This is based on the project results, analysis, discussion and conclusions.

The two major problems faced in this project have been the finding and fitting of polynomials, and
the calibration of parameters, including the choice of parameter weight. These two subjects are
considered two have had a major impact on the results even though they have not been the main
focus of the project. Focus on these two subjects in future work is considered to be of importance for
the work in option pricing. Future work that focuses on the calculation of the exercise boundaries is
also considered of importance and could help forward the methodology of option pricing. Another
interesting area for further research could be how one could combine the usage of the LSM approach
and the exercise boundary approach when pricing options. Research about how to simultaneously
implement these criteria for early exercise may result in an option pricing approach superior to both
approaches on their own. Further research concerning the choice and implementation of control
variates, or other variance reducing techniques, could also be of interest.

Other areas of the subject that have had an impact on the results and that could be interesting
areas of future work, are mainly computational power and programming efficiency. Increasing the
computational power would increase and enhance the possibilities of what could be done in all
numerical research, and therefore in the research concerning Monte Carlo-based option pricing. The
same goes for future work with programming efficiency, in which we include both types of research
concerning efficient code writing and the development of efficient programming languages.
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9 Appendix

Figure 12: Plot of realized continuation values, function for immediate payoff and the conditional
expectation function regressed on a power polynomial of third degree with 93 ITM trajectories.

Figure 13: Plot of realized continuation values, function for immediate payoff and the conditional
expectation function regressed on a set of the first four Hermite polynomials. The regression is based
on 81 ITM trajectories.
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Figure 14: Plot of realized continuation values, function for immediate payoff and the conditional
expectation function regressed on a set of the first four Laguerre polynomials. The regression is
based on 127 ITM trajectories.

Figure 15: Plot of realized continuation values, function for immediate payoff and the conditional ex-
pectation function regressed on a set of the first four weighted Laguerre polynomials. The regression
is based on 103 ITM trajectories.
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Figure 16: Plot of realized continuation values, function for immediate payoff and the conditional
expectation function regressed on a power polynomial of third degree. The regression is based on
548 ITM trajectories.

Figure 17: Plot of realized continuation values, function for immediate payoff and the conditional
expectation function regressed on a set of the first four Hermite polynomials. The regression is based
on 564 ITM. trajectories.
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Figure 18: Plot of realized continuation values, function for immediate payoff and the conditional
expectation function regressed on a set of the first four Laguerre polynomials. The regression is
based on 598 ITM trajectories.

Figure 19: Plot of realized continuation values, function for immediate payoff and the conditional ex-
pectation function regressed on a set of the first four weighted Laguerre polynomials. The regression
is based on 608 ITM trajectories.
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Figure 20: Plot of estimated exercise boundary for a Bermudan call option with 365 days to maturity,
where r = 0.03 and q = 0.01 - implemented with weighted Laguerre polynomial basis functions

Figure 21: Plot of estimated exercise boundary for a Bermudan put option with 365 days to maturity,
where r = 0.03 and q = 0.01 - implemented with weighted Laguerre polynomial basis functions
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Figure 22: Plot of the pay-off function (green line), estimated pay-offs (blue dots), the fitted poly-
nomial (blue line) estimating the continuation value for a Bermudan call option, and the root where
the pay-off function equals the fitted polynomial (red x) - precisely before maturity of the option

Figure 23: Plot of estimated call option normalized exercise boundaries for June 25, 2007 - im-
plemented with the Black-Scholes price model, weighted Laguerre polynomial basis functions, the
parameter weight set to one, and estimated with 500,000 iterations
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Figure 24: Plot of estimated put option normalized exercise boundaries for June 25, 2007 - im-
plemented with the Black-Scholes price model, weighted Laguerre polynomial basis functions, the
parameter weight set to one, and estimated with 500,000 iterations

Figure 25: Plot of estimated call option normalized exercise boundaries for June 25, 2007 - imple-
mented with the Merton price model, weighted Laguerre polynomial basis functions, the parameter
weight set to one, and estimated with 500,000 iterations
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Figure 26: Plot of estimated put option normalized exercise boundaries for June 25, 2007 - imple-
mented with the Merton price model, weighted Laguerre polynomial basis functions, the parameter
weight set to one, and estimated with 500,000 iterations

Figure 27: Plot of estimated call option normalized exercise boundary, with time to maturity 32
days, for June 25, 2007 - implemented with the Heston price model, multimonial basis functions,
the parameter weight set to one, and estimated with 500,000 iterations
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Figure 28: Plot of estimated call option normalized exercise boundary, with time to maturity 60
days, for June 25, 2007 - implemented with the Heston price model, multimonial basis functions,
the parameter weight set to one, and estimated with 500,000 iterations

Figure 29: Plot of estimated call option normalized exercise boundary, with time to maturity 95
days, for June 25, 2007 - implemented with the Heston price model, multimonial basis functions,
the parameter weight set to one, and estimated with 500,000 iterations
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Figure 30: Plot of estimated call option normalized exercise boundary, with time to maturity 123
days, for June 25, 2007 - implemented with the Heston price model, multimonial basis functions,
the parameter weight set to one, and estimated with 500,000 iterations

Figure 31: Plot of estimated put option normalized exercise boundary, with time to maturity 32
days, for June 25, 2007 - implemented with the Heston price model, multimonial basis functions,
the parameter weight set to one, and estimated with 500,000 iterations
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Figure 32: Plot of estimated put option normalized exercise boundary, with time to maturity 60
days, for June 25, 2007 - implemented with the Heston price model, multimonial basis functions,
the parameter weight set to one, and estimated with 500,000 iterations

Figure 33: Plot of estimated put option normalized exercise boundary, with time to maturity 95
days, for June 25, 2007 - implemented with the Heston price model, multimonial basis functions,
the parameter weight set to one, and estimated with 500,000 iterations
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Figure 34: Plot of estimated put option normalized exercise boundary, with time to maturity 123
days, for June 25, 2007 - implemented with the Heston price model, multimonial basis functions,
the parameter weight set to one, and estimated with 500,000 iterations

Figure 35: Plot of estimated call option normalized exercise boundary, with time to maturity 32
days, for June 25, 2007 - implemented with the Bates price model, multimonial basis functions, the
parameter weight set to one, and estimated with 500,000 iterations
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Figure 36: Plot of estimated call option normalized exercise boundary, with time to maturity 60
days, for June 25, 2007 - implemented with the Bates price model, multimonial basis functions, the
parameter weight set to one, and estimated with 500,000 iterations

Figure 37: Plot of estimated call option normalized exercise boundary, with time to maturity 95
days, for June 25, 2007 - implemented with the Bates price model, multimonial basis functions, the
parameter weight set to one, and estimated with 500,000 iterations

57



Figure 38: Plot of estimated call option normalized exercise boundary, with time to maturity 123
days, for June 25, 2007 - implemented with the Bates price model, multimonial basis functions, the
parameter weight set to one, and estimated with 500,000 iterations

Figure 39: Plot of estimated put option normalized exercise boundary, with time to maturity 32
days, for June 25, 2007 - implemented with the Bates price model, multimonial basis functions, the
parameter weight set to one, and estimated with 500,000 iterations
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Figure 40: Plot of estimated put option normalized exercise boundary, with time to maturity 60
days, for June 25, 2007 - implemented with the Bates price model, multimonial basis functions, the
parameter weight set to one, and estimated with 500,000 iterations

Figure 41: Plot of estimated put option normalized exercise boundary, with time to maturity 95
days, for June 25, 2007 - implemented with the Bates price model, multimonial basis functions, the
parameter weight set to one, and estimated with 500,000 iterations
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Figure 42: Plot of estimated put option normalized exercise boundary, with time to maturity 123
days, for June 25, 2007 - implemented with the Bates price model, multimonial basis functions, the
parameter weight set to one, and estimated with 500,000 iterations

Figure 43: Plot of estimated European option prices and the markets ASK- & BID-prices for June
25, 2007 - implemented with the Black-Scholes price model and the parameter weight set to one
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Figure 44: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Black-Scholes price model, weighted Laguerre polynomial basis functions and the parameter
weight set to one

Figure 45: Plot of estimated European option prices and the markets ASK- & BID-prices for June
25, 2007 - implemented with the Merton price model and the parameter weight set to one
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Figure 46: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Merton price model, weighted Laguerre polynomial basis functions and the parameter
weight set to one

Figure 47: Plot of estimated European option prices and the markets ASK- & BID-prices for June
25, 2007 - implemented with the Heston price model and the parameter weight set to one
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Figure 48: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Heston price model, weighted Laguerre polynomial basis functions and the parameter weight
set to one

Figure 49: Plot of estimated European option prices and the markets ASK- & BID-prices for June
25, 2007 - implemented with the Bates price model and the parameter weight set to one

63



Figure 50: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Bates price model, weighted Laguerre polynomial basis functions and the parameter weight
set to one

Figure 51: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Black-Scholes price model, weighted Laguerre polynomial basis functions and the parameter
weight set to the ASK/BID-spread
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Figure 52: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Black-Scholes price model, weighted Laguerre polynomial basis functions and the parameter
weight set to the ASK/BID-spread

Figure 53: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Merton price model, weighted Laguerre polynomial basis functions and the parameter
weight set to the ASK/BID-spread
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Figure 54: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Merton price model, weighted Laguerre polynomial basis functions and the parameter
weight set to the ASK/BID-spread

Figure 55: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Heston price model, weighted Laguerre polynomial basis functions and the parameter weight
set to the ASK/BID-spread

66



Figure 56: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Heston price model, weighted Laguerre polynomial basis functions and the parameter weight
set to the ASK/BID-spread

Figure 57: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Bates price model, weighted Laguerre polynomial basis functions and the parameter weight
set to the ASK/BID-spread
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Figure 58: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Bates price model, weighted Laguerre polynomial basis functions and the parameter weight
set to the ASK/BID-spread

Figure 59: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Black-Scholes price model and normalized exercise boundaries
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Figure 60: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Merton price model and normalized exercise boundaries

Figure 61: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Heston price model and normalized exercise boundaries
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Figure 62: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Bates price model and normalized exercise boundaries

Figure 63: Plot of estimated European option prices for June 25, 2007 - implemented with the
Black-Scholes price model, Laguerre polynomials basis functions, the parameter weight set to one,
and the underlying asset as control variate for the European and Bermudan options
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Figure 64: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Black-Scholes price model, Laguerre polynomials basis functions, the parameter weight set
to one, and the underlying asset as control variate for the European and Bermudan options

Figure 65: Plot of estimated European and Bermudan option prices for June 25, 2007 - implemented
with the Black-Scholes price model, Laguerre polynomials basis functions, the parameter weight set
to one, the underlying asset as control variate for the European and the European options as control
variate for the Bermudan options
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