
SEGMENTATION,
CLASSIFICATION AND

TRACKING OF OBJECTS IN

LIDAR POINT CLOUD DATA

USING DEEP LEARNING

SEGMENTERING, KLASSIFICERING OCH FÖLJNING AV

OBJEKT FRÅN LIDAR-DATA MED DJUPINLÄRNING

ROBIN BERNSTÅLE, HJALMAR LIND

Master’s thesis
2022:E1

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M



Abstract

The purpose of this thesis was to explore deep learning methods of segmentation,
classification and tracking of objects in LiDAR data. To do this a complete pipeline
was developed, consisting of background filtering, clustering, tracking, labeling and
visualization. The objects that were focused on were pedestrians, cyclists, cars and
animals, in different environments. Background segmentation and object detection
was done using classical methods, using distance filtering and DBSCAN for cluster-
ing. Four deep neural networks were trained for object classification and two for
semantic segmentation, with different parameters to compare performance. To pro-
cess point clouds generated by a LiDAR, a specialized architecture was needed, which
is why PointNet layers were used to build the models. Tracking was managed by a
recurrent neural network structure, capable of predicting object trajectory, updating
measurements and data association. An additional classical tracking algorithm, was
also developed as a baseline for comparison. The networks were trained purely on sim-
ulated data from an autonomous driving simulator, with the aim of also functioning
on real world data. The models were compared and evaluated on both simulated data
and real world LiDAR data. The results showed that classification using PointNet as
foundation works well, even on real world data, being able to accurately classify both
humans and vehicles. Semantic segmentation proved not to be suitable for the task,
lacking in performance. The deep learning tracker showed great potential, but was
difficult to properly train to outperform the classical tracker.

I



II



Acknowledgements

We would like to thank our supervisor Anders Heyden for his continuous feedback and
help along the way. We would also like to thank Emma Engdahl and Erik Lundell for
their help with the Carla simulator, with an extra thank you to Erik for his weekly
extra support during the project.

III



IV



Contents

Abstract I

Acknowledgements III

Table of Contents VII

1 Introduction 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Statement of contribution . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 LiDAR Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 The Luminar Hydra . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Detection, tracking and classification . . . . . . . . . . . . . . . . . . . 4

3 Theory 5
3.1 Classical Instance Segmentation . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Filtering the Background . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 Clustering Objects . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Deep Feedforward Networks . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.1 The Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . 7
3.2.2 Deep Network Training . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Deep Learning on Point Clouds . . . . . . . . . . . . . . . . . . . . . . 9
3.3.1 PointNet Architecture . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.2 PointNet++ Architecture . . . . . . . . . . . . . . . . . . . . . 11

3.4 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.1 Simple Recurrent Neural Networks . . . . . . . . . . . . . . . . 14
3.4.2 Long Short-Term Memory Neural Networks . . . . . . . . . . . 14

3.5 Tracking objects from sensor data . . . . . . . . . . . . . . . . . . . . . 15
3.5.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.2 Data Association . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Method 19
4.1 Simulation of LiDAR Data . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Classification Dataset . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Semantic Segmentation Dataset . . . . . . . . . . . . . . . . . . 22
4.2.3 Tracking Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Filtering and Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 23

V



4.3.1 Distance Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Model Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.1 PointNet++ Classification . . . . . . . . . . . . . . . . . . . . . 25
4.4.2 PointNet++ Semantic Segmentation . . . . . . . . . . . . . . . 25
4.4.3 Deep Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.1 Classification Models . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.2 Semantic Segmentation Models . . . . . . . . . . . . . . . . . . 28
4.5.3 Deep Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6.1 Classification and Semantic Segmentation . . . . . . . . . . . . 30
4.6.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Results 35
5.1 Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Semantic Segmentation Models . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Tracking Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Pipeline Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Discussion 47
6.1 Filtering and Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.1 Evaluation on Test Data . . . . . . . . . . . . . . . . . . . . . . 47
6.2.2 Evaluation on Real World Data . . . . . . . . . . . . . . . . . . 48
6.2.3 Evaluation of Dataset . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Semantic Segmentation Models . . . . . . . . . . . . . . . . . . . . . . 50
6.3.1 Evaluation on Test Data . . . . . . . . . . . . . . . . . . . . . . 50
6.3.2 Evaluation on Real World Data . . . . . . . . . . . . . . . . . . 51
6.3.3 Evaluation of Dataset . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4 Tracking models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4.1 Predict/update module . . . . . . . . . . . . . . . . . . . . . . . 52
6.4.2 DA module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Conclusion 55

8 Future Work 57

Bibliography 59

A Model Details 61
A.1 Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.1.1 The Small Single Scale Model . . . . . . . . . . . . . . . . . . . 61
A.1.2 The Big Single Scale Model . . . . . . . . . . . . . . . . . . . . 62
A.1.3 The Small Multiple Scales Model . . . . . . . . . . . . . . . . . 62
A.1.4 The Big Multiple Scales Model . . . . . . . . . . . . . . . . . . 63

VI



A.2 PointNet++ Semantic Segmentation . . . . . . . . . . . . . . . . . . . 63
A.2.1 The Small Semantic Segmentation Model . . . . . . . . . . . . . 64
A.2.2 The Big Semantic Segmentation Model . . . . . . . . . . . . . . 65

A.3 Deep Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

VII



VIII



1 Introduction

LiDAR, which stands for light detection and ranging, is a method of measuring dis-
tances by bouncing light pulses on the surroundings, to generate a 3D view in the
form of a point cloud. They are used in cars and robots that need to interact with
their environment. Considering for example that a LiDAR works just as well when
it is dark outside as during the day, or that is capable of creating a point cloud with
higher resolution than a common radar, there are certainly benefits in for example
the surveillance sector. Analogue to this we specifically want to examine data from
a stationary LiDAR, much alike how a security camera would work. This is in great
contrast to a big field of LiDAR research, where the application is towards self-driving
cars – where the LiDAR as such is always moving. In our specific research area we
want to specifically be able to detect, track and classify moving objects, while avoiding
any false alarms.

Detection refers to finding interesting objects in the scene, such as people, animals
and vehicles. For LiDAR data in particular, we need to identify which points belong
to each object, and separate them from the background. We then classify each object,
which means giving them a label such as ”human”, ”car” or ”animal”. A classifier
can work in many different ways, but typically some features are extracted from the
objects, that can be used to determine its type. Finally the objects are tracked over
time in the LiDAR data, which means keeping track of which object is which over the
course of a recording.

This task has been researched by previous master thesis students, most recently by
Berntsson and Winberg [1]. They focused a lot on classical implementations, with
some elements of deep learning, achieving some very good results. We hope that using
deep learning to a greater extent will create an even better, more robust and more
sustainable pipeline.

1.1 Purpose

The purpose of this project is to create an online deep learning-based pipeline for
detecting, tracking and classifying objects within a LiDAR-recording. This project
will mainly focus on tracking and classifying objects, while a basic detection algorithm
will also be implemented due to its necessity for the latter steps. The deep learning-
based tracking and classification will in turn be evaluated against common metrics
and the tracking in particular will be compared to a baseline of Kalman filtering and
the Hungarian Algorithm.

1



1.2 Limitations

As stated above, the detection steps will be left at bare minimum. In this case, a basic
background filtering and clustering algorithm will be implemented but not evaluated
or compared to other methods. Similarly, there are probably ways in which detection,
tracking and classification can benefit each other to create a more dynamic pipeline
instead of going step by step. This will also not be examined any further in this study.

1.3 Statement of contribution

During this master’s thesis project, the work has been divided such that Hjalmar Lind
has mainly worked with developing and evaluating the methods for classification and
Robin Bernst̊ahle has mainly worked with developing and evaluating the methods for
tracking. The final results has then been discussed and agreed upon by both authors,
which together developed the final pipeline.

2



2 Background

2.1 LiDAR Sensor

A light detection and ranging (LiDAR) device is an active sensor that emits light that
bounces on surrounding objects, which then gets detected by the sensor. The travel
time of the light is used to measure the distance to the target object. Being an active
sensor, meaning it uses its own light source, enables the LiDAR to work regardless of
the environmental light. This makes it less prone to factors such as time of day or
weather, compared to something like a traditional camera. There are many types of
LiDAR sensors for different applications and from various manufacturers. Some use a
rotating sensor, mechanical mirrors or small vibrations to move the laser. The LiDAR
sensor our algorithms are supposed to run with is Hydra, by Luminar, see [2].

2.1.1 The Luminar Hydra

Hydra is a LiDAR sensor designed to be mounted on cars, but can just as easily be
used in other applications. It uses has two sensors, or ”eyes”, which operate separately
and move the laser using microelectromechanical systems. Each sensor emits a laser
pulse, waits for all the bounces to return, and then shifts its firing angle. This is done
hundreds of thousands of times per second in different directions to generate a 3D
view of the environment, in the form of a so called point cloud. Each point in a point
cloud has an x-,y- and z-coordinate as well as the intensity of the returned light pulse.
The sensor specifications provided by Luminar, see [3], are in Table 2.1.

Range at <10 % reflectivity 250 m
Max range 500 m
Frames per second 1 - 30
Lines scanned per second 640
Range precision 0.01 m
Max returns per point 3
Horizontal field of view 120°
Min horizontal resolution 0.07°
Vertical field of view 0 - 30°
Min vertical resolution 0.03°
Wavelength 1550 nm

Table 2.1: Luminar Hydra specifications.

3



2.2 Detection, tracking and classification

In Figure 2.1 is a diagram of the general pipeline when processing the LiDAR point
cloud data in order to receive individual objects which have both tracks and labels
(”human”, ”car”, ”animal” etc.) assigned to them in each frame of time. Note in
particular how the tracking module operates in both the current timestamp and in
a temporal manner, transferring its knowledge (”state”) from one timestamp to the
next. While there exist different approaches in each respective module, with this thesis
we aim to solve the tracking and classification steps using deep learning.

Figure 2.1: The general pipeline of detection, tracking and classification in LiDAR point
cloud data over time.

4



3 Theory

3.1 Classical Instance Segmentation

Segmentation of image points is the process of partitioning the points into multiple
segments, or objects. It is usually further divided into semantic segmentation, see
Figure 3.1a and instance segmentation, see Figure 3.1b, which are separate problems
with their own challenges. Semantic segmentation is the act of grouping together
points which belong to the same type of object, or class, while the goal of instance
segmentation is to group together points belonging to each individual object. Since
our objective is to identify people, animals and vehicles, instance segmentation or some
form of object detection is required somewhere along the way. After an object has
been detected either ordinary classification or semantic segmentation can be used to
determine which class it belongs to.

(a) Semantic segmentation in simulated LiDAR
data, each type of object is assigned one
color.

(b) Instance segmentation in simulated LiDAR
data, each individual object is assigned one
color.

Figure 3.1: The two types of segmentation.

There are many ways to do instance segmentation, but since it is not the primary focus
of this thesis, a rather simple classical approach was taken. Below follows a two-step
approach to classical instance segmentation, which is used to find individual objects
of interest in the LiDAR data.

3.1.1 Filtering the Background

The points in a point cloud can be split into two different categories, foreground and
background. The foreground consists of points belonging to objects we want to classify
and track, such as humans, vehicles and animals. The background on the contrary
consists of static objects such as buildings, ground or trees. There are many ways that
the filtering of background can be done, below is a description of the way it is done in
this project.

5



Max-Distance Filtering

A very simple and rather effective method, used by for example Xiao et al. [4], is a
maximum distance filter. An empty scene is scanned for a few seconds, and taken
as the static environment, i.e. the background. After that, anything moving in front
of the background can be seen as dynamic points, and are kept after the filtering.
The background is represented by a fixed maximum distance for each direction, and
anything beyond it is filtered away. This method has a few obvious flaws. The back-
ground is not always entirely static; wind can shake trees and flags for example. The
scene needs to be empty for a few seconds, this is not always easy to accommodate.
Finally, if the LiDAR sensor moves or vibrates the whole scene shakes and the filtering
deteriorates.

3.1.2 Clustering Objects

When the foreground has been extracted from the original point cloud we are left with
the objects we want to identify, as well as some noise from the background. The goal
of instance segmentation is to find all points belonging to the same object and group
them together, to prepare them for tracking and classification. Grouping data points
together this way is known as clustering, and is a well-studied problem with many
applications. That said, there is no clustering algorithm that works in every scenario,
different algorithms work well for different problems. Knowing how the structure of
the data and the applications is the key to picking the right clustering algorithm, and
the using it appropriately with the right parameters. We can list a set of requirements
that our clustering algorithm needs to adhere to:

• Work for an unknown number of clusters, there is no way of telling how
many objects there are in the data ahead of time.

• Robust to outliers, there will be noise from the background which should not
belong to any cluster.

• Work for any geometry and cluster size, objects will have different shapes
and sizes.

• Be fast, not much time can be put into the pre-processing of the point cloud,
since it is only a small part of the pipeline.

• Work for large cluster sizes, usually thousands of points need to be clustered
at once.

• Euclidean distance metric, what separates objects from one another is the
physical distance.

One particular algorithm stands out from the rest when it comes to these criteria,
one that has passed the test of time, density-based spatial clustering of applications
with noise (DBSCAN), see [5]. It is a density-based clustering algorithm, separating
high-density clusters from low-density areas. This makes it so that DBSCAN works on

6



clusters of any shape, with the biggest drawback being that the clusters need similar
density.

DBSCAN works by creating clusters out of core samples. A core sample is defined
as a point having at least min samples within distance ε of itself. If a core sample is
within distance ε to another core sample, they belong to the same cluster. If a point
is not a core sample, but within distance ε of a core sample, it belongs to the same
cluster as the core sample. Any other points, that are not core samples, or are not
within distance ε to a core sample, are outliers.

This means that DBSCAN has two parameters that need be chosen, min samples and
ε. The most critical parameter is ε, as it is entirely dependant on the density of the
data. If ε is high we allow more clusters to form in low-density areas, and several
smaller clusters can merge into larger ones. On the other hand if ε is low we require
higher density for cluster formation. Choosing ε correctly is not trivial, and there is
likely now value which will cluster all points correctly, but we will later see how it
can be calculated. The other parameter, min samples, controls how many samples are
needed to form a cluster, which can be useful in noisy data. By choosing min samples
right we can ensure that noise points become outliers, which don’t interfere with the
classification and tracking.

3.2 Deep Feedforward Networks

An artificial neural network (ANN) is a system of functions, loosely based on neurons
in the biological brain, see [6]. The neurons, or nodes, in an ANN have connections
to each other, and are typically organized in layers. The deep feedforward network
is a type of ANN where connections between nodes do not form a cycle, contrary to
connections in a recurrent neural network, which will be described later. These deep
feedforward networks can be used to classify images, or do semantic segmentation in
images, with the help of convolutional layers. One of the simplest feedforward networks
is the multilayer perceptron (MLP), which will be described below to illustrate how a
neural network operates.

3.2.1 The Multilayer Perceptron

The MLP has three or more layers, consisting of the input layer, the output layer and
one or more hidden layers, see Figure 3.2. Each layer consists of a number of nodes,
and each node is connected by a weight to all nodes in the next layer. The input layer
simply takes an input vector of some predetermined length and sends the content of
each index to every node in the first hidden layer, which is where it gets interesting.

At each node in a hidden layer the values from the previous layer are multiplied by
their respective connection weights and summed up. Before being sent off to the next
layer, a bias is added, and the sum is sent through a non-linear activation function.
For node i in a hidden layer this would correspond to Equation 3.1, where m is the
number of nodes in the previous layer, φ is the activation function, wi are the weights,

7



Figure 3.2: A multilayer perceptron. (1) Input. (2) Output. (3) Input layer. (4) Hidden
layer. (5) Output layer. (6) Node connections. (7) Nodes.

bi is the bias and x are the values from the previous layer.

zi = φ
( m∑

j=1

wijxj + bi
)

(3.1)

There are several non-linear activation functions that can be used, but a common one
is the rectified linear unit, ReLU, see Equation 3.2.

φ(xi) = max (xi, 0) (3.2)

If a classifier is what you want, which is a common use for an MLP, the final layer,
the output layer, should have as many nodes as types of objects you want to be
able to detect. For example, if the network is supposed to identify pedestrians, cars,
cyclists and animals, you would want four output nodes. To determine the output as
a probability for each class, you would apply the softmax function, see Equation 3.3,
on the output of each node i, where m is the number of output nodes.

softmax(z)i =
exp (zi)∑m
j=1 exp (zj)

(3.3)

This sums up how a type of feedforward network can take an input vector, pass it
through its layers, and output a probability. However for the output to make any
sense, the network needs to be trained to work like we want it to.

8



3.2.2 Deep Network Training

An important property for deep networks is that they are trainable. If a network is
supposed to learn the difference between humans and cars, we need to pass hundreds of
images containing these objects through the network, and the network should by itself
figure out the differences. The network we just looked at can have tens of thousands of
trainable weights and biases, so there needs to be a way for the network to know how
these should be tuned for a good result. This is where cost functions and gradient-
based learning is introduced.

A cost function is simply a function that outputs a number based on what the network
predicts compared to what the correct answer is. If the network predicts correctly it
gives a low cost, but if it is wrong it gives a high cost. Typically the cross entropy
between the predicted probabilities and the true probabilities is used for classification
problems for example.

The gradient based learning is then responsible for tuning the parameters responsible
for producing the cost, which results in higher tuning for incorrect predictions. This
is done through an algorithm called backpropagation. Backpropagation computes the
gradient of each trainable parameter with respect to the cost. This way if we want the
cost to go down, which we do, we know how the weights and biases should be tuned.

3.3 Deep Learning on Point Clouds

We will now look into how a network architecture can be designed to work on LiDAR
data, instead of ordinary images. The output from a LiDAR sensor is a set of points
in RN known as a point cloud, which has certain geometric properties. Unlike pixels
in a 2D image, point clouds are highly irregular, having varying amounts of points,
no order among points and with different shapes and sizes. This leads to issues when
using typical convolutional neural networks, which require highly regular input shapes.

To operate on point clouds some researchers transform them to other, easier to work
with, data structures. Common approaches are turning the points into 3D voxels
or sets of 2D images taken from different views. However, this leads to a trade-off
between accurately representing the data and the size of the data. For instance, using
a very fine grained 3D voxel grid to represent a point cloud leads to a huge matrix
representation, while still requiring some compression of the data. On the other hand
using a more coarse grid leads to a smaller representation, but with a significant loss
of information.

3.3.1 PointNet Architecture

Since it is not desired to convert the points to a different data form, a deep neural
network intended to work on point clouds needs to adhere to their properties. This is
precisely what the creators of PointNet, Qi et al. [7], do when creating the architecture
of their network, see Figure 3.3. They list the main properties of point clouds as follows:

9



Figure 3.3: The architecture of PointNet. The top half is the classification network, and
the bottom half is added if segmentation is desired instead. MLP stands for
multilayer perceptron and the numbers within the parenthesis are layer sizes.
Image from the paper on PointNet by Qi et al. [7].

• Point clouds are unordered, and any network that takes N points as input needs
to be invariant to the N ! number of permutations of said input

To handle different input permutations PointNet uses a symmetrical function to ag-
gregate the information from each point. The output from a symmetrical function is
invariant to the input order of the arguments, i.e. f(x1, x2) = f(x2, x1). Here, the
symmetrical function of choice is the max pooling operator.

It works by stacking the feature vectors to form a matrix, where each feature vector is
a row, then taking the maximum value of each column. This outputs a vector, which
supposedly holds all necessary information about the point cloud. This means the
input is an n×m matrix, and after the max pooling, a vector of length m is output,
see Equation 3.4.

Column-wise max
(
X = (xij) ∈ Rn×m

)
=

(max(x11, ..., xn1), ...,max(xm1, ...., xmn)) ∈ Rm (3.4)

Since the order of the points may not matter before the pooling, each point has to go
through the same transformations up until the pooling. This is why it is crucial that
each MLP has shared weights between each channel, and that the input and feature
transformation work the same way for each point.

• Points are never isolated, close neighbours form an important subset. As such,
the model needs to capture local structures, and interactions between structures

The global feature vector contains information about all points, and can be used with
a classifier to generate the output classification scores. However the segmentation
network needs to be aware of the surroundings of each individual point to label them,

10



as points are not isolated. This is solved in PointNet by appending the global feature
vector to each individual feature vector, creating a matrix where each row contains
both local and global information about the point. With this information a classifier
can be trained to do semantic segmentation of point clouds as well.

• A point cloud representation should be invariant to rigid transformations, which
includes rotations, translations and reflections

This task is solved in PointNet by applying an affine transformation to the input
coordinates. The transformation matrix is dependent on the input, and is predicted by
a small network called T-net. The transformation network works like a mini-PointNet,
with point independent feature transformation, max pooling for feature aggregation
and finally fully connected layers that predict the 3× 3 matrix. The same principle is
applied during the feature transformation, except the output is a larger matrix.

Since point clouds generally have a varying number of points, and a neural networks
generally cannot be set to have an arbitrary input size, there seems to arise a problem.
However, if we want to input less than n points to the network, the input can simply be
padded with copies of itself. Since every point goes through the same transformations,
two identical input points will still be identical at the max pooling operation, at which
point any copies will have no effect on the outcome. For this reason n should be seen
as the maximum number of expected input points, as with any more points than n,
down-sampling is required.

3.3.2 PointNet++ Architecture

Less than a year after the making of PointNet, the creators had improvements to
make on the point cloud processing pipeline, creating PointNet++, see [8]. Although
PointNet is a pioneer in deep learning on point sets, being able to encode the features
of a point cloud in a single fixed sized vector, it had some issues. Particularly with
incorporating features from many different scales in the same point cloud, and working
with point clouds with varying density.

The problem of looking at features at different scales has already been solved in deep
learning on regular images, by the CNN. In a CNN there are one or more convolutional
layers, which aim to capture local features by having a kernel slide over the image,
working with a few grouped up pixels at a time. Since the input to a CNN is always
the same shape and pixels are always equally spaced, this is not a hard task, it is
simply matrix multiplication in different positions in the image.

The PointNet++ Layer

PointNet++ aims to work in a similar way, by processing the point cloud in a hierarch-
ical fashion to aggregate information at different scales, but faces two obstacles: how
to split the point set into smaller, overlapping parts at each level, and how to extract

11



Figure 3.4: The architecture of PointNet++. One PointNet++ step consists of sampling,
grouping and a small PointNet. Either segmentation and classification can be
achieved, with different architectures. Image from the paper on PointNet++
by Qi et al. [8].

local features. A summary of the PointNet++ architecture is found in Figure 3.4.
The solution the creators propose is finding key points in the point cloud, selecting
neighborhood points to create a local subset and using a small version of the original
PointNet to encode the data. This task is completed in three steps:

1. Sampling. The centroid for each group is chosen using iterative farthest point
sampling. This is done by first choosing a random initial point to be the first centroid.
The next centroid is chosen to be the point most distant to all previously found
centroids. This is repeated until desired number of centroids have been found. This is
guaranteed to have better coverage over the entire point cloud, compared to random
sampling.

2. Grouping. Here a radius is specified, and each centroid adds all points within this
radius to their group. Since the balls can overlap, the same point can belong to several
different groups. The number of points in each group varies, but the fixed region scale
is preferred for local pattern recognition. The radius, or the ball size, in this layer can
be compared to the kernel size in the convolutional layer of a CNN.

3. Feature extraction. For the last step, local features are extracted from each
subset of points within a ball, by a small PointNet module. The points are first
translated to a local coordinate system, with the centroid point as the origin. Similar
to how a convolutional filter is passed over an image, the same small PointNet is used
to encode the features of each ball in one layer.

These three steps are what makes up a PointNet++ layer. The output from one layer
is a smaller number of points in a larger feature space, like how a CNN operates. In
practice, several PointNet++ layers and some fully connected layers are used to form
the entire classification network, see Figure 3.4. However if semantic segmentation is
desired each point in the original point set needs its own prediction score. Instead

12



of skipping sub-sampling and letting every point pass each layer, which would take
considerable computation time, the creators have another solution.

Feature Propagation for Semantic Segmentation

When the features have been extracted in the last abstraction layer, the red layer in
Figure 3.4, they are propagated up to the original point set, in a form of up-sampling.
This is done by interpolating feature values for the points that were lost in the sub-
sampling done in each layer. The interpolation is done according to Equation 3.5,
where feature f(x) in a layer is the inverse distance weighted average of the k nearest
neighbours’ features in the previous layer. The interpolated features are then skip
link concatenated with the corresponding set abstraction features and fed through
a PointNet layer. These steps are repeated until the per-point scores for semantic
segmentation have been formed.

f(x) =

∑k
i=1 wi(x)fi∑k
i=1wi(x)

where wi(x) =
1

d (x, xi)
2 (3.5)

Multi-Scale Feature Learning

As mentioned earlier, the original PointNet architecture was not robust to varying
density within the point cloud. Non-uniform sampling density is often the case with
point cloud data from a LiDAR sensor, since the distance between points is greater
for objects hit far away. The creators of PointNet++ introduce a simple solution to
this, calling it a density adaptive PointNet layer. It works by applying the grouping
stage multiple times with different scales, followed by PointNets to extract features.
The multiple features are then combined according to local pattern densities, which is
something the network learns how to do optimally. It should be noted that this is an
expensive operation, since running PointNet on large scale neighbourhoods for every
centroid is computationally heavy.

3.4 Recurrent Neural Networks

A recurrent neural network (RNN), in contrast to the commonly considered feed-
forward neural network, makes use of cycles within its network structure. As such, an
RNN can be effectively used to learn temporal dependencies, such as predicting time
series and memorizing earlier calculations. Different structures have been proposed to
this extent, of which two will be discussed; the Simple RNN:s (SRNN) by Jeffrey L
Elman [9] and Michael I Jordan [10] and the Long Short-Term Memory Neural Network
(LSTM) by Sepp Hochreiter and Jürgen Schmidhuber [11].

13



3.4.1 Simple Recurrent Neural Networks

Two very similar variations of the Simple Recurrent Network (SRNN) were proposed
by Elman and Jordan, respectively. Referring to these as the Elman and Jordan net-
works, a simple cycle reusing either the output or the hidden state can be incorporated
in the networks using the state- and output equations. First, let yt be the network
output and ht be the hidden state at time t, where t = 0, 1, 2, . . . is a discrete-time
variable. The output can then be calculated using the output equation

yt = σy (Wht + by) , (3.6)

where σy is an activation function and W and by are learnable weights and biases. Now
let xt be an input vector at time t. The Elmer and Jordan networks can be stated
with the state equations as

ht = σh (Whht−1 +Wxxt + bh) (Elman) and (3.7)

ht = σh (Wyyt−1 +Wxxt + bh) (Jordan), (3.8)

where once again Wh, Wx and bh are learnable weights and biases and σh is an ac-
tivation function. Although the state equations look very similar, the hidden state is
updated directly from the previous hidden state in the Elman network, whereas one
needs the output (Equation 3.6) of the network to update the hidden state in the
Jordan network (it should however be noted that the output is itself a function of the
previous hidden state). The Elman network as such incorporates an extra layer for
the output, whereas the Jordan network updates its state directly from its output.

3.4.2 Long Short-Term Memory Neural Networks

To properly optimize the SRNN, the Backpropagation Through Time (BPTT) (de-
scribed in detail in [12]) algorithm can be employed, which essentially calculates partial
derivatives of the loss function over both time and weight space in order to obtain a
gradient. Hochreiter and Schmidhuber argues in [11] that the SRNN suffers from the
vanishing/exploding gradient problem: in effect, SRNN can not learn long term de-
pendencies due to either too small or too large partial derivatives propagating through
time with BPTT. To remedy this, the authors introduce the Long Short-Term Memory
(LSTM) neural network, which utilizes learnable ”remember” and ”forget” channels
in order to gather or forget information from previous timesteps.

An LSTM cell consists of two channels propagating through time, carrying the hidden
states h and c. The hidden state h is similar to the one in SRNN, where an output
yt can be calculated in the same manner as in Equation 3.6. Furthermore, the hidden
state ct similarly propagates through time but is entirely hidden and can be passed
through gates controlling when its information should be added to memory or be
forgotten. This allows the LSTM to learn longer time-dependencies than SRNN. The
different channels and gates of the LSTM unit can be seen in Figure 3.5.

The LSTM unit is more complex than the SRNN, and as such has more complicated

14



Figure 3.5: An LSTM cell with the input x and the hidden states h and c for time t [13].

state equations. The state equations for the LSTM are

ft = σ(Wfxt + Ufht−1 + bf ) (forget) (3.9)

it = σ(Wixt + Uiht−1 + bi) (input) (3.10)

ot = σ(Woxt + Uoht−1 + bo) (output) (3.11)

ĉt = σc(Wcxt + Ucht−1 + bc) (new long term memory) (3.12)

ct = ft ◦ ct−1 + it ◦ ĉt (long term memory) (3.13)

ht = ot ◦ σh(ct) (hidden state), (3.14)

where W(·) and U(·) are learnable weights and b(·) learnable biases at respective gates
and σ· are activation functions.

3.5 Tracking objects from sensor data

Tracking objects from sensor data means to distinguish present objects from each
other over time within the setting measured by the sensor. A tracker in turn, is a
method employed to accomplish this task. A robust tracker should be able to identify
where different currently tracked objects are, disregard noise in the form of ”false
objects”, handle missed objects as well as identify when objects enter or leave the
setting. Properly tracking objects is as such a complex and sometimes difficult task.

Noise and missed objects are to be expected from time to time due to imperfections
of the sensor as well as the complexity of the setting. In the case of a LiDAR sensor,
after filtering out the background, ”semi-static” objects such as trees swinging in the
wind may be identified as moving objects. This should of course be considered noise.
Similarly, a tracked person could become occluded at times and as such not be seen
by the sensor and registered as a moving object.

15



Here, we introduce a common approach to the tracking task. The tracking is essen-
tially divided into three steps in each point of time. First of all, predictions of each
of the previously tracked objects position are made. Secondly, using the newly ac-
quired sensor data of different objects, we make an association between the measured
objects and predictions, where for example proximity and other similarity measures
are taken into account. And finally, using the available information of predictions and
associations, we make decisions in order to update tracks. These decisions include
conclusions about where the previously tracked objects are (alternatively if they have
left the setting), if there are any new objects which should initialize new tracks and
if there is any noise to be disregarded. An example of this pipeline at a point of time
can be seen in Figure 3.6 with steps a-f.

(a) Three current tracks. (b) Predictions (circle) of each track.

(c) New measurements (square).
(d) New measurements compared to tracks and

predictions.

(e) Associate each track to a measurement (same
coloring). What to do with fourth
measurement?

(f) Ignore last measurement. Other solution
could be to introduce new track.

Figure 3.6: Example of tracking pipeline with three current tracks and four
measurements.

3.5.1 Kalman filter

A common approach to predict and update present tracks at a point in time is the
Kalman filter. Given a track, we define a state in time as st = (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈),
which contains the position, velocity and acceleration of the tracked object at time t.

16



Here, we assume that the state is generated by a Gaussian process such that

st ∈ N(Fst−∆t, Q), (3.15)

where F is a transition matrix defined as

F =



1 0 0 ∆t 0 0 1
2
(∆t)2 0 0

0 1 0 0 ∆t 0 0 1
2
(∆t)2 0

0 0 1 0 0 ∆t 0 0 1
2
(∆t)2

0 0 0 1 0 0 ∆t 0 0
0 0 0 0 1 0 0 ∆t 0
0 0 0 0 0 1 0 0 ∆t
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


and ∆t is the size of the timestep. As can be understood from the transition matrix,
the motion model for a walking object is as such defined as (for y and z as well)

xt = xt−∆t + ∆tẋt−∆t +
1

2
(∆t)2ẍt−∆t (3.16)

ẋt = ẋt−∆t + ∆tẍt−∆t (3.17)

ẍt = ẍt−∆t. (3.18)

Furthermore, the covariance matrix Q represents noise in the process, such as meas-
urement errors and imperfections. Given the state vector xt−∆t and a measurement
zt, a prediction and updating schedule (which takes the associated measurement into
account for each track – see Data Association below) can be implemented as outlined
in [14] (p. 588).

3.5.2 Data Association

Given a set of M measurements z = (z1, z2, . . . , zM) and N predictions x∗ = (x∗1, x
∗
2, . . .

, x∗N) of tracks, the task is to, for each prediction, either associate a measurement or
conclude that a measurement for that track is missing. Furthermore, each measure-
ment must of course not be assigned to more than one track. The problem can be
stated as a combinatorial optimization problem, where the sum over all assignments
under a similarity function d (which could include, for example, position and some
sort of appearance) is to be minimized (a more precise formulation can be found in
[15]). The problem can be stated with three requirements:

1. The assignments of measurements and predictions should be minimized over
some similarity function.

2. Each measurement may at most be assigned to one prediction.

3. Each prediction may at most be assigned to one measurement.

17



Requirements 2. and 3. mean that each measurement originates from one track
only1, but we should state that it also includes missed detections (0-1 assignment) and
clutter/noise (1-0 assignment).

One common approach to solving this problem is the bipartite matching Hungarian
Algorithm, where the problem is solved by creating the cost matrix C with Cij =
d(x∗i , zj). A complete description of the algorithm can be found in [16].

1We should note that it is not uncommon in practice for two measurements to originate from the
same track. In the case of a LiDAR-setting, this could be the case when clustering of an object (such
as a pedestrian) mistakenly results in two clusters. If we were to follow the 1-1 assignment rule, one
of these measurements should at this stage be disregarded as clutter – however there of course exist
other approaches as well, at both pre- and postprocessing time.

18



4 Method

4.1 Simulation of LiDAR Data

Since we were going to use deep learning for classification, segmentation and tracking
we needed training data for our models. We did not have access to the Luminar
Hydra LiDAR sensor until late into the project, so we could not take real life data
and annotate it ourselves. However, even if we would have been able to, it would
have been an extremely time consuming process, which would have slowed us down
too much. Instead we resorted to simulating data, using the open-source autonomous
driving simulator CARLA by Dosovitskiy et al. [17], see Figure 4.1.

Figure 4.1: Example of a frame from the CARLA simulator.

The idea of simulating data was that we could generate a lot of data quickly, from
different scenarios and environments. The advantage of using CARLA was that it had
a built-in Python API, which let us spawn pedestrians, cyclists and cars easily. The
people and vehicles in the world were controlled by the simulation, and acted like you
would expect them to in traffic. There were several off-the-shelf urban environments
to use, with roads, buildings and vegetation. Most importantly it had the capability
to simulate a LiDAR, which we could control with the Python API.

That said CARLA did have some limitations. There was little variation how people
looked and moved in CARLA, which gave us a very homogeneous dataset to work
with. There were no animals in CARLA by default, but we managed to add one dog.
The LiDAR scan pattern was configurable to a certain degree, but not as much as the
Luminar Hydra LiDAR. Finally, CARLA does not calculate intensity of the returned
beams, meaning we lost out on one dimension of data.

In the simulation we randomized the location of the LiDAR every frame, and recorded
the world at 10 frames per second, with about 200 pedestrians and 50 vehicles moving

19



in the simulation simultaneously. This was done for 5 different worlds, with the actors
being replaced every 1000 frames. The LiDAR data was saved as CSV files, which
were later processed and formatted into the datasets that were needed.

4.2 Dataset Analysis

In total we constructed three datasets for each of classification, segmentation and
tracking using CARLA. Below follows a brief description of each dataset.

4.2.1 Classification Dataset

For the classification dataset we focused on things we could find in the real world, that
were also readily available in the simulator. The classes became pedestrian, cyclist,
car and other. We collected 10 000 objects of each class from the simulator, with
the criteria that they consisted of at least 50 data points and were smaller than 5m
in every dimension. The only exception was the ”other” category which had 20 000
objects, since it was much more diverse, see Table 4.1 for its contents.

Object type Quantity
Vegetation 8 000
Static object 4 500
Dynamic object 2 000
Pole 2 000
Traffic sign 1 000
Guard rail 1 000
Animal (dog) 1 000
Traffic light 500

Table 4.1: Contents of the ”other” class in the classification dataset.

In Figure 4.2 there is a histogram of the number of points in all 50 000 objects in the
dataset. It is not a problem that the number of points vary, on the contrary it is good
that the models get to train on both sparse and dense point clouds. However there
has to be a fixed input shape to the models, so there must be a maximum number
of points. Looking at the histogram we can tell that the vast majority of objects fit
within 500 points, so the input shape for the classification models was set to 29 = 512
points. Since most objects had less than 512 points, those objects were padded with
copies of themselves. This has no impact on the training or classification result, as
discussed earlier. For the few objects with more than 512 points, random points were
dropped until they had the right amount of points.

20



Figure 4.2: Histogram depicting the number of data points per object in the generated
dataset.

Since CARLA has no intrinsic noise, noise was added to the data to make it more
realistic. Adding noise to the input data helps networks generalize [18], since they
need to learn patterns instead of exactly how the training data looks like, thus reducing
overfitting. The Hydra LiDAR sensor has minimal angular noise, but a small radial
noise. To mimic this a uniform radial noise ε ∈ (−2.5, 2.5) was added to each data
point. In addition to this the data was normalized, by making sure it was zero-mean
and fit within the unit sphere, see Equation 4.1.

Xinput = (x1, ...,x512) where xi = (xi, yi, zi)

1

512

512∑
k=1

xk = ~0 ∀ Xinput

|xi| < 1 ∀ Xinput

(4.1)

In Figure 4.3 there is one example point cloud from each class, generated by the
simulated LiDAR.

21



(a) Point cloud of simulated human. (b) Point cloud of simulated cyclist.

(c) Point cloud of simulated car.
(d) Point cloud of simulated miscellaneous

object.

Figure 4.3: The four simulated classes in CARLA as seen by the LiDAR.

4.2.2 Semantic Segmentation Dataset

For the semantic segmentation dataset the classes were almost the same, except the
other class was replaced with the background class, and since animal did not fit in
the background class it was made into its own class. This means the classes were
pedestrian, cyclist, car, animal and background. Since the background points in any
given frame were vastly overrepresented and supposed to be filtered away anyway in
the preprocessing step, only 1 % was kept in each frame. For this dataset 10 000 frames
were collected, with the only criterion that there were at least 3 objects captured within
each frame. The distribution of points over all frames was according to Table 4.2.

Class Pedestrian Cyclist Car Animal Background
Percentage 8.2 8.4 14.5 1.0 67.9

Table 4.2: Class representation in the semantic segmentation dataset.

In Figure 4.4 there is a histogram of the number of points in the semantic data frames.
Just like for the classification dataset, the maximum input size needed to be set. For
the semantic dataset an input size of 211 = 2048 points was enough for the majority
of the data. In the same way as before, all data was made the same shape, normalized
and noise was added.

22



Figure 4.4: Histogram depicting the number of data points per frame in the generated
semantic dataset.

4.2.3 Tracking Dataset

Using the recorded positions of pedestrians and cars in Carla every tenth of a second
repeatedly for 100 seconds (resulting in 1000 frames per track), we created approxim-
ately 1500 simulated tracks of each and stored these as as distinct tracks.

Using the stored tracks, we created a new simulation environment (”track simulator”)
to generate track data over time. The simulation environment spawned and despawned
pedestrians and cars (”track”) randomly on a predetermined xy-plane-segment over a
given timeframe, generating frames with recorded positions and other relevant values
needed to train the Deep Tracker (for details, see section 4.4.3). When each new
track was to be spawned, the track simulator randomly chose a track segment from
the 3000 prestored tracks, which in turn was randomly rotated and spawned on a
random location together with a small Gaussian noise added to each position. Using
these methods containing several random steps, the training data could almost be
augmented ad infinitum and in addition easily generated on the spot.

4.3 Filtering and Clustering

4.3.1 Distance Filtering

The max distance filtering has two steps, calibrating the filter and actually performing
the filtering. To calibrate the filter some initial frames need to be chosen as background
points, preferably entirely static frames as everything within these frames will be
considered background. Usually we pick the first 50 to 100 frames, depending on how
noisy the environment is. We also pick a threshold distance ε the points need to have
from the background, in order to be considered foreground. The threshold is usually

23



between 0.1 to 0.2 meters, also depending on the environment.

Points from the LiDAR sensor are represented by floating point values pi = (ri, θi, φi),
but to create a representation of the background we need to map them to a matrix
with integer indexes. The Hydra scans 64 horizontal lines when recording at 10 frames
per second, but there is no discrete pattern along these lines. This means there are
only 64 different θi, which we can map to matrix indices directly, but we need to
discretize the horizontal angles ourselves. To mimic the hydras resolution we use steps
of ∆φ = 0.1 in the discretization of the 120°field of view.

This gives us a matrix B = (bij) ∈ R64×1200 to represent the background, where i is
the line number and j is a horizontal angle interval of length ∆φ = 0.1. Using the
discretization above, each point within the LiDAR’s field of view can be mapped to
an entry bij in matrix B. To construct B we go through all initial frames and map
each data point to an in index ij. We then chose bij to be the radius of the closest
point among points mapped to index ij. The closest point is chosen since everything
beyond it will be filtered away.

During the filtering phase a frame F consisting of n points pi = (ri, θi, φi) is input to
the filtering algorithm. Each angle pair (θi, φi) is mapped to an entry bij in B, holding
the distance from the sensor to the background for that specific direction. If the radius
ri plus the threshold ε is closer to the sensor than the background bij, the point passes
the filter. If ri + ε > bij the point is too close to the background, and filtered away.

Sometimes the initial frames are not enough to fill matrix B with enough information
about the background, due to noise and jittering. This is why after the initial frames
have been stored in B, we perform max pooling with kernel size 3 × 3 and stride 1,
filling holes in the background matrix, making the filtering more robust.

4.3.2 Clustering

Clustering was done with the DBSCAN algorithm, in particular the scikit-learn im-
plementation, by Pedregosa et al. [19]. All the points that pass the filtering phase
are simply input directly into the clustering algorithm, which outputs a cluster label
for each point. The parameters we need to chose are the maximum allowed distance
between core points ε and the minimum number of points in a cluster. When cluster-
ing objects in the simulated data, ε = 0.3 yielded the most satisfactory results, but in
the real world data this often yielded more clusters than desired. The real world data
was a bit more sparse, so ε = 0.5 was empirically chosen as a better fit. The minimum
number of points in a cluster was chosen to be 5, which was robust to most noise.

Each cluster could then be sent to the tracker and thereafter the classification model.
If semantic segmentation was used, clustering could be performed in parallel instead.

24



4.4 Model Implementations

4.4.1 PointNet++ Classification

For the classification problem four models were created from PointNet++ layers. In
two of the models we used the multi scale learning feature, and in the other two it
was turned off. In addition to this two of the models had smaller layer sizes, and two
had larger layer sizes. This was so that we could see how these factors affected the
performance as well as the inference time of the models.

All four models consist of three PointNet++ layers, which is what was used in the
original paper by Qi et al. [8]. In addition to this there are a few dense layers, and
dropout layers to reduce overfitting. Sample size refers to the number of sampled local
ball shaped regions, with radius sampling radius. After the sampling the regions are
processed by a small PointNet with fully connected layers of size mlp.

The input size to each model is as described in the dataset section, Xinput = (x1, ...,x512)
where xi = (xi, yi, zi), which is a matrix of shape 512 × 3. The input can easily be
augmented to fit more features, such as intensity, if the opportunity arises. The output
from each model is a vector of length 4, containing the probability of the object being
each of the 4 classes.

After each layer there is batch normalization and an activation function, which is
chosen to be the ReLU function. The only exception is the output layer, which simply
uses the softmax function produce the probabilities. Below follows a short description
of each model, and each model can be read about in detail in Appendix A.

The small single scale model is the simplest of the four classification models. In
each PointNet++ layer it only scans at a single scale. It has 23 292 model parameters.

The big single scale model has more parameters in each layer compared to its
smaller counterpart, with 89 972 parameters.

The small multiple scales model collects features at multiple scales in the first
two PointNet++ layers, but still does not have very many parameters, with 28 168.

The big multiple scales model, it is the most advanced of the four models. It both
utilizes the multiple scale feature, and has more parameters in each layer to support
it, with 108 076 parameters.

4.4.2 PointNet++ Semantic Segmentation

For the semantic segmentation two models were created from PointNet++ layers, one
with many parameters and one with less parameters. They were constructed much
like the classification models, except they have one more feature abstraction layer, and
then four feature propagation and interpolation layers, which were not needed in the
classification case.

25



The input size to these models are Xinput = (x1, ...,x2048), four times bigger than to the
classification models. The biggest difference when it comes to semantic segmentation
is the output size. Instead of a single vector of probabilities, it outputs a matrix with
each row being a probability vector associated with each of the input points. This
means the output is Youtput ∈ R2048×5, since we have 5 semantic classes. The models
can be read about in detail in Appendix A, below is a brief description.

The Small Semantic Segmentation Model collects features at a single scale at
each layer, then uses feature propagation to give each point its own semantic label. It
uses 63 855 model parameters.

The Big Semantic Segmentation Model has the same functionality, but has vastly
more parameters to support it, at 246 871 parameters.

4.4.3 Deep Tracker

The Deep Tracker is a direct implementation of the recurrent network structure presen-
ted in [20] by Milan et al. A summary of its implementation can be found in the
appendix. In short, it contains two modules; the predict-update-birth/death module
(”predict/update module”) and the data association module (”DA module”). In total,
this network aims to solve the tracking problem with the steps mentioned in section
3.5. It should here be noted that the predict/update module is an extended Jordan
network with the ”sub-module” named Predict in the figure being a standard Jordan
Network. In addition, the DA module is nothing less than a standard LSTM.

Here follows a brief explanation of some of the variables involved in the, defined in the
same way as in [20]. At a given time t+ 1, an array xt = (x1

t , x
2
t , . . . , x

N
t ) consists of N

positions where each xit denotes the current position1 of track i at time t. Since there
are not necessarily always N tracks apparent in the setting, we denote ”false tracks”
by the position (0,0). As such, the network is able to track up to N objects at a
time. Since it is not necessarily possible to read which positions correspond to a ”true
track” solely from the positions array x, we employ another array εt = (ε1

t , ε
2
t . . . , ε

N
t ),

containing N probabilities of each position in xt being a ”true track”. To consider
a track to be true is then a problem of defining a proper probability threshold. At
the given time, new measurements zt+1 are provided by the LiDAR in the form of a
number of positions. The array zt+1 = (z1

t+1, z
2
t+1, . . . , z

M
t+1), similarly to x, contains the

given measurements. In turn, since the number of measurements are variable as well,
we denote ”non-measurements” by the position (0,0). Hence, the network is able to
provide up to M measurements, where M should be at least somewhat larger than N
to properly be able to account for extra measurements derived from noise. Now, given
that the network works in each timestep t + 1, out task is to yield current positions
xt+1 based on the previous positions xt, the previous track probabilities εt and new
measurements zt+1. This has in detail been described in section 3.5, and we will here
be describe it in the context of Milan et als network:

1In reality, xi could actually be any kind of feature vector containing more information than just
the current position – for example size, appearance, bounding box measurements etc.

26



1. Given xt and previous hidden state ht, we make a prediction with the Predict
submodule of xt+1 – denoted x∗t+1.

2. Using the prediction x∗t+1 and the measurements zt+1, we create the distance

matrix Ct+1, with the matrix elements Cij
t+1 = ‖zit+1− x

j
t+1‖. Using the distance

matrix, the DA module traverses through each track as its ”time dimension”,
at each step i outputting a distribution Ai

t+1 of M + 1 probabilities that a
given measurement corresponds to the position xit+1. The first M probabilities
directly translates to the M possible measurements, and the last probability
denotes ”missing measurement”. Using argmax on each row in At+1 then yields
a data association between positions in xt+1 and measurements in zt+1.

3. Aggregating the predictions (including the hidden state from the Jordan network
for extra information), measurements, data associations and track probabilities,
the Update submodule produces new updated positions xt+1 and tracks prob-
abilities εt+1. The concatenate-dot product-element-wise-multiplication flow in
the Update module first repeats the zt+1-array N times and appends the corres-
ponding predictions x∗t+1 (concatenating). In the next step, a tensor dot product
is made which ensures that on each position i = 1, . . . , N in the concatenated ar-
ray a weighted sum between measurements and corresponding prediction is made
with the data association probability distributionAi

t+1 – giving the highest mean-
ing to the most probable measurement (or to the prediction if a measurement is
deemed missing). Yielding new candidate positions for updating the tracks, these
are then multiplied by the corresponding track probabilities in εt (element-wise
multiplication). A final step containing learnable weights now aggregates these
new tracks with information from the Prediction module (ht+1) to update tracks
and tracks probabilities. Considering that candidates were calculated earlier, we
may assume that these weights have extra purposes; they could for example act
as ”self-regulation” when the tracks probabilities start to decrease down to a
certain threshold until the tracks positions are essentially missing (that is, close
to (0,0)). The final output ε∗t+1 from the Birth/Death submodule simply denotes
the absolute difference of probabilities between timeframes. We do not use this
output when employing the model, but rather during its training (see section
4.5.3).

4.5 Model Training

4.5.1 Classification Models

All four classification models went through the same training and testing scheme.
The dataset of 50 000 objects was split into 80 % training data, and 20% validation
data, and made into batches of 64 objects each. The training and validation data was
processed by the model until the validation accuracy changed by less than ∆ = 0.01
over 10 epochs, after which the best model weights were saved.

The gradient descent optimization algorithm used was Adaptive Moment Estimation
(Adam) with a learning rate of α = 0.001. The loss function was sparse categorical

27



cross-entropy, which measures how different two discrete probability distributions are.

Since early stopping was used the models trained for a varying number of epochs, but
all models converged in 20 to 40 epochs, which took only a few minutes for the smallest
model and about 20 minutes for the biggest model. The training was sped up by using
a GPU.

4.5.2 Semantic Segmentation Models

The training scheme for the semantic segmentation models was almost the same, with
the same data split, same early stopping criterion and same optimizer, but with smaller
batches of 4, since each object was much more complex. They also took about the
same amount of time to train as the biggest classification model. However the loss
function had to be modified, due to the dataset.

There is a large class imbalance in the semantic dataset, with the background class
being much larger even after removal of 99 % of the points. On the other hand animals
are very underrepresented, with only 1 % of the data. If nothing was done, this would
have lead to very biased models, since the loss function will be minimized by predicting
the most common class, while avoiding the least common class. This was countered
by creating a weighted loss function for the semantic segmentation model. After the
dataset split was done, class weights were calculated such that the weight for each
class was inversely proportional to its occurrence in the training dataset. The loss is
then calculated by taking the sparse categorical cross-entropy and multiplying the loss
with the weight of the ground-truth label. This means the loss becomes greater if the
model misclassifies a point with an uncommon ground-truth label.

4.5.3 Deep Tracker

Following the findings in [20], we trained the different modules separately in order to
ensure convergence. We trained each module on two seconds long sequences in batches
of 10 sequences using RMSprop and BPTT.

The two seconds long sequences were created using the tracks simulator we introduced
in section 4.2.3. Below follows a summary of the parameters used when generating
a simulated two seconds sequence with each parameter is valid in a frame-to-frame
basis. Note that when probabilities are given in a list-form [·], it should be read as
randomly sampled from that list. Furthermore, if we provide two lists, the second list
denotes the sampling probability ps from the first list of probabilities.

• A new object has a probability of p = [0.1, 0.2, 0.5, 0.8, 0.9] of spawning. An
object will however not spawn if N = 10 objects are already present.

• In each frame, a spawned object has a probability of p = [0.01, 0.1, 0.9], ps =
[0.75, 0.2, 0.95] of despawning.

• When an object should spawn, first a choice of whether to sample from the
prestored cars tracks or pedestrians tracks is made with p = 0.5.

28



• Let current frame be denoted by i. From the prestored tracks, a 20− i-long se-
quence is randomly sampled from a random track. See Figure 4.5 for an example
of this process.

• The sample is augmented by randomly rotating it along its first position with
an random angle θ ∈ [0, 2π) and randomly placed on a xy-plane segment with
the dimensions (xmin, xmax, ymin, ymax) = (5, 100,−100, 100).

• When measuring the position of a spawned object, a small Gaussian noise is
added to the coordinates.

• A measurement of a spawned object can go missing with a probability p = 0.01.

• A number of false measurements may be added to the measurements with a
probability pnoise = 0.5 for each ”available” slot in the z-array, adjusted for
the number of current tracks. This in turn yields a lot of noise among the
measurements, ensuring that the model is robust against noise.

• The coordinates are finally normalized by dividing with the maximum span of
the plan (in this case 100m).

The tracks simulator steps through each frame (20 in total) using these parameters
and creates the proper training data along the way, finally batching them up into
10 batches. The different probabilities were empirically derived and provided a good
balance between crowded and less crowded time sequences as well as exposed the model
to a proper amount of noise and measurement failures.

(a) Track data from Carla with random segment.
(b) Random segment augmented and placed at

random coordinates.

Figure 4.5: Process of acquiring random augmented track segment for pre-determining
track of spawned object.

As we stated before, we trained the two modules separately in order to have any chance
at convergence. This approach is further discussed by Milan et al. [20]. We trained The

29



predict/update module with the loss function described in the same article, containing
terms for each output2:

1. x∗t+1: Mean squared error

2. xt+1: Mean squared error

3. εt+1: Mean binary cross-entropy

4. ε∗t+1: Absolute value.

The final term ensured that the probability array did not change too much from one
frame to the next – without it, Milan et al. [20] argues that the model learns to make
too harsh decisions on whether a track is still in place or not when a measurement goes
missing. Finally, following the authors, we used RMSprop as the optimizer together
with BPTT for calculating gradients with a learning rate of 0.003, which in turn was
updated every 20 000 iterations with a decay rate of 0.95. A batch consisted of ten
two-second long sequences, resulting in a total of 500 000 unique sequences generated
throughout the training.

We trained the DA module using the mean categorical cross-entropy as its loss function.
Since the data association task is done per frame and does not have a direct temporal
dependence, there was no need to do a BPTT through a whole sequence – meaning
that all frames were concatenated into making a batch of 200 frames. Instead, as
discussed earlier, the ”timestepping” in the LSTM is done track-by-track, in which
the BPTT algorithm comes into play. The training is in every other aspect done in
the same manner as for the Predict/update module.

4.6 Evaluation Metrics

4.6.1 Classification and Semantic Segmentation

To evaluate the models there are many metrics that can be used, see [21]. Below are
brief descriptions of some common metrics we used to help us understand how the
different models performed and how they compare.

The confusion matrix, see Table 4.3 below, reveals a lot of information about a
classification model, and is the foundation on which many of the other metrics build
upon. It shows how many instances of each class that were correctly classified, the
green boxes, and how many were incorrectly classified, the red boxes. Importantly it
reveals what a wrongly classified object was predicted to be, what it was confused for,
which can be very helpful.

Accuracy is one of the most popular metrics in multi-class classification, it is intuitive
and easy to understand. It is simply a matter of dividing the sum of correct predictions

2Note that, since both the prediction step and the update step works towards finding the correct
next x, we used the same ground-truth data for both of these.

30



Predicted
Classes Pedestrian Cyclist Car Other Total
Pedestrian 1 2 3 4 10
Cyclist 5 6 7 8 26
Car 9 10 11 12 42

True

Other 13 14 15 16 58
Total 28 32 36 40 136

Table 4.3: Example of confusion matrix. The green boxes are where the true and
predicted class coincide, which is a correct prediction. The red boxes are
incorrect predictions.

by the total amount of predictions. It tells us how often the model was correct over
the entire set of data. One has to be careful when using accuracy with imbalanced
datasets, since it can hide large errors on underrepresented classes.

Before we move on we need to understand True Positives (TP), False Positives (FP),
False Negatives (FN) and True Negatives (TN). These are defined individually for
each given class, see Table 4.4 for an example with the pedestrian class. TP refers to
correctly predicting that an object is of the given class, while TN refers to correctly
predicting that it is not. Meanwhile, FP refers to incorrectly predicting the given
class, while FN refers to incorrectly predicting that it is not of the given class.

Predicted
Classes Pedestrian Cyclist Car Other
Pedestrian TP FN FN FN
Cyclist FP TN TN TN
Car FP TN TN TN

True

Other FP TN TN TN

Table 4.4: TP, FP, FN and TN for the pedestrian class. Note that a cyclist predicted as a
car is still a TN since the model did not predict it to be a pedestrian.

We can now define precision, which tells us for a given class how much can we trust
the model when it predicts positive, see Equation 4.2. Here TP and FP are defined
according to the table above. When taking the average precision for each class, we get
the macro-precision, which is what we are actually interested in.

Precision =
TP

TP + FP
(4.2)

We can also define recall, which tells us how many of the positives the model catches,
see Equation 4.3. If the model never predicts positive, even when it should, it can have
great precision, but terrible recall, which is why both are needed for a good model. In
the same way as earlier we define macro-recall as the average recall for each class.

Recall =
TP

TP + FN
(4.3)

31



Recall and precision are combined in the so called F1-score, see Equation 4.4, which
is simply a harmonic average between the two. Since a good model should have both
good precision and recall it can be enough to look at the F1-score, but sometimes one
is more important than the other, in which case we might not be as interested in the
F1-score. For the macro-F1-score we input the macro-precision and macro-recall in
Equation 4.4 below.

F1-Score = 2 ·
(

precision · recall

precision + recall

)
(4.4)

Inference time is the time it takes for one forward propagation through the network,
from input to output. Since the entire pipeline is on an execution time budget, com-
paring inference time is important when evaluating the models. It is simply calculated
by measuring the time it takes for the model to process the entire test set, in batches
of one, and dividing by the number of test items.

A metric we were interested in studying in this specific task was how many data points
that were needed to accurately classify a pedestrian. This is because the amount of
laser pulses that hit an object decreases when the object is farther away from the
sensor, and we wanted to investigate at what range the classifier could be trusted. In
practice we remove data points from the input data to simulate the person being far
away, and check the accuracy versus the number of input points.

4.6.2 Tracking

We used similar and equivalent metrics to those described above were to evaluate the
tracking system. The modular nature of the steps in tracking allows the different
steps to be evaluated separately, such as the different methods for prediction or data
association – these different metrics all measured performance in a frame-to-frame
basis. Consider however a sequence of frames in which a number of distinct tracks
is present. Applying a tracker for the whole sequence, we can compare the tracks
measured by the tracker to the ground-truth tracks. One such comparison would be
the mostly tracked (ML), which measures the rate of ground-truth tracks which have
been at least 80 % measured into a track by the tracker during a sequence. Similarly,
the metric mostly lost returns the proportion of tracks where less of 20 % of their
tracks went missing.

In order to evaluate prediction, with the tracker making predictions x∗ on a single
track, the sequential mean absolute error (MAE)

MAE =
1

n

n∑
t=1

|xt − x̃t| (4.5)

is a natural measurement.

The data association task can essentially be considered a classification task. In each
frame, each track need to either be classified into (associated with) the correct meas-
urement or the extra class ”missing measurement”. We should however note that while

32



this is the natural way of the Deep Tracker to solve the data association problem, the
Hungarian algorithm lacks the ability to disassociate a target – the task at hand from
its very definition is to associate each and every target to a measurement in a 1-1 fash-
ion. The HA will more or less choose the ”second best” measurement if a measurement
for a current track would be missing. This can lead to bad data associations, which in
turn can propagate the problem if this association disturbs the following methods of
updating and predicting. We could for example add a post-processing rejection condi-
tion in order to remedy this, where for example a proposed data association between
prediction x∗i and measurement zj may be rejected if the similarity Cij > D for some
pre-determined value D.

From the classification point of view, there are a number of tracks in each frame
that need to be ”classified” into the correct measurement. From here, we can define
the track-wise True Positives, False Positives, False Negatives and True Negatives in
the same manner as the metrics are defined above. As the number of tracks and
measurements tend to vary over time, we are more interested in the average rates of
these metrics. As such, these metrics are over each track to create the macro-metrics
(just as described above). Consequently, we use accuracy, precision, recall, F1-score
and inference time the methods.

While comparing the predictions and data associations with each other, it would be
good if there also was a way to look at the macro-perspective: ”how good are the
models at tracking?”. To evaluate this, we use two metrics. Consider a sequence of
frames. In each sequence a number of tracks will at some points in time spawn and
despawn (tracks not despawned at the end of the sequence are considered to despawn
at the end of the sequence). Comparing these ground-truth tracks to the tracks found
by a tracker, we consider a ground-truth track mostly tracked if at least 80 % of its
positions are found in a track from the tracker. We consider a track vice versa as
mostly lost if less than 20 % of its positions are found in a track by the tracker.

We create two models to compare with the Deep Tracker modules: two ”baseline”
models, where the first model consists of a Kalman filter for prediction and updating,
and the Hungarian algorithm for performing the data association. The Kalman filter
uses parameters found in a previous master’s thesis project by Berntsson and Winberg
[1]. The first model in particular implements the simplest tracking logic; any measure-
ment not associated with a track initiates a new track and a track is terminated as soon
as a measurement goes missing. The second model similarly implements a Kalman
filter and the Hungarian algorithm, but adds two rules. First of all, track initiation
and termination is determined by a ”track probability” pt with a decay parameter
α = 0.7 for each time a measurement goes missing. Here, a track is terminated when
pt < 0.2. A track is initiated with pt = 0.5 as soon as a measurement is not associated
with a current track. Additionally, a rejection condition with Cij > 1 is added in order
to reject ”false” associations.

33



34



5 Results

In this section all results are documented, which includes tests on the classification
models, semantic segmentation models, tracking models and the whole pipeline.

5.1 Classification Models

In Table 5.1 we can see the four classification models evaluated with the metrics
described in the Method chapter. The bold numbers are the best results in each
category.

Model Accuracy Precision Recall F1-Score
Inference
Time (ms)

Small,
Single Scale

0.9847 0.9832 0.9858 0.9845 6.29

Big,
Single Scale

0.9886 0.9885 0.9890 0.9887 6.41

Small,
Multiple Scales

0.9778 0.9764 0.9796 0.9779 10.61

Big,
Multiple Scales

0.9901 0.9885 0.9919 0.9902 10.70

Table 5.1: Evaluation metrics for the classification models. Best result in each category is
in bold.

Next there is a confusion matrix for each of the four models, Tables 5.2, 5.3, 5.4 and
5.5. In the confusion matrices the classification result for each object in the test set
is found. The columns show what the models predicted, while the rows show the true
label of the object. Ideally all objects appear on the diagonal of the confusion matrix,
since that is where prediction and ground truth coincide. Confusion matrices are good
for visualizing which classes are easily mixed up, or if any model has bias towards
certain classes. In the bottom row of each table the total number of predictions for
each class is found, and in the right column the total number of ground truth labels.

Predicted
Classes Pedestrian Cyclist Car Other Total

Pedestrian 1922 23 0 20 1965
Cyclist 15 2008 0 10 2033

Car 0 0 2012 5 2017
True

Other 41 32 7 3 905 3985
Total 2048 2063 2019 3940 10000

Table 5.2: Confusion matrix for the small single scale model.

35



Predicted
Classes Pedestrian Cyclist Car Other Total

Pedestrian 2000 10 0 19 2029
Cyclist 8 1987 0 10 2005

Car 0 2 1988 14 2004
True

Other 17 33 1 3911 3962
Total 2025 2032 1989 3954 10000

Table 5.3: Confusion matrix for the big single scale model.

Predicted
Classes Pedestrian Cyclist Car Other Total

Pedestrian 1944 26 0 16 1986
Cyclist 15 1940 0 44 1999

Car 0 0 2008 3 2011
True

Other 86 19 13 3886 4004
Total 2045 1985 2021 3949 10000

Table 5.4: Confusion matrix for the small multiple scales model.

Predicted
Classes Pedestrian Cyclist Car Other Total

Pedestrian 1994 17 0 2 2013
Cyclist 2 2027 1 7 2037

Car 0 0 1993 1 1994
True

Other 39 21 9 3887 3956
Total 2035 2065 2003 3897 10000

Table 5.5: Confusion matrix for the big multiple scales model.

Finally the accuracy versus number of points in the object for pedestrian classification
was measured, see Figure 5.1. For each number of points 1000 classifications were
made, and the accuracy depicts how many times the models predicted pedestrian
correctly. Since the number of points in an object depends on its distance to the
LiDAR sensor, it is an estimation of how good the models work on people far away.

In Figure 5.2 are some cases were the classification models failed to predict the correct
label. In most cases we can see why the classification of these objects was tough.

36



Figure 5.1: Classification accuracy versus the number of points in the pedestrian.

(a) Predicted: pedestrian. True: cyclist.
(b) Predicted: other object. True: cyclist.

(c) Predicted: pedestrian. True: other object.

(d) Predicted: cyclist. True: pedestrian.

Figure 5.2: Four objects the classification algorithms failed to classify correctly.

5.2 Semantic Segmentation Models

In Table 5.6 we can see the two semantic segmentation models evaluated with the
metrics described in the Method chapter. The bold numbers are the best results in
each category.

37



Model Accuracy Precision Recall F1-Score
Inference
Time (ms)

Small,
Semantic
Segmentation

0.8759 0.6702 0.7913 0.6777 14.66

Big,
Semantic
Segmentation

0.9593 0.8528 0.9551 0.8853 16.87

Table 5.6: Evaluation metrics for the semantic segmentation models. Bold is best result
in each category.

Tables 5.7 and 5.8 contain the confusion matrices for the two semantic segmentation
models. These work in the same way as for the classification case, but instead of
each object generating 1 output, each frame generates 2048 outputs, which is why the
numbers are much bigger.

Predicted
Classes Pedestrian Cyclist Car Animal Background Total

Pedestrian 187 100 73810 17 392 38 690 15 482 332 474
Cyclist 43 488 233 884 41 234 25 406 4 369 348 381

Car 5 397 17 291 547 741 13 674 3 936 588 039
Animal 1 060 1526 1336 32 953 3 503 40 378

True

Background 50 891 140 65 18 519 134 623 2 568 630 2 786 728
Total 287 936 340 576 626 222 245 346 2 595 920 4 096 000

Table 5.7: Confusion matrix for the small semantic segmentation model.

Predicted
Classes Pedestrian Cyclist Car Animal Background Total

Pedestrian 308 953 13 360 1 680 10 773 4 581 339 347
Cyclist 15 249 320 624 1 937 2 518 1 075 341 403

Car 3 795 6 655 586 297 2 471 1 969 601 187
Animal 378 284 55 40 405 452 41 574

True

Background 13 196 6 709 6 225 32 317 2 714 042 2 772 489
Total 341 571 347 632 596 194 88 484 2 722 119 4 096 000

Table 5.8: Confusion matrix for the big semantic segmentation model.

In Figure 5.3 we find number of points versus accuracy for semantic segmentation of
pedestrians. It cannot be calculated the same way as for the classification models, due
to the output shape being a vector instead of a scalar. Instead if the majority of the
points are given the pedestrian label the segmentation is considered correct.

In Figure 5.4 we see two cases where the semantic segmentation was rather poor, with
less than 75 % of points correctly labeled. In this segmentation gray is background,
red is pedestrian, green is cyclist, black is animal and blue is car.

38



Figure 5.3: Semantic segmentation accuracy versus the number of points in the
pedestrian.

(a) Semantic segmentation with less than 75 % accuracy.

(b) Semantic segmentation with less than 75 % accuracy.

Figure 5.4: Two cases where semantic segmentation had well below average accuracy.

39



5.3 Tracking Results

Below in figure 5.5 are the convergence curves for the Predict/update module. The
initial impression of these plots should probably be that the model seems to have
converged properly towards solving its task. While this may be true in some regard, it
will below become apparent that the model unfortunately had not converged properly.
We analyzed this further in section 5.3.1 below.

(a) Overall loss. (b) Prediction loss: x∗

(c) Update loss: x (d) Tracks probabilities loss: ε

Figure 5.5: Loss curves from training the Predict/update module.

The trained Predict/update module, despite appearing to have converged, did not
behave properly. We could narrow the down towards the prediction submodule, and
how it did not predict and update the tracks properly. That a poor prediction affects
the update output was itself not a surprise, seeing how they shared the same loss
function and had very similar loss curves in both shape and magnitude (Figure 5.5).
The problem is illustrated in Figures 5.6 and 5.7, despite the loss having converged
significantly, the predictions were still off by several meters. As explained before, a
”false track” should be close to (0,0), which we can see in practice in the two figures
– ”track 0” reported somewhat close to (0,0) during a few seconds before the track
entered the scene. In these examples, a single track was randomly spawned within
1 minute. The model was in Figure 5.6 continuously fed with ground truth data x

40



and ε in each timestep to give it the best of possible chances. It indeed gave off a
MAE ≈ 0.009 similar to the value the model had converged into. Taking normalization
into account, this corresponded to approximately 0.9 m, which however was not close to
what could be observed in practice in the figure. In the second example in Figure 5.7,
the module was continuously fed its previous output xt and εt in the next timeframe,
which is how we thought the model should be implemented in practice – however the
prediction diverged out of control and yielded a MAE ≈ 20m after 1 minute. At this
stage we deemed that a comparison with a Kalman filter unnecessary as the module
was unable to solve its task.

(a) Predicted path of a single track. (b) Ground truth of track.

Figure 5.6: Predicted track of a 1-minute sequence where the Predict/update module was
fed with ground truth data for updated x and track probability ε.

(a) Predicted path of a single track. (b) Ground truth of track.

Figure 5.7: Predicted track of a 1-minute sequence where the Predict/update module was
fed with its own output xt and εt in the next timestep t + 1.

We can see that the DA module had converged properly, as evidenced in figure 5.8.
This in turn indicated that while the Predict/update module was infeasible for the
task, the DA module could still be evaluated – however with a Kalman filter used for
prediction and updating.

41



(a) Loss (b) Accuracy

Figure 5.8: Loss and accuracy curves from training the DA module.

We implemented the two baseline models introduced in section 4.6.2 together with a
third model, in which we used the trained DA module to solve the data associations in
each step. the baseline models, as we described earlier, consisted of a Kalman Filter
and the Hungarian Algorithm, in which the latter was adjusted by incorporating a
rejection condition and track probabilities with decay. We tested the models on 100
different 60-seconds sequences, created in the same manner as when creating training
data (see section 4.5.3).

As we can see in table 5.9, all three models were not too different from each other
in terms of the first four metrics. We can note that the first baseline model seemed
to balance precision and recall well, while also having the highest accuracy, however
with a somewhat cost into precision. The data association in the two other models
seemed to associate measurements to current tracks almost perfectly, although at a
cost of not finding all tracks. This does make sense considering the second baseline
model, where the rejection condition ultimately ”filters out” false associations. We
should here however note that the DA module did not seem to properly learn 1-1
associations. Finally, while the data association solving operated within the time
budget of 0.1 seconds in the final model, the two other models considerably outclassed
it.

Model Accuracy Precision Recall F1-score
1-1
associations

Inference
Time (ms)

kalman hu 0.915 0.930 0.974 0.944 100 % 0.008
kalman hu adj 0.868 1.000 0.842 0.906 100 % 0.008
kalman lstm 0.887 0.986 0.873 0.919 76.7 % 15.62

Table 5.9: Data association metrics, averaged over frames in 100 60-seconds sequences.

Results from the overall evaluations can be seen in table 5.10. While these metrics
should not be seen as the absolute determination of the ”best” model, the simple
baseline model seemed to perform the best. One very interesting result in all these
cases is that a track does not necessarily have to be considered ”mostly tracked” or

42



”mostly lost”, since these only encompass the extremes of the scale (more than 80
% or less than 20 %). Nevertheless, all three models seemed to have a rather strict
relation to the evaluation set – either a track was found by the tracker, or it was not.

Model Mostly tracked Mostly lost Inference time (ms)
kalman hu 82.5 % 17.5 % 0.494
kalman hu adj 19.7 % 80.3 % 0.535
kalman lstm 40.5 % 59.4 15.94

Table 5.10: Tracking metrics, averaged over 100 60-seconds sequences.

5.4 Pipeline Results

From a qualitative perspective by applying the models on real recordings, the kal-
man hu adj seemed to work the best. The simple baseline kalman hu had quite a few
ID swaps from time to time, which probably was due to a measurement gone missing
for a single frame. The kalman lstm tracker had similar problems, but particularly
showed issues with objects walking too close together. As such, a few examples from
the kalman hu adj tracker is shown below together with classifying tracked objects,
which includes background filtration, clustering, classification or semantic segmenta-
tion, and tracking, as well as visualization. The dark gray points are filtered away
background points. Each cluster and tracked object is represented by a bounding box,
and the color of the object is the classification. Red is pedestrian, green is cyclist,
blue is car, yellow is other and grey is uncertain. For consistency and robustness each
tracked object needed to receive the same predicted label 8 times in the previous 10
frames to obtain its classification. In Figures 5.9 and 5.10 we see the big multiple
scales classification algorithm at work while in Figure 5.13 we see the small single
scale model. In Figures 5.12 and 5.11 we see the big semantic segmentation network,
with the classical tracker.

43



Figure 5.9: Tracking and classification using the big multiple scales model in real life
LiDAR data. Three people and one cyclist are tracked and correctly classified.

Figure 5.10: Tracking and classification using the big multiple scales model in real life
LiDAR data. Here we see a few pigs being classified as ”other” objects.

44



Figure 5.11: Tracking and classification using the small single scale model in real life
LiDAR data. Here we see a few pigs being classified as people, ”other” and
uncertain. Later in the video the same pigs often changed classification, also
showing as cyclist.

Figure 5.12: Tracking and semantic segmentation using the big model in real life LiDAR
data. Here we see two people correctly classified, one person classified as
”other”, and one cyclist classified as pedestrian.

45



Figure 5.13: Tracking and semantic segmentation using the big model in real life LiDAR
data. Here we see a few pigs being classified as ”other” objects, but one is
also classified as a cyclist.

46



6 Discussion

6.1 Filtering and Clustering

Below follows a bit of discussion on the background filtration and clustering. Even
though it was not the primary focus, it was an essential part of the pipeline, which the
classification and tracking built upon. This discussion is based on qualitative study of
the algorithms on real world LiDAR data, see Section 5.4.

Under the right conditions the background filtration worked great, for example when
filming the pigs in Figure 5.10. There was no wind, and the pigs were not in the picture
for the first few seconds, so a good background model could be calculated. There was
almost no noise, which is thanks to the smoothing of the filter, the threshold and the
amazing quality of the LiDAR. On the film seen in Figure 5.9 the background filtration
was passable. There was a lot of wind, which meant a lot of objects were detected
in a nearby tree. There were also time when the whole LiDAR moved, which created
a lot of artifacts. Thankfully the classification and tracking algorithm discarded the
artifacts fast.

The clustering also worked very well most of the time. It was robust to noise, it
was fast and in most cases the clustering was correct. One thing it could not handle
was if two objects were in close proximity to each other, since any distance less than
ε = 0.5 meant they were the same object. This was often the case with people walking
together, and we also see it with the pigs in Figure 5.13. Another problem was that
ε was the same for all distances, since farther from the LiDAR the point clouds were
more sparse.

Both the background filtration and clustering work as well as expected, but have
potential for improvement, which is discussed in later in chapter Future Work.

6.2 Classification Models

In this part the results from the classification models, Section 5.1 are covered. Four
models were compared, all trained and evaluated on the same simulated dataset. They
were also tested on real world data, captured in Lund using the Luminar Hydra LiDAR.

6.2.1 Evaluation on Test Data

We can immediately tell that all four models work well on classifying objects from the
same type of simulated data that they were trained on. In Table 5.1 we see for example
accuracy and f1-score, which are above 97 % for all models. The big multiple scales

47



model (BMSM) unsurprisingly has the highest score in each category, surpassing 99 %
in both accuracy and f1-score. Interestingly the lowest score in each category is held
by the small multiple scales model (SMSM), indicating that it had too few parameters
to fully utilize the multiple scales feature.

By studying the confusion matrices in Tables 5.2, 5.3, 5.4 and 5.5 we get some more
insight about the models. All models sometimes confuse cyclists and pedestrians,
which is expected since sometimes only the top half of the object is visible, meaning
they look identical, see Figure 5.2d for an example of this. Cars are the easiest object
to classify for all models, and are almost never confused for cyclists or pedestrians.
They are sometimes confused for objects in the ”other” category, since they can have
similar shapes and sizes to walls or other static objects. The hardest category to
identify, creating both false positives and false negatives is the ”other” category. This
is to no surprise since it is the most diverse, where objects similar to other classes can
occur.

Accuracy versus the number of points was another metric we were interested in, see
Table 5.1. There is a clear trend of accuracy increasing with each increment of 5
points, up to above 95 % at around 40 points. It is also clear that the BMSM needs
fewer points than the others to do an accurate classification. Interestingly the SMSM
beats the small single scale model (SSSM) at fewer points, while having a bit lower
accuracy overall. This shows what the multiple scales feature still serves some purpose
in the small model.

In Figure 5.2 we see four cases where the models failed. In Figure 5.2a we see an
incorrectly labeled cyclist, but most of the bike is not visible so it looks like a ped-
estrian. In Figure 5.2b we instead see only a piece of the bike, which is incorrectly
classified as ”other”, it seems to be a problem that the person riding is missing. Figure
5.2c shows an ”other” object with a human-like structure, being classified as a pedes-
trian. Finally in Figure 5.2d we see an upper-body being classified as a cyclist, which
belonged to a pedestrian. Most of these are not surprising, but shows that having
humans represented in two different classes is sometimes a problem.

In Table 5.1 we also see inference time, which is the time it takes for one forward pass
through the network. The biggest network took 11 ms while the smallest only needed
6 ms. Clearly the multiple scales feature takes a lot more processing time, requiring
almost double. It also shows that the number of parameters in each layer barely affects
the inference time, but this is a bit misleading. The GPU calculates a lot of things in
parallel, so the bigger model uses more of the GPU when it is doing inference. This
means we could use bigger batch sizes for the smaller networks, bringing down the
calculation time drastically for many classifications. In the pipeline it can vary how
many objects need to be classified each frame, so classifications can’t always be done
in big batches.

6.2.2 Evaluation on Real World Data

In Section 5.4 there are some examples of classification in real world LiDAR data,
which ultimately is what the models are supposed to be used for. In these tests

48



the classification rule was that an object had to have the same predicted label for
8 out of 10 frames to receive its classification. This means that a model needs to
consistently predict the same label as the tracked object moves, creating a more robust
classification. In Figure 5.9 there are three people and one cyclist correctly classified
by the BMSM, which shows it consistently classified them correctly more than 80 % of
the time. In Figure 5.10 we instead see it working on pigs, classifying them as other,
which is great considering it was not trained on pigs. In Figure 5.11 we instead see
the SSSM doing predictions on the same data, but with poor results. The Pigs are
classified as humans, cyclists, other and sometimes not at all.

The models sometimes struggled classifying people who didn’t move like in the sim-
ulation. For example when people put their arms up, crouched or did any other odd
movement. They also always failed when two or more people were clustered to the
same object, which was expected but unfortunate. In the real data objects were more
often obscured, either by other objects or the environment, which also made them
tougher to classify.

6.2.3 Evaluation of Dataset

The foundation of all models was the dataset generated with CARLA. As such, how
well the simulated data replicates real world LiDAR data obviously has a huge impact
on how well the models work. In many of the real world cases the models work well,
even for types of data not encountered during the training, which is good. However,
large improvements to the classification models could be made with a better dataset.
Below are some observations and thoughts on the dataset.

One of the biggest drawbacks of the simulated data is that it does not contain any
returned beam intensity. When studying the real world data it is clear that the
intensity in each point holds a lot of information, for example skin, clothes, animals
and vegetation have different reflectivity. Having access to this data could definitely
improve classification, and it could most likely be used in background filtration and
clustering as well. Another drawback is the lack of different animations in people,
which was mentioned previously. More diverse training data would make the classifiers
more robust to odd poses and movements.

For many use cases it is important that the models recognize animals, so that they
do not incorrectly classify them as humans. In CARLA there were no animals per
default, and they were difficult to add in a realistic way. For many cases the ”other”
category proved to be enough. Since it was very diverse, a previously unseen object
had a higher chance to look like the ”other” class than a human or a cyclist, at least
using the BMSM. The ”other” category was also good at catching swaying trees or
other noise, which was positive.

The best option would of course be if there was annotated real world data for all classes,
but it is a very time consuming process to manually annotate. One potential solution
is to use this pipeline for object detection and classification as a way to annotate the
data, then manually check if the data looks correct. The other solution is to simply
make the simulator more advanced, with more animations, more objects and material

49



reflectivity.

6.2.4 Conclusions

All models work very well on simulated data, which suggests that the data is too
simple. The biggest model could have handled more advanced data than what was
available. Either real world data or a better simulator could solve this issue. Even
with good results on the training data, the SSSM is much worse at generalizing its
training to real world data than the BMSM. It seems it is not worth scaling down
the number of parameters in the models, since the results get worse and we do not
save much time. The multiple scales feature is also worth using, showing much better
results on real world data.

6.3 Semantic Segmentation Models

In this part the results from the semantic segmentation models, Section 5.2 are covered.
Two models were compared, both trained and evaluated on the same simulated dataset.
They were also tested on real world data, captured in Lund using the Luminar Hydra
LiDAR.

6.3.1 Evaluation on Test Data

Semantic segmentation is a much tougher problem to solve than classification, for
several reasons. Each point in the whole object should receive its own label, instead
of one joint classification. There is no telling where one object starts and where the
next begins, and there is no telling how many objects are in the picture. We therefore
expect lower accuracy and f1-score for these models overall.

The evaluation scores can be found in Table 5.6. Accuracy looks good for the big
semantic segmentation model (BSSM), and a bit worse for the small semantic seg-
mentation model (SSSM). However the f1-score looks worse for both models, due to
the precision, especially for the SSSM. The reason for this is revealed in the confusion
matrices.

In Table 5.7 we see the confusion matrix for the SSSM. The first thing to note here
is the bias towards predicting animal, with 6 times as many predicted animal points
as actual animal points. Most of these points come from the background class, but
also from pedestrian and cyclist. Cyclist and pedestrian also have very bad scores, the
accuracy is only saved by car and background, being the biggest classes. In Table 5.5
we instead see the confusion matrix for the BSSM. The results here are better, but
the bias towards predicting animal is still prevalent, predicting it twice as often as it
should. In addition it mixes up pedestrian and cyclist points sometimes.

What has happened here is when we introduced the weighted loss function to steer the
bias away from the common classes, we instead introduced a bias towards the least

50



common classes. Since the models were penalized for picking animal, they steered
towards picking it more often to minimize the loss function.

If we look at Figure 5.3 we see accuracy versus the number of points in the object.
The models performed fairly well at this task, but the accuracy increase is not as
stable as for the classification models. Sometimes adding more points result in a worse
segmentation. It could be that more points result in the object being split up by the
segmentation models, which is not a problem in with the classification models.

In Figure 5.4 we see two of the worst test cases by the BSSM, with total accuracy
score less than 75 %. These images highlight many of the problems with the semantic
segmentation models. Firstly it is even harder for the BSSM to distinguish cyclists
from pedestrians than it is for the classification models. This is because semantic
segmentation can split the person from the bike, giving the person a pedestrian label
and the bike a cyclist label. This is a case of the model being too clever in a way, since
it recognizes the human riding the bicycle. It is also possibly a flaw in the dataset,
which we will cover below.

Another issue, which is clear from Figure 5.4b, is that animal points are being input
in many places where they should not be. In this figure two of the cyclists, the car
and the background have animal points. From these images we see that the BSSM
has a hard time giving one object only a single label. It seems some object detection
or instance segmentation is necessary for better results.

In Table 5.6 we also find inference time, which is about 15 ms for the SSS model and
17 ms for the BSS model. These are acceptable computation times for one frame. As
mentioned earlier it is not surprising the big model has similar inference time to the
small model, as it simply uses more of the GPU when inferring. These computations
cannot be done in batches, since only one inference per frame is needed.

6.3.2 Evaluation on Real World Data

To see performance on real world data for the BSSM see Figures 5.12 and 5.13. Un-
fortunately the flaws displayed in the last section are only amplified on the real world
data. In the first image we see two people correctly classified, but another person
classified as background and a cyclist as a pedestrian. In second image we find that
the pigs are mostly correctly classified, but one also predicted to be a cyclist. The
real world data is more difficult, but the results here are not passable for any real
application. We believe some problems lie in the dataset and how the models were
trained, which is discussed below.

6.3.3 Evaluation of Dataset

Much of the discussion on the classification dataset holds for this dataset as well.
CARLA is a limiting factor in many ways, having limited number of objects and
animations and no return beam intensity. A real world dataset would have solved a
few issues. That said, there were some problems with how we created the CARLA

51



dataset.

The class imbalance was a major issue when training the models, there was an overrep-
resentation of background points and an underrepresentation of animal points. We at-
tempted to handle this problem by introducing training weights, but they introduced
other problems instead. This created models that were biased towards animals due to
the training weights, and biased towards background due to the overrepresentation.
In hindsight the animal class should have been removed, and the background class
should have been made smaller to match the other classes.

Another issue was the similarity between cyclist and pedestrian, the model often split
up the cyclist or misclassified the pedestrians. A solution could be to split the cyclist
class into pedestrian and cycle, as to not confuse the model so much. Then if a cluster
contains both cycle and pedestrian points it could be considered a cyclist. Another
solution is to put pedestrian and cyclist in the same class, since they have many
common features.

6.3.4 Conclusions

The semantic models were overall significantly worse at labeling than the classification
models. This was no surprise, due to the harder task, with no help from the clustering
algorithm. However the models suffered a lot from how the dataset was constructed.
We suspect that a big increase in performance on real world data could be achieved
a better dataset. The small model was significantly worse than the bigger model, for
this task the total number of parameters played a big role in how well the models
performed.

6.4 Tracking models

A few issues occurred in the results in the different tracking modules. the largest issue
was of course the Predict/update module which did not seem to converge properly.
The DA module similarly had some issues itself, both standalone and in comparison
to the baseline models.

6.4.1 Predict/update module

While the model seemed to have converged properly from the looks of the convergence
curves, it still could not properly solve its task. We have two main theories as to why
this happened, with the first being the simplest. Primarily, it could simply have been
an issue of not having found the ”correct” set of hyperparameters or training schedule.
This would have meant that while the model had the potential of converging, it still
had some way to go. This is in itself a difficult task to confirm since there are so many
different alternatives to try out. Considering however how small the losses were, there
did not seem to be much more space for the model to learn in the current setting.

52



A second theory essentially expands upon the aforementioned observation. One per-
haps key aspect to the training was that while we implemented BPTT, in each timestep
over a training schedule the model was fed with ground truth data in the input chan-
nels. Perhaps this led to the model finding a solution which fit well with receiving
the ”correct” input (as close to the small Gaussian noise added) in the next timestep,
regardless of its output? Implementing the module would highly suggest this, but does
not necessarily explain how the loss still converged. Would it perhaps have been better
to build a model which solely took measurements z as a sequence, and in each timestep
reused its former output as input? In each timestep the model could have output its
updates (commonly referred to as ”time distributed” outputs), which would then be
compared to the ground truth data. This would expose the model much more to how
it would be used in practice. Maybe even more so, as discussed in section 4.4.3, this
may have been necessary in order for the update weights to converge properly and
ensure that they fulfilled their (at least theorized) purpose of self-correcting tracks
while the tracks probabilities went up or down until a certain threshold. None of this
is unfortunately discussed by Milan et al. [20] and neither explored by us, the latter
being due to lack of time.

6.4.2 DA module

The DA module converged properly and furthermore seemed to be good at solving
the data association task. There were of course some flaws, one of them mainly being
that it had not seemed to learn 1-1 associations, whereas the network structure of an
LSTM would suggest that it surely had the possibility. One possibility could have been
that the training data was not general enough for the module to learn this. Another
way of forcing it to learn 1-1 associations could have entailed some sort of loss term
penalizing this behavior. Finding a continuous differentiable function to represent 1-1
associations is however not trivial. We must also be note that this module takes a
substantial amount of time to calculate its solution when compared to the Hungarian
algorithm, suggesting that it should probably be much better than HA at solving the
task in order to be ”worth it”. One key aspect to look into could be how well both of
the models scales when there are a lot more tracks and measurements to associate.

The qualitative study of real LiDAR data pointed at the module performing subpar
with objects close together. This behavior can not stem from the training data, since
its variety yielded both sparse and crowded simulated tracks. Let’s instead consider
the input matric C, which consists of the distances between track probabilities and
measurements. Since neural networks requires fixed feature vector sizes, the measure-
ment array z was forced to be fixed. The solution to this was to simply make it a
fixed size of M = 15 measurements, but of which not all element in it were necessarily
filled with actual measurements; it would instead at ”empty” elements contain (0,0)-
positions. This could in effect yield, for each row (which corresponded to a track), a set
of distances in C that were equal – all of those distances stemming from ”none” meas-
urements. When a few objects walk too close together, the (almost) same structure
appears in the C-matrix – several distances equal to one another. Perhaps this could
have led the module to believe that these measurement were ”false”, when in reality
they were not? This explanation is enforced by how the model often in these cases

53



returned ”missing measurement” in these cases. Perhaps further training on crowded
tracks could remedy this. Considering how the module works comparatively just as
well as the baseline models, fixing this issue may just increase the metrics somewhat
more.

6.4.3 Conclusions

While not having reached all the way, there still seems to be some final leads in the
quest of finding a good deep learning-based tracker. For the time being however,
the classical approach of implementing a Kalman filter together with the Hungarian
Algorithm stands strong in the evaluations. There is certainly no doubt why these
methods entails the classical approach of tracking.

A full on study of the track probability and decay parameters was not made here,
neither was it the purpose of this project. It should probably be mentioned that
exploring this area further would probably make the adjusted baseline model even
better.

54



7 Conclusion

The conclusions we can draw about the entire pipeline are as follows. Filtering and
clustering worked well enough for us to adequately test the different models on real
world data. The methods were quite simple, with room for improvement, but it
was not the target of this thesis. Cluster labeling is best left to the classification
algorithms, as semantic segmentation unnecessarily complicated for the task. The best
classification network for this task is the big multiple scales model, which outperforms
the other models without spending too much time. Training on the simulated data for
classification creates decent models, but more complex and realistic data is needed for
further improvement.

Using neural networks to to tracks objects remains a challenge, but a promising one.
Considering that earlier studies have achieved better results than us on this area,
together with comparable performance in the data association area, some hope re-
mains. This study has furthermore shown how prerecorded tracks (simulated or non-
simulated) can be augmented with some simple transformations in order to ”expand”
the dataset. This can probably help training tracking models in the future.

55



56



8 Future Work

Following the work on this thesis, one obvious project moving forward would be to train
the Deep Tracker properly. The easiest approach would probably entail programming
the Predict/update-module as an RNN with the hidden state containing the SRNN
vector h as well as the outputs x, z and ε – meaning that in each timestep we would
only input new measurements. Formalizing the module in this way would probably
allow the BPTT to act properly and as such train the module in the same way as it
would be employed.

As stated before, the classifiers evaluated in this thesis would most certainly become
even better by having access to real world training data. Given that we now have a
working pipeline, we could create an unsupervised annotation process by extracting the
point clouds belonging to the same tracks as found by the tracker. Say for example
that we would have a track where our pipeline has classified the tracked object as
a pedestrian 90 % of the time. Having saved the point cloud for the object in each
timestep, there exist at least1 10 % of point clouds that the classifier does not recognize
as pedestrians but probably should. A full study could be made on the subject, trying
to answer questions regarding how well such an iterative training could make the
classifier and within which conditions the training performs as best.

The preprocessing steps are currently pretty basic, and there are several areas to
improve upon. One direction to take is to incorporate deep learning as early as at
the object detection step, i.e. doing instance segmentation using a neural network.
The authors of Associatively Segmenting Instances and Semantics in Point Clouds,
see [22], do precisely this by using a Siamese neural network that does both instance
and semantic segmentation. This way each object is simultaneously detected and
classified. Training such a network to work better than our current network would be
challenging however.

A more straightforward approach is to find new ways to filter and cluster points. A
big problem with clustering objects in LiDAR data is that the point density naturally
varies across the scene, making it hard to choose ε. The authors of An improved
DBSCAN method for LiDAR data segmentation with automatic Eps estimation, see
[23], describe a method of automatically estimating ε. Not needing to adjust ε for
each new scene is a great improvement for the clustering. There are also many ways
to segment the background, and filters can be stacked for improved effect. A more
dynamic background model that changes over time would be desirable.

1While we are at it, why not take all the point clouds in the track, including those that have been
classified as pedestrians?

57



58



Bibliography

[1] Jacob Berntsson and William Winberg. Pedestrian detection and tracking in 3D
point cloud data on limited systems. eng. Student Paper. 2021.

[2] Matt Weed. Sensor(y) overload: Making sense of lidar. Jan. 2021. url: https:
//www.luminartech.com/sensory-overload-making-sense-of-lidar/.

[3] Luminar. Hydra Specifications. Jan. 2021. url: https://www.luminartech.
com/thank-you-hydra/.

[4] W. Xiao, B. Vallet, K. Schindler and N. Paparoditis. ‘Simultaneous Detection
and Tracking of Pedestrian from Panoramic Laser Scanning Data’. In: ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences III-3 (2016), pp. 295–302. doi: 10.5194/isprs-annals-III-3-295-
2016. url: https://www.isprs-ann-photogramm-remote-sens-spatial-
inf-sci.net/III-3/295/2016/.

[5] Martin Ester, Hans-peter Kriegel, Jörg Sander and Xiaowei Xu. ‘A density-based
algorithm for discovering clusters in large spatial databases with noise’. In: AAAI
Press, 1996, pp. 226–231.

[6] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. http :

//www.deeplearningbook.org. MIT Press, 2016.

[7] Charles R. Qi, Hao Su, Kaichun Mo and Leonidas J. Guibas. ‘PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation’. In: arXiv e-
prints, arXiv:1612.00593 (Dec. 2016), arXiv:1612.00593. arXiv: 1612 . 00593

[cs.CV].

[8] Charles Ruizhongtai Qi, Li Yi, Hao Su and Leonidas J. Guibas. ‘PointNet++:
Deep Hierarchical Feature Learning on Point Sets in a Metric Space’. In: CoRR
abs/1706.02413 (2017). arXiv: 1706.02413. url: http://arxiv.org/abs/

1706.02413.

[9] Jeffrey L Elman. ‘Finding structure in time’. In: Cognitive science 14.2 (1990),
pp. 179–211.

[10] Michael I Jordan. ‘Attractor dynamics and parallelism in a connectionist sequen-
tial machine’. In: Artificial neural networks: concept learning. 1990, pp. 112–127.

[11] Sepp Hochreiter and Jürgen Schmidhuber. ‘Long Short-Term Memory’. In: Neural
Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/
neco.1997.9.8.1735. eprint: https://direct.mit.edu/neco/article-
pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf. url: https://doi.org/
10.1162/neco.1997.9.8.1735.

[12] Ronald J Williams and David Zipser. ‘Gradient-based learning algorithms for re-
current’. In: Backpropagation: Theory, architectures, and applications 433 (1995),
p. 17.

59

https://www.luminartech.com/sensory-overload-making-sense-of-lidar/
https://www.luminartech.com/sensory-overload-making-sense-of-lidar/
https://www.luminartech.com/thank-you-hydra/
https://www.luminartech.com/thank-you-hydra/
https://doi.org/10.5194/isprs-annals-III-3-295-2016
https://doi.org/10.5194/isprs-annals-III-3-295-2016
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-3/295/2016/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-3/295/2016/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735


[13] Wikimedia Commons. The Long Short-Term Memory (LSTM) cell can process
data sequentially and keep its hidden state through time. 2021. url: https:

//commons.wikimedia.org/wiki/File:LSTM_Cell.svg.

[14] Stuart Jonathan Russell and Peter Norvig. Artificial intelligence: a modern ap-
proach. Prentice Hall series in artificial intelligence. Pearson Education, 2010.
isbn: 9780132071482.

[15] Huajun Liu, Hui Zhang and Christoph Mertz. DeepDA: LSTM-based Deep Data
Association Network for Multi-Targets Tracking in Clutter. 2019. arXiv: 1907.
09915 [cs.LG].

[16] Harold W Kuhn. ‘The Hungarian method for the assignment problem’. In: Naval
research logistics quarterly 2.1-2 (1955), pp. 83–97.

[17] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez and Vladlen
Koltun. CARLA: An Open Urban Driving Simulator. 2017. arXiv: 1711.03938
[cs.LG].

[18] Russell D. Reed and Robert J. Marks. Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks. MIT Press, 1999.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay. ‘Scikit-learn: Ma-
chine Learning in Python’. In: Journal of Machine Learning Research 12 (2011),
pp. 2825–2830.

[20] Anton Milan, Seyed Hamid Rezatofighi, Anthony R. Dick, Konrad Schindler and
Ian D. Reid. ‘Online Multi-target Tracking using Recurrent Neural Networks’.
In: CoRR abs/1604.03635 (2016). arXiv: 1604.03635. url: http://arxiv.
org/abs/1604.03635.

[21] Margherita Grandini, Enrico Bagli and Giorgio Visani. Metrics for Multi-Class
Classification: an Overview. 2020. arXiv: 2008.05756 [stat.ML].

[22] Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen and Jiaya Jia. Asso-
ciatively Segmenting Instances and Semantics in Point Clouds. 2019. arXiv:
1902.09852 [cs.CV].

[23] Chunxiao Wang, Min Ji, Jian Wang, Wei Wen, Ting Li and Yong Sun. ‘An
improved DBSCAN method for LiDAR data segmentation with automatic Eps
estimation’. In: Sensors 19 (Jan. 2019), p. 172. doi: 10.3390/s19010172.

60

https://commons.wikimedia.org/wiki/File:LSTM_Cell.svg
https://commons.wikimedia.org/wiki/File:LSTM_Cell.svg
https://arxiv.org/abs/1907.09915
https://arxiv.org/abs/1907.09915
https://arxiv.org/abs/1711.03938
https://arxiv.org/abs/1711.03938
https://arxiv.org/abs/1604.03635
http://arxiv.org/abs/1604.03635
http://arxiv.org/abs/1604.03635
https://arxiv.org/abs/2008.05756
https://arxiv.org/abs/1902.09852
https://doi.org/10.3390/s19010172


Appendix A

Model Details

A.1 Classification Models

All four models consist of three PointNet++ layers, which is what was used in the
original paper by Qi et al. [8]. In addition to this there are a few dense layers, and
dropout layers to reduce overfitting. Sample size refers to the number of sampled local
ball shaped regions, with radius sampling radius. After the sampling the regions are
processed by a small PointNet with fully connected layers of size mlp.

A.1.1 The Small Single Scale Model

Nr. Layer Parameters Nr. of Parameters

1
PointNet++,
single scale

sample size: 64
sampling radius: 0.4
mlp: (8, 8, 16)

344

2
PointNet++,
single scale

sample size: 16
sampling radius: 0.6
mlp: (16, 16, 32)

1 328

3
PointNet++,
global set to vector

sample size: -
sample radius: -
mlp: (32, 64, 128)

12 256

4 dense output units: 64 8 256
5 dropout probability: 0.5 -
6 dense output units: 16 1 040
7 dropout probability: 0.5 -
8 dense output units: 4 68

Total: 23 292

61



A.1.2 The Big Single Scale Model

Nr. Layer Parameters Nr. of Parameters

1
PointNet++,
single scale

sample size: 128
sampling radius: 0.3
mlp: (16, 16, 32)

1 072

2
PointNet++,
single scale

sample size: 32
sampling radius: 0.5
mlp: (32, 32, 64)

4 704

3
PointNet++,
global set to vector

sample size: -
sample radius: -
mlp: (64, 128, 256)

47 040

4 dense output units: 128 32 896
5 dropout probability: 0.5 -
6 dense output units: 32 4 128
7 dropout probability: 0.5 -
8 dense output units: 4 132

Total: 89 972

A.1.3 The Small Multiple Scales Model

Nr. Layer Parameters Nr. of Parameters

1
PointNet++,
multiple scales

sample size: 128
sampling radius: 0.3, 0.4, 0.6
mlp: (4, 4, 8),
(8, 8, 16),
(8, 12, 16)

924

2
PointNet++,
multiple scales

sample size: 64
sampling radius: 0.4, 0.6, 1.0
mlp: (8, 8, 16),
(16, 16, 32),
(16, 16, 32)

4 088

3
PointNet++,
global set to vector

sample size: -
sample radius: -
mlp: (32, 64, 128)

13 792

4 dense output units: 64 8 256
5 dropout probability: 0.5 -
6 dense output units: 16 1 040
7 dropout probability: 0.5 -
8 dense output units: 4 68

Total: 28 168

62



A.1.4 The Big Multiple Scales Model

Layer Nr. Layer Parameters Nr. of Parameters

1
PointNet++,
multiple scales

sample size: 256
sampling radius: 0.2, 0.3, 0.5
mlp: (8, 8, 16),
(16, 16, 32),
(16, 24, 32)

2 904

2
PointNet++,
multiple scales

sample size: 128
sampling radius: 0.3, 0.5, 0.9
mlp: (16, 16, 32),
(32, 32, 64),
(32, 32, 64)

14 832

3
PointNet++,
global set to vector

sample size: -
sample radius: -
mlp: (64, 128, 256)

53 184

4 dense output units: 128 32 896
5 dropout probability: 0.5 -
6 dense output units: 32 4 128
7 dropout probability: 0.5 -
8 dense output units: 4 132

Total: 108 076

A.2 PointNet++ Semantic Segmentation

Like earlier Sample size refers to the number of sampled local ball shaped regions,
with radius sampling radius. After the sampling the regions are processed by a small
PointNet with fully connected layers of size mlp. After that follows feature propagation
and interpolation layers, such that all points are given a score.

63



A.2.1 The Small Semantic Segmentation Model

Layer Nr. Layer Parameters Nr. of Parameters

1
PointNet++,
single scale

sample size: 256
sampling radius: 0.2
mlp: (8, 8, 16)

344

2
PointNet++,
single scale

sample size: 64
sampling radius: 0.3
mlp: (16, 16, 32)

1 328

3
PointNet++,
single scale

sample size: 16
sampling radius: 0.5
mlp: (32, 32, 64)

4 704

4
PointNet++,
single scale

sample size: 4
sampling radius: 0.9
mlp: (64, 64, 128)

17 600

5
PointNet++,
feature propagation
and interpolation

mlp: (64, 64) 16 896

6
PointNet++,
feature propagation
and interpolation

mlp: (64, 64) 10 752

7
PointNet++,
feature propagation
and interpolation

mlp: (64, 32) 7 552

8
PointNet++,
feature propagation
and interpolation

mlp: (32, 32, 32) 3 456

9 dense output units: 32 1 056
10 dropout probability: 0.5 -
11 dense output units: 5 165

Total: 63 855

64



A.2.2 The Big Semantic Segmentation Model

Layer Nr. Layer Parameters Nr. of Parameters

1
PointNet++,
single scale

sample size: 512
sampling radius: 0.15
mlp: (16, 16, 32)

1 072

2
PointNet++,
single scale

sample size: 128
sampling radius: 0.25
mlp: (32, 32, 64)

4 704

3
PointNet++,
single scale

sample size: 32
sampling radius: 0.45
mlp: (64, 64, 128)

17 600

4
PointNet++,
single scale

sample size: 8
sampling radius: 0.85
mlp: (128, 128, 256)

67 968

5
PointNet++,
feature propagation
and interpolation

mlp: (128, 128) 66 560

6
PointNet++,
feature propagation
and interpolation

mlp: (128, 128) 41 984

7
PointNet++,
feature propagation
and interpolation

mlp: (128, 64) 29 440

8
PointNet++,
feature propagation
and interpolation

mlp: (64, 64, 64) 13 056

9 dense output units: 64 4 160
10 dropout probability: 0.5 -
11 dense output units: 5 325

Total: 246 871

65



A.3 Deep Tracker

Layer Output shape
Nr. of

Parameters
Connected to

input X [(1, 1, 20)] 0

input z [(1, 15, 2)] 0

In
p

u
ts

input eps [(1, 10)] 0

rnn prediction (1, 300) 96300 input X

pred xs (1, 20) 6020 rnn prediction

P
re

d
ic

ti
o
n

pred xs reshape (1, 10, 2) 0 pred xs

dist matrix (1, 10, 15) 0
input z

pred xs reshape

lstm inner (1, 10, 500) 1032000 dist matrix

lstm out (1, 10, 16) 33088 lstm inner

D
a
ta

A
ss

o
ci

a
ti

o
n

A (1, 10, 16) 0 lstm out

update concat (1, 10, 16, 2) 0
input z

pred xs reshape

update dot (1, 2, 10) 0
A

update concat

update mult (1, 2, 10) 0
update dot

input eps

update flatten (1, 20) 0 update mult

update w (1, 300) 6300 flatten

update add (1, 300) 0
update w

rnn prediction

update tanh (1, 300) 0 update add

update x (1, 20) 6020 update tanh

U
p

d
a
te

update eps (1, 10) 3010 update tanh

Total: 1,182,738

66



Figure A.1: Graphical visualization of the Deep Tracker.

67



Master’s Theses in Mathematical Sciences 2022:E1
ISSN 1404-6342

LUTFMA-3461-2022

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/


