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Abstract 

A growing body of evidence suggests that speech recognition is facilitated by rapid activation of 

possible lexical candidates and subsequent competition and selection. An event-related potential 

(ERP) component 136-204 ms after word onset, the pre-activation negativity (PrAN), correlates 

with lexical competition. Further, the increased negativity for low lexical competition correlates 

with increased activity in Broca’s area. The effect has been interpreted as reflecting predictive 

certainty about the unfolding word and inhibition of irrelevant candidates. The present study 

investigated effects of lexical competition, predictive certainty and inhibition when only the first 

2-3 speech sounds of words were available to listeners. The measures were calculated from a 

combined pronunciation lexicon and frequency list with a Python script. Correlations with ERP 

data from two experiments investigating Danish language were explored. In line with previous 

findings, word beginnings with few continuations (low lexical competition) showed more negative 

ERPs than word beginnings with many continuations. For one experiment, there was an inverse 

correlation between the number of possible continuations and PrAN amplitudes. This is consistent 

with parallel activation of multiple lexical candidates as predicted by a number of models of speech 

perception and spoken word recognition. According to the distributed model of speech perception, 

there is an inverse relationship between the number of pre-activated words and their semantic 

activation. The increased PrAN for low competition might reflect stronger semantic activation of 

one or a few candidates. Word beginnings with low entropy (more certainty) also showed more 

negative amplitudes. Within the framework of the predictive coding model of speech recognition, 

the findings suggest an interplay between pre-activated lexical candidates and updated phonetic 

expectations at lower-level, primary processing areas. There were no effects of inhibition of 

irrelevant candidates immediately after word onset. When more of the speech signal became 

available, prosodic cues during or immediately after the stressed vowel which inhibited many 

candidates yielded more negative, right frontal effects than speech sounds inhibiting few 

candidates. One interpretation is that inhibition only started later, as more of the word unfolded. 
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1 Introduction 

Understanding spoken language is a complex task. Listeners must derive speech sounds from a 

noisy acoustic input, conjoin them into words and decode the message behind (Goldinger et al., 

1996). Yet, listeners are capable of doing all this with a racing speed of up to 15 phonemes per 

second (Perkell, 2006). Understandably, the question of how this achievement is possible has 

puzzled linguists. According to most models of spoken word recognition, lexical candidates are 

(pre-)activated based on the initial acoustic input. As the speech signal unfolds, candidates 

compete against each other and are continuously inhibited when they become inconsistent with the 

acoustic signal. Within this framework, ‘activation’ of candidates, ‘competition’ and ‘selection’ 

among these are central and distinct processes (Gaskell & Marslen-Wilson, 1997; Luce & Pisoni, 

1998; Marslen-Wilson, 1987; McClelland, 2013; McClelland & Elman, 1986; Norris, 1994; Norris 

& McQueen, 2008). Although several studies have investigated these processes (Allopenna et al., 

1998; Goldinger et al., 1989; Luce & Pisoni, 1998; Magnuson et al., 2007; Zhuang et al., 2011; 

Zhuang et al., 2014), the temporal distribution of the corresponding neural activity is still poorly 

understood. The aim of this thesis is to investigate neural correlates of lexical competition, 

attempting to segregate effects of lexical competition, predictive certainty about the unfolding 

word, and inhibition of irrelevant candidates. Event-related potentials (ERPs) are used to capture 

the timing of the neural activity. 

Behavioural and neurophysiological studies have shown that spoken word recognition is 

modulated by ‘lexical competition’, that is, the number of words competing for recognition. 

Stimulus words with few lexical competitors are recognised faster and more accurately than words 

with many competitors (Goldinger et al., 1989; Luce & Pisoni, 1998; Vitevitch, 2002; Vitevitch 

& Luce, 1999), indicating that when many candidates are activated, resolution takes longer. Eye-

tracking studies indicate that spoken words are continuously mapped onto lexical candidates 

consistent with the unfolding speech signal (Allopenna et al., 1998; Magnuson et al., 2007), and 

neuroimaging studies suggest that lexical competition and selection to a large extent are resolved 

in Broca’s area (Righi et al., 2010; Roll et al., 2017; Zhuang et al., 2011; Zhuang et al., 2014). In 
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ERP studies with speakers of Swedish, a neurophysiological correlate of lexical competition has 

been identified: the pre-activation negativity (PrAN). PRAN is a negative component 136-204 ms 

after word onset modulated by lexical competition (Roll, 2015; Roll et al., 2017; Söderström et al., 

2016). The ERP amplitude is more negative for word beginnings with fewer possible continuations 

and high frequency and correlates with overall increased neural activity and blood oxygen level 

depend (BOLD) effect in Broca’s area. The PrAN has been associated with selection among pre-

activated lexical candidates. Further, it is understood as reflecting predictive certainty: the fewer 

activated candidates, the stronger confidence the listener can have in them (Roll et al., 2017).  

In the present study, ERP data from two experiments with speakers of Danish was reanalysed, 

investigating neural correlates of lexical competition. It was hypothesised that, as in Roll et al. 

(2017), word beginnings with few continuations would yield more negative PrAN amplitudes over 

left central sites 136-204 ms after word onset. A new measure, ‘entropy’, was introduced and its 

correlation with PrAN amplitude was investigated. Entropy is a measure of uncertainty and is 

modulated by the number of different outcomes of an event and their respective probabilities 

(Shannon, 1948). Entropy was used as a measure of listeners’ certainty about the unfolding word 

upon hearing the first two speech sounds. Estimates of continuations and entropy were calculated 

for the items in the experiment by merging a Danish pronunciation lexicon and a frequency list 

and looping through it with a Python script developed for the purpose. 

Further, since the PrAN has been interpreted as reflecting selection among activated lexical 

candidates and inhibition of irrelevant ones, a new hypothesis was derived. Speech sounds which 

were inconsistent with many already activated lexical candidates were expected to yield increased 

activity, reflecting inhibition of a large number of candidates. This would be seen in more negative 

PrAN amplitudes. To investigate this hypothesis, the number of continuations inhibited were 

calculated at two different time points as the speech signal in one of the experiments unfolded. The 

two time points were: 1) lexical candidates activated by the first speech sound and inhibited by the 

second speech sound and 2) lexical candidates activated by the first two speech sounds and 

inhibited by ‘stød’ or ‘non-stød’ prosodic cues in or immediately after the vowel in the stressed 

syllable. Stød is a prosodic creaky voice cue specific to Danish whereas non-stød is its modular 

voice counterpart (Fischer-Jørgensen, 1989). Further, the decrease in entropy from one time point 
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to the next was calculated. This was a measure of listeners’ increased certainty of the lexical 

candidate. The neurophysiological correlates of these processes were explored. The results are 

discussed in the light of evidence from behavioural and neuroimaging studies and models of 

speech recognition. 

The thesis is organised as follows. In the theoretical background, models of speech recognition 

are presented, including how lexical competition is quantified according to those models. After 

this section, behavioural and neurophysiological evidence of lexical competition is presented, and 

the new measure ‘entropy’ is motivated. Danish language is also briefly introduced, including 

phonetic and phonological features of interest for the present study. Then, the present study is 

described in more detail, including research questions, hypotheses and test implications. This 

section also includes presentation of the exploratory approach to investigating inhibition and 

change in certainty. A materials and methods section describes how ERPs were collected and how 

lexical competition was calculated for the items in the studies. After this, results of the experiments 

are presented and briefly discussed, and finally, there is a general discussion of the overall findings. 
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2 Theoretical background 

2.1 Models of speech perception and spoken word recognition 

Understanding spoken language requires picking up sound waves as they reach the ear drum, 

frequency analysis by receptor neurons in the spiral ganglion and transmission through the auditory 

nerve to primary auditory cortex (Denes & Pinson, 1993). Further, listeners must derive units such 

as phonemes from the speech signal, map them onto lexical representations and eventually extract 

meaning (Goldinger et al., 1996). According to Goldinger et al. (1996), while early models have 

been concerned with either speech perception (i.e. identifying phonemes in the speech signal) or 

spoken word recognition (i.e. mapping phonemes onto lexical representations), a number of 

models now tackle the whole process. Therefore, in the following, models of speech perception 

and spoken word recognition are discussed together. The terms speech perception and spoken word 

recognition are used as defined above whereas ‘speech recognition’ encompasses the entire 

process. According to most models of spoken word recognition, a number of possible lexical 

candidates are activated and subsequently compete against each other until one is ultimately 

selected. The present study is concerned with lexical competition. Therefore, if applicable, it is 

discussed how the different models quantify and resolve lexical competition. 

2.1.1 The Cohort model 

In Marslen-Wilson et al.’s ‘Cohort model’ (Marslen-Wilson & Tyler, 1980; Marslen-Wilson, 

1987; Marslen-Wilson & Welsh, 1978), word-initial speech sounds activate all words whose 

beginnings correspond to the initial acoustic input, corresponding to the first 1-2 phonemes or 150-

200 ms of the speech signal (Marslen-Wilson, 1987; Marslen-Wilson & Welsh, 1978). For 

instance, the speech sound [kh] in Danish, would activate candidates such as [ˈkhad̥] kat ’cat’, 

[ˈkhasd̥] kast ‘throw’ and [ˈkhasə] kasse ‘box’. Words activated by the same word-initial speech 

sound are in the same ‘cohort’. Activation is also modulated by word frequency with more frequent 

words being activated faster than less frequent ones (Marslen-Wilson, 1987). As more and more 
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of the acoustic signal becomes available, candidates that are no longer consistent with the input 

are weeded out until eventually only one candidate remains. This is called the ‘word recognition 

point’. Candidates may also be ruled out if they are inconsistent with semantic and syntactic 

constraints. 

When first proposed, the Cohort model was in opposition to models in which words were 

activated serially such as Forster’s Autonomous Search Theory (Forster, 1976 as referenced by 

Goldinger, Pisoni & Luce, 1996). According to this model, words are looped through serially, one 

at a time, rather than parallelly. The Cohort model has been criticised for being unable to ‘recover’ 

if the first phoneme for some reason was distorted and a candidate never activated in the first place. 

Such candidates would have no way of being recognised (McClelland & Elman, 1986). 

A central concept is ‘cohort competition’. Cohort competitors are words sharing the first two 

phonemes and competition is quantified by taking the frequency of the target word divided by the 

summed frequency of all cohort competitors multiplied by 100 (Zhuang et al., 2011). Competing 

candidates do not inhibit each other, meaning the activation of one candidate does not deactivate 

others (Marslen-Wilson & Welsh, 1978). 

2.1.2 The Neighbourhood Activation model 

While the initial speech sound has a special status in the Cohort model, the ‘Neighbourhood 

Activation model’ (Goldinger et al., 1989; Luce, 1986; Luce & Pisoni, 1998) emphasises similarity 

of the entire word. Neighbours need not be in the same cohort, that is, start with the same speech 

sound, but are words which can be converted to a stimulus word by substituting, adding or deleting 

one phoneme. For instance, hat [ˈhad̥] ‘hat’ and klat [ˈkhlad̥] ‘blob’ are neighbours of the Danish 

word kat [ˈkhad̥] ’cat’, but [ˈkhasə] kasse ‘box’ is not because it deviates from kat with more than 

one phoneme. 

Lexical competition can be quantified as ‘neighbourhood similarity’ and is characterised by the 

density (i.e. the number of words in a neighbourhood) and frequency (i.e. neighbourhood 

frequencies relative to stimulus word frequency) (Goldinger et al., 1996; Luce, 1986). Another 

measure is ‘onset density’ which combines measures from the Neighbourhood Activation model 

and the Cohort model. Onset density refers to the proportion of neighbours sharing the initial 
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phoneme, (i.e. are in the same cohort). Words with many neighbours sharing the same first 

phoneme have ‘dense onsets’ while words with few neighbours sharing the same first phoneme 

have ‘sparse onsets’ (Vitevitch, 2002). When listeners hear a word, all items in the similarity 

neighbourhood – those corresponding to words as well as non-words – are activated. As the speech 

signal progresses, the activation level of the stimulus word increases and those of neighbours 

decrease until one word reaches a threshold and is selected (Goldinger et al., 1989). Like in the 

Cohort model, competitors do not inhibit each other.  

2.1.3 Lexical access from spectrum (LAFS) 

Klatt (1979)’s lexical access from spectrum (LAFS) differs from the Cohort model and 

Neighbourhood Activation model in that it does not have a phonemic level. According to this 

model, spectral representations of the acoustic input are mapped directly onto lexical candidates 

without any intervening level. As a solution to the problem of coarticulatory effects, the model 

assumes that listeners have mental representations of all phonotactically permitted diphones. For 

English, this would sum up to a mental dictionary of around 2000 diphones. Speech processing 

and spoken word recognition implies finding the best path through a network of diphones. This is 

accomplished by analysing the acoustic input every 10 ms and comparing it to stored paths in the 

network in order to deduce the best hypothesis. Hypotheses not consistent with the acoustic input 

are weeded out. A lexical decision is reached when all but one hypothesis are deemed unlikely to 

increase in likelihood as the speech signal progresses.  

2.1.4 Fuzzy logical model of perception 

The fuzzy logical model of perception has three stages: ‘Feature evaluation’, ‘prototype matching’ 

and ‘pattern classification’ (Massaro & Cohen, 1991; Oden & Massaro, 1978). First, each acoustic 

cue in the acoustic string is perceived independently and features are evaluated to determine 

whether a certain feature is present. These features are continuous or “fuzzy” rather than binary. 

The speech signal is subsequently compared to prototypes and identified based on how well it 

matches different prototypes. As in the LAFs model, the stored prototypes are diphones rather than 
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phonemes because realisation of consonants is heavily dependent on vowel context. In spoken 

word recognition, the fuzzy logical model of perception integrates information from the bottom-

up speech signal as well as linguistic context, but the fuzzy logical model of perception is bottom-

up in the sense that feedback from higher levels such as the lexical level cannot affect perception 

on lower levels (Massaro & Cohen, 1991). 

2.1.5 Connectionist models 

Connectionist approaches to speech perception and spoken word recognition are based on artificial 

neural networks which mimic the brain. ‘Units’ are analogues of neurons or groups of neurons, 

typically organized in three hierarchical layers. ‘Connections’ represent synapses, through which 

units can exchange information (Stufflebeam, 2006). The most famous connectionist models are 

probably TRACE (McClelland & Elman, 1986; McClelland et al., 2014) and the Shortlist models 

(Norris, 1994; Norris & McQueen, 2008). Both models resemble the Cohort model in that 

phonemes and words are first activated based on bottom-up information from the initial speech 

signal. Candidates are subsequently inhibited – but, contrary to the Cohort model, not completely 

eliminated – when they become inconsistent with the speech signal. The model can therefore 

‘recover’ as the signal progresses if, for some reason, the initial speech sound was distorted 

(McClelland, 2013). The most noticeable difference between the Shortlist and TRACE is that 

while TRACE has ‘bidirectional’ connections between levels, Shortlist is ‘unidirectional’. This 

means that in TRACE, activation on higher levels, for example the word level, can activate lower 

levels, for instance the phonemic level. Norris et al. (2016) term this ‘activation feedback’. In the 

Shortlist models, on the other hand, activation is purely feedforward from lower to higher levels 

(Norris et al., 2016). 

TRACE (McClelland & Elman, 1986) has processing units called ‘nodes’ on three levels: A 

feature level, a phonemic level and a word level. The feature level has continuous – rather than 

binary – speech sound dimensions like the fuzzy logical model of perception (Massaro & Cohen, 

1991; Oden & Massaro, 1978) such as ‘consonantal’, ‘vocalic’ and ‘diffuseness’. The phoneme 

and word levels have units for all phonemes and words in a language (McClelland & Elman, 1986). 

The nodes are connected through excitatory and inhibitory connections. Mutually consistent nodes 
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on adjacent levels have excitatory connections while nodes on the same level have inhibitory 

connections. This is termed ‘lateral inhibition’. As another neuroanatomical analogue, the nodes 

‘fire’ when a certain threshold is reached and information passed on through excitatory 

connections (McClelland et al., 2014). Shortlist A (Norris, 1994) resembles TRACE in many ways. 

A difference is that only a small subset of lexical competitors, a so-called ‘shortlist’, of words is 

activated rather than all words consistent with the initial speech sound. Also, as mentioned above, 

activation on higher cannot affect lower levels.  

Since first proposed in the 1980’s and 1990’s, both TRACE and Shortlist have been updated 

and are now both based on Bayesian principles (McClelland et al., 2014; Norris & McQueen, 

2008). In Bayesian models of speech perception and spoken word recognition, central concepts 

are ‘prior’ and ‘posterior’ probabilities. The ‘posterior probability’ is the likelihood that some 

hypothesis is true. Its likelihood depends on 1) given evidence, 2) the ‘prior probability’, which is 

the probability of the hypothesis before the evidence is presented, and 3) the probability of the 

evidence if the hypothesis were true (McClelland, 2013). For speech recognition, this can be 

exemplified with the likelihood of hearing the Danish word hatten ’the hat’ if the sentence context 

is Jeg købte… ‘I bought…’ and the speech input, at an early stage, is [ha]. A prior probability could 

correspond to the general frequency of the word hatten ‘the hat’ in Danish (in the present study, 

hatten had a frequency of 976) and grammatical and semantic constraints such as the fact that ‘hat’ 

is a noun and is buyable. The evidence would be the acoustic input [ha]. The probability of the 

evidence if the hypothesis were true is the likelihood of hearing [ha] if the word is indeed hatten 

‘the hat’ (relatively high, since hatten ‘the hat’ does start with those speech sounds). The posterior 

probability would correspond to the probability that hatten ‘the hat’ is heard, given the prior 

probability (context, word frequency) and the probability of hearing the evidence [ha], if the word 

is hatten ‘the hat’. Thus, in Shortlist A’s successor Shortlist B (Norris & McQueen, 2008), the 

term ‘activation’ is replaced by ‘likelihood’ and ‘probability’ of hearing a certain word. The model 

postulates that over time, listeners learn what is the most likely lexical candidate behind a specific 

speech signal. There is an interplay between frequency and perceptual effects: if the perceptual 

evidence is poor, frequency is more important, but as the perceptual input improves, frequency 

effects are diminished. However, the main principles remain the same as in Shortlist A: A shortlist 
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of lexical candidates is taken into account based on bottom-up speech input and the idea of 

activation feedback is still refuted – contrary to TRACE’s successor ‘the Interactive Activation 

Hypothesis’ (McClelland et al., 2014). 

The so-called ‘Ganong effect’ is often drafted as evidence of activation feedback. Ganong 

(1980) asked listeners to label word-initial speech sounds which were ambiguous on a voicing 

spectrum between /g/ and /k/ and found that listeners tended to make phonemic categorisations 

which made real words. For instance, the same speech sound would be labelled /g/ when followed 

by /ift/ and /k/ when followed by /is/, indicating that feedback from the lexical level affects 

perception on lower levels (McClelland & Elman, 1986). In a similar way, ambiguous words are 

more likely to be labelled as the high-frequency word (Connine et al., 1993). According to Norris 

et al. (2016), Bayesian models such as Shortlist B provide another explanation for context and 

frequency effects: Real and high-frequency words have higher prior probabilities than non-words 

and low frequency words and are therefore more likely to be recognised. Norris and McQueen 

(2008) argue that activation feedback could mislead perception and induce hallucinations by 

boosting activation of phonemes which in turn boost activation of the word – and so on. 

McClelland et al. (2014) acknowledge this possibility, but say that this is exactly what to expect. 

‘Hallucinations’ are even useful in recovering distorted phonemes (McClelland, 2013; McClelland 

et al., 2014). 

A third connectionist model is Gaskell and Marslen-Wilson (1997)’s ‘distributed model of 

speech perception’. As in the Cohort model, several candidates are activated based on bottom-up 

information from the speech input. Similar to the LAFS model (Klatt, 1979), the acoustic input is 

mapped directly onto representations without any intervening phonemic level. Setting the model 

apart from other connectionist models, representations are ‘distributed’ and represent both 

phonology and semantics of pre-activated words. If more than one lexical candidate is consistent 

with the speech signal, the semantic activation is a blend of the activated candidates. Partial 

semantic representations are available for all activated words, but if a large cohort is activated, the 

representations are degraded. At any time point after initial activation, the activation of different 

lexical candidates depends on the number of words activated and their relative frequencies.  
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2.1.6 A predictive coding model of speech recognition 

Inspired by a birdsong model, Yildiz et al. (2013) proposed a Bayesian model of speech 

recognition based on ‘predictive coding’. According to theories of predictive coding, the brain has 

an ‘internal generative model’ of the surrounding world (Friston, 2005; Friston, 2010). Based on 

this internal model, impressions such as auditory and visual sensations are mapped onto objects 

and events that most likely caused them. ‘Recognition’ is equal to inferring a cause from a sensory 

input – for instance recognising a spoken word based on some acoustic input. Further, predictions 

about sensations about to be encountered in the immediate future are constantly generated. The 

goal is to minimise ‘prediction error’ which is surprise when predictions and the actual sensory 

input do not match (Friston, 2005; Friston, 2010).  

Yildiz et al. (2013)’s generative model is ‘hierarchical’, mirroring the hierarchical organisation 

of the human (and songbird) auditory system. A hierarchical organisation means that lower-level, 

less complex representations such as features are encoded closer to primary auditory cortex 

whereas more complex, high-level representations such as phonemes, words and phrases are 

encoded along a forward-going spatial complexity gradient (DeWitt & Rauschecker, 2012). In 

Yildiz et al. (2013)’s speech recognition model, incoming speech is first mapped onto neural 

activity on a ‘cochlear level’. The cochlea is a spiral-shaped cavity in the inner ear. In the cochlea, 

incoming sound waves set the basilar membrane into vibration, setting frequency-sensitive hair 

cells into motion which in turn sends pulses to connected fibres in the auditory nerve (Denes & 

Pinson, 1993). The output of Yildiz et al. (2013)’s cochlear level is a cochleagram which maps the 

neuronal activity based on frequency-specific firing rates in the auditory nerve. Activity is fed 

forward to a two-level hierarchical model. On the first level, neural ensembles (i.e. a group of 

neurons) represent spectral features of the cochleagram. Like the TRACE model (McClelland & 

Elman, 1986; McClelland et al., 2014), the predictive coding model of speech recognition has 

bidirectional connections. Predictions are sent from the second level to the first level, encoding 

second-level expectations about activity at the first level. These expectations are compared to the 

actual activity and predictions errors, reflecting differences between predictions and reality, are 

sent from the first to the second level. Thus, recognition can happen incrementally, while speech 
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is unfolding. The authors suggest that the second level could correspond to the inferior frontal 

gyrus, pars opercularis in Broca’s area.  

2.2 Behavioural studies of lexical competition 

Words with high lexical competition yield longer response times and lower response accuracy than 

words with low lexical competition (Goldinger et al., 1989; Vitevitch, 2002; Vitevitch & Luce, 

1999; Zhuang et al., 2011; Zhuang et al., 2014). As mentioned above, ‘lexical competition’ is 

quantified in different ways depending on the model of spoken word recognition. Words from 

sparse and low-frequency neighbourhoods, as employed in the Neighbourhood Activation model, 

are recognised more quickly and accurately than words from dense and high-frequency 

neighbourhoods, presumably because it takes longer to resolve competition between different 

activated patterns (Goldinger et al., 1989; Luce, 1986). Similarly, words with high cohort 

competition yield longer response times (Zhuang et al., 2011; Zhuang et al., 2014) and words with 

sparse onsets are named and recognised faster than words with dense onsets (Vitevitch, 2002). 

Eye-tracking studies have revealed continuous effects of lexical competition (Allopenna et al., 

1998; Dahan et al., 2001b; Magnuson et al., 2007). Eye-tracking studies can reveal fine-grained 

effects of continuously unfolding speech which are not captured by response time measures given 

at one point in time. Lexical competition has typically been investigated in ‘visual world 

paradigms’ (Allopenna et al., 1998) in which participants look at images on a computer screen and 

listen to stimuli instructing them to perform tasks such as ‘move the beaker’. Typically, the images 

depict a target word (e.g. beaker) as well as distractors, one or more of which are lexical 

competitors (e.g. beetle). The proportion of fixations to the images on the screen are interpreted as 

reflecting lexical activation over time. Allopenna et al. (1998) reported effects of both cohort and 

‘rhyme’ activation. The latter refers to words rhyming with the target word. Early in the word 

recognition process, there were more fixations to target words and cohort competitors like beaker 

and beetle compared to unrelated and rhyme distractors. As more of the acoustic signal became 

available, fixations to cohort competitors dropped while fixations to rhyme competitors, like 

speaker, rose. The activations for cohort competitors could support most models, but the rhyme 
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effect was taken as support for connectionist models such as TRACE and Shortlist (Allopenna et 

al., 1998). Further, they contradict predictions from the Cohort model which cannot explain how 

candidates can re-enter competition when they have been ruled out by initial speech sounds. 

In addition to lexical competition affecting response times, a bias towards high-frequency 

words has also been observed (Connine et al., 1993; Warren & Marslen-Wilson, 1987). In a gating 

study, Warren and Marslen-Wilson (1987) found that high frequency increases the probability that 

a word is produced as a response. In a visual word eye-tracking study, Dahan et al. (2001a) found 

that participants were more likely to look to cohort competitors with high frequency, e.g. bed than 

to low-frequency competitors, e.g bell. Even when none of the distractors were cohort competitors, 

there were more looks to words with higher frequencies. In a visual word eye-tracking study, 

Magnuson et al. (2007) uncovered effects of frequency, neighbourhood density and ‘frequency-

weighted cohort density’, but the effects varied over time. Frequency weighted cohort density is 

the sum of the log-transformed frequencies of all words in the cohort, including the target word 

(Magnuson et al., 2007). Fixation proportions for high-frequency words and low cohort density 

were higher already at the beginning of the recognition process. Effects of neighbourhood density 

emerged only later (Magnuson et al., 2007). Dahan et al. (2001b) found that even subphonemic 

cues could guide lexical activation. Stimulus words were cross-spliced so that some had onsets 

from a cohort competitor word while other had onsets from a non-word. For instance, the word net 

occurred with [nɛ] from the word neck and nep, respectively, as well as in the original condition. 

In an eye-tracking study, listeners fixated more slowly on target pictures when onsets came from 

competitor words than non-words. The fastest fixations were for the original words. The authors 

interpreted the findings as evidence for ‘lateral inhibition’ as postulated by the connectionist 

models. Lateral inhibition means that activation of one word not only depends on whether it is 

itself compatible with the speech signal, but is also modulated by activation of competitor words. 

Finally, grammatical contexts have been found to constrain lexical competition (Strand et al., 

2014). In a response time study, participants listened to words in constrained and unconstrained 

grammatical contexts. Stimulus words were responded to faster in the constrained contexts and the 

effect was greater for words with low competition from words in the same grammatical class. 
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Together, the findings indicate that 1) the acoustic signal is continuously mapped onto lexical 

candidates, 2) there are early effects of cohort competition and frequency 3) neighbourhood effects 

emerge later, 4) there is lateral inhibition between activated candidates and 5) grammatical 

constraints influence lexical competition. 

2.3 Neural correlates of lexical competition 

In neuroimaging studies, lexical competition correlates with activation in left inferior frontal gyrus 

(Broca’s area) (Righi et al., 2010; Zhuang et al., 2011; Zhuang et al., 2014). As captured by many 

of the models of speech perception and spoken word recognition, there are both activation and 

selection aspects to lexical competition and these have been found to yield effects in somewhat 

different brain areas. In a combined fMRI and eye-tracking study, Righi et al. (2010) investigated 

the neural systems employed in competition and selection between two competitors. Participants 

were presented with four pictures, heard a stimulus word and were asked to look at the relevant 

picture. In half the trials, the target, for example beaker, was accompanied by one onset competitor, 

e.g. beetle and two distractors, for instance cat and train. In the other half of trials, there was only 

a target and three distractors. When a target words and a distractor competed for recognition, 

increased activation was measured in left inferior frontal gyrus, pars opercularis, indicating that 

the area is sensitive to lexical competition and selection driven by phonological factors. Further, 

activation in bilateral supramarginal gyrus was reported. Zhuang et al. (2014) isolated effects of 

cohort competition and lexical selection. In an fMRI study, participants listened to words and non-

words and performed a lexical decision task. Some non-words had late ‘nonword points’, that is, 

the point at which a sequence becomes inconsistent with a real word. These non-words varied in 

initial cohort size and ‘drop-out rate’. Drop-out rate refers to the number of words in the initial 

cohort dropping out before the non-word point. The measures were used to investigate effects of 

competition and selection, respectively. While words with high cohort sizes yielded increased 

activation in ventral inferior frontal gyrus (pars orbitalis and orbitofrontal cortex), words with 

higher drop-out rates yielded increased activation in dorsal inferior frontal gyrus (pars opercularis, 

pars triangularis and insula). ‘Dorsal’ means more towards the top of brain and ‘inferior’ refers to 
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the part of the brain closer to the neck. There was activation in both left and right hemispheres 

although the effect appeared to be stronger in the left hemisphere, which is more associated with 

language processing. Zhuang et al. (2014) interpreted the findings as evidence that competition 

between initially activated candidates and selection among these are separate functions due to their 

separate neural substrates.  

In ERP studies, reduced lexical competition yields more negative amplitudes around 200 ms 

after word onset (Hunter, 2013; Roll et al., 2017; Söderström et al., 2016). Roll et al. (2017) and 

Söderström et al. (2016) isolated a negative-going potential, termed pre-activation-negativity 

(PrAN), 136-204 ms after word onset and 136-280 ms after F0 onset, respectively. The PrAN 

amplitude is more negative for word-beginnings with few lexical continuations, that is, few cohort 

competitors. Early, 136-204 ms after word onset, Roll et al. (2017) also saw effects of the 

combined frequency of these competitors, but no such effects were reported by Söderström et al. 

(2016). In a similar way, Hunter (2013) found that high neighbourhood density was associated 

with a positivity approximately 250 ms after word onset. This could be understood as negativity 

associated with few lexical competitors as well since ERP effects are (almost always) a comparison 

between two different conditions. Roll et al. (2017), Roll et al. (2015) and Söderström et al. (2016) 

interpreted the PrAN as a negativity for low lexical competition because the condition with few 

lexical competitors showed increased ‘global root mean squares’ (gRMS) peak 184-204 ms after 

word onset (Roll et al., 2017). gRMS reflects major changes in neural activity calculated over all 

electrodes. The finding is highly relevant because it suggests that accounts of spoken word 

recognition must explain the increased activation for few competitors as compared to many. The 

increased neural activity for few competitors at the gRMS peak correlated with blood oxygen level 

dependent (BOLD) activation mainly in inferior frontal gyrus, pars opercularis in Broca’s area and 

left angular gyrus (Roll et al., 2017). The region has, as mentioned above, been found to be 

involved in lexical competition and, more specifically, selection between different candidates. Roll 

et al. (2017) suggest that the PrAN reflects the lexical selection stage of the Cohort model 

(Marslen-Wilson & Tyler, 1980; Marslen-Wilson, 1987), that is, the stage where lexical 

competitors are inhibited when they become incompatible with the incoming speech signal. A 

regression was found for a left central electrode, C3, 136-204 ms after word onset, where PrAN 
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increased as the number of possible continuations decreased and their summed frequencies 

increased. Further, PrAN has been interpreted as an index of predictive certainty: the fewer 

possible candidates, the more the listener can commit to pre-activation of those candidates left 

(Roll et al., 2017). More negative PrAN amplitudes have also been reported for Swedish accent 1 

as compared to accent 2 (Roll, 2015; Roll et al., 2010; Roll et al., 2017; Söderström et al., 2017a). 

Word accents are tones realised on word stems. They are distinctive but also, in many cases, 

morphologically conditioned (Riad, 2012). The finding is in line with accent 1 being associated 

with, on average, 11 times fewer continuations than accent 2 (Söderström et al., 2016). In an fMRI 

study, early gRMS peaks correlated with activity in left Heschl’s gyrus in primary auditory cortex 

and adjacent superior temporal gyrus and inferior frontal gyrus.  

In sum, lexical competition is associated with increased activation in Broca’s area (left inferior 

frontal gyrus). Competition has been associated with activity in ventral parts while selection 

between candidates has been associated with activity in dorsal parts. In ERP studies, a left central 

negativity, correlating with increased activity in Broca’s area, has been reported for low as 

compared to high lexical competition. 

2.4 Entropy 
Introduced in information theory in 1948 by Claude Shannon, entropy has in recent years also 

found use as a measure in language processing (Frank et al., 2015; Klimovich-Gray et al., 2019; 

Willems et al., 2016). Entropy is a measure of ‘uncertainty’ or ‘choice’ of the outcome of an event 

and is higher for more uncertainty (Shannon, 1948). Entropy can be calculated with the equation 

below where p(x) is the probability of an outcome and log is the base-2 logarithm. Thus, entropy 

can be calculated by taking the negative sum of the probability of all outcomes multiplied by the 

logarithm1 of the probability of all outcomes. 

 
1 According to Shannon (1948), logarithmic measures are used because they are convenient mathematically and 

because many outcomes vary linearly with the logarithm of the outcomes. Since the logarithmic base is 2, the entropy 

is measured in bits, i.e. the number of bits required to store the outcome of the event. 
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Entropy depends on the number of different outcomes as well as their probabilities. If probabilities 

of outcomes are equal, entropy also increases. Entropy also increases with the number of possible 

outcomes if they are equally probable. The highest entropy is found for events where all outcomes 

are possible and these events are equally likely (Shannon, 1948). 

2.4.1 Entropy measures in language processing 

Entropy measures have been used in studies of language processing concerned with predictive 

coding. As described in 2.1.6, according to theories of predictive processing, the brain tries to 

predict upcoming sensory information to avoid surprise and prediction error. Entropy has been 

used as a measure of the certainty of upcoming speech (Choi et al., 2021; Frank et al., 2015; 

Klimovich-Gray et al., 2019; Willems et al., 2016). Klimovich-Gray et al. (2019) investigated 

predictions generated by modifiers about following nouns in a combined 

magnetoencephalographic and EEG study using source localization. While EEG and ERP 

generally have excellent temporal resolution but poor spatial resolution, source localization can be 

used to estimate the likely sources of brain activity, combining the best of two worlds. Entropy 

measures were used to quantify certainty about upcoming nouns. Probability scores were obtained 

in a gating study where participants heard either 1) only the modifier or 2) the modifier and the 

first 50 ms of the noun. They were asked to guess what they thought the noun was and how 

confident they were about the guess. ‘Entropy’ in this study was calculated based on the different 

noun competitors given before noun onset as well as the confidence scores. If most participants 

gave one or two continuations with high certainty, entropy was low. If many continuations were 

provided, entropy was higher. In addition, ‘entropy change’ was calculated. This was the 

difference between entropy measured when only the modifier was available and that measured 

when the first 50 ms of the noun had been heard. The authors reported effects of entropy in left 

inferior frontal gyrus pars triangularis from 70 ms before to 165 ms after noun onset. There were 

effects of entropy change in left Heschl’s gyrus in primary auditory cortex 140-180 ms after noun 
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onset. The latter finding was interpreted as support for contextual constraints and phonological 

cues regulating activity in primary sensory areas such as primary auditory cortex, but that 

continuous sensory input is also necessary. 

The findings were concerned with entropy from one word to the next whereas in the present 

study, entropy measured listeners’ certainty about unfolding words. Entropy encompasses 

measures which have been found to be relevant in lexical competition such as the number of 

competitors and their frequencies (Goldinger et al., 1989; Magnuson et al., 2007; Roll et al., 2017; 

Zhuang et al., 2011). These measures are also employed in most measures of lexical competition 

such as neighbourhood density (Goldinger et al., 1989) and cohort competition (Zhuang et al., 

2011). Entropy is related to posterior probabilities as described in Bayesian models such as 

Shortlist B (Norris & McQueen, 2008). Posterior probabilities are the likelihood of a word given 

prior probabilities and the likelihood of a speech sound if a specific word is heard. Entropy takes 

into account all posterior probabilities and is higher (less certainty) if many words have similar 

probabilities and lower (more certainty) if few words have high probabilities. 

2.5 Danish 

Danish is spoken by roughly 5.6 million speakers, most of them in Denmark (Lewis et al., 2015). 

It is an East Scandinavian language, belonging to the North Germanic branch of the Indo-European 

language tree (Pereltsvaig, 2017). Danish is known for its exceptionally rich vowel system with 

16 contrastive vowels. In addition comes a two-way distinction in vowel length (Basbøll, 2005). 

Further, Danish has a suprasegmental creaky voice feature ‘stød’. Only words with ‘stødbasis’ can 

have stød. Stødbasis requires either a long vowel or a short vowel followed by a sonorant 

consonant. Words which do not live up to these sonority constraints lack stødbasis (Fischer-

Jørgensen, 1989). Subtle, phonetic differences are present in the speech signal already from word 

onset, but the ‘stød proper’ (Fischer-Jørgensen, 1989) or the ‘phonological locus’ (Basbøll, 2014) 

typically begins midway through a long vowel or in the sonorant consonant following a short 

vowel. Stød manifests itself as irregular vocal fold vibrations and a considerable intensity fall 

(Fischer-Jørgensen, 1989). Stød is distinctive and there are numerous minimal pairs with stød and 
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non-stød (Grønnum & Basbøll, 2001). This is relevant for the present study because in experiment 

1, prosodic information about stød and non-stød became available to listeners 100-200 ms into the 

stimulus words. When this happened, a number of lexical candidates immediately became 

inconsistent with the speech signal. Some examples of words with stød and non-stød in the 

experiment are [ˈhɛlˀd̥n̥] helten ‘the hero’ and [ˈsg̊æ:b̥ə] skabe ‘closets’. Stød is marked with ‘ˀ’. 

2.6 Present study 

The present study used event-related potentials to investigate neural correlates of lexical 

competition and predictive certainty. The correlation between lexical competition and the ERP 

component pre-activation negativity (PrAN) was investigated. Further, a new measure, entropy, 

was employed as a measure of predictive certainty. The research question was: 

R1) What are the neural correlates of lexical competition and predictive certainty? 

The hypotheses were that PrAN amplitudes would correlate with lexical competition and certainty 

about the unfolding word. Negativity was expected to increase with less competition and more 

certainty, as reported by Roll et al. (2017).  

H1) Low lexical competition is reflected in more negative PrAN amplitudes.  

H2) High predictive certainty is reflected in more negative PrAN amplitudes. 

Lexical competition is difficult to quantify because listeners have different mental lexica, that is, 

mental dictionaries of words in a language, including their phonological representations and 

semantics. As Roll et al. (submitted, p. 5) put it, “the most relevant lexical competitors are based 

on the mental dictionary of the listener”. Since getting access to the different mental dictionaries 

of the participants of the study was not possible, estimated lexical competition for all item words 

in the experiments was calculated from a Danish pronunciation lexicon and a frequency list. 

Lexical competition was operationalised as ‘possible continuations’ which refers to the number of 

words consistent with a word-initial fragment (WIF) of a word, that is, the first two phonemes of 

an item word. For instance, in the present study, the Danish WIF [hɛ] from the item word [ˈhɛld̥ə] 

helte ‘heroes’ had 1169 continuations. The measure ‘continuations’ was chosen because ERPs 

were analysed immediately after word onset when only the first 2-3 speech sounds had been heard. 
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Cohort competition is a more relevant measure at earlier stages while neighbourhood and rhyme 

effects become important later (Allopenna et al., 1998; Magnuson et al., 2007). 

Predictive certainty was operationalised as entropy which was an estimate of listeners’ certainty 

about the unfolding word upon hearing specific speech sounds. Entropy was calculated from a 

word-initial fragment’s number of continuations and their respective frequencies. This measure 

was chosen because frequencies of cohort competitors have been found to influence lexical 

competition (Goldinger et al., 1989; Roll et al., 2017) and because PrAN has been understood as 

a measure of predictive certainty (Roll, 2015; Roll et al., 2015; Söderström et al., 2017a). As 

mentioned above, the PrAN for low lexical competition has been interpreted as reflecting lexical 

selection and inhibition of irrelevant candidates as more of the acoustic signal becomes available 

to listeners. It is, in other words, an index of predictive certainty, because the fewer possible 

outcomes there are, the more the listener can commit to one of them (Roll et al., 2017). Including 

both measures, continuations and entropy, might enable isolation of those effects. Based on H1 

and H2, four test implications were derived. While hypotheses are abstract predictions, test 

implications are measurable effects expected to occur if the hypotheses were true (Hempel, 1966). 

T1a) WIFs with few continuations yield more negative PrAN amplitudes 136-204 ms after word 

onset than WIFs with many continuations. 

T1b) As the number of continuations decreases, negative PrAN amplitudes 136-204 ms after 

word onset increase. 

T2a) WIFs with low entropy show more negative PrAN amplitudes 136-204 ms after word 

onset than WIFs with high entropy. 

T2b) As entropy decreases, negative PrAN amplitudes 136-204 ms after word onset increase. 

Data from two previously conducted ERP studies was reanalysed. The neural effects were 

measured 136-204 ms after word onset when only the first 2-3 speech sounds of a word had 

occurred in the speech signal. 

Further, a new hypothesis was derived from Roll et al. (2017). The authors hypothesised that 

the negativity for WIFs with few continuations reflected the selection stage of the Cohort model. 

This would make the prediction that WIFs inhibiting more continuations activated based on initial 

acoustic input would yield more negative PrAN amplitudes. The hypotheses were: 
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H3) Speech sounds inhibiting many continuations yield more negative PrAN amplitudes. 

H4) Speech sounds leading to large entropy decrease lead to more negative PrAN amplitudes. 

Using data from experiment 1, effects of ‘inhibition’ and ‘entropy decrease’ were investigated. 

Inhibition was defined as the number of continuations no longer consistent with the speech signal 

at a point of time. It was calculated by subtracting the number of words in the cohort at later stage 

from the number of words activated at a previous stage. Zhuang et al. (2014) used the term ‘dropout 

rate’, but this was calculated a bit differently and it indicates that competitors really do drop out 

as predicted by the Cohort model rather than just being inhibited. Models of speech recognition 

diverge on the matter. Entropy decrease was similar to the measure entropy change employed by 

Klimovich-Gray et al. (2019). In the present study, it was termed entropy decrease because there 

was always a decrease in entropy as words unfolded. Entropy decrease was calculated by 

subtracting the entropy for the second speech sound from the entropy of the first speech sound(s).  

The effects of inhibition and entropy decrease were investigated at two time points in the speech 

signal. The first time point was the same as in the abovementioned analysis, 136-204 ms after word 

onset. Here, the difference between second speech sounds inhibiting many candidates first 

activated by the first speech sound was investigated. This can be exemplified with the word 

[hɛlˀd̥n̩] helten ‘the hero’ from experiment 1. The WIF [hɛ] had low inhibition because few 

competitors activated upon hearing [h] were inhibited upon hearing the [ɛ]. The second time point 

was 136-204 ms after the onset of stød or non-stød prosodic cues, on average 166 ms, SD = 47, 

after word onset. Here, it was investigated what happened when competitors activated by the first 

two speech sounds were no longer consistent with the speech signal. The late WIF [hɛlˀ] had a 

high inhibition as many candidates consistent with [hɛ] were inhibited upon hearing the stød 

realized in the sonorant consonant, [lˀ]. On the contrary, helten’s non-stød counterpart [hɛld̥ə] helte 

‘heroes’ had low inhibition because few words were inhibited upon hearing non-stød in the 

sonorant consonant [l]. Test implications were derived from hypotheses 2 and 3. 

T3a) WIFs inhibiting many continuations yield more negative PrAN amplitudes 136-204 ms 

after word onset than WIFs inhibiting few continuations. 

T3b) As the number of inhibited continuations increases, negative PrAN amplitudes 136-204 

ms after word onset increase. 
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T4a) WIFs with large entropy decrease show more negative PrAN amplitudes 136-204 ms after 

word onset than WIFs with small entropy decrease. 

T4b) As entropy decrease surges, negative PrAN amplitudes 136-204 ms after word onset 

increase. 
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3 Method and materials 

3.1 Event-related potentials 

Electroencephalographic (EEG) data collected from two previous experiments was reanalysed. 

EEG data is electrical activity measured above the scalp. The activity stems from postsynaptic 

potentials occurring when neurons communicate with each other (Luck, 2014). In the present 

study, participants wore a cap with 32 electrodes distributed over the head according to the 10-20 

system (Klem et al., 1999), each measuring voltage fluctuations at their respective positions. 

Event-related potentials are electric potentials associated with specific ‘events’. In the present 

study, one such event could be the onset of a stimulus word. ERP components are event-related 

potentials elicited by specific cognitive processes. Of interest for the present study is the pre-

activation negativity (PrAN) described in 2.3. EEG has excellent temporal resolution and is 

therefore particularly well-suited for investigating early effects of lexical competition. The spatial 

resolution is quite poor, however, because activity measured at the scalp could, at least in theory, 

be the result of a virtually infinite number of brain source combinations. 

In the first experiment (Hjortdal, 2021), participants listened to 40 Danish nouns with stødbasis, 

each occurring in singular and plural conditions. In the second experiment, the same participants 

listened to another 40 Danish nouns without stødbasis, also in singular and plural conditions. While 

Hjortdal (2021) was concerned with ERPs associated with stød or non-stød prosodic cues cuing 

grammatical suffixes, the present study investigated ERPs associated with lexical competition.  

3.1.1 Participants 

Sixteen native speakers of Danish, mean age 27.6 ± 4.9 years, participated in the study. All were 

right-handed. All participants spoke English and, in some cases, other languages, in addition to 

Danish. The Swedish Ethical Review Authority (https://etikprovningsmyndigheten.se/, approval 

number 2020-03035) approved the study. Participants gave informed consent and were offered 

remuneration for participation. All participants took part in both experiments. 
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3.1.2 Stimuli 

The stimulus words in experiment 1 were 40 nouns with stødbasis. In experiment 2, the stimulus 

words were 40 nouns without stødbasis. Each item occurred in definite singular and indefinite 

plural conditions. Both definite singular and indefinite plural are marked as a suffix on Danish 

nouns. Definite singular was marked [n̩]/[ð̩] en/et and indefinite plural [ə] -e. Since consonants can 

be syllabic in Danish (marked with ‘̩’ as in [n̩]), both conditions were disyllabic. Table 1 shows 

some stimulus words. All stimulus words can be found in the appendix A.  
Table 1. Each stimulus words occurred in different singular and plural conditions in which they were 
disyllabic. 

Experiment 1 (stødbasis) Experiment 2 (non-stødbasis) 
Helt ‘hero’ [!hɛlˀd̥n̩] helten 

[!hɛld̥ə] helte 

Dusk ‘tuft’ [!d̥usg̊n̩] dusken 

[!d̥usg̊ə] duske 
Skab ‘closet’ [!sg̊æˀb̥ð̩] skabet 

[!sg̊æ:b̥ə] skabe 

Flok ‘flock’ [!flʌg̊ŋ̩] flokken 

[!flʌg̊ə] flokke 
Væg ‘wall’ [!vεˀg̊n̩] væggen 

[!vε:g̊ə] vægge 

Krop ‘body’ [!khʁʌb̥n̩] kroppen 

[!khʁʌb̥ə] kroppe 
 

Stimulus words were incorporated into carrier sentences with the structure Ruth fandt stimulus 

word på pladsen/på græsset/på loftet ‘Ruth found stimulus word at the place/on the grass/on the 

loft’. Thus, all stimulus words were items and the sentence context was the same. The stimulus 

sentences were recorded by a female speaker of Standard Copenhagen Danish in an anechoic 

chamber. Recordings were made with the recording and editing software Audacity® 

(https://audacityteam.org). Each stimulus sentence was recorded twice, once with the stimulus 

noun in singular and once in plural. To avoid pronunciation being systematically influenced by 

intonation differences, half the stimulus sentences were read with the singular condition before the 

plural. For the other half, the plural was read before the singular. All carrier sentences were read 

as answers to context questions to avoid focus on stimulus nouns because focus has a lengthening 

effect in Standard Copenhagen Danish (Grønnum & Basbøll, 2001).  
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For the purpose of the original 

experiment, words were cross-spliced in 

Praat (Boersma & Weenink, 2020) to 

create conditions with suffixes validly and 

invalidly cued by word stems. This meant 

that some stimulus words occurred with 

suffixes which had been cross-spliced 

onto them from another condition, (e.g. 

singular word stems with plural suffixes). 

Since suffix onset was not until, on 

average, 282 ms, SD = 46 ms, after word 

onset in experiment 1 and 264 ms, SD = 

66 ms, in experiment 2, this could not 

have affected the word onset ERPs 136-

204 investigated in the present study. For 

the effects investigated 136-204 ms after 

stød/non-stød onset, the window 

overlapped with suffix onset. However, 

the suffix-splicing happened after vowel 

and stød/non-stød onset and therefore did 

not affect the contrast investigated here. 

Further, all items occurred in the same number of valid and invalid conditions so these effects 

should not affect comparison between stimulus words differing with respect to lexical competition. 

A possibility would have been to exclude spliced items, but since there is a lot of ‘noise’ in ERP 

studies, stemming from skin potentials and random fluctuations (Kretzschmar & Alday, 

forthcoming; Luck, 2014), it is crucial to maximise the number of trials. Stimulus nouns were 

spliced back into the carrier sentences. 

Figure 1. The item helt ‘hero’ in its singular (top) and plural 
(bottom) conditions. The time windows 136-204 ms after 
word onset and 136-204 ms after stød/non-stød onset are 
marked. 
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3.1.3 Procedure 

Both experiments were conducted in the experimental software programme Psychopy and run on 

a stationary PC (Peirce et al., 2019). Experiment 1 was always run before experiment 2. 

Participants sat in a chair in front of the computer screen, looking at a fixation cross and wearing 

32-channel Braincap-MR from EasyCap. They listened to stimulus sentences via headphones. 

Stimulus sentences were presented in randomised order with stimulus onset asynchrony jittered 

between 4 and 6 seconds to prevent artificial boosting of time-locking of ERPs to the stimuli (Luck, 

2014). In experiments 1 and 2, each stimulus item was presented 8 and 4 times, respectively, in 

different conditions, to each participant. Altogether, there were 480 trials, 320 in experiment 1 and 

160 in experiment 2. Participants were instructed to respond as fast as possible to whether the 

stimulus word represented one or more things by pressing a button on the keyboard. Since the 

behavioural task was related to identification of morphological suffixes rather than lexical 

competition, these responses were not analysed in the present study. 

There were ‘time-locking points’ for word onset and stød/non-stød onset. Time-locking points 

mark specific events (e.g. word onset) and link stimuli and enable extracting and averaging ERPs 

associated with specific events. Word onset was operationalised as the onset of the first speech 

sound in a stimulus word. Stød onset was operationalised as the point where vibrations started 

getting irregular and non-stød onset was the corresponding time after F0 onset in words without 

stødbasis. See Figure 1. 

3.1.4 EEG recording and pre-processing 

EEG recordings were made at a sampling rate of 500 Hz using a BRAINAMP MR PLUS Amplifier 

and Brainvision recorder (BrainProducts). Impedances were kept below 5kΩ. Pre-processing was 

done in Eeglab (Delorme & Makeig, 2004). A centro-frontal electrode (FCz) was used as online 

reference and re-referenced offline to mastoid average (electrodes TP9 and TP10). EEG was low-

pass offline filtered at 30 Hz and high-pass filtered online at 0.05 Hz. Eye movements, including 

blinks and saccades, were compensated for using independent component analysis (ICA) (Jung et 

al., 2000).  
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Item and single-trial epochs ending 800 ms after word onset/stød/non-stød onset and with a 200 

ms pre-stimulus baseline were extracted for the relevant electrodes. Epochs with voltage exceeding 

±100 V after ICA were discarded. There were 5,120 trials in the stødbasis experiment of which 47 

(0.92 %) were discarded and 2,560 trials in the non-stødbasis experiment of which 34 (1.3 %) were 

discarded. 

Microvolt (μV) item averages for the two (singular and plural) conditions of each test item were 

calculated in Eeglab (Delorme & Makeig, 2004). Further, single-trial microvolt (μV) averages 

were calculated. Thus, rather than averaging EEG data over conditions, one trial per condition, per 

item, per participant was extracted. Missing data point were coded as N/A’s.  

3.2 Lexical competition 

To quantify the lexical competition of the word-initial fragments (WIFs) of the items in the 

experiment, the number of continuations and the entropy for each WIF was calculated using Unix 

and Python scripts. The scripts were based on scripts developed for Swedish for the same purpose 

(Roll et al., 2017; Söderström et al., 2016), but adapted for Danish phonetics by the author. 

Additional code was written to extract the new measure entropy. Scripts can be found in appendix 

B. 

3.2.1 Pronunciation lexicon 

Pronunciations were obtained from the Danish NST lexicon, a freely available full-form 

pronunciation lexicon for Danish (Andersen, 2011). Developed by Nordisk Språkteknologi 

Holding, the lexicon was made available to the public by the Norwegian National Library after 

2003 when Nordisk Språkteknologi went bankrupt. In the Danish NST, all words in the lexicon 

have been manually transcribed with the Speech Assessment Methods Phonetic Alphabet 

(SAMPA). The SAMPA resembles the International Phonetic alphabet (IPA), but has been adapted 

to be computer-readable (Wells, 1997). In the lexicon, there is a distinction between 26 vowels 

and 19 consonants. Stød, stress, secondary stress and word boundaries are also marked in the 
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lexicon (Bjerg Nielsen, 2001). There are 237,873 items in the lexicon, 236,307 of which have been 

part-of-speech (PoS)-tagged for word class by Center for Sprogteknologi in Copenhagen. Nouns 

constitute 52 % of the lexicon, proper nouns 24 %, adjectives 12 %, verbs 10 %, adverbs 1.9 % 

and other grammatical categories 0.4 % (Andersen, 2011). In the present study, proper nouns were 

excluded. The NST also has lexica for Norwegian and Swedish. The Swedish lexicon was used 

for the Söderström et al. (2016) and Roll et al. (2017) studies. The Danish lexicon has fewer word 

forms than the Swedish lexicon, but it is still very extensive and well documented. Contrary to the 

Swedish and Norwegian lexica, all items in the Danish lexicon have been manually checked. A 

weakness is that it has not been updated since 2003 and some neologisms are therefore absent. 

3.2.2 Frequency list 

A frequency list was generated based on KorpusDK2 (https://korpus.dsl.dk). KorpusDK comprises 

three corpora, Korpus 90, Korpus 2000 and Korpus 2010, with Danish texts from diaries, blogs, 

newspapers, fiction etc. from around 1990, 2000 and 2010, respectively. In total, the corpus 

contains more than 100 million words and is ePOS tagged. EPOS is an extended version of the 

Part-of-speech (PoS) tagset which includes inflectional information (Asmussen, 2015). In the 

ePOS tagset, there is a distinction between verbs, adjectives, numerals, nouns, pronouns, adverbs, 

interjections, prepositions, conjunction, lexical element, inflectional ending and ‘unique’, 

including inter alia infinitive markers, and ‘residual’, which includes tagging errors or foreign 

words. 

KorpusDK is a written language corpus. This is of course not ideal when the object of 

investigation is spoken language. A PoS-tagged spoken language corpus, Danpass (Grønnum, 

2009), was considered as an alternative, but it only contains 73,227 running words – as compared 

to 100 million in KorpusDK – which is too little for the present purposes. First, word frequencies 

calculated based on smaller corpora are less accurate. Second, since many WIFs from the 

experiments would have few and low-frequency continuations, fine-grained differences would be 

lost. Henrichsen (2002) compared Danish written and spoken language corpora. The most notable 

 
2 Language resource compiled by Jørg Asmussen, Society for Danish Language and Literature, DSL. 
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difference was that common words are even more common in speech than in writing. The fifty 

most common types make up 60.4 % of the spoken corpus and 40.1 % of the written corpus. This 

would indicate that items generally have fewer continuations and lower entropy in speech than in 

writing, but this is not expected to vary systematically between items and was deemed acceptable. 

However, it should be kept in mind when interpreting the results. Another option considered for 

obtaining word frequencies was the PAROLE corpus3 whose Swedish sister was used to obtain 

word frequencies for the Swedish script (Söderström et al., 2016). The PAROLE project aims to 

compile large text corpora for all EU languages. However, the Danish PAROLE only includes 

250.000 morphosyntactically tagged words which was also deemed too few to obtain the fine-

grained competition measures desired. 

All words, including ePOS word-class tags, were extracted from KorpusDK using a Python 

script and frequencies for each item were calculated with a Unix script run in the terminal. Word 

class was taken into account to avoid collapsing frequencies across word classes. Thus, words with 

the same orthography but belonging to different grammatical categories – and possibly with 

different pronunciations - such as the noun [‘tæ!lʌ] taler ‘speaker’ and the verb [‘tæˀlʌ] taler 

‘speaks’ were distinguished. A frequency list with 1,485,541 unique items was generated. 

3.2.3 Combining pronunciation and frequency data 

To be able to access both a word’s pronunciation and its frequency, the NST lexicon and the 

frequency list were merged. First, orthography, PoS tags and pronunciation data were extracted 

from the NST lexicon with a Unix script (Frid, 2015). In Python scripts written by the author, the 

pronunciation lexicon was pre-processed and merged with the frequency list. Since the 

pronunciation lexicon and KorpusDK were tagged with two different word class tagging styles, 

PoS and ePOS, respectively, the PoS-tags in the NST were replaced with ePOS word class tags. 

Further, all orthographies were lowercased. Thirty-five stimulus words used in the experiments 

but not in the NST lexicon were added manually. Then, the pronunciation lexicon was merged 

 
3 PAROLE-DK and ePAROLE. Compiled by Ole Norling-Christensen, Britt-Katrin Keson, Jørg Asmussen m.fl., 
Society for Danish Language and Literature, DSL. 
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with the frequency list, creating a file with frequency, orthography, word class tag and 

pronunciation. In total, 140,283 items, including information about pronunciation and word class, 

remained. The number of items in the merged list was substantially lower than the number of items 

in the pronunciation lexicon and frequency list, respectively, since only items present in both were 

included in the merged list.  

3.2.4 Calculating lexical competition and entropy for word-initial fragments  

A Python script was developed for calculating continuations and entropy. The script was based on 

a script developed for Swedish (Söderström et al., 2016) but adapted for Danish phonetics. Word 

items in the lexicon were marked for stød (with a ‘?’), but its counterparts, ‘non-stød’ and ‘non-

stødbasis’, were not marked in the lexicon. Non-stød refers to words with stødbasis (a long vowel 

or a short vowel followed by a sonorant consonant) but no stød. Non-stødbasis refers to words 

without stødbasis which can never have stød due to sonority constraints. To tag word items for 

non-stød and non-stødbasis, respectively, the script searched them for stressed syllables which did 

not have stød (marked ‘?’) but with either 1) a long vowel or 2) a short vowel followed by a 

sonorant consonant. Those words had non-stød. Sonorant consonants in Danish are [m], [n], [ŋ], 

[l], [w], [j] and [ð] (Basbøll, 2005). Further, in Danish, /r/ has been vocalised and is realised [ɐ̯], 

except in onset position. Words with a short vowel followed by /r/ thus have acquired stødbasis 

and are in an ongoing process of acquiring stød (Grønnum, 2005; Høeg, 2020) and [ɐ̯] was 

therefore also tagged as a sonorant consonant. Further, [ɐ̯] can fuse with a preceding vowel 

(Basbøll, 2005) as in [jɒ:d̥] hjort ‘deer’, but this is already captured because the vowel is long. All 

remaining words were categorised as not having ‘non-stødbasis’, meaning they could not have 

stød.  

To calculate a WIF’s number of continuations and entropy, the Python script looped through 

the combined pronunciation and frequency list, counting all words with the WIF in question in 

word-initial position and – for entropy – their respective frequencies. Figure 2 shows some of the 
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continuations of the WIF [hɛ] (sampa [hE]), 

including details about, for example, 

frequency and stød. 

To calculate a WIF’s entropy, the 

probability, (p-value) for each continuation 

was calculated by dividing its frequency by 

the frequency of all words in the cohort. The 

entropy itself was calculated by taking the 

negative sum of all p-values multiplied by 

the binary logarithm of all p-values. If, at a 

certain point, there is evidence of, for 

instance, two words with similar frequencies 

and thus prior probabilities, both would have 

lower posterior probabilities and produce 

higher entropy – until more of the speech 

signal is available and the inconsistent 

candidate drops out. 

For the present study, some constraints 

were applied: Only polysyllabic nouns were 

included as this was the category used in the 

ERP experiment because grammatical category has been shown to limit search space in word 

recognition (Strand et al., 2014). Also, words with frequencies lower than 2 were excluded because 

in a frequency list calculated based on a 100-million-word corpus, these words would be very rare. 

The same constraints were applied in Roll et al. (2017), facilitating comparison. Table 2 shows 

some word-initial fragments from both experiments as well as their number of continuations and 

entropies. For experiment 2, one item’s two realisations, [ɔsd̥n̩] osten ‘the cheese’ and [ɔsd̥ə] oste 

’cheeses’, were removed because the number of continuations and entropy could not be calculated 

appropriately because there was only one speech sound in the first syllable, [ɔ]. A list with all 

items, their WIFs at different time points as well as their pronunciations and frequencies can be 

Figure 2. The script looped through the combined 
pronunciation and frequency lexicon for each WIF, 
calculating the number of continuations and entropy.  
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found in appendix C. The number of continuations was log-transformed for further analysis to 

approximate a normal distribution, because they were not normally distributed. To decide whether 

to log-transform entropies, it was investigated whether entropies were normally distributed. 

Entropies for all phonotactically legal WIFs were calculated and a Jarque-Bera test was carried 

out in Excel. A Jarque-Bera test examines whether the skewness and kurtosis of the data is 

consistent with a normal distribution, investigating the null-hypothesis that data is normally 

distributed. A p-value of 0.707 confirmed the null-hypothesis, indicating that entropy data was 

normally distributed. Therefore, entropies were not log-transformed. 
Table 2. For each word-initial fragment (WIF) (i.e. the first two speech sounds of a word), the number of 
continuations and entropy was calculated. See appendix C for a full list of WIFs, continuations and entropies. 

Experiment 1 Experiment 2 

WIF Continuations Entropy WIF Continuations Entropy 

[vɛ:] 79 (few) 3.80 (low) [du] 47 (few) 3.97 (low) 

[sv]  393 (few) 6.71 (high) [tˢʌ] 337 (few) 6.27 (high) 

[khɑ]  556 (many) 5.88 (low) [khʁ] 881 (many) 5.13 (low) 

[hɛ]  474 (many) 6.05 (high) [sd̥] 2,535 (many) 8.07 (high) 

 

Using a median split, WIFs were divided into few/low and many/high groups for number of 

continuations and entropy, respectively. Group means and ranges are reported in Table 3.  
Table 3. Word-initial fragments were divided into groups based on whether they had few or many 
continuations and high and low entropy. 

Experiment 1 Group Average Range 

Continuations Few 227 38-407 

Many 1,373 438-2535 

Entropy Low 5.17 3.59-5.92 

High 7.35 6.05-8.58 

Experiment 2 Group Average Range 

Continuations Few 289 47-474 

Many 1,200 479-2535 

Entropy Low 5.34 3.97-6.08 

High 7.16 6.13-8.58 
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The number of WIFs inhibited by the second speech sound and by stød/non-stød onset was 

calculated. Inhibition at the first time point was the number of continuations activated by the first 

speech sound and inhibited by the second speech sound. It was calculated by subtracting the 

number of continuations at the second time point from the number of continuations at the first time 

point. Entropy decrease was the decrease in entropy from the first to the second speech sound. It 

was calculated by subtracting lexical entropy for speech sounds from lexical entropy for one 

speech sound. Inhibition and entropy decrease were calculated again as more of the speech signal 

became available to listeners at stød or non-stød onset, that is, on average 166 ms, SD = 47 ms, 

after word onset. Inhibition measures were log-transformed for further analysis. See appendix C 

for a list of word beginnings, including inhibition and entropy decrease. Using a median split, 

WIFs were divided into low and high groups for inhibition and entropy decrease, respectively. 

3.3 Statistical analysis 

3.3.1 Analysis of variance 

To investigate whether there were significant differences between the few/low and many/high 

groups, one-way analyses of variance (ANOVAs) were carried out. The dependent variable was 

PrAN amplitude and the independent variables (tested in separate models) were continuations, 

entropy, inhibition and entropy decrease. Each independent variable had two levels: few/low and 

many/high (see 3.2.4). ANOVAs can test whether there is difference between groups while 

simultaneously taking variance into account. However, it is not informative about the nature of the 

effect, that is, which group yields more negative PrAN amplitudes. ANOVAs have the null-

hypothesis that there is no difference between groups and the p-value tells us the probability that 

the null-hypothesis is true. The confidence level is 100 minus the significance level. Thus, if the 

p-value is 0.05, the confidence level is 0.95 or 95 % (Rasinger, 2013).   
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3.3.2 Regression analysis 

Regression analyses were employed to test whether item average PrAN amplitudes varied 

continuously with the independent variables. From the correlation between two variables, a 

regression equation can be calculated on the form y = a + bx. Here, a is the intercept, which is the 

point where the regression line crosses the y-axis and b is the slope. The slope indicates how much 

y, for example, PrAN amplitude, increases per x unit increase, for example entropy. R2 reflects 

how much of the variability in variable y can be explained by variable x. Thus, an R2 value of 0.40 

can explain 40 % of the variability whereas the remaining 60 % is due to other factors. The p-value 

again reflects the confidence level (Rasinger, 2013). The one-way ANOVA and regression 

analyses were applied in Roll et al. (2017) and Söderström et al. (2016). These analyses thus also 

facilitated comparison with these studies. 

3.3.3 Linear mixed-effects models 

Further, the single-trial ERP averages were tested in linear mixed-effects regression models. 

Linear mixed-effects models have been argued to be superior to by-subject or by-item (as the ones 

above) analyses because they simultaneously model variance associated with subjects (i.e. 

participants) and items (Barr et al., 2013; Kretzschmar & Alday, forthcoming). By-subject 

analyses have been criticised for failing to take into account the variance associated with the 

different items in a study, making the assumption that participants react the same to all items. It 

has been argued that in such studies no inferences can be drawn beyond the actual test items used 

in the particular study. On the other hand, by-item analyses, as the ones employed in the present 

study, do not take subject variance into account (Barr et al., 2013; Kretzschmar & Alday, 

forthcoming). In linear mixed-effects models, the problem is tackled by including fixed effects as 

well as random effects. Random effects are typically added for ‘grouping variables’ such as subject 

and item. For each grouping variable, random intercepts and slopes are added. They reflect the 

variances in fixed effects, e.g. variance between subjects. Random intercepts are how the average 

of a dependent variable varies with the grouping variable (e.g. does one participant overall show 

more negative PrAN amplitudes?) while random slopes reflect how the effect of an independent 
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variable varies with the random effects (e.g. does a participant react more strongly to e.g. low 

entropy?) (Kretzschmar & Alday, forthcoming). By-item and by-subject random intercepts and 

random slopes for the fixed effects investigated were added.  

For the present study, the effects of continuations, entropy, inhibition rate and entropy were 

investigated in separate models. In the models, nuisance variables were added to account for 

confounds stemming from other factors varying between stimuli (Sassenhagen & Alday, 2016). 

They were ‘word grammatical number’ (if the word was singular or plural), ‘sentence grammatical 

number’ (if the carrier sentence had been recorded with a word in singular or plural) and – for 

inhibition rate and entropy change sparked by stød or non-stød cues – ‘stød level’ (whether the 

word had stød or non-stød). All factors were balanced within items, meaning items occurred in the 

same number of, for example, singular and plural conditions. The only exception was sentence 

grammatical number which was balanced between items and could therefore have affected ERPs 

already before word onset.  

It should be noted that all items were preceded by the exact same words Ruth fandt ‘Ruth found’ 

but phonetic cues during these words varied between items. Listeners have been found to be 

sensitive to even subtle phonetic cues (Archibald & Joanisse, 2011; Dahan et al., 2001b; Salverda 

et al., 2014). Controlling for such effects is therefore important. The nuisance variables each had 

two levels and were deviation-coded. This means that the dependent variable mean for each level 

of a variable is compared to the grand mean rather than one factorial level (Singmann & Kellen, 

2019). If models did not converge, random correlations were removed (Barr et al., 2013). Effects 

of nuisance variables are not reported in the thesis, but can be found in the output tables in appendix 

D. 

To sum up, ANOVAs and linear regressions were chosen for comparison with Roll et al. (2017) 

and Söderström et al. (2016) whereas linear mixed-effects regressions were carried out to better 

control for nuisance variables, items and participants. Thus, the linear mixed-effects regressions 

were more conservative. All analyses were carried out in the R software (R Core R Core Team, 

2017). For the linear mixed-effects model, the lme4 (Bates et al., 2015) and lmerTest (Kuznetsova 

et al., 2017) packages were used. The two experiments were analysed separately. For the 

replication parts, ERP effects were tested in a priori spatiotemporal window based on a previous 
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study, that is, at electrode C3 136-204 ms after word onset (Roll et al., 2017). A spatiotemporal 

window refers to where above the head – and in which time window – the ERPs are extracted. A 

priori means that the window is defined in advance, before seeing the data. For the more 

exploratory analyses, effects were tested separately at six different centro-frontal electrodes (FC1, 

FC2, Fz, C3, Cz and C4) 136-204 ms after word onset and stød/non-stød onset, respectively. 
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4 Results and discussion 

4.1 Experiment 1 

Overall, word-initial fragments 

(WIFs) with low lexical 

competition resulted in more 

negative PrAN amplitudes than 

WIFs with high lexical 

competition in the a priori 

spatiotemporal window. An 

ANOVA showed that there was a 

significant difference between 

WIFs with few and many 

competitors, F(1,78) = 5.75, p = 

0.019 over the left-central a 

priori electrode, C3, 136-204 ms after word onset. Further, a significant regression function was 

found, F(1,78) = 13.28, p < 0.001, r = 0.38, r2 = 0.15, showing that the PrAN amplitude varied as 

a function of the number of continuations with fewer continuations yielding more negative 

amplitudes. See Figure 4. 

1) PrAN = 0.7(log continuations) – 4.94 

The plots in Figure 3 indicate that there could have been a difference in the signal already before 

word onset (y-axis intercept) which may have been caused by subtle, phonetic cues during the 

preceding sentence context (Ruth fandt ‘Ruth found’) which could not be controlled completely in 

the present study. However, when the effects were tested in a linear mixed-effects regression 

model, which took such context effects into account, the effect was still significant, b = 0.91, SE 

= 0.31, df = 36.97, t = 2.96, p = 0.005. As the difference plot in Figure 3 shows, the effect was 

strongest at left frontal sites. 

Figure 3. Word beginnings with few lexical continuations and low 
entropy yielded more negative amplitudes. The plots to the left are for 
the left central electrode, C3. Negativity is plotted upwards. The plots to 
the right show the voltage differences 136-204 ms after word onset.  
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Similarly, WIFs with low entropy 

yielded more negative PrAN 

amplitudes than WIFs with high 

entropy in the a priori spatiotemporal 

window. An ANOVA showed a 

significant difference between the low 

and high groups in the a priori 

spatiotemporal window, F(1,78) = 

11.52, p = 0.001 and a significant 

regression function was found, F(1,78) 

= 12.7, p < 0.001, r = 0.37, r2 = 0.14. 

See Figure 4. 

2) PrAN = 0.31(entropy) – 4.35 

A linear mixed-effects model 

confirmed that the PrAN amplitude 

varied as a function of entropy, b = 

0.31, SE = 0.10, df = 34.08, t = 3.00, p 

= 0.005. As can be seen from the 

difference plot in Figure 3, the effect 

was stronger over central sites and 

somewhat lateralised. 

Test implications 1a and 1b, that 

WIFs with few continuations would 

yield more negative PrAN amplitudes than WIFs with many continuations and that PrAN 

amplitudes would vary continuously with the number of continuations, were confirmed. The 

experiment replicated the findings of Roll et al. (2017) in that negative PrAN amplitude increased 

as the number of continuations decreased. Further, test implications 2a and 2b, that amplitudes 

would vary with entropy, were also confirmed. 

Experiment 1 
PrAN ~ log (continuations)

Experiment 1 
PrAN ~ entropy

Figure 4. Regression equations were found for continuations as 
well as entropy over a left central electrode, C3. 
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4.2 Experiment 2 

WIFs with few continuations and 

low entropy yielded more 

negative PrAN amplitudes than 

WIFs with many continuations 

and high entropy in the a priori 

spatiotemporal time window. An 

ANOVA showed that the 

difference for number of 

continuations was significant 

over C3 136-204 ms after word 

onset, F(1,76) = 5.82, p = 0.018, 

but the regression function was 

not. Similarly, for entropy, there was a significant difference between WIFs with low and high 

entropy, F(1,76) = 5.09, p = 0.027, but the regression was not significant. As shown in Figure 5, 

the effects were somewhat more central than those observed in experiment 1. Therefore, effects 

were also tested over a central electrode, Cz, where there were also significant differences between 

both continuations (few/many), F(1,78) = 5.90, p = 0.018 and entropy (low/high), F(1,78) = 5.14, 

p = 0.026, but no significant regressions. Neither were there any significant effects when the data 

was analysed in linear mixed-effects models.  

Thus, for experiment 2, test implications 1a and 2a were confirmed but test implications 1b and 

2b were not. Some conditions differed between experiment 1 and 2. Experiment 2 was always run 

after experiment 1 with the same participants and there might have been a training effect. Further, 

there was less variance in the WIFs’ number of continuations in experiment 2. While the few and 

many group means for experiment 1 were 227 and 1,373, respectively, they were 289 and 1,201 

in experiment 2. Finally, there were only half as many trials in experiment 2 compared to 

experiment 1, meaning the sample size was smaller, which might explain why the continuous 

effect did not reach statistical significance. 
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Figure 5. Word-initial fragments (WIFs) with few continuations or low 
entropy yielded more negative PrAN amplitudes than WIFs with many 
continuations or high entropy.  
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4.3 Exploratory approach: experiment 1 

Using data from experiment 1, a 

new hypothesis was investigated. It 

was hypothesized that WIFs which 

inhibited many continuations or had 

high entropy decrease would yield 

more negative PrAN amplitudes. 

PrAN amplitudes measured at 

C3 136-204 ms after word onset 

were modulated by entropy 

decrease, that is, how many 

continuations activated by the first 

speech sound were inconsistent 

with the second speech sound. 

Amplitudes were more negative for 

WIFs with high entropy decrease. 

An ANOVA showed that there was 

a significant difference between 

high/low groups, F(1,78) =10.93, p 

= 0.001. A significant regression 

function was found, F(1,78) = 

13.71, p < 0.001, r = 0.39, r2 = 0.15. 

3) PrAN = -0.43(entropy) – 9.8 

The effect was confirmed by a 

linear mixed-effects regression, b = 

-0.42, SE = 0.13, df = 37.07, t = -

3.13, p = 0.003.  

Thus, test implications 4a and 4b 

were confirmed because PrAN 
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Figure 6. Second speech sounds which led to larger entropy 
decrease compared to the initial speech sound yielded more 
negative PrAN amplitudes. 

Figure 7. WIFS with larger entropy decrease from the first to the 
second speech sounds showed increasingly negative PrAN 
amplitudes. 
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amplitudes increased as entropy decrease increased. There were no significant effects of inhibition 

and test implications 3a and 3b were thus disconfirmed for effects at word onset. It could be that 

the number of possible candidates activated by the first speech sound was not a relevant measure 

because all first speech sounds had many possible continuations and all second speech sounds 

inhibited many candidates. Possibly, a measure taking into account the proportion of inhibited 

words would have been more adequate. Models of speech recognition diverge on the number of 

candidates actually activated by the first speech sound. 

As the speech signal in experiment 

1 progressed, prosodic information 

about whether a word had stød or 

non-stød became available to 

listeners. There were no effects of 

entropy decrease from the first two 

speech sounds to stød/non-stød cues. 

However, words in which stød and 

non-stød prosodic cues inhibited 

many continuations yielded more 

negative PrAN amplitudes over a 

frontal, right site compared to words in which those cues only inhibited few continuations. See 

Figure 8. The negative deflection reached its maximum over a right, frontal electrode, FC2, where 

an ANOVA showed a difference between WIFs with high and low inhibition rates 136-204 ms 

after stød/non-stød onset, F(1,78) = 9.73, p = 0.003. The same distribution has previously been 

reported for stød as compared to non-stød in the original analysis of the data (Hjortdal, 2021). This 

effect was seen in a somewhat later time window, 260-430 ms after stød/non-stød onset, and is 

visible in Figure 7 as negative deflections for the stød conditions peaking around 350 ms after 

word onset. However, the present findings point to both stød and non-stød ruling out irrelevant 

candidates, but that the effect lasts longer for stød. This might be because stød is a stronger cue: 

Upon hearing irregular vocal fold vibration and intensity fall, candidates without stød can 

immediately be ruled out. Non-stød, on the other hand, is the absence of that same cue and listeners 
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Figure 8. Items with stød and non-stød prosodic cues which 
inhibited many continuations showed more negative amplitudes 
136-204 ms after stød/non-stød onset. 
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might be more uncertain about whether a stød cue is yet to come. A negative regression was found, 

F(1,78) = 4.47, p = 0.038, r = -0.24, r2 = 0.05.  

4) PrAN = -0.52(log inhibited continuations) – 1.51 

However, when tested in a linear mixed-effects model, the effect was not significant, b = -0.61, 

SE = 0.31, df = 40.79, t = -1.95, p = 0.058. Thus, for effects at stød/non-stød onset, test implication 

3a, that WIFs inhibiting more continuations would yield more negative PrAN amplitudes, was 

confirmed, but 3b was disconfirmed. It could be that nuisance parameters, such as sentence 

context, included in this model explained more of the variance in the data. The effect would require 

replication in an experiment with better control of such effects. 
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5 General discussion 

The present study combined data from a frequency-weighted pronunciation lexicon with two ERP 

experiments, investigating the neural correlates of lexical competition and predictive certainty. 

ERPs 136-204 ms after word onset for spoken words with low and high lexical competition, 

respectively were compared. Further, ERP effects of entropy decrease and inhibition were 

investigated as the speech signal unfolded and more information became available to listeners. 

5.1 Replication studies 

Experiment 1 showed that the PrAN amplitude varied as a function of Danish word-beginnings’ 

number of continuations 136-204 ms after word onset. As the number of continuations decreased, 

the negative PrAN amplitude increased. This is in line with Roll et al. (2017). In a study with 

speakers of Swedish, the authors reported PrAN amplitudes varying with the number of 

continuations and the total frequency of those continuations in the same spatiotemporal window.  

A new measure, entropy, was investigated. Entropy can be understood as an index of how 

certain listeners are about the word they are hearing. In the present study, entropy appeared to be 

a relevant measure in experiment 1 where there was a significant difference in ERPs between low 

and high groups and a linear regression was found. The entropy measure is compatible with how 

posterior probabilities are calculated in Shortlist B (Norris & McQueen, 2008). Here, posterior 

probabilities of lexical candidates depend on their prior probabilities (e.g. frequency) and the given 

evidence (the first speech sounds of the signal). Low entropy would be consistent with one or a 

few lexical candidates with high posterior probabilities at a given time point whereas high entropy 

would be consistent with many candidates with low posterior probabilities at a given time. 

For word beginnings in experiment 2, there were significant differences between word groups 

with few as compared to many continuations and low as compared to high entropy, but no 

significant regressions were found. This might be due to reduced power owing to a smaller number 
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of trials in experiment 2 than in experiment 1. Further, the effect was more central than what was 

observed for experiment 1 as well as Roll et al. (2017). This should be investigated further. 

An important finding of Roll et al. (2017) was that the negativity for few lexical competitors 

correlated with increased overall neural activity and increased BOLD in Broca’s area. This 

negativity, reflecting increased activity, which was replicated in the present study, is somewhat 

difficult to reconcile with fewer lexical competitors which one would instinctively assume to yield 

less activation. In Shortlist (Norris, 1994; Norris & McQueen, 2008) and TRACE (McClelland & 

Elman, 1986; McClelland et al., 2014), there is lateral inhibition between lexical candidates which 

could explain why high lexical competition does not show increased activity, but these models do 

not explain why low lexical competition would show increased activity. Roll et al. (2017) proposed 

that the effect reflected listeners’ certainty about and commitment to the few candidates consistent 

with the signal. The distributed model of speech perception (Gaskell & Marslen-Wilson, 1997) 

would make somewhat similar predictions. According to this model, initial speech sounds do not 

just activate phonological forms but also semantic features of lexical candidates. The degree of 

semantic activation depends on the number of words are activated by a word beginning. If many 

candidates are activated at the same time, semantic activation is weak or even non-existing. 

Speculating, the stronger effect of few lexical continuations might reflect stronger semantic 

activation of few lexical continuations. 

5.2 Effects of inhibition and entropy decrease 

Another interpretation of the negativity for few continuations was that it might reflect lexical 

selection and inhibition of irrelevant lexical candidates (Roll et al., 2017). If a WIF has few 

continuations, many candidates would need to be inhibited. Effects of inhibition were investigated 

taking a more exploratory approach. At word onset, there were no effects of the number of lexical 

candidates activated by the first speech sound and inhibited by the second. Later, however, as 

prosodic stød and non-stød cues became available to listeners, there was an effect of inhibition. 

However, while an ANOVA showed a significant difference between continuations which 
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inhibited many as compared to few continuations, the regression was not significant when tested 

in a linear mixed-effects model. 

It may be that the number of possible candidates activated by the first speech sound and 

inhibited by the second is not a relevant measure at this early time point because the first speech 

sound had the potential to activate so many words that they were not all activated. This has to be 

investigated further, but the interpretation would be in line with the Shortlist models (Norris, 1994; 

Norris & McQueen, 2008), which predict that only a shortlist of the most relevant candidates is 

activated and compete, or lateral inhibition between activated candidates as in TRACE 

(McClelland & Elman, 1986; McClelland et al., 2014). On the contrary, according to the Cohort 

model (Marslen-Wilson, 1987; Marslen-Wilson & Welsh, 1978) and Neighbourhood Activation 

model (Goldinger et al., 1989; Luce, 1986), all possible candidates are activated, but in these 

models, activation is modulated by a word’s frequency. Therefore, frequency-weighted measures, 

such as entropy, might be more relevant at this early point because it takes into account that not 

all continuations are activated equally strongly. The findings of Roll et al. (2017) and Söderström 

et al. (2016) indicate that frequency was important early in the recognition process but lost 

importance later. While Roll et al. (2017) reported effects of the frequency of possible 

continuations 136-204 ms after word onset, Söderström et al. (2016) only found effects of the 

number of continuations in a later time window, 136-280 ms after F0 onset, occurring 265-409 ms 

after word onset. Effects of the combined frequency of the continuations were also investigated in 

the latter study but no effect was reported. This is also in line with how speech recognition is 

modelled in Shortlist B in which frequency priors are important when the perceptual evidence is 

sparse, for instance early in a word. The effect decreases as better perceptual input is available, 

such as later in a word (Norris & McQueen, 2008). This would indicate that frequencies are 

important very early in the competition process, whereas their role seem to diminish as more of 

the word is available and bottom-up cues might take over. In any case, with the results of the 

present study, it is difficult to say whether the effect did reflect inhibition of irrelevant candidates, 

but that not all possible continuations were in fact activated – or whether there was no inhibition 

at this early stage. 
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Effects of entropy decrease (i.e. the increase in predictive certainty attained from the emergence 

of specific speech sounds) were also investigated. Second speech sounds which led to larger 

entropy decrease yielded more negative PrAN amplitudes than second speech sounds yielding 

small entropy decrease. There were no effects of entropy decrease at stød/non-stød onset. This 

finding supports that the PrAN effect is modulated by predictive certainty, as proposed by Roll et 

al. (2017). The findings could indicate that predictive certainty plays a more prominent role early 

on when many competitors are in play but becomes less important as fewer lexical candidates 

remain and bottom-up perceptual cues take over. 

5.3 Neural sources 

While continuations showed a frontal effect, the effects of entropy and entropy decrease were more 

central. ERP topographies are deceiving because activity in one part of the brain can, at least in 

theory, manifest itself at a part of the skull over another brain region, depending on the orientation 

and combination of the underlying brain sources (Luck, 2014). Any speculations should therefore 

be taken with a grain of salt. However, the frontal effects of continuations are in line with studies 

reporting activity in left or bilateral inferior frontal gyrus associated with lexical competition 

(Righi et al., 2010; Roll et al., 2017; Roll et al., 2015; Zhuang et al., 2011; Zhuang et al., 2014), 

although the ERP effect is not informative about whether it stems from ventral parts, associated 

with lexical competition or dorsal parts, associated with selection. The more central effect of 

entropy might have sources in Heschl’s gyrus in primary auditory cortex and adjacent posterior 

superior temporal gyrus. Klimovich-Gray et al. (2019) reported an effect of entropy change in left 

Heschl’s gyrus starting 140 ms after word onset and Roll et al. (2015) reported effects in Heschl’s 

gyrus, superior temporal gyrus and inferior frontal gyrus, correlating with gRMS peak 136 ms after 

word onset. In both studies, the effects were left-lateralised whereas the ERP effects of the present 

study seem to be relatively central.  

Within the framework of Yildiz et al. (2013)’s predictive coding account of word recognition, 

the negative effect of entropy decrease might be understood as reflecting updated predictions from 

the second level (proposed to be Broca’s area) to the first level (corresponding to primary 
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processing areas, including Heschl’s gyrus). Klimovich-Gray et al. (2019) interpreted the effect in 

Heschl’s gyrus as reflecting interaction between low level phonological cues and high-level 

constraints, in line with predictive processing accounts. For the present study, a possible effect of 

entropy decrease (i.e. increased certainty about the lexical candidate) in primary auditory areas 

might indicate that activations of lexical candidates at higher areas can modulate activity at lower 

levels such as primary auditory processing areas, possibly pre-activating relevant features or 

phonemes. If this interpretation is correct, it would be consistent with bidirectional connections, 

that is, activity on higher levels modulating activity on lower levels, as postulated by the predictive 

coding model of speech recognition (Yildiz et al., 2013), TRACE (McClelland & Elman, 1986; 

McClelland et al., 2014) and the distributed model of speech perception (Gaskell & Marslen-

Wilson, 1997). It would be less consistent with the Shortlist models (Norris, 1994; Norris & 

McQueen, 2008) and the fuzzy logical model of perception (Massaro & Cohen, 1991; Oden & 

Massaro, 1978) because according to those models, connections are unidirectional and purely 

feedforward. This should be followed up in a combined fMRI and ERP study to further investigate 

the spatial distribution of the effect of entropy decrease because, as mentioned earlier, ERP 

topographies are deceiving. 

Overall, the findings are in line with eye-tracking studies indicating that competitors are 

activated in parallel by the acoustic input and continuously mapped onto lexical candidates which 

are inhibited once they become inconsistent with the speech signal (Allopenna et al., 1998; Dahan 

et al., 2001a; Dahan et al., 2001b; Magnuson et al., 2007). This was seen by the ERPs varying with 

the number of competitors compatible with the speech signal 136-204 ms after word onset. The 

findings are also compatible with models of speech recognition predicting that competitors are 

activated based on bottom-up information in the speech signal based on initial speech sounds. 

Subsequently, competitors drop out, are inhibited or have decreasing probabilities, depending on 

the model, as more of the speech signal becomes available. Such models are the Cohort model 

(Marslen-Wilson, 1987; Marslen-Wilson & Welsh, 1978), Shortlist (Norris, 1994; Norris & 

McQueen, 2008), TRACE (McClelland & Elman, 1986; McClelland et al., 2014) and the 

distributed model of speech perception (Gaskell & Marslen-Wilson, 1997). It would seem less 

compatible with the LAFs model (Klatt, 1979) and the fuzzy logical model of perception (Massaro 
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& Cohen, 1991; Oden & Massaro, 1978) where units are diphones rather than phonemes, because 

effects of entropy decrease were observed for candidates activated by the first speech sound 

already upon hearing the second speech sound. There was no effect of the number of continuations 

inhibited by the second phoneme. This could be because not all candidates were activated by the 

first speech sound, as predicted by e.g. the Cohort model, but that only a subset or shortlist of 

candidates was activated as predicted by the Shortlist models (Norris, 1994; Norris & McQueen, 

2008). It might also be that candidates were not inhibited yet at this early stage. 
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6 Conclusion 

Word beginnings with few as compared to many continuations showed more negative PrAN 

amplitudes, replicating the findings of (Roll et al., 2017). Further, effects of entropy (i.e. predictive 

certainty) were isolated. In one experiment, PrAN amplitudes varied continuously with the number 

of possible continuations and entropy, increasing when lexical competition and predictive certainty 

increased. In the other experiment, no such continuous effects were found. 

There was no effect of the number of candidates activated by the first speech sound and 

inhibited by the second, possibly because the number of possible candidates inhibited was not a 

relevant measure at this early time. Effects were present later, for candidates inhibited by stød and 

non-stød prosodic cues. Further, there was an effect of entropy decrease 136-204 ms after word 

onset over central sites. Effects of entropy and entropy change 136-204 ms after word onset might 

reflect updated expectations on lower-level areas modulated by pre-activated lexical candidates on 

higher levels. This would be in line with the predictive coding model of speech recognition (Yildiz 

et al., 2013) and activation feedback as in TRACE and the distributed model (Gaskell & Marslen-

Wilson, 1997; McClelland & Elman, 1986; McClelland et al., 2014). 

The findings are in line with eye-tracking studies reporting continuous effects of lexical 

competition (Allopenna et al., 1998; Magnuson et al., 2007). An inverse correlation between the 

number of activated candidates and PrAN amplitude is compatible with the connectionist models 

(Gaskell & Marslen-Wilson, 1997; McClelland & Elman, 1986; McClelland et al., 2014; Norris & 

McQueen, 2008; Norris et al., 2000). These models predict that a number of lexical candidates are 

activated based on bottom-up speech input and continuously inhibited when they become 

inconsistent with the speech signal. Altogether, the distributed model of speech perception 

(Gaskell & Marslen-Wilson, 1997) best explains the data. Like TRACE, the model predicts that 

lexical effects can affect perception at lower levels which is in line with a possible interplay 

between activated lexical candidates and updated lower-level phonetic expectations. Further, the 

model predicts weaker semantic activation for words in larger cohorts. Therefore, the increased 

negativity associated with increased neural activity could reflect stronger semantic activation.  
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7 Outlook for future research 

Effects of lexical competition and entropy should be further investigated in a study with words 

without stødbasis but varying more in number of continuations. Such an experiment could further 

explore whether the lack of a significant regression can be explained by too little variance in the 

number of continuations or whether other factors play in. Effects of inhibition should be further 

investigated to examine whether there was no inhibition already 136-204 ms after word onset – or 

if the number of possible candidates inhibited was simply not a relevant measure 136-204 ms after 

word onset, because too many candidates were in the cohort. Late effects of inhibition should also 

be investigated. In the present study, there was an effect of inhibition at stød/non-stød onset, but 

the regression was not significant when tested in a linear mixed-effects model. Future studies 

should better control for effects of sentence context to investigate late effects of inhibition. 
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Appendix A 

Experiment 1 (stødbasis) Experiment 2 (non-stødbasis) 

Alk ‘razorbill’ [ˈalˀg̊n̩] algen ‘the razorbill’ 
[ˈalg̊ə] alge ‘razorbills’ 

Biks ‘corner shop’ [ˈb̥eg̊sn̩] biksen ‘the corner shop’ 

[ˈb̥eg̊sə] bikes ‘corner shops’ 

Bold ‘ball’ [ˈb̊ʌlˀd̥n̩] bolden ‘the ball 

[ˈb̊ʌld̥ə] bolde ‘balls’ 

Blok ‘pad, block’ [ˈb̥lʌg̊ŋ̩] blokken ‘the pad, the block’ 

[ˈb̥lʌg̊ə] blokke ‘the pads, the blocks’ 

Bænk ‘bench’ [ˈb̊εŋˀg̊ŋ̩] bænken ‘the bench’ 

[ˈb̊εŋg̊ə] bænke ‘the benches’ 

Boks ‘box’ [ˈb̥ʌg̊sn̩] boksen ‘the box’ 

[ˈb̥ʌg̊sə] bokse ‘the boxes’ 

Damp ‘steam’ [ˈd̥ɑmˀb̥n̩] dampen ‘the steam’ 

[ˈd̥ɑmb̥ə] dampe ‘steams’ 

Buk ‘billy goat’ [ˈb̥ɔg̊ŋ̩] bukken ‘the billy goat’ 

[ˈb̥ɔg̊ə] bukke ‘billy goats’ 

Falk ‘falcon’ [ˈfalˀg̊ŋ̩] falken ‘the falcon’ 

[ˈfalg̊ə] falke ‘falcons’ 

Busk ‘bush’ [ˈb̥usg̊ŋ̩] busken ‘the bush’ 

[ˈb̥usg̊ə] buske ‘bushes’ 

Fjært ‘fart’ [ˈfjæɐ̯ˀd̥n̩] fjærten ‘the fart’ 

[ˈfjæɐ̯d̥ə] fjærte ‘farts’ 

Bæk ’brook’ [ˈb̥εg̊ŋ̩] bækken ‘the brook’ 

[ˈb̥εg̊ə] bække ‘brooks’ 

Flab ‘lout, 

mouth’ 

[ˈflæb̥n̩] flaben ‘the lout, the mouth’ 

[ˈflæb̥ə] flabe ‘louts, mouths’ 

Disk ‘disk’ [ˈd̥esg̊ŋ̩] disken ‘the disk’ 

[ˈd̥esg̊ə] diske ’disks’ 

Font ‘font’ [ˈfʌnˀd̥n̩] fonten ‘the font’ 

[ˈfʌnd̥ə] fonte ‘fonts’ 

Drik ‘drink’ [ˈd̥ʁεg̊ŋ̩] drikken ‘the drink’ 

[ˈd̥ʁεg̊ə] drikke ’drinks’ 

Greb ‘pitchfork’ [ˈg̊ʁεˀb̥n̩] greben ‘the pitchfork’ 

[ˈg̊ʁε:b̥ə] grebe ‘pitchforks’ 

Duft ‘(pleasant) smell’ [ˈd̥ɔfd̥n̩] duften ‘the smell’ 

[ˈd̥ɔfd̥ə] dufte ‘smells’ 

Hank ‘handle’ [ˈhɑŋˀg̊ŋ̩] hanken ‘the handle’ 

[ˈhɑŋg̊ə] hanke ‘handles’ 

Dusk ‘tuft’ [ˈd̥usg̊ŋ̩] dusken ‘the tuft’ 

[ˈd̥usg̊ə] duske ‘tufts’ 

Helt ‘hero’ [ˈhεlˀd̥n̩] helten ‘the hero’ 

[ˈhεld̥ə] helte ‘heroes’ 

Flok ‘flock’ [ˈflʌg̊ŋ̩] flokken ‘the flock’ 

[ˈflʌg̊ə] flokke ‘flocks’ 

Hingst ‘stallion’ [ˈheŋˀsd̥n̩] hingsten ‘the stallion’ 

[ˈheŋsd̥ə] hingste ‘stallions’ 

Gift ‘poison’ [ˈg̊ifd̥n̩] giften ‘the poison’ 

[ˈg̊ifd̥ə] gifte ‘poisons’ 

Hob ‘crowd’ [ˈhoˀb̥n̩] hoben ‘the crowd’ 

[ˈho:b̥ə] hobe ‘crowds’ 

Hat ‘hat’ [ˈhad̥n̩] hatten ‘the hat’ 

[ˈhad̥ə] hatte ‘hats’ 

Hvalp ‘puppy’ [ˈvalˀb̥n̩] hvalpen ‘the puppy’ 

[ˈvalb̥ə] hvalpe ’puppies’ 

Hest ‘horse’ [ˈhεsd̥n̩] hesten ‘the horse’ 

[ˈhεsd̥ə] heste ‘horses’ 

Kalk ‘chalice’ [ˈkhalˀg̊ŋ̩] kalken ‘the chalice’ 

[ˈkhalg̊ə] kalke ‘chalices’ 

Hæk ‘hedge’ [ˈhεg̊ŋ̩] hækken ‘the hedge’ 

[ˈhεg̊ə] hække ‘hedges’ 

Kamp ‘fight’ [ˈkhɒmˀb̥ə] kampen ‘the fight’ 

[ˈkhɒmb̥ə] kampe ‘fights’ 

Kat ‘cat’ [ˈkhad̥n̩] katten ‘the cat’ 

[ˈkhad̥ə] katte ‘cats’ 

Kilt ‘kilt’ [ˈkhilˀd̥n̩] kilten ‘the kilt’ 

[ˈkhild̥ə] kilte ’kilts’ 

Kok ‘chef’ [ˈkhʌg̊ŋ̩] kokken ‘the chef’ 

[ˈkhʌg̊ə] kokke ‘chefs’ 

Krank ‘crank’ [ˈkhʁɑŋˀg̊ŋ̩] kranken ‘the crank’ 

[ˈkhʁɑŋg̊ə] kranke ‘cranks’ 

Kost ‘broom’ [ˈkhɔsd̥n̩] kosten ‘the broom’ 

[ˈkhɔsd̥ə] koste ‘brooms’ 

Kælk ‘sledge’ [ˈkhεlˀg̊ŋ̩] kælken ‘the sledge’ Krop ‘body’ [ˈkhʁʌb̥n̩] krokken ‘the body’ 
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[ˈkhεlg̊ə] kælke ‘sledges’ [ˈkhʁʌb̥ə] kroppe ‘bodies’ 

Lort ‘crap’ [ˈloɐ̯ˀd̥n̩] lorten ‘the crap’ 

[ˈloɐ̯d̥ə] lorte ‘craps’ 

Kusk ‘driver (of horse-

drawn carriage)’ 

[ˈkhusg̊ŋ̩] kusken ‘the driver’ 

[ˈkhusg̊ə] kuske ‘drivers’ 

Læg ‘calf’ [ˈlεˀg̊ŋ̩] læggen ‘the calf’ 

[ˈlε:g̊ə] lægge ‘calfs’ 

Kvast ‘taffel’ [ˈkhvasd̥n̩] kvasten ‘the taffel’ 

[ˈkhvasd̥n̩] kvaste ‘taffels’ 

Milt ‘spleen’ [ˈmilˀd̥n̩] milten ‘the spleen’ 

[ˈmild̥ə] milte ‘spleens’ 

Kvist ‘twig’ [ˈkhvesd̥ə] kvisten ‘the twig’ 

[ˈkhvesd̥n̩] kviste ‘twigs’ 

Pilk ‘jig’ [ˈphilˀg̊ŋ̩] pilken ‘the jig’ 

[ˈphilg̊ə] pilke ‘jigs’ 

Kæp ‘stick’ [ˈkhεb̥n̩] kæppen ‘the stick’ 

[ˈkhεb̥ə] kæppe ‘sticks’ 

Pulk ‘pulk’ [ˈphulˀg̊ŋ̩] pulken ‘the pulk’ 

[ˈphulg̊ə] pulke ‘pulks’ 

Lugt ‘smell [ˈlɔg̊d̥n̩] lugten ‘the smell’ 

[ˈlɔg̊d̥ə] lugte ‘smells’ 

Salt ‘salt’ [ˈsalˀd̥n̩] salten ‘the salt’ 

[ˈsald̥ə] salte ‘salts’ 

Ost ‘cheese’  

* excluded 

[ˈɔsd̥n̩] osten ‘the cheese’ 

[ˈɔsd̥ə] oste ‘cheeses’ 

Skab ‘closet’ [ˈsg̊æˀb̥n̩] skabet ‘the closet’ 

[ˈsg̊æ:b̥ə] skabe ‘closets’ 

Pisk ‘whip’ [ˈphisg̊ŋ̩] pisken ‘the whip’ 

[ˈphisg̊ə] piske ‘whips’ 

Skalk ‘trickster’ [ˈsg̊alˀg̊ŋ̩] skalken ‘trickster’ 

[ˈsg̊alg̊ə] skalke ‘tricksters’ 

Rig ‘rigging’ [ˈʁεg̊ŋ̩] riggen ‘the rigging’ 

[ˈʁεg̊ə] rigge ‘rigs’ 

Skalp ‘scalp’ [ˈsg̊alˀb̥n̩] skalpen ‘the scalp’ 

[ˈsg̊alb̥ə] skalpe ‘scalps’ 

Rist ‘grating’ [ˈʁεsd̥n̩] risten ‘the grating’ 

[ˈʁεsd̥ə] riste ‘gratings’ 

Skank ‘shank’ [ˈsg̊ɑŋˀg̊ŋ̩] skanken ‘the shank’ 

[ˈsg̊ɑŋg̊ə] skanke ‘shanks’ 

Rok ‘spinning wheel’ [ˈʁʌg̊ŋ̩] rokken ‘the spinning wheel’ 

[ˈʁʌg̊ə] rokke ‘spinning wheels’ 

Skilt ‘sign’ [ˈsg̊eˀld̥ð̩] skiltet ‘the sign’ 

[ˈsg̊eld̥ə] skilte ‘signs’ 

Skakt ‘shaft’ [ˈsg̊ɑgd̥n̩] skakten ‘the shaft’ 

[ˈsg̊ɑgd̥ə] skakte ‘shafts’ 

Skænk 

‘sideboard’ 

[ˈsg̊εŋˀg̊ŋ̩] skænken ‘the sideboard’ 

[ˈsg̊εŋg̊ə] skænke ‘sideboards’ 

Skat ‘treasure’ [ˈsg̊ad̥n̩] skatten ‘the treasure’ 

[ˈsg̊ad̥ə] skatte ‘treasures’ 

Stab ‘staff’ [ˈsd̥æˀb̥n̩] staben ‘the staff’ 

[ˈsd̥æ:b̥ə] stabe ‘staffs’ 

Slot ‘castle’ [ˈslʌd̥ð̩] slottet ‘the castle’ 

[ˈslʌd̥ə] slotte ‘castles’ 

Stank ‘stink’ [ˈsd̥ɑŋˀg̊ŋ̩] stanken ‘the stink’ 

[ˈsd̥ɑŋg̊ə] stanke ‘stinks’ 

Stak ‘stack, pile’ [ˈsd̥ɑg̊ŋ̩] stakken ‘the stack, the pile’ 

[ˈsd̥ɑg̊ə] stakke ‘stacks, piles’ 

Stilk ‘stalk’ [ˈsd̥elˀg̊ŋ̩] stilken ‘the stalk’ 

[ˈsd̥elg̊ə] stilke ‘stalks’ 

Stok ‘walking stick, 

cane’ 

[ˈsd̥ʌg̊ŋ̩] stokken ‘the walking stick, the cane’ 

[ˈsd̥ʌg̊ə] stokke ‘walking sticks, canes’ 

Sump ‘swamp’ [ˈsɔmˀb̥n̩] sumpen ‘the swamp’ 

[ˈsɔmb̥ə] sumpe ‘swamps’ 

Stub ‘stump’ [ˈsd̥ub̥n̩] stubben  ‘the stump’ 

[ˈsd̥ub̥ə] stubbe  ‘stumps’ 

Svamp 

‘mushroom’ 

[ˈsvɑmˀb̥n̩] svampen ‘the mushroom’ 

[ˈsvɑmb̥ə] svampe ‘mushrooms’ 

Sæk ‘bag’ [ˈsεg̊ŋ̩] sækken ‘the bag’ 

[ˈsεg̊ə] sække ‘bags’ 

Telt ‘tent’ [ˈtsεlˀd̥n̩] teltet ‘the tent’ 

[ˈtsεld̥ə] telte ‘tents’ 

Top ‘top’ [ˈtsʌb̥n̩] toppen ‘the top’ 

[ˈtsʌb̥ə] toppe ‘tops’ 

Tolk 

‘interpretor’ 

[ˈtsʌlˀg̊ŋ̩] tolken ‘the interpretor’ 

[ˈtsʌlg̊ə] tolke ‘interpretors’ 

Tragt ‘funnel’ [ˈtsʁɑg̊d̥n̩] tragten ‘the funnel’ 

[ˈtsʁɑg̊d̥ə] tragte ‘funnels’ 

Væg ‘wall’ [ˈvεˀg̊ŋ̩] væggen ‘the wall’ 

[ˈvε:g̊ə] vægge ‘walls’ 

Vægt ‘scale’ [ˈvεgd̥n̩] vægten ‘the scale’ 

[ˈvεgd̥ə] vægte ‘scales’ 

Ulk ‘sculpin’ [ˈulˀg̊ŋ̩] ulken ‘the sculpin’ 

[ˈulg̊ə] ulke ‘sculpins’ 

Vask ‘sink’ [ˈvasg̊ŋ̩] Vasken ‘the sink’ 

[ˈvasg̊ə] vaske ‘sinks’ 
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Appendix B 

Python: Extracting words from KorpusDK 
# Requires all txt files from KorpusDK in a folder “KorpusDK” including 
subfolders 
 
import glob2 
 
# create list of all txt files in the directory KorpusDK including subfolders 
filenames = glob2.glob('KorpusDK/*/*.txt')   
 
# opens all files, skip lines starting with “<” which mark next texts 
with open('outfile_korpusdk900010.txt', 'w') as f: 
    for file in filenames: 
        with open(file) as infile: 
            for line in infile: 
                if line.startswith("<"): 
                    continue 
                if line.strip(): 
                    cols = line.split() 
                   
  # print cols[0] and cols[4], i.e. item and ePOS tag, to file  
                    f.write(cols[0] + "\t" + cols[4] + "\n") 
 
Unix: Calculating frequencies from KorpusDK 
# requires outfile_korpusdk900010.txt 
sort outfile_korpusdk900010.txt | uniq -c | sort -nr > korpusDK_pos_freq.txt 
 
Python: Prepare NST lexicon in txt version for merge by replacing PoS-tags 
and lowercasing all orthographies 
 
#Requires txt file with all words incl PoS tags from NST 
import csv 
import os 
 
# define paths 
word_pos_pron = os.path.join('Pronunciation', 
'word_pos_pron_nopropernouns.csv') 
word_pos_pron_replace_lower = os.path.join('Pronunciation', 
'word_pos_pron_replace_lower_nopropernouns.csv') 
 
# open files 
with open(word_pos_pron, 'r') as file1, open(word_pos_pron_replace_lower, 
'a',newline='') as file2: 
   reader = csv.reader(file1, delimiter=',') 
   writer = csv.writer(file2, delimiter=',') 
    
    
# lowercase all in row[0] (orthography) 
   for row in reader: 
       lower = row[0].lower()       
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       row[0] = lower 
 
# proper nouns have longer tags like “PM | Person”, this part removes the 
part after |    
       replace = row[1].split("|")    
       if len(replace) > 1:  
           row[1] = replace[0]       
 
# this part replaces PoS tags with ePoS tags 
       replaced = row[1].replace("NN", "N").replace("VB", 
"V").replace("JJ","A").replace("PP", "T").replace("KN", "C").replace("SN", 
"C").replace("PN", "P").replace("PS","P").replace("AB", "D").replace("RG", 
"L").replace("RO", "L").replace("IN", "I").replace("IE", "U").replace("UO", 
"X").replace("PM","N").replace("DT","P") 
 
       row[1] = replaced 
 
# write to file            
       writer.writerow(row)          # write to writer file 
 
Python: Merging pronunciation lexicon and frequency list 
 
# requires: frequency list and pronunciation lexicon 
import pandas as pd 
import os 
 
# define paths 
KorpusDK_word_pos = os.path.join('Frequency', 'korpusDK_pos_freq.csv') 
word_pos_pron = os.path.join('Pronunciation', 
'word_pos_pron_replace_lower_nopropernouns.csv') 
 
# import frequency list 
frequency = pd.read_csv(KorpusDK_pos_freq) 
 
#name columns 
frequency.columns = ["freq", "word", "pos"] 
 
# import pronunciation lexicon  
pronunciation = pd.read_csv(word_pos_pron) 
 
# name columns 
pronunciation.columns = ["word", "pos", "pron1", "pron2", "pron3", "pron3", 
"pron4", "pron5", "pron6", "pron7", "pron8", "pron9", "pron10", "pron11", 
"pron12"] 
 
# merge csv files based on word and word class (PoS-tag) 
merged = frequency.merge(pronunciation, on=["word", "pos"]) 
 
# save as CSV 
merged.to_csv("Pronunciation/freq_word_pos_pron_korpusDK_nopropernouns.csv", 
index=False) 
 

Python: Calculating continuations and entropy 
 
Contact the author. 
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Appendix C 

Experiment 1     
Item num SAMPA         continuations     entropy 

alken sg a-_l 246 5.11902177 

alke pl a-_l 246 5.11902177 

bolden sg b_6- 200 5.76309307 

bolde pl b_6- 200 5.76309307 

bænken sg b_E- 183 5.74632722 

bænke pl b_E- 183 5.74632722 

dampen sg d_A- 242 5.72859625 

dampe pl d_A- 242 5.72859625 

falken sg f_a- 451 5.50603778 

falke pl f_a- 451 5.50603778 

fjærten sg f_j_ 149 5.0370972 

fjærte pl f_j_ 149 5.0370972 

flaben sg f_l_ 615 6.69482858 

flabe pl f_l_ 615 6.69482858 

fonten sg f_6- 378 5.5091047 

fonte pl f_6- 378 5.5091047 

greben sg g_R_ 891 6.54709065 

grebe pl g_R_ 891 6.54709065 

hanken sg h_A- 256 6.23174115 

hanke pl h_A- 256 6.23174115 

helten sg h_E- 474 6.04733087 

helte pl h_E- 474 6.04733087 

hingsten sg h_e- 103 4.21430085 

hingste pl h_e- 103 4.21430085 

hoben sg h_o+ 439 5.81957774 

hobe pl h_o+ 439 5.81957774 

hvalpen sg v_a- 568 6.46133565 

hvalpe pl v_a- 568 6.46133565 

kalken sg k_a- 712 7.35681271 

kalke pl k_a- 712 7.35681271 

kampen sg k_A- 556 5.88431553 

kampe pl k_A- 556 5.88431553 
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kilten sg k_i- 265 4.81774816 

kilte pl k_i- 265 4.81774816 

kranken sg k_R_ 881 5.13292263 

kranke pl k_R_ 881 5.13292263 

kælken sg k_E- 278 5.23334237 

kælke pl k_E- 278 5.23334237 

lorten sg l_o- 138 5.48264989 

lorte pl l_o- 138 5.48264989 

læggen sg l_E+ 376 5.84505708 

lægge pl l_E+ 376 5.84505708 

milten sg m_i- 848 6.18532529 

milte pl m_i- 848 6.18532529 

pilken sg p_i- 161 5.91905437 

pilke pl p_i- 161 5.91905437 

pulken sg p_u- 125 3.58770008 

pulke pl p_u- 125 3.58770008 

salten* sg s_a- 407 6.26401498 

salte pl s_a- 407 6.26401498 

skabet sg s_g_ 2157 8.57759934 

skabe pl s_g_ 2157 8.57759934 

skalken sg s_g_ 2157 8.57759934 

skalke pl s_g_ 2157 8.57759934 

skalpen sg s_g_ 2157 8.57759934 

skalpe pl s_g_ 2157 8.57759934 

skanken sg s_g_ 2157 8.57759934 

skanke pl s_g_ 2157 8.57759934 

skiltet sg s_g_ 2157 8.57759934 

skilte pl s_g_ 2157 8.57759934 

skænken sg s_g_ 2157 8.57759934 

skænke pl s_g_ 2157 8.57759934 

staben sg s_d_ 2535 8.06505169 

stabe pl s_d_ 2535 8.06505169 

stanken sg s_d_ 2535 8.06505169 

stanke pl s_d_ 2535 8.06505169 

stilken sg s_d_ 2535 8.06505169 

stilke pl s_d_ 2535 8.06505169 

svampen sg s_v_ 393 6.71414808 

svampe pl s_v_ 393 6.71414808 
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sumpen sg s_O- 184 5.585752 

sumpe pl s_O- 184 5.585752 

tolken sg t_6- 337 6.26791597 

tolke pl t_6- 337 6.26791597 

teltet sg t_E- 468 6.54218013 

telte pl t_E- 468 6.54218013 

ulken sg u-_l 38 3.74657863 

ulke pl u-_l 38 3.74657863 

væggen sg v_E+ 79 3.79837479 

vægge pl v_E+ 79 3.79837479 
 

Experiment 2     

Item num SAMPA 
   
continuations    entropy 

biksen sg b_e- 1232 7.6211704 

bikse pl b_e- 1232 7.6211704 

blokken sg b_l_ 516 6.19002694 

blokke pl b_l_ 516 6.19002694 

boksen sg b_6- 200 5.76309307 

bokse pl b_6- 200 5.76309307 

bukken sg b_O- 342 5.30303994 

bukke pl b_O- 342 5.30303994 

busken sg b_u- 237 5.48690087 

buske pl b_u- 237 5.48690087 

bækken sg b_E- 183 5.74632722 

bække pl b_E- 183 5.74632722 

disken sg d_e- 551 6.13485774 

diske pl d_e- 551 6.13485774 

drikken sg d_R_ 410 6.08096401 

drikke pl d_R_ 410 6.08096401 

duften sg d_O- 89 4.774846 

dufte pl d_O- 89 4.774846 

dusken sg d_u- 47 3.97000941 

duske pl d_u- 47 3.97000941 

flokken sg f_l_ 615 6.69482858 

flokke pl f_l_ 615 6.69482858 

giften sg g_i- 139 5.27348873 

gifte pl g_i- 139 5.27348873 

hatten sg h_a- 472 6.18080388 
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hatte pl h_a- 472 6.18080388 

hesten sg h_E- 474 6.04733087 

heste pl h_E- 474 6.04733087 

hækken sg h_E- 474 6.04733087 

hække pl h_E- 474 6.04733087 

katten sg k_a- 712 7.35681271 

katte pl k_a- 712 7.35681271 

kokken sg k_6- 1387 7.90602386 

kokke pl k_6- 1387 7.90602386 

kosten sg k_O- 357 5.61489509 

koste pl k_O- 357 5.61489509 

kroppen sg k_R_ 881 5.13292263 

kroppe pl k_R_ 881 5.13292263 

kusken sg k_u- 503 6.52171368 

kuske pl k_u- 503 6.52171368 

kvasten sg k_v_ 378 4.79776645 

kvaste pl k_v_ 378 4.79776645 

kvisten sg k_v_ 378 4.79776645 

kviste pl k_v_ 378 4.79776645 

kæppen sg k_E- 278 5.23334237 

kæppe pl k_E- 278 5.23334237 

lugten sg l_O- 263 5.39761324 

lugte pl l_O- 263 5.39761324 

pisken sg p_i- 161 5.91905437 

piske pl p_i- 161 5.91905437 

riggen sg R_E- 401 4.90814283 

rigge pl R_E- 401 4.90814283 

risten sg R_e- 1298 7.12761993 

riste pl R_e- 1298 7.12761993 

rokken sg R_6- 346 5.20762111 

rokke pl R_6- 346 5.20762111 

skakten sg s_g_ 2157 8.57759934 

skakte pl s_g_ 2157 8.57759934 

skatten sg s_g_ 2157 8.57759934 

skatte pl s_g_ 2157 8.57759934 

slottet sg s_l_ 479 6.54212266 

slotte pl s_l_ 479 6.54212266 

stakken sg s_d_ 2535 8.06505169 
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stakke pl s_d_ 2535 8.06505169 

stokken sg s_d_ 2535 8.06505169 

stokke pl s_d_ 2535 8.06505169 

stubben sg s_d_ 2535 8.06505169 

stubbe pl s_d_ 2535 8.06505169 

sækken sg s_E- 809 6.74086383 

sække pl s_E- 809 6.74086383 

toppen sg t_6- 337 6.26791597 

toppe pl t_6- 337 6.26791597 

tragten sg t_R_ 1156 7.79801359 

tragte pl t_R_ 1156 7.79801359 

vasken sg v_a- 568 6.46133565 

vaske pl v_a- 568 6.46133565 

vægten sg v_E- 916 6.35708224 

vægte pl v_E- 916 6.35708224 
 

Experiment 1: Exploratory     

Item num SAMPA inhibition Entropy decrease SAMPA inhibition Entropy decrease 

alken sg a-_l 1745 2.99257501 a-_l_? 196 2.40545391 

alke pl a-_l 1745 2.99257501 a-_l 122 1.2745814 

bolden sg b_6- 6796 4.1972285 b_6-_l_? 188 4.9835947 

bolde pl b_6- 6796 4.1972285 b_6-_l 165 2.24240406 

bænken sg b_E- 6813 4.21399436 b_E-_N_? 181 5.71990405 

bænke pl b_E- 6813 4.21399436 b_E-_N 176 4.04940201 

dampen sg d_A- 3101 2.82834443 d_A-_m_? 240 4.94924642 

dampe pl d_A- 3101 2.82834443 d_A-_m 203 1.43074117 

falken sg f_a- 7531 4.38459182 f_a-_l_? 445 4.58224084 

falke pl f_a- 7531 4.38459182 f_a-_l 422 1.4681165 

fjærten sg f_j_ 7833 4.8535324 f_j_E-_6-_? 148 5.0370972 

fjærte pl f_j_ 7833 4.8535324 f_j_E-_6- 90 1.89219969 

flaben sg f_l_ 7367 3.19580102 f_l_a+_? 611 5.59703 

flabe pl f_l_ 7367 3.19580102 f_l_a+ 606 4.53672604 

fonten sg f_6- 7604 4.3815249 f_6-_n_? 350 2.42000815 

fonte pl f_6- 7604 4.3815249 f_6-_n 371 4.25165172 

greben sg g_R_ 2287 1.90324015 g_R_e+_? 884 4.24531109 

grebe pl g_R_ 2287 1.90324015 g_R_e- 880 3.76373023 

hanken sg h_A- 3590 2.81041573 h_A-_N_? 255 6.23174115 

hanke pl h_A- 3590 2.81041573 h_A-_N 249 3.74441095 
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helten sg h_E- 3372 2.99482602 h_E-_l_? 471 4.88850378 

helte pl h_E- 3372 2.99482602 h_E-_l 409 2.26779003 

hingsten sg h_e- 3743 4.82785603 h_e-_N_? 102 4.21430085 

hingste pl h_e- 3743 4.82785603 h_e-_N 97 2.48283064 

hoben sg h_o+ 3407 3.22257914 h_o+_? 438 5.81957774 

hobe pl h_o+ 3407 3.22257914 h_o+ 2 0.01208194 

hvalpen sg v_a- 3114 2.14699465 v_a-_l_? 563 5.87685245 

hvalpe pl v_a- 3114 2.14699465 v_a-_l 395 0.67442319 

kalken sg k_a- 7109 2.34147856 k_a-_l_? 705 5.85229756 

kalke pl k_a- 7109 2.34147856 k_a-_l 674 3.43658219 

kampen sg k_A- 7265 3.81397574 k_A-_m_? 516 4.54779776 

kampe pl k_A- 7265 3.81397574 k_A-_m 465 3.00919805 

kilten sg k_i- 7556 4.88054311 k_i-_l_? 264 4.81774816 

kilte pl k_i- 7556 4.88054311 k_i-_l 263 3.82202071 

kranken sg k_R_ 6940 4.56536864 
k_R_A-
_N_? 880 5.13292263 

kranke pl k_R_ 6940 4.56536864 k_R_A-_N 880 5.13292263 

kælken sg k_E- 7543 4.4649489 k_E-_l_? 272 3.01302331 

kælke pl k_E- 7543 4.4649489 k_E-_l 267 3.09242465 

lorten sg l_o- 4079 3.42878537 l_o-_6-_? 136 4.84393354 

lorte pl l_o- 4079 3.42878537 l_o-_6- 136 4.74852184 

læggen sg l_E+ 3841 3.06637817 l_E+_? 347 1.90827751 

lægge pl l_E+ 3841 3.06637817 l_E+ 29 0.06789882 

milten sg m_i- 4738 2.75606699 m_i-_l_? 846 5.9139357 

milte pl m_i- 4738 2.75606699 m_i-_l 843 4.96773391 

pilken sg p_i- 4904 2.91844595 p_i-_l_? 159 5.06999994 

pilke pl p_i- 4904 2.91844595 p_i-_l 152 3.3775275 

pulken sg p_u- 4940 5.24980024 p_u-_l_? 114 0.48013712 

pulke pl p_u- 4940 5.24980024 p_u-_l 107 0.86802512 

salten* sg s_a- 12276 4.25735639 s_a-_l_? 309 3.05385186 

salte pl s_a- 12276 4.25735639 s_a-_l 357 1.76461306 

skabet sg s_g_ 10526 1.94377202 s_g_a+_? 2147 7.37501654 

skabe pl s_g_ 10526 1.94377202 s_g_a+ 2084 4.65078291 

skalken sg s_g_ 10526 1.94377202 s_g_a-_l_? 2156 8.57759934 

skalke pl s_g_ 10526 1.94377202 s_g_a-_l 2149 7.18236973 

skalpen sg s_g_ 10526 1.94377202 s_g_a-_l_? 2156 8.57759934 

skalpe pl s_g_ 10526 1.94377202 s_g_a-_l 2149 7.18236973 

skanken sg s_g_ 10526 1.94377202 
s_g_A-
_N_? 2156 8.57759934 
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skanke pl s_g_ 10526 1.94377202 s_g_A-_N 2155 7.63193904 

skiltet sg s_g_ 10526 1.94377202 s_g_e-_l_? 2138 6.09062937 

skilte pl s_g_ 10526 1.94377202 s_g_e-_l 2135 5.17858749 

skænken sg s_g_ 10526 1.94377202 s_g_E-_N_? 2156 8.57759934 

skænke pl s_g_ 10526 1.94377202 s_g_E-_N 2155 7.7409586 

staben sg s_d_ 10148 2.45631967 s_d_a+_? 2295 3.11260301 

stabe pl s_d_ 10148 2.45631967 s_d_a+ 2497 5.55870583 

stanken sg s_d_ 10148 2.45631967 
s_d_A-
_N_? 2533 7.26133577 

stanke pl s_d_ 10148 2.45631967 s_d_A-_N 2530 6.51376092 

stilken sg s_d_ 10148 2.45631967 s_d_e-_l_? 2534 8.06505169 

stilke pl s_d_ 10148 2.45631967 s_d_e-_l 2525 5.85163352 

svampen sg s_v_ 12290 3.80722328 
s_v_A-
_m_? 392 6.71414808 

svampe pl s_v_ 12290 3.80722328 s_v_A-_m 378 5.08512915 

sumpen sg s_O- 12499 4.93561936 s_O-_m_? 183 5.585752 

sumpe pl s_O- 12499 4.93561936 s_O-_m 173 3.03994884 

tolken sg t_6- 4782 2.88327767 t_6-_l_? 334 5.00116102 

tolke pl t_6- 4782 2.88327767 t_6-_l 290 2.28192952 

teltet sg t_E- 4651 2.6090135 t_E-_l_? 467 6.54218013 

telte pl t_E- 4651 2.6090135 t_E-_l 450 3.8917916 

ulken sg u-_l 1629 4.13978984 u-_l_? 33 2.55873371 

ulke pl u-_l 1629 4.13978984 u-_l 8 0.37019085 

væggen sg v_E+ 3603 4.80995552 v_E+_? 63 1.69432058 

vægge pl v_E+ 3603 4.80995552 v_E+ 18 0.21267722 
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Appendix D 

Experiment 1: Continuations 
            Df Sum Sq Mean Sq F value Pr(>F)   
w_cont_hilo  1   7.43   7.430   5.745 0.0189 * 
Residuals   78 100.87   1.293                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Call: 
lm(formula = w_C3_136_204 ~ w_cont_log, data = sb_regression_all) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-2.6072 -0.7598 -0.1133  0.6686  3.0600  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -4.9436     0.7077  -6.985 8.41e-10 *** 
w_cont_log    0.9523     0.2614   3.644 0.000482 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.089 on 78 degrees of freedom 
Multiple R-squared:  0.1454, Adjusted R-squared:  0.1345  
F-statistic: 13.28 on 1 and 78 DF,  p-value: 0.0004824 
 
Linear mixed model fit by REML. t-tests use Satterthwaite's method 
['lmerModLmerTest'] 
Formula: w_C3_136_204 ~ 1 + cont_log + num + sentence + (1 + cont_log |   
    Subject) + (1 | Item) 
   Data: data_stodbasis_mag 
Control: lmerControl(optCtr = list(maxfun = 1e+09), optimizer = "nloptwrap",      
calc.derivs = FALSE) 
 
REML criterion at convergence: 34286.9 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-5.3882 -0.6101 -0.0161  0.6117  9.2120  
 
Random effects: 
 Groups   Name              Variance  Std.Dev. Corr  
 Item     (Intercept)        0.405226 0.6366         
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 Subject  (Intercept)        1.536388 1.2395         
          cont_log  0.001814 0.0426   -0.94 
 Residual                   51.089047 7.1477         
Number of obs: 5054, groups:  Item, 40; Subject, 16 
 
Fixed effects: 
                   Estimate Std. Error        df t value Pr(>|t|)     
(Intercept)         -4.8346     0.8891   33.8120  -5.437 4.72e-06 *** 
cont_log        0.9129     0.3080   36.9651   2.964  0.00529 **  
num                 -0.2067     0.1005 4998.7902  -2.055  0.03989 *   
sentence             0.1231     0.1434   37.1063   0.858  0.39637     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
            (Intr) cont    num   
cont_log -0.934               
num          0.001 -0.001        
sentence     0.118 -0.127 -0.001 
 
Experiment 1: Entropy 
 
            Df Sum Sq Mean Sq F value  Pr(>F)    
w_ent_hilo   1  13.93   13.93   11.52 0.00109 ** 
Residuals   78  94.36    1.21                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Call: 
lm(formula = w_C3_136_204 ~ w_ent, data = sb_regression_all) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-2.41587 -0.81475 -0.03421  0.65677  3.15205  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -4.35081    0.55999  -7.769 2.63e-11 *** 
w_ent        0.31103    0.08728   3.563 0.000628 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.093 on 78 degrees of freedom 
Multiple R-squared:   0.14, Adjusted R-squared:  0.129  
F-statistic:  12.7 on 1 and 78 DF,  p-value: 0.0006282 
 
Linear mixed model fit by REML. t-tests use Satterthwaite's method 
['lmerModLmerTest'] 



 

74 

Formula: w_C3_136_204 ~ 1 + entropinum_wif2 + num + sentence + (1 + 
entropinum_wif2 ||      Subject) + (1 | Item) 
   Data: data_stodbasis_mag 
Control: lmerControl(optCtr = list(maxfun = 1e+09), optimizer = "nloptwrap",      
calc.derivs = FALSE) 
 
REML criterion at convergence: 34288.8 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-5.3863 -0.6082 -0.0188  0.6132  9.2187  
 
Random effects: 
 Groups    Name            Variance  Std.Dev. 
 Item      (Intercept)      0.399303 0.63190  
 Subject   entropinum_wif2  0.002964 0.05444  
 Subject.1 (Intercept)      1.160498 1.07726  
 Residual                  51.084544 7.14735  
Number of obs: 5054, groups:  Item, 40; Subject, 16 
 
Fixed effects: 
                 Estimate Std. Error        df t value Pr(>|t|)     
(Intercept)       -4.3180     0.7034   41.9322  -6.139 2.52e-07 *** 
entropinum_wif2    0.3064     0.1022   34.0762   2.999  0.00504 **  
num               -0.2067     0.1005 4996.2441  -2.056  0.03986 *   
sentence           0.1635     0.1418   37.1334   1.153  0.25618     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
            (Intr) entr_2 num   
entrpnm_wf2 -0.894               
num          0.001 -0.001        
sentence     0.029 -0.032 -0.001 
 
Experiment 2: Continuations 
C3 
             Df Sum Sq Mean Sq F value Pr(>F)   
w_cont_hilo  1  10.31  10.311   5.819 0.0183 * 
Residuals   76 134.66   1.772                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Cz 
             Df Sum Sq Mean Sq F value Pr(>F)   
w_cont_hilo  1  16.26  16.260   5.895 0.0175 * 
Residuals   76 209.63   2.758                  
--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
  Call: 
lm(formula = w_C3_136_204 ~ w_cont_log, data = nsb_regression_all) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.8416 -0.9248  0.0438  1.0810  2.8556  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -4.4376     1.0665  -4.161 8.27e-05 *** 
w_cont_log    0.6339     0.3896   1.627    0.108     
Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.358 on 76 degrees of freedom 
Multiple R-squared:  0.03367, Adjusted R-squared:  0.02096  
F-statistic: 2.648 on 1 and 76 DF,  p-value: 0.1078 
 
   Call: 
lm(formula = w_Cz_136_204 ~ w_cont_log, data = nsb_regression_all) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-5.2913 -0.9098  0.0969  0.9562  3.7854  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -4.7652     1.3418  -3.551 0.000662 *** 
w_cont_log    0.5855     0.4901   1.195 0.235962     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.708 on 76 degrees of freedom 
Multiple R-squared:  0.01843, Adjusted R-squared:  0.005515  
F-statistic: 1.427 on 1 and 76 DF,  p-value: 0.236 
 
Linear mixed model fit by REML. t-tests use Satterthwaite's method 
['lmerModLmerTest'] 
Formula: C3_136_204 ~ 1 + w_cont_log + sentence + num + (1 + w_cont_log |      
Subject) + (1 | Item) 
   Data: data_nonstodbasis_mag 
Control: lmerControl(optCtr = list(maxfun = 1e+09), optimizer = "nloptwrap",      
calc.derivs = FALSE) 
 
REML criterion at convergence: 16727 
 
Scaled residuals:  
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    Min      1Q  Median      3Q     Max  
-4.7411 -0.6042 -0.0138  0.6202  5.5875  
 
Random effects: 
 Groups   Name        Variance Std.Dev. Corr 
 Item     (Intercept)  0.12985 0.3603        
 Subject  (Intercept)  0.48064 0.6933        
          w_cont_log   0.05239 0.2289   1.00 
 Residual             47.96261 6.9255        
Number of obs: 2488, groups:  Item, 40; Subject, 16 
 
Fixed effects: 
             Estimate Std. Error        df t value Pr(>|t|)     
(Intercept)   -3.9423     1.0159   37.7776  -3.881 0.000404 *** 
w_cont_log     0.4500     0.3705   39.4076   1.215 0.231677     
sentence       0.4559     0.1506   35.9308   3.028 0.004538 **  
num           -0.4142     0.1388 2432.8813  -2.983 0.002882 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
           (Intr) w_cnt_ sentence 
w_cont_log -0.936               
sentence    0.048 -0.052        
num         0.000  0.000  0.001 
 
Experiment 2: Entropy 
C3 
             Df Sum Sq Mean Sq F value Pr(>F)   
w_ent_hilo   1   9.09   9.093   5.086  0.027 * 
Residuals   76 135.88   1.788                  
 
Cz 
Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
             Df Sum Sq Mean Sq F value Pr(>F)   
w_ent_hilo   1   14.3  14.296   5.135 0.0263 * 
Residuals   76  211.6   2.784                  
Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
   Call: 
lm(formula = w_C3_136_204 ~ w_ent, data = nsb_regression_all) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.8637 -0.8784 -0.0177  0.8643  2.8222  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
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(Intercept)  -3.9765     0.8565  -4.643 1.41e-05 *** 
w_ent         0.2002     0.1342   1.491     0.14     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.361 on 76 degrees of freedom 
Multiple R-squared:  0.02843, Adjusted R-squared:  0.01564  
F-statistic: 2.224 on 1 and 76 DF,  p-value: 0.14 
 
  Call: 
lm(formula = w_Cz_136_204 ~ w_ent, data = nsb_regression_all) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-5.0289 -0.9010  0.1048  0.9327  3.7245  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -4.6204     1.0715  -4.312  4.8e-05 *** 
w_ent         0.2297     0.1680   1.367    0.176     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.703 on 76 degrees of freedom 
Multiple R-squared:  0.02401, Adjusted R-squared:  0.01117  
F-statistic:  1.87 on 1 and 76 DF,  p-value: 0.1755 
 
Linear mixed model fit by REML. t-tests use Satterthwaite's method 
['lmerModLmerTest'] 
Formula: C3_136_204 ~ 1 + w_ent + sentence + num + (1 + w_ent | Subject) +      
(1 | Item) 
   Data: data_nonstodbasis_mag 
Control: lmerControl(optCtr = list(maxfun = 1e+09), optimizer = "nloptwrap",      
calc.derivs = FALSE) 
 
REML criterion at convergence: 17125.9 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-4.7231 -0.6057 -0.0216  0.6198  5.6498  
 
Random effects: 
 Groups   Name        Variance Std.Dev. Corr 
 Item     (Intercept)  0.12576 0.3546        
 Subject  (Intercept)  0.08063 0.2840        
          w_ent        0.02718 0.1649   1.00 
 Residual             47.83759 6.9165        
Number of obs: 2548, groups:  Item, 40; Subject, 16 
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Fixed effects: 
             Estimate Std. Error        df t value Pr(>|t|)     
(Intercept)   -3.4902     0.6288   35.6987  -5.551 2.84e-06 *** 
w_ent          0.1236     0.1074   27.0933   1.151  0.25985     
sentence       0.4557     0.1488   37.0145   3.063  0.00407 **  
num           -0.4175     0.1370 2492.3381  -3.047  0.00234 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
       (Intr) w_ent  sentence 
w_ent  -0.848               
sebtence0.096 -0.092        
num    -0.001  0.001  0.001 
 
 
Experiment 1, exploratory: Entropy change, word onset 
 
               Df Sum Sq Mean Sq F value  Pr(>F)    
w_entfall_hilo  1  13.31  13.308   10.93 0.00143 ** 
Residuals      78  94.99   1.218                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Call: 
lm(formula = w_C3_136_204 ~ w_entfall_p_w, data = sb_regression_all) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-2.80620 -0.71624 -0.08638  0.67969  2.65559  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)    -0.9827     0.4025  -2.441 0.016895 *   
w_entfall_p_w  -0.4275     0.1155  -3.702 0.000397 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.087 on 78 degrees of freedom 
Multiple R-squared:  0.1495, Adjusted R-squared:  0.1385  
F-statistic: 13.71 on 1 and 78 DF,  p-value: 0.0003969 
 
Linear mixed model fit by REML. t-tests use Satterthwaite's method 
[lmerModLmerTest 
] 
Formula:  
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w_C3_136_204 ~ 1 + w_ent_change_p_w + num + sentence + (1 + w_ent_change_p_w 
|      Subject) + (1 | Item) 
   Data: data_stodbasis_mag 
Control: lmerControl(optCtr = list(maxfun = 1e+09), optimizer = "nloptwrap",   
    calc.derivs = FALSE) 
 
REML criterion at convergence: 34287.7 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-5.3947 -0.6085 -0.0193  0.6110  9.2339  
 
Random effects: 
 Groups   Name             Variance  Std.Dev. Corr 
 Item     (Intercept)      3.875e-01 0.62247       
 Subject  (Intercept)      1.083e+00 1.04047       
          w_ent_change_p_w 7.376e-04 0.02716  1.00 
 Residual                  5.109e+01 7.14767       
Number of obs: 5054, groups:  Item, 40; Subject, 16 
 
Fixed effects: 
                  Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)        -1.0041     0.5344   30.2893  -1.879  0.06990 .  
w_ent_change_p_w   -0.4200     0.1341   37.0659  -3.131  0.00339 ** 
num                -0.2068     0.1005 4998.8494  -2.056  0.03980 *  
sentence            0.1523     0.1409   37.1235   1.080  0.28693    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
            (Intr)  ent___ num   
w_nt_chng__ -0.807               
num         -0.001  0.001        
sentence    -0.047  0.056 -0.001 
 
Experiment 1, exploratory: inhibition, stød/non-stød onset 
 
                Df Sum Sq Mean Sq F value  Pr(>F)    
s_inhibited_hilo 1  15.79  15.794   9.732 0.00254 ** 
Residuals       78 126.58   1.623                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Call: 
lm(formula = s_FC2_136_204 ~ s_inhibited_log, data = sb_regression_all) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
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-3.10625 -0.94285  0.08318  1.09198  2.19462  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)   
(Intercept)     -1.5071     0.6532  -2.307   0.0237 * 
s_inhibited_log -0.5211     0.2466  -2.113   0.0378 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.314 on 78 degrees of freedom 
Multiple R-squared:  0.05414, Adjusted R-squared:  0.04201  
F-statistic: 4.465 on 1 and 78 DF,  p-value: 0.0378 
 
Linear mixed model fit by REML. t-tests use Satterthwaite's method 
['lmerModLmerTest'] 
Formula: s_FC2_136_204 ~ 1 + s_inhibited_log + sentence + num + stod + (1 +   
    s_ruledout_log | Subject) + (1 + s_inhibited_log | Item) 
   Data: data_stodbasis_mag 
Control: lmerControl(optCtr = list(maxfun = 1e+09), optimizer = "nloptwrap",      
calc.derivs = FALSE) 
 
REML criterion at convergence: 35754 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-3.9728 -0.6364 -0.0018  0.6384  5.3404  
 
Random effects: 
 Groups   Name           Variance Std.Dev. Corr  
 Item     (Intercept)     4.7400  2.1771         
          s_inhibited_log 0.2991  0.5469   -1.00 
 Subject  (Intercept)     5.1946  2.2792         
          s_inhibited_log 0.1312  0.3622   -1.00 
 Residual                67.2935  8.2033         
Number of obs: 5064, groups:  Item, 40; Subject, 16 
 
Fixed effects: 
                Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)      -1.2617     1.0204   28.2681  -1.236  0.22646    
s_inhibited_log  -0.6054     0.3104   40.7905  -1.950  0.05806 .  
sentence         -0.5333     0.1609   34.4318  -3.314  0.00217 ** 
num              -0.1694     0.1153 5009.2056  -1.470  0.14175    
stod             -0.1328     0.1164 4946.6677  -1.141  0.25374    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Correlation of Fixed Effects: 
            (Intr) s_inh_ sentence num   
s_inhibi_lg -0.942                      
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sentence     0.040 -0.056               
num          0.000  0.000 -0.001        
stod        -0.084  0.104 -0.024  0.000 


