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Abstract

In this thesis a fully Bayesian hierarchical model that estimates the number of aggregated
insurance claims per year for non-life insurances is constructed using Markov chain Monte
Carlo based inference with Riemannian Langevin diffusion. Some versions of the model
incorporate a spatial effect, viewed as the relative spatial insurance risk that originates
from a policyholder’s geographical location and where the relative spatial insurance risk is
modelled as a continuous spatial field. It is shown that the inclusion of a spatial effect de-
rived from a Gaussian Markov random field with Matérn covariance in a generalised linear
mixed model (GLMM) has better predictive performance regarding the number of aggre-
gated claims in an insurance portfolio compared to GLMMs that lack such a spatial effect.

Keywords: Insurance risk, claim frequency, Markov chain Monte Carlo (MCMC), Rie-
mann manifold Metropolis adjusted Langevin algorithm (MMALA), spatial statistics,
Gaussian Markov random field (GMRF), preconditioned Crank Nicolson Langevin al-
gorithm (pCNL), Gibbs sampling, Bayesian hierarchical modelling, high dimensional,
shrinkage prior, horseshoe prior, regularisation.
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Modelling Insurance Risk with Continuous Spatial Dependence

The geographic rating factor used to de-
termine the insurance risk originating from
the geographical location of a policyholder
can be modelled with a continuous spatial
dependence. Continuous models allow the
geographic risks to vary in larger pricing
areas which is not the case with constant,
or discrete models. Constant geographic
risks can cause the geographic risks of
larger pricing areas to have a greater in-
fluence on neighbouring pricing areas than
feasible.

The purpose of insurances is to protect against
financial loss. To be insured by an insurance, the
policyholder has to pay a premium. The price of
the premium needs to be proportionate to the size
of the future and uncertain losses of the policy-
holder. These losses may or may not be financial,
but they need to be reducible to financial terms.
To determine the future and uncertain losses for
a specific policyholder, an insurance company
looks at the individual traits of the policyholder
and compares these traits with the traits of pol-
icyholders that have incurred historical losses.
The insurance company then assumes that these
traits are indicative for future losses. How in-
dicative certain traits are, can be quantified and
used to estimate future losses with probabilities.
These probabilities are needed to define the risk
premium which is based on the number of times
during a specific period a policyholder is expected
to suffer a loss together with the expected sizes of
these losses. With the risk premium it is possible
to determine a proportionate price for an insur-
ance policy. One of the traits an insurance com-
pany can look at is called the geographic factor,
or spatial effect. The spatial effect indicates how
much of a policyholder’s insurance risk originates
from the region which the policyholder resides
in. It was shown in a case study performed by
Tufvesson1 in 2016 that the spatial effect derived
from a discrete model improved claim frequency

predictions, i.e. how many insurance claims will
be made during a specific period. However, for
the cost, or severity of the claims no spatially
associated risk was found.

Based on real data2,3, it has been shown in a
case study performed by Faller4 in 2021 that a
continuous spatial model also improves claim fre-
quency predictions.

Figure: Claim frequency predictions for vehicle dam-

age insurances over Brazil, modelled with a continuous

spatial dependence4.

The continuous model has less requirements re-
garding the resolution of the geographic data used
to determine the geographic rating factors com-
pared to discrete models. Discrete models require
micro-geographical data, e.g. instead of estimat-
ing the spatial effect for a part of Stockholm’s in-
ner city with 13,831 areas, as done in Tufvesson’s1

discrete model, the continuous model4 estimates
the spatial effect for the whole of Brazil with
3,109 areas. The relaxed requirements regarding
the geographic data in the continuous model4 en-
able accurately priced insurances with the use of
a spatial effect, even if micro-geographical data is
not available.

Written by: Daniel Faller, 4 January 2022.

1Tufvesson, O. (2016). Spatial statistical modelling of insurance risk: A spatial epidemiological approach to
car insurance.

2SUSEP. (2015). Autoseg - susep automobile statistics system. Retrieved December 30, 2021, from
http://www2.susep.gov.br/menuestatistica/Autoseg/menu2.aspx

3IBGE. (2010). Index of Censos Censo Demografico. Retrieved December 30, 2021, from https://ftp.ibge.
gov.br/Censos/Censo Demografico 2010/

4Faller, D. (2022). Spatial Statistical Modelling of Insurance Claim Frequency.

http://www2.susep.gov.br/menuestatistica/Autoseg/menu2.aspx
https://ftp.ibge.gov.br/Censos/Censo_Demografico_2010/
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CHAPTER 1

Introduction

In this chapter a general background on insurance is given, the scope and purpose of this
thesis is also presented in this chapter. The chapter concludes with an outline of the
thesis’ disposition.

1.1 Background

The insurance market consists of different key actors and each actor has different roles.
Figure 1.1 presents an overview of the insurance market’s key actors. The choice of actors
is motivated by the function of the insurance market and which actors primarily ensure
the function of the insurance market, namely to spread financial risks (EIOPA, 2021; EU,
2009; FI, 2020; If P&C Insurance, 2021; Regeringskansliet, 2020; Valecký et al., 2017).
The topic for this thesis is linked to one of the most central key activities in the insurance
market, the quantification of risk.
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Chapter 1. Introduction

Figure 1.1: The picture above highlights the central activity ”Quantification of risk” in
the European insurance market.

1.1.1 The risk premium

To spread financial risks requires actuarially fair pricing of insurances. What this means
is that the risk a policyholder is exposed to must be proportional to the risk premium that
the insurer charges. Pricing is also actualised from an enterprise risk management point
of view as an event that could threaten the goals of an organisation, as products that
are not priced at optimal margins are business threatening (O’Donnell, 2005). Actuarial
justice is thus pivotal for the insurer’s function to spread risk. The risk group that a
policyholder is within must be reflected in the price they pay to insure themselves. To
achieve this, it is required that the risk premium is set correctly. Equation (1.1) below
defines the risk premium R (Tufvesson et al., 2019).

R =
C

E
(1.1)

where C is total claims cost and E is the total duration of policies. The risk premium
can also be defined as,

R =
C

Y
⋅
Y

E
= S ⋅ F, (1.2)

2



Chapter 1. Introduction

where Y is the number of claims, S is severity and F is claims frequency. The tariff which
determines the risk premium is generally multiplicative and consists of rating factors. The
expected risk premium for the jth policyholder is then modelled as

E[Rj] = E[Sj ⋅ Fj] = ρ0 ⋅
H

∏
h=1

ρj,h

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Expected severity

⋅ γ0 ⋅
K

∏
k=1

γj,k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Expected frequency

(1.3)

where E[ ⋅ ] denotes the expectation operator, ρ0 and γ0 are the base risk level, or offsets.
ρj,k and γj,k are rating factors which can be thought of as the relative risk for the jth

policyholder with respect to the kth and hth factor respectively (Tufvesson et al., 2019).
To set an actuarially fair price for the risk premium, it becomes central to correctly

model claim frequency and claim severity. The claim frequency is often assumed to be
Poisson distributed and the claim severity is often assumed to be gamma distributed.
Usually, claim frequency and claim severity are modelled separately. The main reason
for this is that claim frequency is most often more stable than claim severity, allowing
for better predictions for the claim frequency (Ohlsson & Johansson, 2010). This thesis
focuses on modelling of the claim frequency for vehicle damage insurances, as there is
suitable data available for this class of event, but the method can also be generalised to
other types of enumerable events.

The following predictor variables have a proven correlation with the claim frequency
and severity and they are used to determine the risk premium (Styrud, 2017): age of
policyholder [year], mileage per year [km/year], engine power [kW], length of car ownership
[year], car age [year], time since obtaining driver’s license [year], population density at
the place of residence [persons/km2], whether the car is imported and car brand. At the
insurance company If P&C Insurance, geographical location has long been used as one of
these variables (Tufvesson, 2016). The motivation for having location dependencies in a
pricing model is that it is more likely to be involved in a car accident in a city with denser
traffic, than in less populated areas. The estimation of this location dependence will be
the focus of this thesis.

1.2 Situation analysis

Tufvesson (2016) provided a statistical model for assessing the relative insurance risk
associated with the policyholder’s geographical location. He modelled claim frequency
and claim severity separately, where the Poisson distribution was assumed for claim fre-
quency and the gamma distribution was assumed for claim severity. Basing the models
on a Bayesian approach and using the INLA-package (Lindgren & Rue, 2015) in R (R
Core Team, 2016) for inference, he showed that the inclusion of a spatial effect from a
conditional auto regressive model with first order neighbours (CAR(1)) in an ordinary
generalised linear model, improves the prediction quality for claim frequency. He used
spatially referenced data of high resolution which makes the conditioning in the CAR
model valid. Earlier work in spatial modelling of claim frequencies and severity also in-
clude (Gschlößl & Czado, 2007) which used Markov Chain Monte Carlo (MCMC) for
inference and a CAR model for the spatial dependence. However, the CAR model might

3



Chapter 1. Introduction

suffer from bias if the available data is not of sufficiently high spatial resolution. The
reason for this is that the claim severity and claim frequency of larger pricing areas could
have a greater influence on neighbouring pricing areas than feasible and that the relative
risk could vary in larger pricing areas.

In (Boskov & Verrall, 1994) the authors proposed a method for premium rating by post-
code area. Their method is based on spatial models in a Bayesian framework and uses
the Gibbs sampler for estimation. To the extent of my knowledge, I have not encountered
any other published work that provides a spatial model for assessing insurance risk.

1.3 Purpose of thesis

Uncertainty is sometimes classified into two categories: epistemic and aleatory uncer-
tainty. Epistemic uncertainty can be described as the inadequate understanding of un-
derlying processes, and aleatory uncertainty refers to the inherent uncertainty due to
probabilistic variability. The goal of this thesis is to provide a spatial statistical model
for estimating the spatial relative risk with respect to the claim frequency of non-life in-
surances. The inclusion of a spatial effect derived from a GMRF aims to reduce epistemic
uncertainty in claim frequency modelling. The model also aims to relax the requirement
of spatially referenced data of high resolution as implemented in (Tufvesson, 2016). This
is done by implementing a fully Bayesian model on a data set with spatially referenced
data of low resolution, i.e. instead of modelling a part of Stockholm’s inner city with
13,831 areas as done in (Tufvesson, 2016), the proposed method will model the spatial
relative risk for the whole of Brazil with 3,109 areas. The previously stated aims and goals
can be framed as one research question; will a spatial effect derived from a continuous
spatial dependence reduce uncertainty in claim frequency predictions for vehicle damage
insurances?

1.4 Thesis disposition

In chapter one a general background on insurance is given as well as the scope and
purpose of the thesis. Chapter two presents the data that is used in the thesis and was
provided by Prof. Johan Lindström. In chapter three the generalised mixed model for
the aggregated insurance claim frequency is presented. Chapter three also presents the
motivations behind the construction choices that was made when developing the model.
In chapter four the Markov chain Monte Carlo (MCMC) estimation methodology used
for the parameter estimations in the model is outlined. Chapter five presents the results
of the model in a comparative way, where comparisons with different modifications of the
model is made with respect to predictive performance. Chapter six concludes the thesis
by summarising the main findings and proposes recommended future research which can
increase knowledge within the research field. The appendices contain the derivations made
to implement the MCMC-code in MATLAB®.

4



CHAPTER 2

The data

In this chapter, the predictor variables that are used for the estimation of the aggregated
claim frequency are presented as well as the geo-statistical data that is used for the spatial
modelling. A principal component analysis of the predictor variables is also presented.

2.1 The data set

The insurance data is retrieved from the Brazilian organisation Superintendence of Pri-
vate Insurance (SUSEP, 2015) and the demographic data is retrieved from the Brazilian
Institute of Geography and Statistics (IBGE, 2010). The data consists of 3828 polygons
representing the 5568 municipalities in Brazil (IBGE, 2020), the polygons can also be
referred to as municipalities since they largely coincide. The geographical division in
the insurance data is also coarser for the less inhabited municipalities in the west and
north-west of Brazil.

5



Chapter 2. The data

Figure 2.1: Division of Brazil into 3828 polygons each with the twelve attributes specified
in table 2.1.

Each polygon has a set of predictor variables for which a model is to be fitted. The
geo-statistical data consists of 3828 polygons but only 3109 polygons are used for the
inference. The 719 excluded polygons had either missing predictor variables or a too
small areal which leads to rows with only zeros in the integration matrix (see section
3.4.3), where no mapped grid elements for a polygon leads to numerically unstable log-
likelihoods. The lack of mapping grid elements can be resolved by increasing the spatial
resolution, i.e. from 0.1○ × 0.1○ to 0.05○ × 0.05○ [Long.×Lat.]. But since the number of
operations grows with an order of O(n2) per n grid elements this payoff is accepted as
the purpose is to model the whole of Brazil, in a reasonable time frame. If one was more
concerned with the specific smaller municipalities, a finer division is possible by dividing
Brazil into smaller regions which in turn include the smaller municipalities. With the cur-
rent spatial resolution, municipalities with an area less than 120 km2 are excluded. Each
municipality is effectively treated as a policyholder resulting in a geographic rating factor
γG for the policyholder residing in their respective municipality. The response variable
for the municipalities is the number of incurred claims for one year due to vehicle colli-
sions. There is a large difference between municipalities regarding the number of incurred
claims, e.g. São Paulo has 64,501 incurred claims and 1,264,725 insured vehicles whereas
some municipalities only have four insured vehicles (SUSEP, 2015).

6



Chapter 2. The data

The predictor variables for each municipality, or polygon consist of demographic at-
tributes. The following twelve predictor variables are included in the demographic data
retrieved from IBGE (2010).

Table 2.1: Available demographic predictor variables for all polygons in Brazil (with
square root of variance inflation factors), retrieved from (IBGE, 2010).

Available predictor variables for each municipality

1. pop.m (1.19) Ratio of registered male residents
2. pop.urban (1.98) Ratio of residents living in urban areas
3. y18.24 (1.65) Ratio of residents between 18-24 years
4. y60 (1.51) Ratio of residents above 60 years
5. households (1.05) Number of registered households
6. h.owned (1.90) Ratio of households that are owned by their residents
7. h.rent (2.55) Ratio of households that are rented by their residents
8. h.no.el (1.25) Ratio of households with no electricity
9. literacy (2.21) Literacy ratio among residents
10. income (5.96) Average monthly income per resident
11. income.urban (5.16) Average monthly income per resident in urban areas
12. income.rural (2.00) Average monthly income per resident in rural areas

The square root of the variance inflation factor indicates how much larger the standard
error for an ordinary least square regression coefficient becomes compared to if its cor-
responding predictor variable had 0 correlation with the other predictor variables used
in the regression. This means that the standard error for a regression coefficient of the
predictor variable income is 5.96 times larger than if that predictor had 0 correlation with
the other predictors in the data (Miles, 2014). This indicates that income or urban income
need to be excluded to avoid severe multicollinearity. The pairwise correlation between
income and urban income is 0.9689.

2.2 Principal component analysis

In this section an initial principal component analysis is performed to provide quantitative
evidence regarding the potential dimensionality reduction of the predictor variables. The
reduction of dimensionality aims to increase the interpretability of the final model but at
the same time minimise the information loss by keeping the most informative predictors
(Jolliffe & Cadima, 2016).

7



Chapter 2. The data

Figure 2.2: A scree plot displaying how well the variance in the attributes of the polygons
can be explained by the principal components. By reducing the 12 attributes to 3 principal
components it is possible to still explain around 70% of the variance in the normalised
predictors.

Figure 2.3, 2.4 and 2.5 identifies the underlying relationships between the observed pre-
dictors. The axes consist of transformed coefficients of the principal components so that
they are orthonormal, this is done to find a parameterisation in which each predictor has
only a small number of large coefficients. That is, each predictor variable is affected by a
small number of principal components, preferably only one. This can often make it easier
to interpret what the factors represent. It is apparent in Figure 2.3 and 2.4 that the
first principal component represents literacy and income level, whereas the second axis
represents age. It is worth noting that people between 18-24 are represented as negative
and people over 60 are represented as positive on the second principal component, this
can be seen in Figure 2.3 and 2.5. It is also worth to note the contrast in Figure 2.5
between houses that are owned and houses that are rented where the latter has similar
scores as the ratio of people living in urban areas.

8



Chapter 2. The data

Figure 2.3: Visualisation of the two most variance explaining orthonormal principal com-
ponent coefficients for each attribute and the principal component scores for each polygon
in a single plot.

Figure 2.4: Same visualisation as Figure 2.3 but with principal component three on the
y-axis.

9



Chapter 2. The data

Figure 2.5: Same visualisation as Figure 2.3 but with principal component two and three.

The results from the principal component analysis imply that the initial 12 predictor
variables can be reduced due to the proximity of some predictors in the 3-D hyper plane
spanned by the three most variance explaining principal components. This is the mo-
tivation for the use of Horseshoe priors as a regularisation method for the regression
coefficients β in section 3.5. The eigenvalue decomposition of the covariance matrix of
the predictor variables used in the principal component analysis was performed with the
MATLAB® function pca.

10



CHAPTER 3

Model

In this chapter the generalised mixed model for the aggregated insurance claim frequency
is presented. The implementation of the developed model includes a spatial effect derived
from a Gaussian Markov random field (GMRF), which aims to catch underlying effects in
the geography of the policyholder that affect the insurance risk. The model also includes
an independent and identically distributed (i.i.d) lognormal effect that accounts for the
overdispersion in the data and Horseshoe priors that are implemented for the potential
regularisation of some predictor variables. In some sections it is more convenient to refer
to the model as the model for the number of aggregated insurance claims rather than
the model for the aggregated insurance claims frequencies. The only difference is the
inclusion or exclusion of the number of insured vehicles E in the linear predictor, where
the exclusion yields the frequency model with response variable Y /E instead of Y .

3.1 Generalised linear mixed model

The predicted number of insurance claims Yi in a region Bi will be modelled with a Poisson
distribution and a log link as,

Yi∣ηi ∼ Po(exp(ηi)) (3.1a)

ηi = β0 +Biβ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Fix effect

+ ui
®

Spatial effect

+ vi
®

I.i.d effect

+ log(Ei)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

Offset

, (3.1b)

where β are the regression coefficients for the predictor variables and B consists of a
suitable set of predictors. The offset log(Ei) is included in the linear predictor ηi to
account for varying vehicle population sizes. In this case, the offset will be the number of
insured vehicles Ei that is insured in a municipality, this is equivalent to the exposure or
total duration of policies in one municipality. The spatial mixture effect ui is covered in
section 3.4 and the i.i.d mixture effect vi is covered in section 3.2.

11



Chapter 3. Model

3.2 Overdispersion

In this section a first-round test of apparent versus inherent overdispersion is performed by
modelling the data using both the Poisson and negative binomial model. The overdisper-
sion is defined as the ratio between the variance divided by the expectation of a stochastic
variable, i.e. overdispersion = V [Y ]/E[Y ].

Poisson models assume the conditional means are equal to the conditional variances,
this is not the case with negative binomial models, where the conditional moments are
described in equation (3.4). If the estimate of the ancillary parameter κ is near zero,
then the negative binomial model can be discarded as it equivalent to a Poisson model.
Following the arguments regarding how to model overdispersed count data presented in
(Ver Hoef & Boveng, 2007), Figure 3.1 is presented to determine which model is more
suitable for modelling the overdispersion. The residual intervals are chosen so that the
number of collisions in each of the 10 residual intervals is 1/10 of the total collisions.

Y ∼ Po(µ) ⇒ E[Y ] = V [Y ] = µ (3.2)

Y ∼ quasiPo(µ,φ) ⇒

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

E[Y ] = µ

V [Y ] = φ ⋅ µ

Overdispersion = φ

(3.3)

Y ∼ NB(µ,κ) ⇒

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

E[Y ] = µ

V [Y ] = µ + κµ2

Overdispersion = 1 + κµ

(3.4)

12



Chapter 3. Model

Figure 3.1: Estimated overdispersion-to-mean relationship, the axes are on the logarith-
mic scale. The markers are averaged squared residuals in ten intervals, where the circle
markers are for quasi-Poisson with a fix overdispersion parameter estimated to φ̂ = 5.5009
and the diamond markers are for the negative binomial model with an ancillary parameter
estimated to κ̂ = 0.0517.

Looking at the overdispersion, a logarithmised linear trend is more prevalent than a
fix trend. Hence, a negative binomial model with linearly increasing overdispersion is
indicated as a more suitable choice than a quasi-Poisson model with fix overdispersion for
the aggregated claim frequency model.

The first-round models were fitted using the MATLAB® toolbox nbreg implemented
by Surojit (2013), nbreg uses iteratively reweighted least squares and χ2 dampening. The
overdispersion parameter φ is estimated using the Pearson’s χ2 statistic and the degree
of freedom

φ̂ =

n

∑
i=1

(yi − µ̂i)2/µ̂i

n − p
, (3.5)

where n is the number of observations and p is the number of parameters including the
intercept.

3.2.1 Negative binomial model as a Poisson-gamma mixture

The negative binomial model can be constructed with the inclusion of an unobserved
effect vi in the linear predictor ηi of the generalised linear mixed model in equation (3.1).
Excluding the spatial effect and offset; the conditional Poisson mean µi for the claim

13



Chapter 3. Model

frequency is (Hardin & Hilbe, 2007, p. 245)

log(µi) = ηi =Biβ + vi (3.6)

= log(λBi) + log(λvi). (3.7)

The claim frequency yi conditioned on the predictor variables and the unobserved effect
remains Poisson distributed with the conditional mean and variance given by µi = λBiλvi ,

f(yi∣µi) =
e−λBiλvi(λBiλvi)

yi

yi!
. (3.8)

The conditional mean λBiλvi and the unconditional distribution for the claim frequency
is given by (Hardin & Hilbe, 2007, p. 246)

f(yi,Bi) =

∞

∫
0

e−λBiλvi(λBiλvi)
yi

yi!
g(λvi)dλvi (3.9)

=
Γ(yi + θ)

Γ(yi + 1)Γ(θ)
(

1

1 + λBi/θ
)
θ

(1 −
1

1 + λBi/θ
)
yi
, (3.10)

which gives the following moments for the Poisson-gamma mixture (negative binomial)
distribution:

E[Yi] = µi (3.11)

V [Yi] = µi + κµ
2
i (3.12)

where µi = exp(ηi) and κ = 1
θ . g(⋅) is a gamma distribution with mean equal to 1

for the i.i.d effect λvi = exp(vi). The θ parameter comes from using the shape-rate
parametrisation of the gamma distribution which implies λvi ∼ G(θ, θ) to ensure E[λvi] = 1.

The generalised linear mixture model for the number of aggregated insurance claims
extended with the multiplicative spatial effect exp(ui) (see section 3.4) and multiplicative
i.i.d effect exp(vi) becomes

Y ∣η ∼ Po(exp(η)) (3.13)

ηi = β0 +Biβ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Fix effect

+ ui
®

Spatial effect

+ vi
®

I.i.d effect

+ log(Ei)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

Offset

, (3.14)

where the gamma i.i.d effect is replaced with a lognormal i.i.d effect which gives a similar
model (Harrison, 2014)

vi ∼ N(0, q−1). (3.15)

The use of a lognormal prior on λvi = exp(vi) instead of a gamma prior enables to fit the
model more efficiently by using only one normal apriori-distribution in the MMALA block
of the target distribution in section 4.1. The precision parameter q is further explained
in section 4.7.

14
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3.3 Inhomogeneous Poisson process

The inhomogeneous spatial Poisson process is a Poisson process where the intensity pa-
rameter λu for the Poisson distribution is the surface integral over some bounded region
Bi ∈ R2.

λu = exp(ui) ∼ Po(ΛBi(s)), s ∈ Bi (3.16a)

E[exp(ui)] = ΛBi(s) (3.16b)

ΛBi(s) =
∫Biexp(X(s))ds

∫Bi1 ds
, (3.16c)

where s is the coordinates of a point in the spatial domain Bi. The normalisation of the
total area of Bi in equation (3.16c) is performed because the spatial relative risk measure
is chosen to be defined as indifferent to the areal size of the spatial domain Bi. This
ensures that larger regions in the north-west of Brazil does not get an inflated spatial
relative risk. The equations in (3.16) form the framework for the construction of a spatial
effect derived from a specific region Bi in Brazil in the aggregated claims frequency model,
where X(s) will be a latent Gaussian Markov random field.

3.4 Spatial modelling

In this section the latent spatial model is derived. The latent spatial model for the spatial
relative risk is

exp(ui) =
∫Biexp(X(s))ds

∫Bi1 ds
≈ [FA exp(X)]i (3.17)

X ∣κx, τx ∼MVN(0,Q(κx, τx)
−1). (3.18)

Note that the boldface X is the node weight vector used to discretise the theoretical
Gaussian Markov random field denoted X(s) (see section 3.4.1), the matrices F and
A are covered in section 3.4.3. The precision matrix Q for the node weights is derived
from the stationary solution to the stochastic partial differential equation (SPDE) (3.19)
(Lindgren & Rue, 2015)

(κx −∆)
α
2 (τxX(s)) = W(s), s ∈ Ω. (3.19)

Where W(s) is standard Gaussian noise, α controls the smoothness of the field X(s) and
Ω is the spatial domain. ∆ is the Laplacian defined as a sum of second order derivatives
w.r.t the coordinates si

∆ =
d

∑
i

∂2

∂s2
i

(3.20)

where d is the dimension of the spatial domain. κx is a scaling coefficient that governs
how strong the correlation decay is between two regions. τx is a variance parameter that
governs the variation of the field (Moraga, 2019). The link between the precision matrix
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Q, κx and τx comes from the Matérn covariance function (Matern et al., 1960) of the
Gaussian field that is the exact solution to the aforementioned SPDE (3.19) (Blangiardo
& Cameletti, 2015; Lindgren et al., 2011; Moraga, 2019; Whittle, 1954),

Q−1
ij = Σij = Cov[X(si),X(sj)] =

σ2

Γ(ν) ⋅ 2ν−1
⋅ (κx∣∣si − sj ∣∣)

ν ⋅Kν(κx∣∣si − sj ∣∣), (3.21)

where Kν is the modified Bessel function of the second kind and order ν > 0. σ2 denotes
the marginal variance of the spatial field and is related to the parameters as

σ2 =
Γ(ν)

Γ(α)(4π)d/2κ2ν
x τ

2
x

. (3.22)

3.4.1 The Gaussian Markov random field

Using Neumann boundary conditions, the precision matrix Q for the node weight vector
X = [X1, ... ,Xn]

T is given by

Q = τ 2
x(κ

4
xC + 2κ2

xG +GC−1G). (3.23)

The elements of the diagonal matrix C is Cii = ∫ ai(s)ds and the elements of the sparse
matrix G is Gij = ∫ ∇ai(s)∇aj(s)ds, where ∇ denotes the gradient operator and ai
is the basis function as in equation (3.24). The precision matrix Q is sparse and its
elements depend on the range parameter κx and the field precision parameter τx. The
sparseness of the precision matrixQmakes the node weightsX a GMRF with distribution
X ∼MVN(0,Q−1

) (Blangiardo & Cameletti, 2015).

3.4.2 Finite element approximation

The solution to the SPDE (3.19) represented by the stationary and isotropic Matérn
Gaussian field X(s) can be approximated using the finite element method through a basis
function representation defined on a triangulation of the domain consisting of Brazil.

X(s) =
G

∑
i=1

ai(s)Xi, (3.24)

where G is the total number of vertices of the triangulation, ai is the set of (deterministic)
basis functions, and Xi are zero mean but correlated Gaussian distributed node weights.
To obtain a Markov structure, the basis functions are chosen to have local support by
being piecewise linear on each triangle, i.e., ai is 1 at vertex i and 0 at all other vertices
(Blangiardo & Cameletti, 2015). The piecewise linear representation of the isotropic
Matérn Gaussian field generates a finite element mesh as in Figure 3.3
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Figure 3.2: The 1204 nodes over
Brazil that form the foundation of
the finite element mesh.

Figure 3.3: Finite element mesh
over Brazil using Delaunay triangu-
lation.

3.4.3 The integration matrix F and the projection matrix A

To be able to integrate the spatial effect of the inhomogeneous spatial Poisson process as
in equation (3.16c), an integration grid is placed over Brazil. Where each grid element (or
pixel) has an area of 0.1○ Long. × 0.1○ Lat. ≈ 120 km2 per pixel. The size of the integration
matrix F becomes with the current spatial resolution [Nregions × 72129], i.e. 72,129 grid
elements are generated to integrate the spatial effect. All the non-zero elements in the
un-normalised integration matrix F̂ are set to 1 when the integration matrix is initially
constructed in the R-INLA package (Lindgren & Rue, 2015; R Core Team, 2021), this
needs to be adjusted for equation (3.16c) to be fulfilled. The adjustment is achieved when
each element in the normalised integration matrix F ij corresponds to

F ij =
F̂ ij

npixels

∑
j=1

F̂ ij

(3.25)

which gives the following approximation

exp(ui) =
∫Biexp(X(s))ds

∫Bi1 ds
≈ [FA exp(X)]i. (3.26)

Equation (3.26) shows the discretisation of the surface integral for the bounded ith region
Bi over the latent Gaussian field divided by the total area of Bi. The projection matrix A
is also constructed in the R-INLA package (Lindgren & Rue, 2015; R Core Team, 2021).
The elements of the projection matrix consist of the basis function representation defined
on a triangulation of the domain consisting of Brazil, see Figure 3.3.

X(sj) ≈
3

∑
i=1

ai(sj)Xi = [AX]j (3.27)

ai(s) are basis functions that weight each jth pixel value to three adjacent node weights
Xi whose values will be estimated (see section 4.4). Each row of the projection matrix
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A contains three non-zero valued elements which sum to one. These elements are the
corresponding weights of the adjacent nodes for one pixel.

Figure 3.4: A figure that shows how the jth pixel at location sj inside one triangle of the
mesh is weighted w.r.t the three nearest nodes X1,2,3 of the discretised GMRF (Moraga,
2019).

The value of the [AX]j element then corresponds to how one pixel is weighted w.r.t its
three adjacent nodes X1,2,3

[AX]j =
3

∑
i=1

Ti
T
X i, T =

3

∑
k=1

Tk. (3.28)

Lastly, the spatial effect u in equation (3.14) will have the following form

u = log(FA ⋅ exp(X)). (3.29)

3.5 Horseshoe priors

To obtain a sparse solution for the regression coefficients β, Horseshoe priors for β will
be used. Horseshoe priors act as an effective method to push non-significant parameters
towards zero. Below follows the Horseshoe hierarchy proposed by Carvalho et al. (2009).

β ∼ N(0,Λ−1
) (3.30a)

Λ = τ 2
β ⋅ diag(λ2

β1
, ..., λ2

βp
) (3.30b)

λβ1 , ..., λβp ∼ C
+(0,1) (3.30c)

τβ ∼ C
+(0,1) (3.30d)

The name Horseshoe arises from the observation that, for τβ = 1, σ = 1 and yi∣Biβi ∼
N(Biβi, σ2I ) (Carvalho et al., 2009)

E[Biβi∣yi] =

1

∫
0

(1 − ki)yi(κi∣yi)dκi = (1 −E[κi∣yi])yi, (3.31)
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where κi = 1/(1 + λ2
i ) and E[κi∣y] can be interpreted as the amount of shrinkage towards

zero. If κ ≈ 0 virtually no shrinkage is exercised, but if κ ≈ 1 then near total shrinkage is
exercised on the parameter βi. The resulting probability density function for the shrinkage
effect p(κ) will be U-shaped and this gives rise to the name Horseshoe (Carvalho et al.,
2009). The non-standard form of the conditional posterior distributions for the local
shrinkage parameters P(λβ ∣β,y) and global shrinkage parameter P(τβ ∣β,y) makes Gibbs
sampling (see appendix A) difficult to implement. Makalic and Schmidt (2015) proposed
to use a scale mixture representation of the half-Cauchy distribution on the positive real
numbers to make sampling from the conditional posterior more straight forward. The
method uses auxiliary variables that lead to conjugate conditional posterior distributions
for the local and global shrinkage parameters enabling efficient Gibbs sampling. Makalic
and Schmidt (2015) make use of the following scale mixture representation of the half-
Cauchy distribution. Let c and m be random variables such that

c2∣m ∼ IG(
1

2
,

1

m
) and m ∼ IG(

1

2
,

1

D2
) (3.32)

then c ∼ C+(0,D) where IG(⋅, ⋅) is the inverse-Gamma distribution with probability density
function

P(z∣α,β) = βα

Γ(α)
z−α−1exp(−

β

z
). (3.33)

Using the proposed decomposition for the Horseshoe hierarchy (3.30) leads to the following
revised Horseshoe hierarchy for the regression coefficients β

βi∣λβi , τβ ∼ N(0, λ2
βi
τ 2
β) (3.34a)

λ2
βi
∣νi ∼ IG(1/2,1/νi) (3.34b)

τβ ∣ξ ∼ IG(1/2,1/ξ) (3.34c)

ν1, ..., νp, ξ ∼ IG(1/2,1), (3.34d)

where the predictor, or covariate matrix B that contains the predictors will be normalised
by subtraction of the mean and division with the standard deviation for each type of
predictor to ensure equal shrinkage on all regression coefficients.

3.6 Hierarchical model and priors

In this section the entire Bayesian hierarchy is presented and summarised. The aggregated
insurance claims are modelled with a Poisson distribution as

Y ∣η ∼ Po(exp(η)), (3.35)

with the linear predictor

η∣β,X,v = β0 +Bβ + log(FA ⋅ exp(X)) + v + log(E). (3.36)
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The Horseshoe hierarchy is

βi∣λβi , τβ ∼ N(0, λ2
βi
τ 2
β) (3.37)

λ2
βi
∣νi ∼ IG(1/2,1/νi) (3.38)

τβ ∣ξ ∼ IG(1/2,1/ξ) (3.39)

ν1, ..., νp, ξ ∼ IG(1/2,1), (3.40)

the intercept should not be regularised hence an uninformative normal prior is used

β0 ∼ N(0, ψ1), ψ1 = 106. (3.41)

The GMRF with its parameters is modelled as

X ∣κx, τx ∼MVN(0,Q−1
) (3.42)

and the precision matrix of the node weights as

Q = τ 2
x(κ

4
xC + 2κ2

xG +GC−1G). (3.43)

The i.i.d lognormal effect is modelled as

vi ∼ N(0, q−1), (3.44)

where the precision parameter has an uninformative gamma prior

q ∼ G(αv,mv), αv = 1.5, mv = 0.1. (3.45)

Below the conditional dependencies in the Bayesian hierarchy for the number of aggregated
insurance claims Y is presented.

Figure 3.5: Directed acyclic graph describing the conditional dependencies in the hierar-
chical model.
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Summarising the introduced building blocks of the entire model and how they inter-
act, the matrix F is an integration matrix of size [Nregions × Npixels] which maps each
of the Npixels to their respective region. The matrix A is the projection matrix of size
[Npixels × Nnodes] and evaluates each grid element with regard to the basis functions of
the mesh. X is the node weight vector of size [Nnodes × 1], where each element is the
weight at a certain node of the triangulation mesh. Ei is the number of insured vehicles
in the specified ith region, i.e. exposure (or offset). The offset can be set to be on the
natural scale Ei ⋅ exp(ηi) or it can be included as an offset in the linear predictor, i.e.
ηi = β0 +Biβ + log([FA ⋅ exp(X)]i) + vi + log(Ei). When multiplying F , A and exp(X)
we get [FA ⋅ exp(X)]i ≈ ∫s∈i exp(X(s))ds / ∫s∈i1ds which is a normalised surface integral
for the latent Gaussian field over the ith region. [FA ⋅ exp(X)]i is viewed as the incurred
claim intensity in a 2-D inhomogeneous Poisson process stemming from the geo-location
of the ith region, i.e. the spatial effect. β are the regression coefficients for the predictor
variables, and B consists of a suitable set of predictors. To account for the inherent
overdispersion in the data an i.i.d lognormal effect vi is added to the linear predictor ηi.
Lastly, Horseshoe priors are used to potentially regularise some regression coefficients.

3.7 Approximate minimum degree permutation

To generate proposals for the regression coefficients β and the node weights X requires
performing a Cholesky decomposition of the precision matrix Q (see equation (B.8)). The
Cholesky is a decomposition of a symmetric, positive-definite matrix into the product of
a triangular matrix and its transpose

Q =RRT . (3.46)

To speed up computations involving R a symmetric reordering is performed prior to the
Cholesky decomposition. This reordering reduces the number of non-zero elements in the
Cholesky factor R (see Figure 3.6) . The matrix Ĝ = GC−1G from equation (3.23) has
the most structure, hence, the approximate minimum degree (AMD) permutation vector
will be generated for this matrix using the MATLAB® function amd.
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Figure 3.6: Plot of the sparsity patterns for the Ĝ =GC−1G matrix. The Cholesky factor
obtained from the AMD-permuted matrix is considerably sparser compared to the factor
of the matrix in its original ordering.
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CHAPTER 4

Estimation using MCMC

This chapter outlines the Markov chain Monte Carlo based sampling methods imple-
mented by the author in MATLAB® and are used for the parameter estimations of the
hierarchical model presented in section 3.6.

4.1 The target density for the Markov chain

The conditional posterior for the latent model P(X,β,λβ, τβ, κx, τx,ν, ξ,v, q, αv,mv, ψ1∣Y )

given the observations Y follows below, see appendix D for derivation.

P(X,β,λβ, τβ, κx, τx,ν, ξ,v, q, αv,mv, ψ1∣Y )

∝ P(Y ∣X,β,λβ, τβ, κx, τx,ν, ξ,v, q, αv,mv, ψ1)

⋅P(X ∣κx, τx) ⋅ P(β,v∣q,αv,mv,λβ, τβ,ν, ξ, ψ1)

⋅P(λβ ∣ν) ⋅ P(τβ ∣ξ) ⋅ P(q∣αv,mv) ⋅ P(κx, τx) ⋅ P(ν) ⋅ P(ξ).

(4.1)
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Applying a Metropolis within Gibbs algorithm (see appendix A), the target density can
be divided into four main blocks.

1. π(β̂∣ ⋅) ∝ π(Y ∣η) ⋅ π(β∣λβ, τβ) ⋅ π(v∣q) ⋅ π(β0∣ψ1), β̂ = [v β0 β]
T

2. π(X ∣ ⋅) ∝ π(Y ∣η) ⋅ π(X ∣κx, τx)

3. (a) π(κx, τx∣ ⋅) ∝ π(κx, τx∣X)

(b) π(ν, ξ∣ ⋅) ∝ π(ν, ξ∣λβ, τβ)

(c) π(q∣ ⋅) ∝ π(q∣v, αv,mv)

4. π(λβ, τβ ∣ ⋅) ∝ π(λβ, τβ ∣β,ν, ξ),

where ⋅ denotes the conditioning on all other variables. Block 1, 2 and 3(a) will be updated
using the Metropolis Hastings algorithm (due to intractable posteriors) but with different
proposals. For block 3(b) and 4 the conditional posteriors exist in a tractable form due to
the scale mixture representation in equation (3.32). The conditional posterior also exists
in a tractable form for block 3(c), hence block 3(b), 3(c) and 4 will be updated using the
Gibbs algorithm.

4.2 Metropolis Hastings algorithm

The predominant methodology to sample from un-normalised probability densities p̃(β) is
Markov chain Monte Carlo (MCMC) sampling. The most general algorithm that defines
a Markov process is the Metropolis Hastings algorithm (Hastings, 1970; Metropolis et al.,
1953). The Metropolis Hastings algorithm proposes transitions β ↦ β∗ with the candidate
transition kernel q(β∗∣β), the proposals β∗ are then rejected or accepted with the following
probability (Girolami & Calderhead, 2011)

α(β, β∗) = min{1,
p̃(β∗)q(β∣β∗)

p̃(β)q(β∗∣β)
}. (4.2)

This acceptance and rejection methodology ensures that the Markov chain is reversible
with respect to the stationary target density p̃(β) and satisfies the detailed balance cri-
terion (Robert & Casella, 2013)

α(βi+1, βi)q(βi+1, βi)p̃(βi) = α(βi, βi+1)q(βi, βi+1)p̃(βi+1), (4.3)

using βi = β and βi+1 = β∗.

4.3 Updating β with MMALA

The first block π(β̂) in section 4.1 (referred to as π(β) for notational simplicity) will be
updated using the Metropolis adjusted Langevin algorithm (MALA), where the Langevin
diffusion process is preconditioned with the observed negative Fisher information. The
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ordinary MALA algorithm uses a proposal derived from a discretised Langevin diffusion
with a drift term that pushes towards maximising the likelihood for the parameter es-
timates. The drift term is based on gradient information of the target density for the
Markov chain (Girolami & Calderhead, 2011). The form of the candidate density q(β∗∣β)
is derived from the Langevin diffusion Lt which is constructed to converge to the tar-
get distribution π(β) under suitable regularity conditions (Roberts & Tweedie, 1996).
Roberts and Rosenthal (1998) formally define the reversible Langevin diffusion Lt for the
n-dimensional density π with variance σ2, as the diffusion process {Lt} which satisfies the
n-dimensional stochastic differential equation

dL(t) =
σ2∇logπ(L(t))

2
dt + σdW(t), ∇ = (

∂logπ

∂L1(t)
, ...,

∂logπ

∂Ln(t)
)T . (4.4)

It can be shown that Lt has π as a stationary distribution, see (Roberts & Tweedie, 1996).
Applying equation (4.4) on the regression coefficients β yields the stochastic differential
equation which defines the Langevin diffusion for β

dβ(t) =
σ2∇logπ(β(t))

2
dt + σdW(t). (4.5)

Using a forward Euler step as an approximation of the LHS of equation 4.5 gives the
following discrete approximation of a preconditioned Langevin diffusion for the regression
coefficients β,

β(t + δ) ≈
K

2
∇logπ(β(t)) δ +β(t) +

√
K(W(t + δ) −W(t)), (4.6)

(4.7)

using the following notations

df(t) ≈ f(t + δ) − f(t), σ2 = K, dt = δ. (4.8)

Taking the expectation and variance gives

E[β(t + δ)] =
K

2
∇logπ(β(t)) δ +β(t) (4.9)

V [β(t + δ)] = K δ, (4.10)

where K is a preconditioning matrix that is positive definite. The preconditioning de-
fines the Langevin diffusion on a Riemann manifold with metric tensor K (Girolami &
Calderhead, 2011). The variance in equation (4.10) is given by the increments of a Wiener
process (Lindström et al., 2018, p.121). The motivation for the preconditioning is that
standard Langevin dynamics gives an isotropic proposal distribution which leads to slow
mixing of the MCMC chain if the components of β have very different scales or are highly
correlated, preconditioning can help with this and lead to better mixing. The precondi-
tioner K is a user chosen matrix which allows for local adaptation (Girolami & Calderhead,
2011; Patterson & Teh, 2013).
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Here the preconditioning matrix for β will be the observed negative Fisher information,
see appendix B.2 for derivation. Since the discretisation in equation (4.6) introduces a
discretisation error, the proposals will be accepted or rejected with a Metropolis Hastings
correction step, see appendix B for the derivation of the acceptance rate. This leads to
the MMALA transition kernel for the regression coefficients β (technically referred to as
simplified MMALA by Girolami and Calderhead, 2011),

βi+1∣βi ∼MVN(
K

2
∇logπ(βi) δ +βi, Kδ). (4.11)

4.4 Updating X with pCNL

The second block π(X) in section 4.1 containing the node weights X of the discretised
GMRF will be updated with the preconditioned Crank Nicolson Langevin algorithm. X
has a Gaussian latent field prior X ∼ MVN(0,Q−1

) of dimensionality D = 1204. This
motivates the choice of the pCNL algorithm when updating X since the convergence prop-
erties of pCNL are independent of the dimensionality of the target distribution (Hairer
et al., 2014). The pCNL discretises the same SDE as MALA but uses a central difference,
or Crank Nicolson step for the linear Gaussian part of the gradient from the conditional
posterior. The preconditioned Langevin diffusion process for the node weights is

dX(t) =
K

2
∇logπ(X(t))dt +

√
KdW(t) (4.12)

=
−K

2
(∇ΦGMRF(X(t)) + ∇ΦPo(X(t)))dt +

√
KdW(t), (4.13)

where the gradient of the negative log posterior (NLP) w.r.t X for the Poisson part is
denoted by ∇ΦPo and the gradient of the NLP for the GMRF part is ∇ΦGMRF =QX, see
appendix C.1 for derivations. The pCNL implies sampling from the transition kernel (see
appendix C for derivation),

X i+1 ∼MVN
⎛

⎝

1

4 + δ
( − 2Q−1

∇ΦPo(X i)δ + (4 − δ)X i), 16Q−1δ
⎞

⎠
. (4.14)

The proposals generated from the pCNL transition kernel (4.14) will also be accepted or
rejected with a Metropolis Hastings correction step to account for any discretisation errors
introduced in equation (C.2). When deriving the acceptance probability α(X i+1,X i)

the determinants of the precision matrix cancel due to the symmetry in the transition
kernel (4.14) (see equation C.11), this is also a motivation for using pCNL instead of
MMALA. The observed negative Fisher information that is used as a preconditioner for
the regression coefficients β would be computationally heavy to obtain for X due to its
high dimensionality, this is also a reason for the use of the prior covariance matrix Σ =Q−1

as a preconditioner for the node weights X.
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4.5 Updating κx and τx with MHRW

Block 3(a) π(θ) where θ = [κx, τx]T in section 4.1 containing the field range parameter
κx and the field precision parameter τx will be updated using the Metropolis-Hastings
algorithm with random walk proposals (MHRW) and adaptive step size. The update rule
will be of the following transformed form to ensure positive values for κx and τx

θi+1 = exp(log(θi) + ε ⋅ hi)) where ε ∼MVN(0,Σθ). (4.15)

The candidate θi+1 will either be accepted or rejected with a Metropolis-Hastings step as
in equation (4.2) and the step size hi+1 will be updated according to equation (4.24). The
covariance matrix Σθ for the field parameters is estimated from samples in an initial pilot
run using an identity matrix as initial covariance matrix. This implies sampling from the
following bivariate lognormal distribution

log(θi+1) =MVN(log(θi), h
2
i Σθ). (4.16)

The resulting proposal process will not have symmetric proposals due to the log transform
and the transition probability becomes:

q(θ∗∣θ) = fN(g−1(θ),h2 Σθ)(g
−1(θ∗)) ⋅ ∣

∂g−1(θ∗)

∂θ∗
∣, g(θ) = exp(θ), (4.17)

which then gives the correction factor

q(θ∣θ∗)

q(θ∗∣θ)
=

det [
1/κx 0

0 1/τx
]

det [
1/κ∗x 0

0 1/τ∗x
]

=
κ∗xτ

∗
x

κxτx
, (4.18)

where the normal probabilities cancel due to symmetry.

4.6 Updating λβ and τβ with auxiliary variables

Block 3(b) π(λβ, τβ) and the fourth block π(ν, ξ) in section 4.1 containing the local
shrinkage parameters λβ, the global shrinkage parameter τβ, and the auxiliary variables
ν and ξ will be updated with the Gibbs algorithm. The scale mixture representation with
auxiliary variables of the half-Cauchy distribution on the positive real (3.32) proposed by
Makalic and Schmidt (2015) results in the following conditional posterior distributions
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required for the update of π(λβ, τβ) and π(ν, ξ)

λ2
j ∣νj, βj, τβ ∼ IG(1,

1

νj
+
β2
j

2τ 2
β

), (j = 1,2, . . . , Nβ) (4.19)

τ 2
β ∣ξ,λβ ∼ IG(

Nβ + 1

2
,
1

ξ
+

1

2

Nβ

∑
j=1

β2
j

λ2
j

) (4.20)

νj ∣λj ∼ IG(1,1 +
1

λ2
j

), (j = 1,2, . . . , Nβ) (4.21)

ξ∣τβ ∼ IG(1,1 +
1

τ 2
β

). (4.22)

4.7 Updating q with the conditional posterior

Block 3(c) π(q∣ ⋅) ∝ π(q∣v, αv,mv) in section 4.1 containing the precision parameter q for
the i.i.d lognormal effect v will be updated with the Gibbs algorithm since the conditional
posterior can be directly sampled from. Below follows the conditional posterior of q

q∣v, αv,mv ∼ G(αv +
n

2
,

1

mv +
1
2

n

∑
i=1
v2
i

). (4.23)

4.8 Adaptive step size

The Metropolis Hastings implementations used to realise the hierarchical model in section
3.6 has a step size h that determines how far from the current point in the parameter space
that new parameter candidates will be proposed. An optimum acceptance rate for random
walk proposals in high dimensional parameter spaces is around 0.234 (Gelman et al., 1997).
An optimum acceptance rate ensures sufficient exploration of the parameter space but at
the same time not too many rejected proposals. When considering other proposals than
random walks for the Metropolis Hastings algorithm, the optimal proposal scaling can be
increased. With Langevin diffusion in the proposal, the optimal asymptotic acceptance
rate is 0.57 due to the added gradient information in the proposal process (Roberts &
Rosenthal, 1998; Svensson, 2019).

Below follows the update rule for the step size h that is used to generate proposed
realisations of the MCMC chain.

log(hi+1) = log(hi) +
1

i−0.51
(αacc − α

⋆), (4.24)

where α⋆ is the optimum acceptance rate and i specifies which realisation of the MCMC
chain that is simulated (Givens & Hoeting, 2012, p.248). The adaptation will adjust the
step size to obtain optimal acceptance rates.
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4.9 Implementation of the model

In this section a more practical overview is presented regarding the implementation of the
aggregated claim frequency model and its validation. The model is implemented with the
following steps

1. Create approximate solution to the SPDE (3.19) using the R-INLA package by
Lindgren and Rue (2015), this yields the matrices G,C,GC−1G,A and F .

2. Normalise F for equation (3.16c) to be fulfilled.

3. Randomly partition the data into ten sets with equal number of observations in each
set, then exclude one set and train the model on the remaining sets.

4. Normalise the predictor variables in the covariate matrix B so that each attribute
of the municipalities has mean zero and standard deviation one.

5. Initialise model parameters, where the regression coefficients β are initialised with
ridge regression.

6. Generate the approximate minimum permutation vector from GC−1G, then per-
mute the matrices G,C,GC−1G and A.

7. Start the Metropolis within Gibbs sampling with N iterations, where N is set to 104

iterations.

(a) Sample the node weights X with pCNL and update constants w.r.t the regres-
sion coefficients cβ (see appendix B.1).

(b) Sample the regression coefficients β and the i.i.d lognormal effect v with
MMALA and update constants w.r.t the node weights cx (see appendix C.1).

(c) Sample the local shrinkage parameters λβ and the global shrinkage parameter
τβ with auxiliary variables.

(d) Sample the field parameters κx and τx with MHRW and update the precision
matrix Q for the node weights X according to equation (3.23).

(e) Sample the i.i.d lognormal precision parameter q from its conditional posterior
in equation (4.23).

8. Un-normalise the predictor variables B.

9. Re-scale the regression coefficients β, this needs to be done since the model was
trained with normalised predictor variables.

10. Compute the sample mean as an estimate for the model parameters from the sam-
pling in step 7, with a burnin of 2.5 ⋅ 103 iterations.

11. Permutate back the matrices in step 6.

12. Evaluate and save results.

13. Perform a 10-fold cross validation by repeating steps 1-12.
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CHAPTER 5

Results

The MCMC diagnostics and results presented in this chapter indicate how well the MCMC
based inference performed on the Brazilian insurance data. Five models are presented,
whereof model one is to be viewed as a benchmark standard for high-dimensional Bayesian
regularised count regression. Model 2-5 uses MCMC implementations written by the
author in MATLAB® for the estimation of the parameters in the models.

• M1: Only includes a fix effect in the linear predictor, the parameter estimation is
based on Hamiltonian Monte Carlo (HMC) combined with the ‘No-U-Turn Sam-
pler’ (NUTS), the parameter estimation is performed by the MATLAB® toolbox
bayesreg implemented by Makalic and Schmidt (2016); the toolbox was updated
2020-11-30 to include Poisson regression. The toolbox bayesreg is also available in
R (R Core Team, 2021).

• M2: Only includes a fix effect in the linear predictor and uses MMALA for inference.

• M3: Is the same as model two but has a modified linear predictor that includes a
spatial effect ui which is estimated using pCNL.

• M4: Is the same as model two but has an i.i.d lognormal effect vi in the linear
predictor that is motivated by the overdispersion in the Brazilian count data, the
i.i.d effect is sampled with MMALA in the same block as the regression coefficients
β, the variance q−1 of v has a known conditional posterior and is estimated through
Gibbs sampling.

• M5: Uses the estimated β and v from model four and an intercept that is estimated
from an initial ridge regression in the linear predictor but includes a spatial effect
that is estimated using pCNL. The reason not to estimate all parameters exclusively
in model five is because the i.i.d lognormal effect v fits an individual vi to each
observation point which fully fits the data and pushes the GMRF towards zero.

The linear predictors for the 5 different aggregated claim models are summarised in Table
5.1.
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Table 5.1: Linear predictors ηi for the five models.

Models ηi

M1: Fix HMC NUTS β0 +Biβ + log(Ei)
M2: Fix MMALA β0 +Biβ + log(Ei)
M3: Fix MMALA + spatial pCNL β0 +Biβ + ui + log(Ei)
M4: Fix + i.i.d MMALA β0 +Biβ + vi + log(Ei)
M5: Fix + i.i.d MMALA + spatial pCNL β0 +Biβ + ui + vi + log(Ei)

5.1 Regression coefficient estimates

Figure 5.1 shows that model one and model two have identical regression coefficient esti-
mates (rating factors) except that the bayesreg toolbox does not allow for offset speci-
fications, so the offset is included as a predictor variable in model one. Model three and
four show more conservative regression coefficient estimates, model three exhibits espe-
cially conservative estimates. It is worth to note that the added variance in model four
renders estimates insignificant at a higher significance level compared to model three. The
estimates are based on the same training set with the same seed for the pseudorandom
number generators used in the MATLAB® code. A first round estimation was performed
where the Horseshoe priors pushed: ratio of male residents, average monthly income per
residents in urban areas, and number of registered households towards zero, hence these
predictor variables are not included in Figure 5.1.
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(a) Model one. (b) Model two.

(c) Model three. (d) Model four.

Figure 5.1: Boxplot for the regression coefficients, income rural is pushed towards zero
by the Horseshoe priors in all models. Model five is excluded as its regression coefficient
estimates are identical to those of model four.

The regression coefficient estimates in Figure 5.1 need to be interpreted with caution
from an inferential point of view, due to multicollinearity among the predictor variables.
A comparative GLM was fitted to the principal components presented in section 2.2 using
the MATLAB® function fitglm. The use of uncorrelated principal components gives a
more stable estimation of causality among the demographic attributes of the regions and
their claim frequencies. From Figure 2.4 it can be seen that positive PC1 scores represents
literacy and income levels which reduces the claim frequency estimates for a region, with
a p-value of 0.01 (presented in Table 5.2). PC2 represents ratio of houses that are owned
and ratio of residents above 60 years with positive scores, while ratio of houses that are
rented and ratio of residents between 18-24 years with negative scores. The possible
increase in claim frequencies caused by higher PC2 scores has a p-value of 0.071.
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Table 5.2: Principal component regression.

Predictor exp(βi) p-value

Intercept 0.0849 0.0000
PC1 0.9315 0.0100
PC2 1.0790 0.0710
PC3 1.0121 0.8290

The p-values of 0.0100, 0.0710, and 0.8290 indicate that only the coefficient of PC1 is
statistically significant at the 95% significance level.
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5.2 Trace plots

Figure 5.2 shows the mixing of the MCMC chains. Most MCMC chains in all models
exhibit rapid mixing, the difference in the MCMC chains for the intercept β0 in model
one and two is because model one uses a five-iteration thinning interval. In addition to β
and β0, model three has two additional field parameters and model four has one additional
i.i.d lognormal effect variance parameter that is estimated. A sample of the 1204 possible
trace plots for the node weights X is presented in Figure 5.5.

(a) Model one. (b) Model two.

(c) Model three. (d) Model four.

Figure 5.2: Trace plots for the model parameters. Model five is excluded as its regression
coefficients estimates and i.i.d lognormal effect variance (i.i.d variance) is identical to
those of model four.
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5.3 Claim frequency predictions

Figure 5.3 shows the predicted mean claim frequencies and the observed claim frequencies
for the same 310 municipalities in the 10th validation set. Model 1-3 models the mean and
variance as the Poisson distribution, i.e. E[Y ] = V [Y ]. Model four models the variance
of the insurance claim frequency with an extra lognormal i.i.d effect. The variance of
the lognormal i.i.d effect in model four is estimated to be q̂−1 = 0.1581, i.e. exp(vi) ∼

logN(0,0.1581).
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(a) Model one. (b) Model two.

(c) Model three. (d) Model four.

(e) Model five.

Figure 5.3: Histogram over the predicted and observed insurance claim frequencies for
the same 310 validation regions, shown for model 1-5.
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Figure 5.4 shows the aggregated claim distribution for the entire insurance portfolio using
model three and five for inference. The distributions were created through a bias corrected
parametric bootstrap based on 100,000 realisations of the portfolio. All the parameters
used in the simulation were re-drawn at each realisation from a normal distribution with
mean equal to the parameter estimates and variance scaled by the variance of the param-
eter estimates. It is evident that the lognormal i.i.d effect in the linear predictor of model
five results in a more widespread distribution with right skewness and lepto kurtosis (fat
tails). The observed number of claims in the entire portfolio is 824,379 claims.

(a) Model three. (b) Model five.

Figure 5.4: Aggregated claim distribution for model three and five.
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5.4 Validation

The validation consists of a 10-fold cross-validation for each model. The cross-validation
measure (CVerror) is the sum of the normalised absolute prediction errors,

CVerror =
n

∑
i=1

∣yi − ηi∣
√
ηi

. (5.1)

The motivation for the division with the square root of the expected number of incurred
claims ηi is that the CV measure should not be dominated by municipalities with larger
vehicle populations. The square root of ηi corresponds to the variance of the prediction
due to the Poisson property of the model, hence the CVerror can be viewed as the sum
of normalised absolute errors. The time to fit one training set takes approximately 30
seconds for model five, 6 minutes for model four, 2 minutes for model three, 3 seconds for
model two and 5 seconds for model one, on a personal computer (Intel® CoreTM i7-11800H
CPU (2021) with 16 GB memory).

Table 5.3: Sum of normalised absolute errors (and standard deviation) from a 10-fold
cross-validation for each model (best value in bold).

Models CVerror (sd)

M1: Fix HMC NUTS 688.78 (113.33)
M2: Fix MMALA 674.77 (105.18)
M3: Fix MMALA + spatial pCNL 529.46 (67.98)
M4: Fix + i.i.d MMALA 609.26 (125.56)
M5: Fix + i.i.d MMALA + spatial pCNL 531.11 (75.46)

A two-sample t-test is also performed to see if there is a significant difference between
the CVerror from M3 and M2. The performed t-test returns a test decision for the null
hypothesis that the CVerror from M3 and M2 comes from independent random samples
from normal distributions with equal means without assuming that the cross-validation
errors also have equal variances. The alternative hypothesis is that the CVerror from M3
and M2 comes from populations with unequal means. The result h is true if the test
rejects the null hypothesis at the 5% significance level, and false otherwise. The result
of the t-test is that h is true, indicating that the t-test rejects the null hypothesis at the
5% significance level, even if equal variances are not assumed. The p-value of the t-test
is pvalue = 0.0022 and the 95% confidence interval for the difference between the CVerror

for model three and two is: CI0.95 [CV M3
error −CV

M2
error] = [−229.5321;−61.0878].
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Model three: Fix MMALA + spatial pCNL

In this section model three with its spatial component is further evaluated. Table 5.4
contains 9 of the 1204 node weights that discretise the GMRF from which the spatial
effect is derived from. The nine node weights are selected from three types of location
categories: High risk for regions with high relative risk, low risk for regions with low
relative risk, and sparse for regions with few neighbouring municipalities. Figure 5.6
displays the location of the nine node weights on a map where the Z component is the
value of the multiplicative geographic rating factor γGi . Figure 5.5 shows the trace plots
of the nine selected node weights in Table 5.4, where some nodes seem to have converged
and some seem not to have converged. Figure 5.7a shows the adaptive step lengths for the
parameters in model three and Figure 5.7b shows the acceptance rates for the Metropolis-
Hastings updated parameters which converged to the optimal acceptance rates, 0.57 for
Langevin proposals and 0.243 for random walk proposals.

Table 5.4: Nine node weights from three types of location categories.

Node weights Xi Long., Lat. Location

X594 -46.1906, -16.4869 High risk
X404 -51.1696, -15.6677 High risk
X942 -39.9113, -6.25333 High risk
X723 -54.1208, -27.3682 Low risk
X687 -47.1449, -22.7482 Low risk
X433 -38.4012, -12.7691 Low risk
X496 -70.4735, -9.21299 Sparse
X920 -64.6530, -4.15386 Sparse
X567 -53.0643, -3.97494 Sparse

Figure 5.5: Trace plots of the nine node weights in Table 5.4
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Figure 5.6: The nine node weights from Table 5.4 at each highlighted municipality cen-
troid, X=Long. Y=Lat. Z = γGi = exp(β0 +Biβ + ui).
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(a) M3: Step lengths. (b) M3: Acceptance rates.

Figure 5.7: Step lengths for the regression coefficients, node weights and field parameters
(a). Acceptance rates for the regression coefficients, node weights and field parameters
(b).

Figure 5.8a displays the Poisson likelihoods (in blue) on the left y-axis for the number
of aggregated insurance claims for each municipality in the entire data set, given the
linear predictor from M2 (dashed blue line) or M3 (continuous blue line), i.e. P(yi∣ηM2

i )

(dashed blue line) or P(yi∣ηM3
i ) (continuous blue line). It is apparent that the inclusion

of a spatial effect yields higher likelihoods for regions with a larger number of aggregated
insurance claims, mainly because the potential added predictive performance from using
the spatial effect does not show for aggregated claims less than approximately 700 claims,
this is based on a likelihood ratio test that was performed for 20 claim intervals, whose
lower bounds are based on every fifth quantile of the claims data, and whose p-values are
displayed on the right y-axis of Figure 5.8a. Lower p-values mean that the null hypothesis
can be rejected with a higher significance. The null hypothesis is that the unrestricted
model (M3) does not explain the data better. The p-value for regions with claims between
700 and 64,500 (based on 155 observations) is pvalue = 0.116, this can be seen in Figure
5.8a by looking at the leftmost black stem.

Figure 5.8b shows a residual error analysis, it is evident that the prediction errors are
independent of the elements in the linear predictor ηi, the prediction errors were plotted
against E[exp(ui)] and E[exp(Biβ + β0)] in Figure 5.8b (bottom) and Figure 5.8b (top)
respectively.
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(a) Likelihood comparison between M2 and M3. (b) M3: Prediction errors.

Figure 5.8: Likelihood comparison between model two and model three (5.8a). Prediction
errors plotted against E[exp(β0 +Bβ)] (5.8b top) and E[exp(ui)] (5.8b bottom) with a
trend line in red.

Figure 5.9 shows the continuously modelled aggregated claim frequencies. Both model
three and model five indicate that the regions west of the capital Brasilia and the regions
between Boa Vista and São Bento are high risk regions from a vehicle damage insur-
ance perspective. In Figure 5.10 the spatial resolution was increased from 0.1○ × 0.1○

[Long.×Lat.] (hereafter abbreviated as 0.1○) to 0.08○. A resolution of 0.1○ generates
72,129 grid elements, results in the exclusion of 154 municipalities, and takes approx-
imately 110 seconds for one training set to be fitted. A resolution of 0.08○ results in
112,402 grid elements, excludes 58 municipalities, and takes approximately 140 seconds
to fit. A resolution of 0.05○ was attempted, generating 238,678 grid elements × 3,259
regions = 777,851,602 elements in the integration matrix, and excludes only 4 municipal-
ities, but more than 16.1 gigabytes are needed to manipulate the matrix causing memory
shortage. The 154 municipalities that are not included in model three, which was used
in the 10-fold cross-validation, is deemed not to have affected the estimate of the spatial
effect, as can be seen in Figure 5.10, where the field is estimated with 0.08○ but does
not show too much different spatial structure compared to the fields in Figure 5.9 with a
resolution of 0.1○.
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(a) Model three. (b) Model five.

Figure 5.9: Comparison between model three and five for the aggregated claim frequencies.

Figure 5.10: Aggregated claim frequencies over Brazil with 55.83% more grid elements
used to discretise the GMRF in model three.
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(a) Model three. (b) Model five.

Figure 5.11: Comparison between model three and five for the geographic rating factors
γG evaluated at the municipality centroids.

Figure 5.11 displays the geographic rating factors γG evaluated at the municipality cen-
troids, and Figure 5.12 shows the node weights from model three and model five that
discretise the GMRF over a map of Brazil. It is apparent that the node weights X and
geographic rating factors γG are estimated similarly in both models.

(a) Model three. (b) Model five.

Figure 5.12: Comparison between model three and five for the node weights of the dis-
cretised GMRF.
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CHAPTER 6

Discussion

In this chapter the methodology used to implement the GLMM that models the aggregated
insurance claims for vehicle damages in Brazil is discussed, and the thesis is concluded by
summarising the main findings.

In this thesis a Bayesian MCMC sampling methodology has been used to estimate the
parameters of a GLMM that models aggregated insurance claims. The GLMM includes
a mixture of three effects which were sampled in three blocks. The MMALA imple-
mentation used in the second block is technically referred to as simplified MMALA by
Girolami and Calderhead, 2011. The unsimplified Riemann manifold Metropolis adjusted
Langevin algorithm (MMALA) requires an additional third order derivative term of the
log-likelihood w.r.t the parameters of the block to fully define the Brownian motion of the
Langevin diffusion on a Riemann manifold with a metric tensor defined by the observed
negative Fisher information. The third order term relates to changes in local curvature of
the manifold and reduces to zero if the curvature of the log-likelihood is constant every-
where (Girolami & Calderhead, 2011). The simplified MMALA still generates a proposal
process with local adaptation for the Brownian motion without the third order term, by
scaling the size of the Brownian motion w.r.t the local curvature of the log-likelihood, this
can be seen by looking at the variance of the transition kernel in equation (4.11). The
simplified MMALA in conjunction with the acceptance probability still define a correct
MCMC method that converges to the target distribution even if the curvature of the
manifold is not constant (Girolami & Calderhead, 2011).

The lack of mapping grid elements caused by the specified resolution of the integra-
tion grid which excludes regions with an area smaller than 120 km2, could potentially be
resolved by using a Dirichlet tessellation (Voronoi diagram). The Dirichlet tessellation
partitions the plane consisting of Brazil with its region centroids into convex polygons
such that each polygon contains exactly one centroid. The convex polygons for regions
smaller than the specified resolution could then be used as pixels to integrate the spatial
effect. This partition would then generate convex polygons for an additional 154 regions in
the data, and the total observed claims would increase to 875,864 claims from the current
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824,379 claims. The Dirichlet tessellation could also lead to a reduced time complexity
for the integration scheme.

The development of a spatial effect used in a GLMM derived from a GMRF is an at-
tempt to improve on existing prediction models for insurance claims. The geographic
rating factor derived from a GMRF has more relaxed requirements for the spatial data
used to infer the geographic rating factor than the requirements of the method presented
in (Tufvesson, 2016). An i.i.d lognormal effect was included to minimise overdispersion
and thus recover less biased regression coefficient estimates in the Poisson mixed effects
model. Failing to account for overdispersion in model one and two indicates to have in-
flated the estimates of the proportion of variance explained by the fixed effects, relative
to when the i.i.d lognormal effect was included, which is in line with the conclusions of
(Harrison, 2014). Ignoring overdispersion leads to reduced standard errors for the pa-
rameter estimates and narrower prediction intervals for the aggregated claims. Reduced
standard errors for the parameter estimates could be dangerous when estimating capital
requirements for an insurer, i.e. not accounting for excess kurtosis in the distribution of
the aggregated claims when determining the value at risk could lead to an undervaluation
of the value at risk. The need to account for excess kurtosis is nothing new and well
established, e.g. in the established collective risk model used to model aggregate claims,
the number of aggregated claims is given by a compound process, where: the number of
claims is Poisson distributed with a structure variable q that represents short-term fluc-
tuations which is assumed gamma distributed with equal parameters (Nino & Clemente,
2012), resulting in a NB2 model as demonstrated in section 3.2. In premium differentia-
tion, the application of individual risk models is important for pure premium calculation
in which the annual premium is increasingly determined according to the relevant individ-
ual characteristics of a policyholder (rating factors) (Valecký et al., 2017), the developed
geographic rating factor in this thesis can be used for this purpose.

Future research could look at extending the model to include discontinuities in the terrain
like water or other natural obstacles. This is a limitation of the current model since it
does not account for natural obstacles. Implementing the proposed model on other data
sets with different regions and different spatial scales will help to determine if the spatial
effect gives consistently better claim frequency predictions in all types of geographical
settings. A further extension of the model is to include temporal effects like seasonality.
Seasonality caused by various factors like weather or holidays could possibly generate
predictable patterns in the claim frequency levels. The GMRF used to model the claim
frequencies is assumed to be stationary with fix field parameters κx and τx. The station-
ary assumption means that the spatial correlation is assumed to be the same throughout
the domain. It is possible to consider a non-stationary GMRF by specifying spatially
varying field parameters κx(s) and τx(s). The non-stationary GMRF would account for
topographical variables (e.g., altitude, river, lakes, etc.) that might influence the spatial
dependence structure (Blangiardo & Cameletti, 2015, p. 197).

Summarising the findings; it is shown that the inclusion of a spatial effect yields better
predictions and the likelihood ratio test presented in section 5.4 shows that the potential
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gain becomes more significant for larger Poisson observations. For the predictor variable
selection, the Horseshoe priors shrunk rural and urban income levels, ratio of male resi-
dents, and number of households in the regions from which the geographic rating factor
was inferred from. The focus of the predictor variable selection was on optimal forecasting
to see if the spatial effect gave better predictions, hence the regression coefficient estimates
presented in Figure 5.1 need to interpreted with caution from an inferential point of view.
If two variables are highly correlated increases in one may be offset by decreases in another
so the combined effect is to negate each other. This can cause an important predictor to
become insignificant if it has a collinear relationship with other predictors. The results
presented in Table 5.2 give a more stable estimation for the possible causation of changes
in the claim frequencies caused by different principal component scores. The term pos-
sible causation is used as correlation does not imply causation. Especially model three
exhibit conservative fix effect estimates which could be caused by the spatial effect be-
ing a stronger optimiser of the latent model-likelihood causing the fix effect to be reduced.

In conclusion of the thesis; modelling reality is complex and involves a lot of uncer-
tainties. When there is uncertainty, risk can arise since risk does not exist by itself. To
manage the uncertainties when choosing predictor variables for what has been observed,
Horseshoe priors can be used. The inclusion of an i.i.d lognormal effect in the mixed
effects model, infers a greater and more correct aleatory uncertainty which refers to the
inherent uncertainty due to the probabilistic variability of the claim frequencies. And
lastly, the inclusion of a spatial effect derived from a GMRF in a Bayesian framework has
been shown to reduce epistemic uncertainty in claim frequency modelling.
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APPENDIX A

The Metropolis within Gibbs algorithm

In this section the Metropolis Hastings algorithm is first presented, then the Gibbs al-
gorithm is presented, and last the Metropolis within Gibbs algorithm is presented as a
combination of the two.

Let there be a probability distribution for the parameter β which is proportional to the
un-normalised probability distribution of β, i.e p(β) ∝ p̂(β), then the Metropolis Hastings
algorithm follows as

Algorithm 1: Metropolis Hastings algorithm

Result: A sample of the r.v β with size M from the un-normalised probability
distribution p̂(β) that is representative of the probability density
function p(β).

M=N+burn in
β(1) = β0 is some reasonable initial value
δ = δopt is chosen such that α ≈ 0.24 or α ≈ 0.57 if Langevin diffusion is used
for i = 1 to (M − 1) do

β∗ ∼ q(β∗∣β)

α = min{1, p̃(β∗)q(β(i)∣β∗)
p̃(β(i))q(β∗∣β(i))} if u ≤ α where u ∼ U(0,1) then

β(i + 1) = β∗

else
β(i + 1) = β(i)

end

end
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Appendix A. The Metropolis within Gibbs algorithm

For the Gibbs algorithm assume that there are two random variables A and B for which
the joint distribution P(A,B) is unknown but the conditional distributions P(A∣B) and
P(B∣A) are known. The Gibbs algorithm then starts by sampling (A0,B0) ∼ π(⋅) from
some probability distribution, which has support over the allowed values of A and B. The
Gibbs algorithm then iterates for M iterations and does the following: first it samples a
value Ai+1 from the conditional probability Ai+1 ∼ P(A∣Bi), then it uses this value of Ai+1

to define a conditional probability distribution of B and samples Bi+1, Bi+1 ∼ P(B∣Ai+1).

Algorithm 2: Gibbs algorithm

Result: A sample of size M from the conditional probability densities P(A∣B)

and P(B∣A) that represents the joint probability density P(A,B), i.e.
fA,B(a, b).

M=N+burn in
A(1) = A0

B(1) = B0

for i = 1 to (M − 1) do
Ai+1 ∼ P(A∣Bi)

Bi+1 ∼ P(B∣Ai+1)

end

The Gibbs algorithm could be viewed as a Metropolis Hastings algorithm with a 100
percent acceptance rate.

It is often convenient to consider combinations of the Gibbs and the Metropolis Hastings
algorithm when some blocks of a target distribution has a tractable conditional posterior
whereas for other blocks the conditional posterior is intractable. This combination yields
the Metropolis within Gibbs algorithm (Hybrid MCMC) which is performed by the
following steps:

• Divide the target distribution into blocks and aim for Gibbs sampling.

• If the conditional distribution of a block is known, update according to Gibbs.

• If there are blocks for which we cannot find a closed form of the conditional distri-
bution, insert a MH-step instead.
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APPENDIX B

The acceptance rate for MMALA

From equation (4.11) we get the MMALA transition kernel for the proposals β∗ given the
current state β as

q(β∗∣β) =MVN(
K

2
∇logπ(β)δ +β, Kδ), (B.1)

where the preconditioner is set to the observed negative Fisher information K−1(β) =

−∆logπ(β) derived in appendix B.1.

The probability density function for a multivariate normal distribution parametrised with
the precision matrix Q(β) = Σ(β)−1 is

MVN(β∗;µ(β),Q(β)) =

√
∣Q(β)∣

√
(2π)d

exp( −
1

2
(β∗ −µ(β))

T
Q(β)(β∗ −µ(β))). (B.2)

For the MMALA the resulting mean and precision for the proposal β∗ thus depend on
the current state β as

µ(β∗) = β +
δ

2
K(β)−1∇logπ(β) (B.3)

Q(β∗) =
1

δ
K(β). (B.4)

The correction factor then becomes

q(β∣β∗)

q(β∗∣β)
=

√
∣P (β∗)∣ exp( − 1

2δ
(β −µ(β∗))

T
P (β∗)(β −µ(β∗)))

√
∣P (β)∣ exp( − 1

2δ
(β∗ −µ(β))

T
P (β)(β∗ −µ(β)))

(B.5)

The quota of the probabilities from the stationary distributions from the first block in
section 4.1 multiplied with the correction factor (B.5) then gives the acceptance rate for
the MMALA

αacc(β
∗,β) =

π(β∗)q(β∣β∗)

π(β)q(β∗∣β)
, (B.6)
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Appendix B. The acceptance rate for MMALA

where the proposals are drawn using the Cholesky factorisation of (B.4)

β∗ = µ(β∗) +R(β∗)−1ε, ε ∼MVN(0,I) (B.7)

R(β∗) = chol(Q(β∗)). (B.8)
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Appendix B. The acceptance rate for MMALA

B.1 Derivation of ∇L(β)

In this section the gradient of the log-posterior w.r.t the regression coefficents is derived.
Its purpose it to propose new parameters that maximise the likelihood in an efficient
manner in the MMALA algorithm.

Let

L(β) ∶∝ log{P(β∣Y ,λβ, τβ)}. (B.9)

L(β) = log
⎛

⎝
(
Nobs

∏
i=1

ηyii ⋅ exp(−ηi)) ⋅ exp(−
1

2
βTΛβ)

⎞

⎠
. (B.10)

= (
Nobs

∑
i=1

yi ⋅ log(ηi) − ηi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∝ Poisson part

−
1

2
(βTΛβ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∝ HS regularisation part

). (B.11)

η = exp(Bβ + log(FA ⋅ exp(X)) + log(E)). (B.12)

Define a constant w.r.t β, consisting of the spatial field and the offset as

cβ[Nobs×1] ∶= exp(log(FA ⋅ exp(X)) + log(E)) (B.13)

Then η = cβ ⊙ exp(Bβ), where ⊙ is the Hadamard (elementwise) product.

Define inner function g(β) =Bβ and apply the chain rule to the Poisson part.

∂lPo

∂β [1×Nβ]

=
∂lPo

∂η [1xNobs]

⋅
∂η

∂g [Nobs×Nobs]

⋅
∂g

∂β [Nobs×Nβ]

∂lPo

∂η
=
∂

∂η

⎛

⎝

Nobs

∑
i=1

yi ⋅ log(ηi) − ηi
⎞

⎠
=
Nobs

∑
i=1

(Y ⊘ η − 1)
i
,

(B.14)

where ⊘ is the Hadamard (elementwise) division.

∂η

∂g
=
∂

∂g

⎛

⎝
cβ ⊙ exp(g)

⎞

⎠
= cβ ⊙ exp(g). (B.15)

∂g

∂β
=
∂

∂β
(Bβ) =B. (B.16)

∂η

∂β
=
∂η

∂g
⊙
∂g

∂β
= cβ ⊙ exp(g) ⊙B. (B.17)

∂lPo

∂β
=
∂lPo

∂η
⋅
∂η

∂β
= (Y ⊘ η − 1)

T

⋅ cβ ⊙ exp(g) ⊙B. (B.18)

Equation (97) in (Petersen, Pedersen, et al., 2008) gives the Jacobian for the HS regular-
isation part.

∂lHS

∂β
=
∂

∂β

⎛

⎝
−

1

2
βTΛβ

⎞

⎠
= −

1

2
(Λ +ΛT

)β = −Λβ. (B.19)
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with the last step due to Λ being a diagonal matrix. Combining the Poisson with the HS
regularisation part gives,

∇l(β) =
∂lPo

∂β
+
∂lHS

∂β
=
⎛

⎝
(Y ⊘ η − 1)

T

⋅ cβ ⊙ exp(βT )
⎞

⎠

T

−Λβ. (B.20)

B.2 Derivation of ∆L(β)

In this section the observed negative Fisher information −∆L(β) of the log-posterior w.r.t
the regression coefficents is derived. Its purpose is to define the Langevin diffusion on a
Riemann manifold which allows for local adaptation of the proposal in the negative-log-
posterior space.

Let

∆L(β) ∶∝
∂2

∂βiβj
log{P(β∣Y ,λβ, τβ)}. (B.21)

We earlier derived that,

∂

∂β
L(β) =

⎛

⎝
(Y ⊘ η − 1)

T

⋅ cβ ⊙ exp(βT )
⎞

⎠

T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Poisson part

− Λβ
°

HS regularisation part
(B.22)

Expanding the Poisson part gives

∂2LPo

∂βi∂βj
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2LPo

∂β1∂β1
⋯

∂2LPo

∂β1∂βn

⋮ ⋱ ⋮
∂2LPo

∂βn∂β1
⋯

∂2LPo

∂βn∂βn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.23)

And expanding one second order partial derivative.

∂2LPo

∂βi∂βj
=

∂

∂βi
((1 − c1exp(g1))B1,j + ... + (1 − cnexp(gn))Bn,j)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∂LPo/∂βj

=

−c1exp(g1)B1,jB1,i − ... − cnexp(gn)Bn,jBn,i.

(B.24)

The elements of the Hessian for the Poisson part thus become

∂2LPo

∂βi∂βj
= −

Nobs

∑
k=1

([cβ ⊙ exp(Bβ)]k ⊙Bkj ⊙Bkj), (B.25)

and the HS regularisation part becomes

∂2LHS

∂βi∂βj
=

∂

∂βi
([−Λβ]j) = −Λij. (B.26)
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Finally, combining the Poisson with the HS regularisation part gives,

∆L(β)ij =
∂2LPo

∂βi∂βj
+
∂2LHS

∂βi∂βj
= −

Nobs

∑
k=1

([cβ ⊙ exp(Bβ)]k ⊙Bkj ⊙Bki) −Λij, (B.27)

or equivalently put

−∆L(β) =BT
⋅ (cβ ⊙ exp(Bβ) ⊙B) +Λ. (B.28)

61



Appendix B. The acceptance rate for MMALA

62



APPENDIX C

The acceptance rate for pCNL

The pCNL discretises the linear part of the NLP ∇ΦGMRF(X(t)) (4.13) in the following
way

∇ΦGMRF(X(t)) ≈
1

2
(∇ΦGMRF(X(t + δ)) + ∇ΦGMRF(X(t))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Central difference

) (C.1)

This yields the following discretisation of the SDE (4.12)

X(t + δ) −X(t) =

−K

2
(∇ΦPo(X(t)) +

1

2
(QX(t + δ) +QX(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Central difference

)) δ +
√
K(W(t + δ) −W(t)) (C.2)

Solving for X(t + δ) yields

(I +
δKQ

4
)X(t + δ) = −

K

2
(∇ΦPo(X(t)) +

QX(t)

2
)δ +X(t) +

√
K(W(t + δ) −W(t))

(C.3)

X(t + δ) = (I +
δKQ

4
)
−1

[ −
K

2
(∇ΦPo(X(t)) +

QX(t)

2
)δ +X(t) +

√
K(W(t + δ) −W(t))]

(C.4)

63



Appendix C. The acceptance rate for pCNL

Now using K =Q−1

X(t + δ) =
4

4 + δ
[ −

Q−1

2
(∇ΦPo(X(t)) +

QX(t)

2
)δ +X(t) +

√

Q−1
(W(t + δ) −W(t))]

(C.5)

=
1

4 + δ
( − 2Q−1

∇ΦPo(X(t))δ −X(t)δ + 4X(t) + 4
√

Q−1
(W(t + δ) −W(t)))

(C.6)

E[X(t + δ)] =
1

4 + δ
( − 2Q−1

∇ΦPo(X(t))δ + (4 − δ)X(t)) (C.7)

V [X(t + δ)] = 16Q−1δ. (C.8)

which implies sampling from

X i+1 ∼MVN
⎛

⎝

1

4 + δ
( − 2Q−1

∇ΦPo(X i)δ + (4 − δ)X i), 16Q−1δ
⎞

⎠
. (C.9)

For the pCNL only the resulting mean for the proposal X∗ thus depend on the current
state X as

µ(X∗
) =

1

4 + δ
( − 2Q−1

∇ΦPo(X)δ + (4 − δ)X) (C.10)

which gives the correction factor

q(X ∣X∗
)

q(X∗
∣X)

=
exp( − 1

32δ
(X −µ(X∗

))
T
Q(X −µ(X∗

)))

exp( − 1
32δ

(X∗
−µ(X))

T
Q(X∗

−µ(X)))
. (C.11)

The quota of the probabilities from the stationary distributions from the second block
in section 4.1 multiplied with the correction factor (C.11) then gives the acceptance rate
for the pCNL

αacc(X
∗,X) =

π(X∗)q(X ∣X∗)

π(X)q(X∗
∣X)

, (C.12)

where the proposals are drawn using the Cholesky factorisation

X∗
= µ(X∗

) +R(X∗
)−1ε, ε ∼MVN(0,I) (C.13)

R(X∗
) = chol(Q). (C.14)
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C.1 Derivation of ∇Φ(X)

The Φ(X) function goes by many names; the function maps the negative-log-posterior
space from the parameters of the model. In a Hamiltonian setting it is referred to as
the potential and in machine learning it goes under the name ”loss function”. In this
section it will be referred to as the negative-log-posterior (NLP). Below the gradient of
the NLP w.r.t the node weights, X is derived. Its purpose is to give new proposed param-
eters that maximise the likelihood for our observations and is used in the pCNL algorithm.

Let

Φ(X) ∶∝ −log{P(X ∣Y , κx, τx)}. (C.15)

Φ(X) = −log
⎛

⎝
(
Nobs

∏
i=1

ηyii ⋅ exp(−ηi)) ⋅ exp(−
1

2
XTQX)

⎞

⎠
. (C.16)

= −(
Nobs

∑
i=1

yi ⋅ log(ηi) − ηi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∝ Poisson part

−
1

2
(XTQX)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∝ Latent GMRF part

). (C.17)

η = exp(Bβ + log(FA ⋅ exp(X)) + log(E)). (C.18)

Define constant w.r.t X, consisting of the fix effect, offset and pixel mapping as

cx[Nobs×Nx] ∶= exp(Bβ + log(E)) ⊙FA, (C.19)

where ⊙ is the Hadamard (elementwise) product.

Then then linear predictor can be written as

η = cx ⋅ exp(X). (C.20)

Apply the chain rule to the Poisson part.

∂ΦPo

∂X [1×Nx]
=
∂ΦPo

∂η [1×Nx]

⋅
∂η

∂X [Nobs×Nx]
(C.21)

∂ΦPo

∂η
=
∂

∂η

⎛

⎝

Nobs

∑
i=1

ηi − yi ⋅ log(ηi)
⎞

⎠
=
Nobs

∑
i=1

(1 −Y ⊘ η)
i
, (C.22)

where ⊘ is the Hadamard (elementwise) division.

∂η

∂X
=

∂

∂X

⎛

⎝
cx ⋅ exp(X)

⎞

⎠
= cx ⊙ exp(XT

). (C.23)

∂ΦPo

∂X
=
∂ΦPo

∂η
⋅
∂η

∂X
= (1 −Y ⊘ η)

T

⋅ cx ⊙ exp(XT
). (C.24)
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Using equation (97) in (Petersen, Pedersen, et al., 2008) gives the Jacobian for the latent
GMRF part.

∂ΦGMRF

∂X
=

∂

∂X

⎛

⎝

1

2
XTQX

⎞

⎠
=

1

2
(Q +QT

)X =QX. (C.25)

The last step follows since the precision matrix Q is symmetric. Finally, combining the
Poisson with the GMRF part gives,

∇Φ(X) =
∂ΦPo

∂X
+
∂ΦGMRF

∂X
=
⎛

⎝
(1 −Y ⊘ η)

T

⋅ cx ⊙ exp(XT
)
⎞

⎠

T

+QX. (C.26)
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APPENDIX D

The conditional posterior for the latent model

The derivation of the conditional posterior for the latent model P(⋅∣Y ) given the obser-
vations Y follows below, where ⋅ denotes the conditioning on all other parameters of the
model .

Using the property of conditional probability; the prior distribution P(⋅) and the sampling
distribution P(Y ∣⋅) describes the joint probability probabilities as

P(⋅,Y ) = P(⋅)P(Y ∣⋅) (D.1)

yielding Bayes theorem (Bayes, 1763; Gelman et al., 1995)

P(⋅∣Y ) =
P(⋅,Y )

P(Y )
=
P(Y ∣⋅)P(⋅)

P(Y )
(D.2)

using the properties form above; a hierarchical breakdown of the model introduced in
section 3.6 gives the conditional posterior as

P(X,β,λβ, τβ, κx, τx, ξ,v, q, αv,mv, ψ1∣Y )

=
P(X,β,λβ, τβ, κx, τx, ξ,v, q, αv,mv, ψ1,Y )

P(Y )

=
P(X,β,λβ, τβ, κx, τx, ξ,v, q, αv,mv, ψ1) ⋅ P(Y ∣X,β,λβ, τβ, κx, τx, ξ,v, q, αv,mv, ψ1)

P(Y )

(D.3)
Where some conditional dependencies and joint distributions cancel due to the speci-
fied hierarchy in figure 3.5 yielding the conditional posterior for the latent model up to
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proportionality

P(X,β,λβ, τβ, κx, τx,ν, ξ,v, q, αv,mv, ψ1∣Y )

∝ P(Y ∣X,β,λβ, τβ, κx, τx,ν, ξ,v, q, αv,mv, ψ1)

⋅P(X ∣κx, τx) ⋅ P(β,v∣q,αv,mv,λβ, τβ,ν, ξ, ψ1)

⋅P(λβ ∣ν) ⋅ P(τβ ∣ξ) ⋅ P(q∣αv,mv) ⋅ P(κx, τx) ⋅ P(ν) ⋅ P(ξ)

∝
n

∏
i=1

ηyii exp(−ηi) ⋅ exp(−
1

2
β̂
T
Λ̂β̂) ⋅ exp(−

1

2
XTQX) ⋅

p

∏
i=1

ν
−1/2
i λ

−3/2
βi

exp(−
1

νi ⋅ λβi
)

⋅ξ−1/2τ
−3/2
β exp(−

1

ξ ⋅ τβ
) ⋅

1

b̂âΓ(â)
qâ−1exp(

−q

b̂
),

(D.4)

where

â = αv +
n

2
, b̂ =

1

mv +
1
2

n

∑
i=1
v2
i

, β̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v
β0

β

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, and Λ̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

I ⊙ q 0 0
0 ψ−1

1 0
0 0 Λ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (D.5)
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