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Abstract 

In a GIS system, the need to encode geospatial data without standardized cartographic 
representations, such as population data, weather information, etc., on top of a map is common. 
This can be done with a layer on top of a base map, with the effect that the base map is partially 
or fully hidden. Reducing the opacity (or its equivalent - increasing the transparency) of this 
overlay data layer is a frequently seen solution to show the geographic context. With the colours 
of the base map being combined with the overlay layer’s colours, the resulting visualization 
can become difficult to interpret for the end-user.  

To help the user decode the values encoded in maps, legends are a common tool for non-
interactive maps and data visualizations. This user study investigates the decoding accuracy 
using a map without a legend, as well as 4 different legend designs for opacity-mapped data 
overlayed on a static base map. A secondary objective is to measure how helpful the users 
considered the different legend designs were to decode values.  

Baseline categories for comparison were (i) no legend - only having the range of the data values 
being expressed in text and (ii) a legend design imitating the ArcGIS legend for opacity data 
mapping.  

Three different legend designs were produced to introduce more contextualisation from the 
map background to the background of the legend and reducing the distance from the legend to 
the data. This was done using (iii) a sample of the map as background for the legend (iv) having 
the most common colours of the map base layer as legend background (v) attaching a legend 
directly to the edge of the overlay data area.  

Using a web interface, the users were requested to visually estimate the value at the location of 
a marker within the overlay data area. In statistical analysis of the results, there was clear 
statistical effect in reduced errors when having a legend compared to when no legend was 
included. There was, however, no statistically significant difference in estimation/perception 
errors between the legend designs tested.  

The acceptance of respondents - defined as how useful they considered the legend types were 
to help estimate the value - did have statistically higher estimates when sampling the map 
background (marked as iii when introduced in text above) and when attaching the legend to the 
data area (v) compared to the default ArcGIS design (i).  

Keywords: GIS, Data Visualisation, Legends, Opacity, Transparency, Visual Data Encoding, 
Perception  
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1 Introduction 

1.1 Opacity/transparency in GIS visualizations  

Having a base map for geographic context and the need to visualize other geospatial 

data as an overlay layer on top of that geographic context results in the background 

being partly or fully concealed. To show part of the geographical context, a common 

method is to reduce the opacity of the overlay data layer. This is also sometimes referred 

to as increasing the inverse of opacity; transparency. 

Ware (2020) highlights some issues of using low opacity layers in his seminal work on 

information visualization. In particular, he describes that colours and objects that the 

user perceives become composites of the merged layers: 

In many visualization problems, it is desirable to present data in a layered 

form. This is especially common in geographic information systems (GISs). 

So that the contents of different layers are simultaneously visible, a useful 

technique is to present one layer of data transparently over another; 

however, there are many perceptual pitfalls in doing this. The contents of the 

different layers will always interfere with each other to some extent, and 

sometimes the two layers will fuse perceptually so that it is impossible to 

determine to which layer a given object belongs (Ware, 2020, p. 217). 

An illustrative example of how choosing lower opacity can show more of the base map, 

while higher opacity can make the geographic context difficult to see can be found in 

Figure 1. In this figure, the same data is mapped to 2 different ranges of opacity values. 

Figure 1a has the data mapped between opacity values of 0.2-0.6, while Figure 1b starts 

at 0.6 and ends at fully opaque (0.6-1.0). With the low opacity, there is more of the base 

layer colour influencing the colour that is displayed to the user, which in turn could 

make decoding the data more difficult. 
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(a) Opacity mapping 0.2-0.6 

 
(b) Opacity mapping 0.6-1.0 (1.0=fully opaque) 

Figure 1: Low and high opacity overlay examples 
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This difficult decoding task can be made easier by interaction in web-based GIS 

systems. In those systems, a user can interact with the visualization to get values from 

e.g. tooltips on hover of the mouse over parts of the map. For static visualizations and 

on touch-screen devices (such as smartphones or tablets) mouse-hovering is not 

possible. A legend is therefore often used both in interactive and static web-GIS 

visualizations. 

This study aims to look at the efficiency of legend designs in visual opacity-to-value 

decoding tasks. The study also investigates which of 4 legend designs the participants 

of the study perceive as most helpful in the decoding task. 

This is done using a web-based graphical user interface. With this interface as a data-

gathering tool, a group of people with medium to high previous experience using map 

services were asked to estimate the value of a marker when shown examples that were 

using different legend designs. 

A user study was chosen due to being able to capture the responses of participants in a 

controlled environment. The user study is an umbrella term for the process of 

understanding the impact of design choices on an audience. This may have qualitative 

(attempts to measure the results through collecting quantitative data) and quantitative 

parts (e.g. interviews), but for this study both the estimation tasks and acceptance 

questions are handled through quantitative means. It would be possible to get more 

responses by publishing it on the Internet than to observe and measure user responses 

while having the author of the study present in the room. However, to collect clean data 

it was it was considered useful to ask the participants if the task was fully understood 

before starting the data decoding and user acceptance survey tasks. These decisions 

were made during a testing phase, where some testing subjects did not bother to read 

the instructions, and did not make use of the legends during the decoding task until after 

going through a few of the examples. 

Additionally, with a smaller group of participants (34 in this study, in the age range 

between 25-50), you can also easily collect responses on the impressions of the legend 

designs. In comparison to more qualitative methodologies, such as in-depth interviews, 

you can get standardized and measurable results. The choice of a user study does come 

with some caveats in what population the chosen sample of users is expected to be 

representative of. For this study, having users with some familiarity with reading maps 
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or at least being heavily exposed to maps through navigation applications were chosen 

to ensure that common map elements and representations were familiar. 

The legend design of the enterprise GIS company Esri’s “ArcGIS online” tool (ESRI, 

n.d.a, n.d.b) was together with the absence of a legend used as baselines to evaluate 

alternative legend designs against. 

ESRI’s “ArcGIS Online” examples (ArcGIS, n.d.a, n.d.b) using transparency are 

showing a legend that has a checkered background with white and mid-grey values 

(Figures 2a and 2b). This legend representation of transparency lacks any context of the 

visualization’s base layer/map and is always displayed as a checkered mid-grey 

background under the opacity mapping.  
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(a) Opacity data mapping and legend with colour scale, highlighted with a red bounding box 

 
(b) Opacity data mapping and legend, highlighted with a red bounding box 

Figure 2: ArcGIS opacity legend and data mapping (ArcGIS, n.d.a., n.d.b)  
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1.2 Research questions  

• RQ1 - Do legends increase the accuracy of decoding opacity-mapped values 

over knowing only the range of the data being mapped (i.e. when no legend is 

included)? 

• RQ2 - How is decoding accuracy affected by legend designs that introduce 

more context from the base map or reduce the distance from legend to opacity-

encoded data? 

• RQ3 - Do subjects perceive legend designs with more context from the base 

map as more helpful in decoding opacity mapped values? 

• RQ4 - How are decision times and user selection behaviour affected by legend 

designs? 

1.3 Limitations 

The study looks at static 2D maps with not chance for interaction to ensure only the 

legend could be used to decode the values. Most web-based maps these days have some 

mechanism for interaction. 

The base map was kept constant and using only one colour scheme that was very close 

to the commonly used map cartographic representation of e.g. Google maps. The results 

may differ if having an opacity layer on top of simpler base map with less colours and 

details, or more details as when having satellite images as the base layer. 

The opacity data layer was continuous, where each pixel has a slightly different opacity 

data value compared to the neighboring pixels. It is common to have larger polygons 

with the same data value, which may be easier for the user to decode. 

The sample of the study focused on people with some previous experience with web-

based maps, which may limit the external validity for the general population that may 

be less used to using map elements such as legends. 

Lastly, the tested designs were created by the author of the study, and there may be 

alternative designs which are more optimal. 
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1.4 Disposition  

Section 2. Background provides contextualization and a walk-through of related 

literature. Section 3. Methodology describes the legend designs used in the study as 

well as how the collected data was analyzed. 4. Results includes summary statistics, 

key results and robustness tests, which are elaborated upon in section 5. Discussion. 

Section 6 concludes the thesis. 
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2 Background 

The ubiquity of web mapping and the increased ease of creating customized maps for 

distribution on the web makes online maps a part of most people’s daily life. Panko 

(n.d.) estimates that 77% of smartphone owners regularly use navigation apps, where 

map visualizations are a key part of every interface. Google maps had over one billion 

monthly users in 2014, representing 41% of Internet users worldwide (Veenendaal et 

al., 2017). According to a site measuring the presence of different web technologies 

online, maps were present in around 25% of the top 100,000 sites in July 2021, of which 

Google maps accounted for 74% (BuiltWith, n.d.). In the list of frequently used map 

technologies, there are also other alternatives, such as MapBox, ArcGis, and Leaflet.js. 

It is not easy to customize the base map that comes from centrally controlled servers, 

resulting in the use of colour scales and semi-transparent heat map visualizations as a 

way to add data to map visualizations. 

This frequent exposure to maps creates a multiplying effect in the exposure of even less 

frequently seen map types in terms of impressions (how many people see even less 

common visualizations). Lower opacity visualizations1 are suitable for visualizations 

of e.g. high-impact events such as typhoons/hurricanes. There are very few previous 

studies on the perception accuracy of such map designs as will be outlined in section 

2.1. 

2.1 Related studies 

Literature that intersects with the scope of this study can be found in a few different 

research fields. 

In the area of perception and data visualization studies, there is a long history of low-

level studies measuring the ability of humans to correctly perceive visual data 

encodings, such as position, length, angle, circle area, hue, etc. (Cleveland and McGill, 

1985). 

 
1 mapping of data directly to opacity or mapping of data to other channels, such as a colour scale in 
combination with lowered opacity to reduce occlusion. 
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There are also studies on perception effects from context, such as luminosity perception 

of a grey area depending on surrounding areas (Adelson, 1993). For higher-level tasks, 

Tufte (2001) exemplifies attempts to bring these smaller encodings together to describe 

good data visualization practices. This corpus of literature usually tries to create design 

guidelines and best practices for data visualizations. 

These efforts to quantify design choices and data encoding methods have been 

criticized, where e.g. Muzner (2013) describes a gap between these low-level tasks and 

high-level tasks in the data visualization literature. In recent years, researchers have 

commonly attempted to bridge the gap towards other scientific areas (Kim et al., 2019, 

2017), incorporating mental models, uncertainty, and Bayesian prior beliefs of subjects 

into the perception task. The goal in this literature is to bridge the combination of the 

lower-level tasks and relate them to efficient user experiences through e.g. preattentive 

processing - meaning differentiating objects of interest to the viewer by giving it 

different encoding (e.g. giving data points of interest emphasis by encoding them in 

different colours than the other data points) (Findlay and Gilchrist, 1998; Treisman, 

1985; Wolfe and Horowitz, 2004). 

A similar discourse is also present in the field of map visualizations. Cognitive 

cartography blends the fields of cognitive methods with how maps are used. This cover 

perception of e.g. colours, the need for users to keep information in their long term or 

working memory. The way this has commonly been studied through low-level 

identification and decoding tasks and creating a controlled environment, where subjects 

may not interact with maps in a similar way they would outside of the experimental 

setting has been criticized, as for the larger literature on data visualization outline above 

(Montello, 2002). 

Studies that cover transparency directly or indirectly for 2D data visualization are rare. 

Jo et al. (2019) briefly mentions opacity: 

To scale scatterplots, several approaches have been proposed, such as 

adaptive opacity [15, 30, 32] and aggregation [13, 53]. However, adaptive 

opacity does not scale well with the number of categories since multiple 

categorical colors become ambiguous when blended[..]. 
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For map and perception studies, colour choices in a cartographic context is a large 

corpus, with Brewer (2006) having provided colour palette tools from studying the use 

of colour schemes from a cartographic/GIS perspective. These online tools help in 

creating suitable colour scales taking into consideration factors such as contrast, 

usability for people with colour blindness, etc. (Harrower and Brewer, 2003). The 

colour schemes/palettes provided by the tool have been extensively used also in other 

data visualization fields outside of map-making. 

Brewer (1997) have also studied the use of colour scales, which is an alternative to 

using only a single colour as in this study. Brewer (1997) states that “Cartographers 

have long discouraged the use of spectral, or rainbow, color schemes on thematic maps 

of quantitative geographic data, though such color use is common in GIS and scientific 

visualization,” but goes into detail on how spectral schemes can be useful if designed 

with care. 

This level of care is always required when choosing multiple colours to encode data, as 

the distance between different colours is perceptually ordered only for short sections, 

but not for the full colour spectrum. Ware (2020) exemplifies the issue: 

This can be demonstrated by the following test. Give someone a series of gray 

paint chips and ask them to place them in order. They will happily comply 

with either a dark-to-light ordering or a light-to-dark ordering. Give the 

same person paint chips with the colors red, green, yellow, and blue and ask 

them to place them in order, and the result will be varied. For most people, 

the request will not seem particularly meaningful. (Ware, 2020, p. 128). 

Nevertheless, colour is one of the most common ways to encode and communicate 

information in maps and other visualization types, and the design of colour schemes for 

different use cases is a field where many variations and use cases are studied. In the 

greater literature on how to represent uncertainty in maps (e.g. Cheong et al., 2016; 

Leitner and Buttenfield, 2000), there is also attempts at creating dedicated colour 

schemes, as in Seipel and Lim (2017)’s study on the effectiveness of colour schemes 

when assessing flood risk using maps. 

Colours and transparency interact by definition, as the output per pixel is a calculated 

composite of the colour of the transparent object and the colour of the items behind 
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(Porter and Duff, 1984). In the context of 3D models, and the ability to perceive objects 

clearly this is a major and well-studied problem. Seipel et al. (2020) have shown that 

for 3D models, distinct colours (evaluated using not only hue, but also perceptual 

properties) when fully opaque becomes difficult to distinguish when transparency is 

increased due to colour blending. 

Other studies have looked at transparency/opacity more generally in distinguishing 

objects in 3D scenes, finding that reducing the transparency number of levels in the 

scene can help users in identification tasks (Wang et al., 2017). 

Targeted literature on legends is often highly tied to different visualization types. In a 

walk-through of proper data visualization practices, Evergreen and Metzner suggest 

that there is clear importance of data-proximity of legend usage and placement: 

Because human eyesight has only a narrow range of focus, graphics should 

be placed very near their associated text (Malamed, 2009; Ware, 2012). […] 

if a legend is required in the visualization, it should be so near the 

corresponding data points that no eye movements are needed to relate the 

two. (Evergreen and Metzner, 2013). 

A large part of the literature studying legends in the context of maps has a clear design 

focus. Peterson (1999) introduced an interactive legend that allowed users to make 

changes to the map through the legend interactions, finding that users can get a better 

understanding of maps through the interactions. Other design studies have looked at 

fairly narrow questions related to legend designs for maps. Examples of such design 

studies have been using additional diagrams in combination with classic legends as a 

supplement to choropleth maps (Chien et al., 2019; Cromley and Cromley, 2009; 

Cromley and Ye, 2006), and in other cases substituting the legend for a frequency 

histogram altogether (Kumar, 2004). 

In a more holistic view on legend usage/design within web GIS, Cybulski (2016) 

analyzed if animated maps that are published on the internet have designs that follow 

long-established guidelines within cartography. Cybulski (2016) finds that these maps 

do follow the guidelines in general, but also that they are adapting to new technologies 

and user circumstances. 
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No intersection between legends and transparency, either in GIS-context or elsewhere, 

has been found in the literature review. This is largely supported in the literature study 

“Grouping Rules for Effective Legend Design” by Qin and Li (2017) that aimed to find 

whether there were cartographic rules for effective legend designs “[…]it is found that 

only one study was dedicated to the building of cartographic rules for effective legend 

design”. 

Kiik et al. (2017) evaluates some visualization alternatives in the cartographic design 

of polygons, transparency being one of the alternatives, together with 

outlines/boundaries, hatches (texture within the polygons) and icons. The results with 

examples of multiple polygons the hatches design was more effective along many of 

the metrics gathered using eye-tracking technology, but the transparency design was 

preferred by most of the subjects. Kiik et al. (2017)’s study used multiple overlayed 

polygons with low opacity in their examples, creating a colour blending effect between 

the polygons. 
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3 Methodology  

Four different map legend designs, as well as a version without legend, were generated 

and then shown to respondents through a web user interface. Using this interface, the 

task for the respondents was to estimate the value of the opacity-mapped overlay at the 

location of a marker. 

The generation of the examples allowed all parts of the designs apart from the legends 

to be kept constant. This was done to control the exposure to the treatment (different 

legend designs, or absence of legends). 

3.1 Legend design and generation  

3.1.1 Legend design types  

The map designs were all static 2D maps shown using web technologies. The subjects 

were shown different legend designs and were asked to estimate the value at the 

location of a marker. The data was represented as a spatially distributed phenomenon 

mapped to opacity in a polygon overlaid on a base map, as in the ArcGIS online maps 

described in section 1.1. 

The 4 legend designs and the version without legend, are presented below, together 

with some justifications – where all legends and data mappings are linear in the 

opacity/alpha channel. This ought to introduce fewer complications than data-encoding 

using colour channels due to a linear encoding of the alpha/opacity-channel in the 

RGBA-model2: 

It’s worth pointing out that unlike the color components which are often 

encoded using a non-linear transformation, alpha is stored linearly – 

encoded value of 0.5 corresponds to alpha value of 0.5 (Ciechanowski, 2019) 

Baseline 1 No legend [”Headline” in tables], (Figure 3a) - Only having a title 

indicating the range of values. Used to test the correctness of visual decoding by 

 
2 RGBA = Red, Green, Blue, Alpha  
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subjects without legend. Used as the first and last example in the progression presented 

to the subjects. 

Baseline 2 – ArcGIS Legend Imitation [”Checkered” in tables], (Figure 3b)  - The 

design is used as a baseline for models that explore if alternative legend choices are 

helping in decoding values compared to the current “industry standard.” 

One likely downside making it more difficult for subjects to accurately decode the data 

values is the lack of background context in the legend, i.e. the colours in the legend do 

not interact with a coloured background as it does in the visualization. The remaining 

legend design types are all designed to combine the map base-layer background 

information into the legend. 

Legend with sampled context [”Sampled” in tables], (Figure 3c) - Sampling a 

rectangular area of the base layer as background to the opacity mapping in the legend. 

Legend with clustered colour bands [”Clustered” in tables], (Figure 3d) - Using the 

most common colours in the base layer as a background for the legend. In the Clustered 

legend design, the 10 most common colours of the background map3 were displayed as 

strips/columns in a vertical manner behind the opacity data mapping. This way the most 

prevalent colours in the map provide a context for data-encoding in the legend. 

Annotated Outline [”Annotated” in tables], (Figure 3e) - The legend placement may 

heavily affect the users’ ability to keep the information in near memory while moving 

the eyes back and forth between visualized data and the legend. In an attempt to move 

the information closer to the data an outline legend was placed next to the data polygon. 

The legend is contextualized by having the legend opacity viewed directly on top of the 

base map layer. 

 

 
3 Using kMeans clustering algorithm implementation in the base R language, was used to extract 10 
”colour centers” representing common colours in the base map.  



 

 

 
(a) Baseline 1 - No legend [”Headline”] 

 
(c) sampled context [”Sampled”] 

 
(b) Baseline 2 – ArcGIS Imitation [”Checkered”] 

 
(d) clustered colour bands [”Clustered”] 

 
(e) Annotated Outline [”Annotated”] 

 
Figure 3: Visualization legend types and design with no legend (enlarged legend for 

clarity, highlighted in blue) 

 



 

 

3.1.2 Map example design and generation  

Several layers and elements were produced for the sample map images4. These building 

blocks of the example maps are described below.  

Base Map - The Javascript library OpenLayers5 was used to download a background 

map to a large6 HTML5 Canvas element (web-browser raster-API). The area was 

chosen arbitrarily as Greenwich, London. The zoom level for the map was chosen 

manually to get an area with a diverse set of background colours representing water, 

buildings, and other infrastructure. 

Opacity Data Layer - In order not to have respondents making use of pre-existing 

knowledge or assumptions, continuous data was generated using simulated Perlin-noise 

(Perlin, 1985)7. The Perlin-noise family of algorithms are an alternative to other ways 

to generate data, such as using random noise, pure trigonometrical functions or 

statistical distributions. Due to the unpredictable and highly natural look of Perlin-

noise, it is commonly used in computer-generated imagery (e.g. in computer-generated 

art and in video games). 

All generated data were normalized to have the lowest value to be 0, and the highest 

being 100. 

Two different types were generated: one using pure Perlin noise within the area (see 

Figure 4a), and the other one using “fall-off”: having higher data values in the center 

of the data area, with decreasing values towards the edges (Figure 4b). 

 
4 All code available at https://github.com/Tille88/thesis-map-generation 

5 ttps://openlayers.org/ 

6 larger than 1,600*1,600 pixels, and later down-sampled due to not knowing usage at the data 
generation stage.  

7 The implementation used to generate the noise was 
https://github.com/p5py/p5/blob/master/p5/pmath/rand.py  

 



 

 

 
(a) No falloff 

 
(b) With falloff 

 
(c) Marker 

Figure 4: Map elements 

 

The Perlin noise data was put into the opacity value for a canvas image element, with 

1 of the 3 RGB-colour channels set to the max value, e.g. for red, canvas per that pixel 

was rgba(255, 0, 0, opacityValue). The same data overlay mapped to the different 

colours are shown in Figure 5. 

   
Figure 5: Identical data and marker positions for all colors (red, green, blue) 

 

Marker - A marker was designed using the vector-based SVG-API in the browser and 

overlaid at a randomized location within the data-extent (see Figure 4c). This was 



 

 20 

merged into the Canvas raster representation, and the value of the data layer at the 

location was stored. 

Legends - All legends were created using the Canvas API, similarly as was done for the 

base map and data layer. The different legend types have been described in detail in 

section 3.1.1. 

3.1.3 External validity and limitations of example designs  

To control the setting for the data collection, the examples were somewhat contrived. 

• Today, rather few complex data visualizations are lacking annotation or 

possibilities for interaction.  

• All data area mappings were strictly rectangular to allow for easy automated 

placement of the Annotated legend types.  

• Only one opacity data layer was included. However, this seems like a good 

design choiceas multiple and possibly overlapping opacity layers would result 

in compounding opaqueness and more complex colour blending.  

• To keep the designs similar for the decoding task, the size of the legends were 

chosen to imitate the ArcGIS design. Verbal feedback was given by one 

respondent that it would be useful to have larger legends.  

• The base map layer was kept constant, and may not be representative of other 

areas. It is not clear how opacity mapping and legend are working for less 

complex (e.g. maps/backgrounds with less/no colours) or more complex 

backgrounds (e.g. aerial/satellite imagery).  

None of these factors, except the last, ought to have strong implications for the external 

validity of the study. 
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3.2 Data collection  

3.2.1 Procedure and user interface (UI)  

A front-end UI was developed using HTML5, CSS, and Javascript so that it could be 

displayed using any web browser8. In this system, the respondents were taken through 

three distinct stages: 

View 1 - Introduction of task (Part shown in figure 6) 

Introduction with instructions of the decoding task and the UI. The elements of the map 

(base map, data layer, marker, and legend) were shown visually together with the UI 

elements used to submit responses (slider, submit button). The respondents were 

explicitly asked to use the legends to estimate the value of the data layer at the location 

of a randomly generated marker. 

Following the introduction, and a verbal check on understanding the task, the session 

was initialized by clicking a button in View 1.  

 

8 All frontend code can be found at https://github.com/Tille88/thesis-front-end  
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(a) Elements - base map introduction 

 
(b) Elements - legends introduction 

 
(c) Elements - response element introduction 

Figure 6: Introduction of task 

 

View 2 - Visual decoding of 10 examples, exposing the legend designs in semi-

random order 

Using the web interface of View 2, the users visually estimated the value at the location 

of a marker within the overlay data area. 

Ten images picked by the back-end server from a large number of generated example 

combinations9 were presented to the respondent one example at a time. 

 
9 All possible combinations of colours (3, being red/green/blue), random data and marker location 
variations (21 examples that were generated through automated scripts) and designs (5, made up from 4 
legend designs + 1 no legend), resulting in 3 * 21 * 5 = 315 different examples  
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The progression of the images always started and ended with the baseline of 

Headline/no-legend type, and had the order of the 4 legend variations picked uniformly 

random for the example progression images 2-5 and 6-9 respectively. 

The colours of the data layer were available in pure red, green, and blue for all 

examples. For the first image in the progression, a combination of these three colours 

(e.g. [“Blue”, “Red”, "Green”]) was randomly generated and repeated for examples 1-

10. The reason for changing the colours between the examples was to reduce the risk 

of the respondents remembering the colour-to-data mapping between examples. 

The progression for each respondent was generated using a combination of colour, data 

example (data layer and marker location), and legend types using a simple algorithm. 

As an example to how a different progression would be generated for each user, for the 

progression of images 1-10, three lists were generated: 

1. A random list of numbers from the number of examples (21), i.e. between 1-

21, where each number could only be picked once per progression.   

Example list of 10 elements (i): [3, 14, 4, 10, 16, 2, 7, 9, 12, 20] 

2. A colour progression, e.g. [“green,” “blue,” “red”] that was circulated: green, 

blue, red, then starting with green again.   

Example list of 10 elements (ii): [“green,” “blue,” “red,” “green,” “blue,” 

“red,” “green,” “blue,” “red,” “green”] 

3. A selection of legend types always starting and ending with Headline/no-

legend: [first 5 elements: headline, random order of 4 legend types, last 5 

elements:  random order of 4 legend types, headline].   

Example list of 10 elements (iii): [“no-legend,” “sampled,” “clustered,” 

“annotated,” “checkered,” “clustered,” “checkered,” “sampled,” “annotated,” 

“no-legend”] 

4. Then these lists (1-3) were combined into a progression, corresponding to the 

file names for the generated example images   

Example combined lists (i, ii, and iii): [“3-green-no-legend,” “14-blue-

sampled,” “4-red-clustered,” “10-green-annotated,” “16-blue-checkered,” “2-
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red-clustered,” “7-green-checkered,” “9-blue-sampled,” “12-red-annotated,” 

“20-green-no-legend”] 

The response (estimate of the value at the marker) and some interactions by the 

respondents were persisted as the respondents went through the generated progression 

of 10 examples. The response for each example was picked using a slider in the UI 

covering the range of the data (0-100). The initial value of the slider was random, and 

the respondents were required to change the response before being able to progress to 

the next example image (UI example shown in Figure 7a). 

At the load of the image, a timer was started, and some events (mouse hovering over 

image, response changes of the slider, time of event relative to the example loading, 

etc.) were stored in the browser’s memory. At the time of submission of an example, 

all event data, the time from load until submission, and the final response value was 

persisted server-side. This was repeated 10 times. 

The user was not able to go back once an answer had been submitted, and the “submit 

button” was not active until the user had updated the value from the initially random 

value in the range of 0-100 (see Figure 7b and 7c).  
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(a) Progression UI 

 

(b) Submit inactive – highlight in red  (c) Submit active – highlight in red 

Figure 7: Progression UI 

 

The reason for choosing 10 examples per respondent was to ensure a large amount of 

data could be collected with a limited number of respondents. During testing prior to 

data collection, this amount of examples was established to be possible to complete 

within less than ten minutes, and not be very tiring for the respondent. 

Having each respondent being able to see each legend design twice, and have 

Headline/no-legend designs as first and last example, also allows easier testing of 

learning effects and being able to check if there are any major differences between not 

having a legend after being exposed to many examples. 
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View 3 - User acceptance 

After progressing through the 10 example images, the respondents were asked about 

how helpful they considered the different legend types were for their task. This 

information was also sent back and persisted to the database (Figure 8).  

 
       (a) Acceptance UI top  (b) Acceptance UI bottom 

 

Figure 8: Acceptance UI 

 

After having to choose very precise numbers of a continuous scale between 0-100 for 

the prior step, a common web-form format and only five choices were chosen for user 

acceptance. These values can not be seen to be fully comparable, as they are more 

subjective and less precise than estimation errors, which can be measured to the decimal 

level. In other words, for each respondent, you get an ordinal scale, but it is not 

necessarily comparable between respondents. That is also the reason why each 

respondent had to give a value for each legend design to have a balanced data set for 

analysis. 
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3.2.2 Participants in the study  

The survey data was collected between Jan 9th and Feb 6th, 2021, using convenience 

sampling. A sample of participants with moderate to good experience of map reading 

was considered ideal for a relatively small sample size, and to increase the chance of 

understanding the task quickly. This sample also ought to be homogeneous in relation 

to the scope and research questions of the study, increasing the chance of clear and 

easily interpretable data. Participants with a background in software development, 

UI/UX designers and employees of companies with map services were requested to 

participate. As the data was collected during a time with COVID-restrictions, most 

participants were either working or visiting the workplace of the author of the study, 

resulting in most of the 34 respondents being employees at the Volvo Car Corporation 

Asia Pacific Head Quarter in Shanghai, China, as well as vendors visiting the location. 

All participants had at least a bachelor degree. Most held Master degrees in technical 

disciplines, and one participant a doctorate in mathematics. 

The sample consisted of 8 women and 26 men. Approximately one-third of the 

participants work with geospatial data on a weekly basis, while most of the remaining 

participants spend significant time in vehicle testing and planning field tests routes 

using maps similar to the base map of the study. All of the participants were in the age 

range of 25-50, with most below the age of 35. 

The participants are on average expected to have better eyesight than the general 

population due to their relatively young age but are more likely to have some variation 

of colour blindness due to the high proportion of men participating in the study. Colour 

blindness or eyesight was not asked or tested during the data collection. 

The initial plan was to put the survey online using cloud technologies for wider 

distribution. During the testing stage, it became clear that there was a need to check that 

the instructions were understood to reduce the variation in the data. Hence, a more 

qualitative methodology was chosen where the author was present in the room and 

asked the respondent if the task was understood after reading the instructions described 

in section 3.2.1. 

This resulted in a more consistent study, where the same laptop and Chrome web 

browser was used by all data collection, and the lighting conditions were kept 



 

 28 

consistent. All 34 respondents did therefore see the examples of the same size on an 

identical screen and using the same rendering software. 

Due to each respondent submitting responses to 10 example images, the resulting 

analyzed data sample was quite large. During the collection phase, some base models 

were estimated repeatedly to evaluate the results of a larger sample. At around 20 

participants the results stabilized, but data collection was continued until the pool of 

suitable participants at the Volvo office was exhausted. 

3.3 Data analysis 

Multiple models are estimated to evaluate the effect of the independent categorical 

variable of legend design. The dependent variables are estimation errors and acceptance 

scores. A full list of variables is given in section 3.3.1. 

Outlined in section 3.3.2, Bartlett’s statistical test is conducted to evaluate how the 

variance of the error are differing between the legends designs. This is followed by 

Ordinary Least Squares (OLS) estimation with dependent variables that are not 

naturally centered around 0 - absolute estimation error (|PERCEPTION ERROR| in the 

following text) and acceptance scores (ACCEPTANCE). Each legend design is encoded 

as separate dummy variables and estimated relative to a reference category that is 

chosen to isolate the effects of interest to answer the research questions. 

Section 3.3.3 describes the use of control variables and subsamples to be able to test 

the robustness of the results in section 3.3.2. 

3.3.1 Data and variable description  

Dependent Variables 

PERCEPTION ERROR - distance between the response value to the actual value of the 

location of the marker per visualization. 

|PERCEPTION ERROR| - absolute perception error. For linear modelling, there is a 

need to look at estimated mean differences between categories. Simply using 

PERCEPTION ERROR would result in all categorical differences being statistically 

insignificant unless the variance around 0 is heavily skewed. 
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ACCEPTANCE - objective valuation by participants on the usefulness of each legend 

type on a scale of 1-5. Opt-out responses of “No opinion” were allowed and treated as 

missing values in the statistical modelling. 

Independent Variables 

LEGEND - categorical variable for each of the 4 legend types and no legend. The only 

part of visualization that is not randomized, and designed to be the treatment variable 

for which effects are to be estimated. Having values of Headline (no legend), 

Checkered, Clustered, Sampled, and Annotated, corresponding to section 3.1. 

Three variables were collected with the aim to find a good proxy variable for 

uncertainty: 

SUBMIT TIME - time in seconds from the rendering of the example until the subject 

submitted their response. 

INPUT CHANGES - number of times the respondent changes their answer with the 

input-slider before submitting. 

HOVER EVENTS - events of hovering the mouse cursor over the example image. 

Two variables were collected as potential control variables: 

PROGRESSION - for each respondent, the numbering of the examples in the 

progression from 1-10. Used to check for learning and/or fatigue effects. 

COLOUR - visualization presented having opacity data layer mapped colour channel 

as pure red, green, or blue. 

3.3.2 Hypothesis testing models  

For PERCEPTION ERROR the average value is likely centered around 0. Most 

statistical models are constructed to compare mean values between categories, which 

would not be able to give any indication of differences between the PERCEPTION 

ERROR for different legend designs. However, the distribution variance is of interest 

to estimate. 

The parametric Bartlett’s test (Snedecor and Cochran, 1989) is used to test if multiple 

categories all have equal variances. In the study, Bartlett’s test is used to evaluate if 
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variances differ in a statistically significant way between the different legend types. 

This is done for both the full data including the Headline/no-legend type, as well as a 

subset excluding the Headline type. Significant results for the tests would indicate that 

the distribution of errors differs between any of the legend categories included in the 

sample. 

Due to that Bartlett’s test assumes that data is normally distributed, Shapiro-Wilk tests 

(Shapiro and Wilk, 1965) are first conducted to assert if the normality assumption 

holds. This will be done for all legend types pooled, with Headline removed from the 

pooled sample, as well as for the subsample of each legend type separately. 

For variables that are not centered around 0, |PERCEPTION ERROR|, ACCEPTANCE, 

SUBMIT TIME, INPUT CHANGES and HOVER EVENTS, are examined using regular 

OLS techniques. As the treatment variable LEGEND is categorical, each category is 

transformed into a separate dummy variable for each legend type. 

To avoid multicollinearity, the baseline legend categories are interpreted as the 

intercept 𝛼-estimate, against which the 𝛽-estimates and corresponding test statistics are 

compared against. 

The baseline OLS models estimated are of the form 

|𝑃𝐸𝑅𝐶𝐸𝑃𝑇𝐼𝑂𝑁𝐸𝑅𝑅𝑂𝑅|𝑖 = 𝛼 + 𝛽𝑖𝐿𝐸𝐺𝐸𝑁𝐷𝑖 + 𝜀𝑖    (1) 

and 

𝐴𝐶𝐶𝐸𝑃𝑇𝐴𝑁𝐶𝐸𝑖 = 𝛼 + 𝛽𝑖𝐿𝐸𝐺𝐸𝑁𝐷𝑖 + 𝜀𝑖    (2) 

3.3.3 Robustness checks  

OLS models are estimated to see if there are any indications of time effects as the 

respondent went through the progression of 10 examples. This could be in either 

direction due to learning and/or fatigue. 

Learning effects are likely to be negligible. This is due to that the subjects were not 

given any feedback on the correctness of their responses during the progression, and 

that different legend designs and data overlay colours were rotated. 

|𝑃𝐸𝑅𝐶𝐸𝑃𝑇𝐼𝑂𝑁𝐸𝑅𝑅𝑂𝑅|𝑖 = 𝛼 + 𝛽1𝑃𝑅𝑂𝐺𝑅𝐸𝑆𝑆𝐼𝑂𝑁𝑖 + 𝜀𝑖    (3) 
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An alternative model is run on the subset of only the first and last example 

(Headline/no-legend) encoded as a dummy variable, to see if the response accuracy 

differed between the first and the last examples shown to respondents. 

|𝑃𝐸𝑅𝐶𝐸𝑃𝑇𝐼𝑂𝑁𝐸𝑅𝑅𝑂𝑅|𝑖 = 𝛼 + 𝛽1𝑃𝑅𝑂𝐺𝑅𝐸𝑆𝑆𝐼𝑂𝑁𝐿𝐴𝑆𝑇𝑖 + 𝜀𝑖     (4) 

The results from these tests also feed into the possible need to do subsample analysis 

using only e.g. the first 5 responses of each respondent. 

Subset analysis using only the respondents that are likely to be the most engaged or 

skilled, as defined as the respondents with below-median average |PERCEPTION 

ERROR| are conducted to see if the results differ in a significant way. 
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4 Results  

4.1 Summary statistics and exploratory graphs 

Treatment 

Each of the 34 respondents completed the full survey, resulting in 340 responses to the 

data-progression, and as seen they are distributed equally among the legend types by 

design (Table 1). 

 

Table 1: Responses by legend type 

 

Dependent Variables 

PERCEPTION ERROR - As seen in Figure 9, the mean is centered around 0 for all 

categories of LEGEND. There are some visually distinguishable differences in 

distribution between the Headline (no legend) category having the largest variance and 

more outliers compared to the examples with legends. The figure has the mean 

indicated by a black dot, with 1 standard deviation in each direction shown by a range-

whisker for each category. 
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Figure 9: Perception error by visualization category 

 

|PERCEPTION ERROR| - Figure 10 shows the same data as in Figure 9 with an 

absolute transformation. The mean differs between the categories, being highest for 

Headline type, and lowest for Annotated legend type. The variance of |PERCEPTION 

ERROR| is quite large throughout. The vast majority of categories have absolute errors 

heavily clustered below 20, but there are outliers above 30 for all categories except 

Annotated. 
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Figure 10: Absolute error by visualization category 

 

ACCEPTANCE - Table 2 indicates that the highest ACCEPTANCE scores are for 

Annotated and Sampled legend types. Headline/no-legend has the lowest acceptance 

scores. 

 

 

Table 2: Acceptance response count cross-tabulation 

 

Independent/Control Variables Candidates 

In the data collection phase, it became clear that all the uncertainty-proxy variables 

would be unlikely to be valid proxies for respondent uncertainty. 
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SUBMIT TIME varied because of incoming phone calls, the need to ask questions about 

the design types and many other external factors, INPUT CHANGES varied due to how 

the respondents used the slider10. HOVER EVENTS did not vary much within-subjects 

as the mouse cursor wasn’t consistently used as a visual guide (some users did not use 

the mouse cursor, but kept it still while using fingers on the screen to make 

comparisons). 

Plots for SUBMIT TIME, INPUT CHANGES and HOVER EVENTS (Figures 12, 13 and 

14) can be found in Appendix A. 

COLOUR - From visual inspection, no strong difference between the colours 

red/green/blue examples were perceptible (see Figure 15 in Appendix A). Statistical 

estimates also had no statistical differences in |PERCEPTION ERROR| between the 

colours (Table 14 in Appendix A), reducing the need to include colour as a control 

variable in any models. 

4.2 Dependent variable: PERCEPTION ERROR 

4.2.1 Normality tests 

As shown in Table 3, all the p-values for the Shapiro-Wilk test are above 0.05, meaning 

the null of normality is not rejected for any of the tests run. In other words, we can 

assume that the data is normally distributed, no matter how it is separated by legend 

types, or if the statistical test is run on the full combined sample. 

 

 
10 Some respondents picked their response in one click, while other respondents clicked the slider to 
put it in focus, and then use the arrow keys to change the input value. In the former case, this would 
result in one *INPUT CHANGE*-event, and in the latter, there would be a separate event logged for 
each arrow key-press incrementing/decrementing the value by 0.1 each click.  
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Table 3: Shapiro-Wilk normality tests 

 

4.2.2 Bartlett’s test of homogeneity of variances 

Table 4 shows that the Headline types show the largest variance/standard deviation for 

the error, followed by Checkered, Sampled, Clustered, and Annotated legend types. 

 

Table 4: Error standard deviation by legend type 

 

In the statistical tests, the Headline type was used first as a baseline, to determine if 

these differences were statistically significant, then a subset removing all the Headline 

data points from the sample was used. 

As seen from Table 5, there is a statistically significant difference in the variance for 

the sample including the Headline type (p-value < 0.05). This indicates that when 

including the Headline category, the variance of the PERCEPTION ERROR is not the 

same for all categories. 
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Table 5: Bartlett’s test results 

 

The significance does not remain when excluding the Headline category from the 

sample (p=0.33). The null of the variance for the legend designs are the same can not 

be rejected, i.e. using Bartlett’s test, the legend designs does not show differences in 

error variance. 

4.3 Dependent variable: |PERCEPTION ERROR|  

The way of reading Table 6, as well as Tables 7, 10, 11, 12 and 13 are identical. The 

dependent variable is displayed at the top corresponding to the variable on the left side 

of equation (1) in section 3.3.2. Two different model columns are listing which variable 

are used as reference estimate 𝛼 in equation (1). For each column the estimate for that 

category can be found under the “Constant/Reference” column. So for Model (1), the 

average error for the Headline design is 12.8. This also means that for model (2) where 

Checkered is the reference category, there is no estimate for the Checkered column. 

The estimates for the other rows (Annotated, Checkered, Clustered and Sampled), 

corresponds the 𝛽-estimates in equation (1), and are relative to the reference category. 

In Model (1) in Table 6, Annotated has an average error relative to the headline category 

of -4.02, meaning that the actual estimated error is 12.805–4.024=8.781. 

The regression results in Table 6 are consistent with the variance tests, where model (1) 

estimates are relative to the Headline reference category. 

All other legend types display lower errors and are all statistically significantly lower 

than the errors for Headline. The Annotated type had the lowest average error of -4.02 

lower errors than the Headline design. 

In model (2), where Checkered is used as a reference category (chosen due to both the 

research question formulation and the data distribution) the other designs are showing 

comparatively lower estimated errors, but none of those results was statistically 

significant. 
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Table 6: Absolute perception error models 

 

4.4 Dependent variable: ACCEPTANCE 

Table 7 shows the average ACCEPTANCE-score for each legend type. As expected, 

having no legend at all (Headline) have the lowest acceptance scores, while the 

Sampled and Annotated legend types have average acceptance scores above 4 out of a 

maximum of 5. 

 

 

Table 7: Average acceptance scores by legend type 
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As seen from the regression results in Table 8, all acceptance means are statistically 

higher than the Headline category, and both Sampled and Annotated legend types are 

statistically significantly considered more helpful than the Clustered legend type by the 

respondents. The Clustered legend type has a lower acceptance score compared to the 

Checkered legend, but not statistically significantly so. 

 

Table 8: Acceptance-score models 

 

4.5 Robustness tests 

The variables that were collected as potential proxy variables for uncertainty (SUBMIT 

TIME, INPUT CHANGES, and HOVER EVENTS) exhibited high variability and large 

outliers, likely due to external factors. Separate regression models against the legend 

types are shown in Tables 11, 12 and 13 in Appendix A. SUBMIT TIME and INPUT 

CHANGES are significantly lower for the other legend types compared to Headline/no-

legend. However, that was likely due to the first interaction with the UI was for the 
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Headline type by design. At this point, many respondents did ask questions and changed 

their input continuously before submitting the answer. Comparison between other 

categories did not give any statistically significant differences. 

To check for clear learning or fatigue effects that would merit subsample analysis, an 

OLS model was run on |PERCEPTION ERROR| against the linear progression variable 

(discrete values expressed as integers 1-10). Another model using only the subsample 

of the first and last images, i.e. all Headline type responses was estimated to check if 

the respondents learned to memorize the opacity data mapping without the use of 

legends. 

The results can be found in Table 9. As seen, neither the linear trend variable nor the 

categorical variable for the last image in the progression was statistically significant. 

The estimate is even showing a slightly higher error for the last example on average 

compared to the first for the gathered sample of 68 (34 respondents, 2 examples per 

respondent). 

 

Table 9: Progression effects regression results 

 

These results indicate that conducting further analysis on e.g. a subsample of the first 5 

examples in the progression for each respondent is of little value, as it would most likely 

only result in halving the sample size. 
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A subsample of the 50th percentile on average more accurate respondents was created 

to evaluate if this would remove large error outliers and give more significant estimates. 

Identical models as in section 4.3, using |PERCEPTION ERROR| as dependent variable 

were estimated. 

Visual inspection based on Figure 11 shows that there is still a large variance in the 

distribution. The Headline legend type still has the highest average absolute error. 

However, the Clustered, and not the Checkered legend design, has the second-highest 

average absolute error for the subsample. 

 

Figure 11: Absolute error - 50th percentile most accurate respondent subset 

 

As seen in Table 10, which corresponds to Table 6 for the full sample, all estimates 

except for Clustered still have lower absolute errors compared to the Headline category 

that are statistically significant. For comparison, Checkered is still kept as a reference 

category in the models where Headline types have been excluded from the sample. No 

statistically significant results were estimated for model (2), as was the case when using 

the full sample. 
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Table 10: Absolute perception error models - above 50th percentile accuracy 
subsample 
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5 Discussion  

Both the Bartlett’s test results and the dummy-variable OLS models are consistent in 

establishing that for visualizations using transparency mapped overlays on top of a 

static base map, there is an influence of legend choices - as to if legends are included 

or not. It is evident that there is both a lower variance of errors in estimations from the 

respondents and more accurate results when there is a legend compared to when no 

legend (Headline type) is present. In other words, a legend improves the ability to make 

visual comparisons and reduces estimation errors (answering RQ1). 

There are no clear results indicating differences in response accuracy depending on the 

type/design of legend, and there is quite a large variation in response accuracy in the 

sample overall. These results indicate that the decoding support from a legend helps 

create a reference point for the user, but that it is not very precise or sensitive to the 

design of the legend used (RQ2). These results for RQ1 and RQ2 were robust to 

subsamples of respondents with average lower errors. There are no indications that 

there are learning effects where the users are able to memorize the opacity to value 

mappings without making use of the legends, meaning that the results from using the 

full sample can be taken at face value, and there is no obvious way to selectively remove 

observations. 

The most robust results were from the user preferences/acceptance of the different 

legend types (RQ3), where both Sampled and Annotated (more contextualized and 

higher placement proximity to data) were preferred to the Checkered legend type 

(“industry standard” imitation). 

For the Annotated legend design type, this may be due to the reduced need for “attention 

switching” (Kern et al., 2010) following higher proximity to the data and marker. 

Another factor that is relevant for both Sampled and Annotated designs is that there 

may be higher familiarity for the user, as they have the background of the map 

superimposed behind the legend bar for both these legend types. 

Notably as well was that the number of times the users changed their responses before 

submitting by clicking a button, or the duration until the users submitted their responses 

from the visualization rendering was not well-suited to act as proxy variables for 
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respondent confidence or uncertainty (not being possible to draw any valid conclusions 

to in the study to RQ4). 

During the data collection this may have been due to different respondents making use 

of the computer and UI-input elements in vastly different ways, and sometimes being 

distracted from the task or asking clarifying questions. 

This resulted in that it was not possible to draw conclusions from the decision times 

and user selection behaviour for different legend designs. For future studies, this could 

likely be improved by using eye-tracking technology, where you could track that the 

duration the user is actively looking at the map, instead of trying to make use of proxy 

variables. This method has been used extensively in map design research (Brychtova 

and Coltekin, 2016; Çöltekin et al., 2009; Dong et al., 2014). 

Regarding the general design of the study, it would be of interest to see how the results 

would differ when using different map backgrounds. Another variation that is common 

in use and has not been tested is having discrete (non-continuous) opacity-mapped data 

- i.e. where larger regions have the same opacity value. Users ability to perceive the 

opacity mapping where they have larger areas with the same value may differ from 

when there is pixel-level variation. This would also result in legends where the opacity 

values are binned, not showing the whole linear scale. 

The sampling was performed using non-random convenience sampling. As outlined in 

section 3.2.2, this was chosen to keep external factors, such as screen size and lighting, 

as consistent as possible. Due to access to a suitable group of technically adept map 

users and practitioners, the results ought to be representative of how experienced map 

users can utilize different legend designs. Future studies could investigate legends for 

users with less experience of mapping products, as no claims can be made that certain 

legend designs are helpful for users that don’t have a lot of prior exposure to common 

map elements. 

In using only one colour for the data opacity layer for each example, the effects of 

colour scales being somewhat arbitrary, as described by Ware (2020) did not need to 

be accounted for. It is, however, common in visualizations to have a constant opacity 

for a polygon, and use a colour scale to encode values within the polygon, and it is also 

possible to have double encoding (have the same variable displayed using both opacity 
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variations and colour encodings simultaneously). For this study, it would have been 

difficult to isolate and measure the effect of transparency variations if using such 

encodings. 

The different colours used for the examples (red, green and blue) did not result in 

differing decoding accuracy. One or more of the participants were likely to have some 

kind of colour blindness, as most of the participants were men, and about 1 in 12 men 

sees colour differently from most of the population (the same number for women is 1 

in 200) (Lee et al., 2020). In this study, it is unclear if that would affect the difficulty 

of the decoding task, or increase issues with blending for specific colours. The 

respondents were not asked to distinguish between elements of different colours, but to 

evaluate opacity on top of a base map, where the combined colour blending results in 

general trends of contrast. If any systematic biases for colour blind decoding accuracy 

would exist for colour blending with the red, green or blue overlay and the base map, 

such effects may have become obvious from accuracy differences for different colours. 

However, that would likely require a much larger sample, or using a dedicated sample 

of users of with types of colour blindness that are heavily represented in any chosen 

examples. 

Relating to Seipel et al. (2020), where the task was to distinguish objects there ought to 

be less complication from colour blending in this study, due to only one lower opacity 

data layer on top of a fully opaque base layer. With the data encoded layers, it is possible 

to distinguish trends over a larger area of the base map. The opacity layer is still blended 

with the base map. Hence, in lower opacity areas, you would get more blending with 

the base layer, which may affect precision in the estimation from the respondents. This 

may have created less precision in some estimations, but is a natural effect of using 

opacity/transparency as an encoding mechanism. There could be certain colour 

combinations from the base map that makes the decoding task more difficult, which 

would be of interest to evaluate in future studies. In this study, those effects ought to 

have been smoothed out by randomization, and not have biased the results in any 

particular direction. 

In comparison to Kiik et al. (2017), the usage of only a single opacity layer did 

circumvent the issue of having blending from multiple low opacity layers. 
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In the larger literature on data visualization, there have been discussions on the 

usefulness of legends in general. Alternatives such as simplifying the visualizations, 

directly labelling the data, altering visual weight and making use of motion to remove 

the need for legends have been suggested (Evergreen and Metzner, 2013). 

In the field of cartography, legends containing map symbols are commonly listed as 

one of the essential elements of a map together with title, scale bar, north arrow and a 

few other elements (Peterson, 2009, p. 17). This study showed that legends can 

effectively increase decoding accuracy for complex visualizations (RQ1), where the 

techniques described by Evergreen and Metzner (2013) may not be easy to implement. 

The legend design variations created for this study to investigate a reduced need for 

“attention switching” through data-proximity from the legend (Evergreen and Metzner, 

2013; Kern et al., 2010) did not result in significantly higher decoding accuracy (RQ2), 

but was one of the designs preferred by the respondents (RQ3).  
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6 Conclusions  

When using transparency mapping, there were strong and statistically significant results 

that map designs using legends provide reduced visual estimation errors compared to 

when no legend is present (RQ1). This was concluded through variance analysis, 

dummy-variable OLS models and robustness tests, where all results provided clear 

reduced estimation errors when providing a legend for the user. 

However, there were no statistically differing errors when comparing the different 

legend designs created for this study (RQ2). The inclusion of the legend for opacity 

mapped data seems to provide a reference point to the user, but none of the designs 

resulted in low enough variation for the differences in decoding errors to be statistically 

significant. 

In terms of user preference/acceptance of the different legend designs Sampled and 

Annotated designs were preferred (RQ3). These were also the two designs that had the 

overall lowest estimation errors. These designs had in common that they put the data in 

context of the base map through either being directly overlayed on the map, or having 

a sampled rectangle from the map as background. In the case of the Annotated legend 

design, the distance between the legend and the data/marker was also reduced compared 

to the other legend designs. 

The duration until the users submitted responses or the number of times they changed 

their response before submitting were influenced by too many external factors to 

provide useful inference to respondent confidence or uncertainty (RQ4). In future 

studies alternative methodology could alleviate these issues, as outlined in Section 5. 
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Appendices 

Appendix A - plots and tables  

Note: All analysis code and data for reproducing results can be found at 

https://github.com/Tille88/thesis-data-analysis 

 

Figure 12: Submit time across legend types 
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Figure 13: Input changes across legend types 
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Figure 14: Hover events across legend types 
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Figure 15: Absolute perception error by colour types 
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Table 11: Time to submit regression results 
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Table 12: Input changes regression results 
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Table 13: Hover events regression results 

 
 

 

Table 14: Absolute perception error by colour  
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