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Abstract 

 
Lidar (Light Detection and Ranging) data is becoming more widely available 

and accessible. In many cases, it can be obtained free of charge from government 

agencies or local councils. In order to effectively use it in applications that require high 

precision, the data must be carefully studied, and sometimes verified with high 

precision terrestrial survey, to avoid issues introduced by potentially low point cloud 

accuracy. 

Accuracy of Lidar data is influenced by multiple factors, such as instrument 

position and internal errors, distance to measured surface, errors in point detection, 

wrong classification or complex, sloping terrain. 

This research focuses on analysing if recorded point characteristics, as well as some 

point cloud shape characteristics, show a relationship with poor data accuracy. 

Data used in this study was obtained for and distributed by Auckland Council in New 

Zealand. The available point cloud covers a large portion of Auckland and its 

surroundings. 

LAStools software has been used to manipulate the point cloud and extract 

various characteristics for 5m by 5m grid cells. Tested variables included: The number 

of present classes in a cell, the density of ground points (also after applying thinning 

algorithms), the height range and standard deviation of ground points, the intensity 

range, the average value and standard deviation, the average number of returns, the 

average scan angle, and the slope. Correlation analysis and multiple regression have 

been performed and no significant relationship was found between the tested variables 

and data accuracy using this research paper’s methodology. When comparing ground 

and low vegetation classes, some point cloud characteristics trends have been found, 

however, these are not suitable to aid with misclassification detection. 

Failure to detect meaningful relationships between recorded point cloud 

characteristics and accuracy or misclassification errors does not definitevely mean that 

there are none. Different methods could lead to more promising outcomes. 
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1. Introduction 

Using Lidar (Light Detection and Ranging) data can significantly increase the 

quality and decrease the cost of many projects with comparison to traditional survey 

methods that are labor intensive, expensive and time consuming. Larger scale survey 

campaigns can utilize remote sensing technologies, such as photogrammetry or Lidar, 

that allow faster data acquisition for big areas. The latter has an advantage over 

photogrammetric methods - it can penetrate through vegetation. 

When using Lidar data, it is crucial to have a better understanding of what levels of 

accuracy can be expected. Although government agencies would provide expected 

accuracies, they are typically stated uniformly for the full dataset, and the user always 

must acknowledge that no warranty about the accuracy and completeness is given. It 

could be beneficial to develop methods for evaluating data accuracy so that necessary 

cautions can be taken in areas with lower accuracy. 

In the case of the 2016 Auckland Lidar dataset, it has been noted that there is a 

significant offset in elevation between different Lidar data captures in some areas, while 

in others the points from different passes show consistent (matching) height (source: 

Sam Hackett, Associate Surveyor / Mobile Mapping Manager, Wood & Partners 

Consultants Ltd , during data QA process) . Lidar can penetrate through vegetation; but 

low and dense vegetation affects the accuracy of resulting point cloud. Another cause 

of discrepancy may be the angle at which data was captured (which is dependent on 

both: terrain characteristics and offset from flight paths’ centres). There have been 

studies examining factors that influence survey accuracy – Iordan and Popescu (2015) 

investigated the influences of varying types of topography (such as mountainous, 

rolling, or flat terrain) on elevation surface accuracy and found that there is a 

relationship between the two. They also assessed the difference in accuracy of 

measurements across different land cover types. 

In this research, an effort has been made to model accuracy of ground measurements 

(the last laser return) by investigating data and determining if accuracy can be predicted 

based on certain characteristics, such as recorded points intensity, or density and height 

variations between ground points. 
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2. Background 

2.1 Lidar, ALS and basic properties 
Lidar, which stands for Light Detection and Ranging, is a surveying method 

that uses laser pulses to determine the location of measured surfaces. Lidar is an active 

remote sensing technique and relies on an instrument emitting laser pulses and then 

recording them as they return after bouncing off the surface of objects that are being 

surveyed. For terrestrial laser scanning, when the instrument is stationary and its 

position and orientation is often known before the scan commences (but can also be 

determined during post processing), the method behind computing surveyed points 

locations is relatively straight forward. By measuring the time that it took for a laser 

beam to return and combining this information with the instrument’s position and 

direction at which the laser has been emitted, the instrument is able to calculate three 

dimensional coordinates of a point on the surface. Computations are more complex for 

surveying techniques that take advantage of mobile platforms. These include terrestrial 

mobile laser scanning (when a scanner is mounted on a moving vehicle on a ground, 

for example on a car) and ALS – Airborne Laser Scanning (when scanning is done from 

a plane or UAV – unmanned aerial vehicle). Although the measurement principle is the 

same, it is harder to determine the location of instrument to a required accuracy – 

because of this, GPS and IMU units must be part of the system. An on-board processing 

unit derives and records the georeferenced points in real time by combining all before 

mentioned information. This form of data collection is very fast and enables a system 

to record large quantities of data in a very short time. The output of Lidar survey is a 

point cloud (a dataset that consists of a large amount of recorded x, y, z coordinates, 

together with metadata). 

While many laser-scanning instruments record one point per emitted pulse, 

modern ALS uses full-waveform information to record multiple points, as portions of 

signal are returned at different times. When a laser pulse is released, it does not stay the 

same width while it travels towards the surveyed topography, but rather forms a 

diffraction cone. Because of a significant distance between the laser scanning apparatus 

and the surveyed objects, the footprint of a laser beam is large by the time it hits the 

surface -around 200-300mm depending on the height above the ground and an incident 

angle. At this size, it is likely that portions of the beam will intersect with multiple 

objects at potentially different heights (for example, leaves and branches of a tree and 

the ground below). Portions of the beam hitting higher objects will return earlier to the 

scanning unit than portions bouncing off lower objects, while if the beam penetrates to 

the ground (and then finds its way back to the measuring instrument), it becomes the 

last return of a laser pulse. Therefore, the return signal received at the ALS processing 

unit, is not a single pulse per emitted pulse, but rather a waveform of different signal 

intensity distributed across the time. Algorithms are used to classify the waveform in a 

way to derive time at waves peaks and compute distinct points using this information. 

Because of this property, airborne laser scanning allows to penetrate through vegetation 

and acquire points both on the tree canopy as well as on the objects below (this, 

naturally, depends on the vegetation characteristics, such as the density of the foliage). 
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This penetrability is a major advantage of ALS over photogrammetric methods, which 

do not have this potential. Figure 1 (below) shows the representation of a full-waveform 

return, (figure is based on Fig.3 in “Full-waveform topographic lidar: State-of-the-art” 

by Mallet C., Bretar F.). The authors explain the methodology of determining 3D points 

based on received waveform peaks, and they also point out the relationship between the 

size of a laser beam and penetrability. A larger laser footprint (B on the figure below) 

is more likely to penetrate to the ground, however, horizontal precision is lower 

compared to a narrow footprint (A on the figure below). 

 
Figure 1: Full waveform return. On the left, narrow laser beam (A) records two apple tree branches 

and a lavender bush. It does not penetrate to the ground. On the right, wide laser beam (B) records 

multiple tree brunches, 2 types of lavender bushes, and the ground. 

 

Intensity of the laser return signal used to derive points at peaks, is typically 

recorded against each point and may be further used to aid with classification of the 

data as well as with point cloud quality assessment: “(…) the exploitation of the 

geometric information has been coupled by the use of laser intensity, which may 

provide  additional data for multiple purposes. This option has been emphasized by the 

availability of sensors working on different wavelength, thus able to provide additional 

information for classification of surfaces and objects. Several applications of 

monochromatic and multi-spectral LiDAR data have been already developed in 

different fields: geosciences, agriculture, forestry, building and cultural heritage. The 

use of intensity data to extract measures of point cloud quality has been also 

developed.” (Scaioni et al., 2018).  

Research into using intensity information for quality assessment is very complex, 

and includes studies of laser scanners stochastic characteristics, studies of distance 

influence, studies of nighttime versus daytime survey and more. Generally, intensity 

depends on the survey configuration, objects’ radiometric characteristics, and return 

number. This means that the same object can be recorded with different intensity under 

different conditions. For example, two different instruments used for the survey, can 
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capture that same object showing different intensity. The same surface with different 

moisture content (in dry condition versus after rain) can be recorded with different 

intensity. However, within one point cloud, recorded at one time, with one instrument, 

intensity within object is more homogenous. Because of it, when examining point 

clouds colorized by intensity it is easy to distinguish different features.  

Based on the knowledge that different objects can be recorded with different 

intensity, and thus larger intensity variations within one class and one area can point to 

wrong classification, has been explored in this research. When examining intensity 

characteristics in this project, it is done so on a single flight basis and not on a point 

cloud combined from multiple flight passes, to avoid the effects of variation in moisture 

content, possibly different instrument and/or settings used etc. Moreover, only points 

recorded by first laser beam return are used since return number has large effect on 

recorded intensity. 

Displaz software (http://c42f.github.io/displaz/, developed by Christopher J. Foster 

and others) was used to demonstrate how a sample point cloud looks like, together with 

some recorded point characteristics. Figures below show point cloud 

(RPC_AZ31_4803_2016.laz sourced from Auckland Council), symbolised by: 

a) Return number: peaks of trees and ground on open spaces is a first return – fresh 

green, lower vegetation below tree canopy and ground below vegetation are 

later returns 

b) Reversed return number (starting with last return): ground – last return is 

displayed in fresh green, regardless if vegetation above is present or not (unless 

the laser did not penetrate to the ground) 

c) Number of returns for the laser pulse that was used to derive any point: open 

spaces where only one return has been recorded are shown in fresh green, while 

areas where laser pulse has been separated into many peaks are shown in 

different colours (orange and less visible military green). 

d) Intensity: amongst other factors, intensity is related to the number of returns and 

how much energy bounced back and was detected in form of a peak of the full 

waveform and thus prompted the creation of point at specific location – it can 

be seen that under vegetated areas, ground points are shown in dark colour, 

which means that a small amount of laser pulse penetrated to the last recorded 

surface. Typically, 90% of total reflected signal power is consumed within the 

first two returns (2009, Mallet C., Bretar F.). 
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a) Return number b) Reversed return 

  
c) Number of returns d) Intensity 

Figure 2: Point cloud symbolised based on recorded point properties. A – colour based on a return 

number (first return – green, second return – orange, third return – military green). B – colour based 

on a reversed return (last return – green, second last return – orange, third last return – military 

green). C – colour based on a number of returns (one return – green, all points collected by a laser 

beam that had two returns – orange, all points collected by a laser beam that had three returns – 

military green). D – colour based on intensity (points of higher intensity – lighter shades of grey, 

points of lower intensity – darker shades of grey). 

2.2 ALS Accuracy 
ALS has lower accuracy than terrestrial laser scanning, due to several factors that 

influence the errors magnitude. Firstly, there may be some discrepancy between 

computed and true position and bearing of instrument as well as internal instrument 

error. Secondly, significantly larger distance between the instrument and measured 

surface causes the accuracy deterioration. A slight error in a measurement angle is 
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amplified over a longer distance. Due to a distance and the size of the laser beam 

footprint (as explained in previous section), horizontal accuracy cannot be better than 

the size of this footprint (since it is not known which portion of echo came from what 

direction within the narrow laser beam cone). Both horizontal and vertical accuracies 

are affected, as explained in “Accuracy estimation for laser point cloud including 

scanning geometry” (Schaer et al., 2007), because the incidence angle between laser 

beam and the terrain reflects in footprint size and power distribution. This is especially 

a critical problem with incidence angles far from the surface normal, that result in 

significantly larger laser beam footprints, as shown in Figure 3. Finally, there are errors 

in point detection (analysis of echo peaks, disregarding noise) and classification that 

are related to the full-waveform approach, which is not commonly used in terrestrial 

laser scanning. Although not entirely based on point accuracy itself, there is a problem 

of ground points accuracy. The ground data – last returns, may be subject to error in 

terms of wrong classification (when point representing object above the ground, such 

as vegetation, is classified as ground) as well as wrong echo peak detection (when 

vegetation just above the ground is very dense). Ground points vertical accuracy is the 

most important, as these points are used to generate Digital Elevation Models (DEMs), 

used in variety of applications. 

 
Figure 3: Scanning geometry. Figure demonstrates how incidence angle is a product of scanning 

angle and terrain slope. Surveyed point (yellow star) is positioned between the flight path centres 

of A and B. Because of the terrain slope, incidence angle for B is close to 90o, while the incidence 

angle for A is obtuse, far from normal. 
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As outlined in the ASPRS (American Society for Photogrammetry and Remote 

Sensing) guidelines, the high accuracy products are required for 5 primary fields: 

marine navigation and safety, stormwater and floodplain management, wetlands and 

ecologically sensitive areas management, infrastructure management in urban areas, 

and, lastly, special engineering applications. In other applications, users may be able to 

successfully utilize data of lower vertical accuracy. For this reason, guidelines propose 

several accuracy classes, that datasets can fall into. The classes help the end user to 

determine usability of data quoting different types of accuracies (horizontal, vertical, 

RMSE etc.) for a specific purpose. Although the idea is simple, in reality one ALS 

dataset can consist of points with significantly varying vertical accuracies – this is 

especially true for large datasets covering a variety of surface types. In these 

circumstances, guidelines suggest reporting separate accuracies. Three cases have been 

distinguished, that can be the basis of splitting data into different quality portions: the 

continuity of data collection and processing (dependent on equipment and 

collection/computing methods), topographic variation (terrain slope), and ground cover 

variation (bare ground, tall or short vegetation etc.). ASPRS guidelines suggest that 

unless there is a specific reason, the accuracy can be based on data collected over open 

terrain. This is referred to as fundamental vertical accuracy. While testing data accuracy 

over other ground covers is not required, points collected over non-bare ground are then 

just known to be of lower (but not well specified) quality. If accuracy is required to be 

specifically quoted for different land cover categories (which should be determined by 

the customer), then accuracy testing needs to be designed with this in mind (by ensuring 

adequate check points have been included). Accuracy specific to different land cover 

categories (or their combinations) is referred to as supplemental or consolidated 

accuracy, and should be determined using the 95th percentile method rather than the 

RMSE (as is the case for fundamental accuracy), due to the error not following the 

normal distribution (ASPRS Guidelines Vertical Accuracy Reporting for Lidar Data 

V1.0). Even with splitting accuracy testing this way, data collectors and users may find 

that there may be further variation in point cloud quality. The recommendation in 

“ASPRS Accuracy Standards for Digital Geospatial Data” (March, 2015) is to develop 

polygons indicating low confidence areas. These should be created based on nominal 

ground point density, raster cell size, search radius and minimum mapping unit (as 

explained in appendix C.8 of the guidelines). 

ASPRS recommendation focuses mainly on ground point density to determine 

data of lower accuracy within non-bare ground land cover areas. As outlined 

previously, this is not the only indication of possible deterioration of data quality. 

Schaer et al. (2007) propose a q-value – a quality indicator for individual points within 

the point cloud, based on accumulation of random errors and scanning geometry 

analysis. Perhaps there are other indicators of lower data quality that can be further 

explored. In this thesis, reflectance and roughness of ground point data will be 

examined amongst others. 
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3. Methodology 

3.1 Study Area and Data 

Auckland, New Zealand 
The study area covers a wide region including Auckland and surrounding rural 

areas, on New Zealand’s North Island. During the Lidar aerial survey that took place in 

2016 and 2017, point cloud data has been recorded, covering extents of land under the 

governance of Auckland Council (see appendix E). This land consists of the urban area 

of New Zealand’s largest city, as well as areas to the east and west (limited by water 

boundary), to the north (up to and including Wellsford), the south (including Hunua 

Ranges and Pukekohe), and few offshore islands, including Rangitoto, Waiheke, 

Chamberlins, Kawau, Little, and Great Barrier Islands. 

2016/2017 Lidar Data 
The digital mapping dataset used for this project has been collected for, and 

distributed by, Auckland Council in New Zealand. It consists of a few products: raw 

point clouds, ground point clouds, above ground point clouds, DEM, Digital Surface 

Model (DSM), contours, and imagery. Supporting materials including a license, 

information about data (see appendix A) and a tile layout shapefile that references point 

cloud data are also supplied. Data carries the creative commons international license 

(attached in appendix B). In this project, raw point clouds will be used as a primary 

object of study, however, other products 

provided with the same dataset (imagery 

and DEM) will also be used for reference 

and analysis. 

Data has been collected between 

November 2016 and June 2017. 

Raw point cloud data, distributed by 

Auckland Council, comes in LAS v1.2 

format and covers a large area of Auckland 

city and its surroundings (Figure 4 – red 

area). Because of the size of area – over 670 

000 ha (and proportionally large size of 

dataset), the point cloud has been split into 

19427 files representing rectangular 

sections 720m by 480m. An accompanying 

shapefile allows a user to navigate to the 

files representing an area of interest, and 

additionally provides information about 

contractor, accuracy, survey date, project 

name and available products (DEM, DSM 

etc.). 

Point cloud data used in this project is in LAZ format, which is an optimized 

compression of LAS format, and altogether takes about 324GB of disc space. Figure 5 

Figure 4: Auckland Lidar 2016 survey capture 

extent 
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shows sample LAS file (AZ30_3246_2016), coloured by intensity, viewed in Displaz 

software, and information for the same tile, recorded in a shapefile. 

  
Figure 5: Sample LAZ file and corresponding tile information 

Point cloud data 
LAS (and LAZ) is an open format designed specifically to handle point cloud 

data. It not only handles the information in a way to reduce file size, but also is a 

structured format that allows working with the data in a variety of software packages. 

In a LAS 1.2 file, each point comes with information recorded along with it. This 

available information includes: position (x,y,z), GPS time, intensity, return number, 

number of returns (for that specific emitted laser beam), point source ID (referring to a 

flight path ID), scan direction flag (referring to the direction of mirror movement), edge 

of flight line (allowing to distinguish last points recorded in a scan line, before mirror 

changes direction), scan angle (between -90 to 90, with 0 being nadir – directly below 

the aircraft), and classification (according to a key shown in Table 1, based on dataset 

metadata file and LAS1.2 specification). While the LAS 1.2 format allows also for 

recording colour in RGB format and additional user data, the Auckland 2016 Lidar 

dataset does not include this extra information. Nevertheless, recorded data allows for 

a wide range of analysis, such as comparing points from different flight paths, filtering 

based on number of returns, evaluating ground cover and more. 

Originally, Auckland Lidar data comes in NZTM coordinates (EPSG:2193), but data 

used in this study has been projected to use the local datum – Mount Eden Circuit 

2000 (EPSG:2105). Height values are presented using the Auckland Vertical Datum 

1946. 

Expected point cloud accuracy according to the data provider is 0.3m horizontal 

and 0.1m vertical (+/-0.1m at 68% confidence level). During the QA process it has been 

determined that most of the ground points are within 0.04m (for clear surfaces) from 

true vertical position, which makes the data much more usable for variety of purposes. 

Areas covered by vegetation have lower accuracy and some show significant errors. 

For this reason, this study will aim at determining overlapping factors (reoccurring 

point characteristics) of accuracy deterioration. 
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Table 1: Point cloud classes 

Class Represented feature 

1 Unclassified 

2 Ground 

3 Low vegetation (0-0.3m) 

4 Medium vegetation (0.3-2m) 

5 High vegetation (2m and 
above) 

6 Buildings 

7 Noise 

8 Model key-point 

9 Water 

10 Bridges 

11  

12 Overlap 

3.2 Software 
Multiple software packages have been used in this project. Some were used to 

process data and generate project results, while others were tools to analyse data 

visually. All of them are listed in appendix C. 

3.3 Data Investigation 
Significant research time has been devoted to exploring and examining the Lidar 

data. Apart from learning about the files structure and contents, as described in the 

“Study Area and Data” section, it was important to look at point clouds in different 

areas, as well as performing certain operations to get more insight of data availability 

and quality and to enable experiment planning. 

Tiles: point source IDs, intensity values and classification 
Below, as an example, tile BA31_0437_016 is examined. It is covering a rural 

area north of Auckland region, and the data has been collected on the 30/07/2017 and 

19/10/2017. Recorded data is investigated using Displaz. Firstly, Figure 6 shows points 

symbolized by their classification. White noticeable straps are mostly an unclassified 

“overlap” (class 12) (but also class 1 – unclassified and 7 – noise). Apart from that, few 

classes are clearly visible: red buildings, shades of green – different vegetation classes 

and brown – ground. It is apparent that some areas have more dense low vegetation and 

possibly less penetration to the ground. 
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Figure 6: BA31_0437_2016: LAS Classification. Different shades of green represent points classified 

as vegetation; red is class 6 (buildings). White stripes are an unclassified overlap portion of the 

cloud. 

The same data, but this time coloured by intensity, can be seen below on Figure 

7. A clear pattern is visible – higher intensity points have been recorded on the northern 

part of the tile. 

 

 
Figure 7: BA31_0437_2016: Intensity. Points of higher intensity are displayed in lighter shades of 

grey, points of lower intensity – in darker shades of grey. 

When the points are displayed by their point source in Figure 8 (unique for each 

flight pass), a deduction can be made that the higher intensity points were specific to 

one of the flight passes. Intensity depends on a few different factors, such as surface 

type, moisture, or number of returns. Data for this tile has not been recorded all at once 

– in fact, there was an over two month period between different flight passes. Some 

data was recorded at the end of July, which is a middle of New Zealand’s winter. 

Another portion was surveyed in the second part of October – well into springtime. 
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Vegetation growth, and possibly different moisture levels could be the cause of 

different intensities. 

 
Figure 8: BA31_0437_2016: Point source. Points of different colours have been collected by different 

flight paths. 

When investigating a thin slice of data, as pictured on Figures 9 and 10, it can 

be seen that the higher intensity points are aligned with lower intensity ones (Figure 

10) and are classified in the same way (as ground) (Figure 9).  

Figure 9: BA31_0437_2016 slice – class. Points 

classified as ground appear pink, vegetation 

shows in green and man-made structures in 

red. Lower part of the figure shows point 

cloud view from above, with narrow rectangle 

selecting a portion of the data to display in 

the top section of the figure – a profile view of 

the point cloud slice. 

 
Figure 10: BA31_0437_2016 slice – intensity. 

Points recorded with higher intensity show 

brighter, closer to white, while low intensity 

points are darker shades of grey. Lower part of 

the figure shows point cloud view from above, 

with narrow rectangle selecting a portion of the 

data to display in the top section of the figure – 

a profile view of the point cloud slice. 

 

No obvious issues have been noticed in case of tile BA31_0437_2016, but a 

different data sample, AZ30_4745_2016, shows possible data problems.  



14 

 

 

Figure 11 shows point cloud captured on the 23/11/2016 and 6/02/2017. When 

examining point intensity values (A), there is a clear pattern visible, where different 

flights recorded points of different intensity. This time however, higher intensity points 

do not align with the lower intensity ones (C). When symbolizing point cloud by 

classification (B and D) it can be seen that higher points are classified as low vegetation. 

One of the flights picked up more vegetation then the other (E), which can be due to a 

seasonal change. Figure (D) clearly shows that higher points have been classified as 

low vegetation. When symbology is applied by source ID -flight (E), it becomes 

apparent that one of the flights did not penetrate to the ground, and only picked up 

vegetation (blue points), while the other two flights present in the sliced area (red and 

orange) did not record any vegetation above the ground level. 

It can be argued that there is nothing wrong here – one of the flights might have 

been completed when vegetation was taller, denser, and harder to penetrate – and 

achieving ground points was not possible. Overlapping flights picked up the ground 

height. However, the situation must be considered where all flights would not penetrate 

to the ground, or, where no overlapping data from different sources would be available 

– would it still be possible to determine that the recorded information was low 

vegetation and not ground (or would miss classification be possible)? Intensity clearly 

stands out as a differentiating factor between ground and vegetation here, but as shown 

in case of tile BA31_0437_2016, this is not necessarily a good indicator. Perhaps the 

roughness of points geometry is a better warning flag - points classified as vegetation 

do not form an equally smooth surface as the ground points on figures above. The 

problem is clearly visible, and the possible relationship between points characteristics 

and data quality is a focus of this paper. 
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A 

 
B 

 

 
C 

 

 
D 

 

 
E 

Figure 11: AZ30_4745_2016. A: View from above, points symbolised by intensity. Points recorded 

with higher intensity show brighter, closer to white, while low intensity points are darker shades of 

grey. Narrow yellow rectangle shows the cross-section location (C-E). B: View from above, points 

symbolised by classification. Points classified as ground appear pink, vegetation shows in green 

and man-made structures in red. Narrow yellow rectangle shows the cross-section location (C-E). C: 

Profile view, points symbolised by intensity. Lower intensity points visible above higher intensity 

points. D: Profile view, points symbolised by classification. Points above ground classified as low 

vegetation. E: Profile view, points symbolised by source ID (flight path). Lower points picked up by 

two flight paths, higher points picked up by a different flight path (with no penetration to the 

ground). 
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3.4 Data selection 
As mentioned in previous sections, the dataset used in this study covers a vast 

area and is significant in size (over 300GB of data in compressed, storage efficient LAZ 

format). For a research project, this is a great advantage in terms of data availability 

across multiple areas with different characteristics, but poses an obvious problem of 

time-consuming computations, as well as large size interim datasets. Even the most 

efficient programs designed to deal with large data volumes, would not handle the 

whole available point cloud easily. Computation intensity aside, analysing data 

characteristics, on a large scale, also has proven to be difficult during work on this 

project. For this reason, 10 relatively small (ranging from 2.76ha to 42.95ha) test areas 

have been selected. All selected areas are covered by low vegetation but include both 

farmland and urban recreation areas (such as sport grounds and a golf course). 

Locations of the 10 areas can be seen on Figure 12. 

 
        Figure 12: Test areas locations 
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Figure 13 shows four examples of selected test areas. 

  
  

  

Figure 13: Test areas examples   



18 

 

3.5 Data processing / manipulation 
This section includes an overview of methods used in this project. An in-depth 

description of each step taken to obtain data for the analysis can be found in appendix 

D.  

This thesis contains two different approaches used to obtain material for 

analysis.  

The first and primary methodology used a computed difference between DEM 

values derived from different flight passes as a measure of accuracy that is examined 

against different derived point cloud characteristics. Digital elevation models used in 

this research have been created by interpolation: software uses point clouds to create a 

temporary triangulated irregular network (TIN), and extracts values of the TIN at cell 

centres. Methodology builds on a previous research ideas of accuracy relationship with 

incidence angle (scan angle and slope characteristics), and using intensity to help with 

classification and quality assessment (intensity characteristics). Furthermore, 

methodology extends further to examine other characteristics (presence of other class 

objects in the area, presence of other features within the laser path, roughness of point 

cloud). Accumulation of factors potentially linked to poorer quality or misclassification 

was expected to bring more robust accuracy deterioration detection. 

The second methodology used points classified as ground and low vegetation 

and examined/compared derived point characteristics in these two classes. 

Accumulation of factors characteristic to one class and not the other, was expected to 

enhance misclassification detection. 

Workflow overview 
The first of the processes used to obtain results for analysis is pictured below 

on Figure 14. Summarised inputs and products are shown in dark rectangles. They are 

grouped by the software they are created with. 

 

 
Figure 14: Methodology 1 overview chart 
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Second process, an addition analysis, is pictured below (Figure 15). 

 
Figure 15: Methodology 2 overview chart 

The initial inputs include Imagery (World Imagery service provided with 

ArcGIS Pro software as a base map), shapefile with Lidar tiles (extents and 

information) and point cloud (Lidar tiles, in laz format). Imagery is firstly used in 

ArcGIS Pro to create test areas polygons, and a Lidar tiles shapefile is used to intersect 

with these polygons and output a text document with relevant LAZ file directories. 

These two outputs, together with Lidar tiles (LAZ) (and subsequent products) are used 

as inputs in various batch file (BAT) scripts utilising LAStools. The final products of 

these scripts – various ASC files (elevation values and multiple data characteristics in 

raster form) are then written into CSV and a point feature class (to allow multiple 

attributes per cell/point) using FME software. The two types of outputs can then be 

analysed numerically and visually – in this project, using Microsoft Excel and ArcGIS 

Pro. 

Input data (imagery, and Lidar data) is detailed in previous section (“Study Area 

and Data”). The processing of data is described briefly below. For further details, see 

appendix D. 

Workflow – ArcGIS Pro 

A shapefile with polygons around selected low vegetation areas has been 

created and used to extract a list of intersecting LAS files. For additional analysis 

(Methodology 2) a smaller subset has been used. 

Workflow – LAStools 

LAStools was the primary software used in this project. Most of the data 

manipulation has been conducted with script files using LAStools, and products for 

analysis have been partially created at this step. The chart (Figure 16) visualises the 

workflow from inputs (test areas list in text form, test areas shapefile and Lidar data in 

laz format) to intermediate products (ascii files) with use of batch files. 
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Figure 16: LAStools workflow (Methodology1) 

Additional processing as pictured in Figure 17, concentrated on a subset of 

areas analysed using first approach. No DEM discrepancy was needed for the second 

methodology, and the amount of studied characteristics has been cut down. 

 

 
Figure 17: LAStools workflow (Methodology 2) 

 

A resolution of 5m has been selected for the products. While it may seem quite 

coarse, working with smaller volumes of data is easier (in terms of processing time, 
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storage capacity and results analysis). 5m resolution is enough to compute differences 

and spot possible relationships, especially when the examined data is collected over 

homogenous surfaces (low vegetation areas). For reasons of simplicity, it was better to 

use the same resolution for all products, and while some information might work better 

with more detailed resolution (such as intensity), other products required larger cell 

sizes (such as point counts). Taking all that into consideration, a resolution of 5m is a 

reasonably good choice. Studying data of this resolution can also allow us to spot 

interesting looking smaller areas and then examine them in more detail if required. 

The steps taken to produce these 5m resolution raster files are described in appendix D. 

 

Workflow – FME 

5m resolution raster datasets were created using LAStools, then were combined 

using FME to output as CSV file for analysis and point feature classes with multiple 

attributes. The process is summarized in appendix D. 
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4. Data analysis 

As a result of the data manipulation described in the previous section, files 

enabling the analysis were created. This section outlines the contents and study 

description of these outputs. The possibility of the detection of low accuracy areas 

without the usage of additional products (such as ground control surveys) is evaluated 

in this part of the report. 

 

4.1 Analysis of relationship between various Lidar point 
characteristics and the measure of accuracy: correlation and 

regression 
The primary product that was created to enable the analysis, and therefore examine 

the thesis objective, was a CSV file, relating various characteristics for each cell in a 

tabular form. The columns in the file are listed below: 

- FileName_core: name of the original Lidar tile that was the source of the data, 

with suffix indicating flight line/source ID. 

- X and Y: indicating the coordinates of the centre of the cell 

- DEM_ref_value: the value of the original DEM (before splitting flight lines and 

reclassifying the data) 

- DEM_value: the value of the DEM based on split flightlines, reclassified data 

- DEM_diff: the difference between the DEM_ref and DEM_value 

- DEM_abs_diff: the absolute value of the DEM_diff – the measure of accuracy 

used in this project 

The remaining columns contain values obtained by inspecting/extracting 

various point characteristics as described in methodology section (and in 

appendix D): 

- Class_variety 

- Density_orig, Density_01, Density_005, Density_0025 

- Height_Range, Height_StdDev 

- Intensity_Range, Intensity_StdDev 

- RetNum_Avg 

- ScanAngle_Avg 

- Slope 

The full CSV file consisted of 339795 rows of data, each representing a 5m by 

5m wide cell with summarised characteristics. It is a reasonable data sample to use for 

the relationship analysis. Excel was used to compute statistics and therefore determine 

potential relationships and their strength. 

Correlation 
The most common way to determine the existence and magnitude of similarity 

between variables is through the correlation coefficient. A strong positive relationship 

is visible when correlation coefficient values are close to 1, while a negative 

relationship produces values towards -1. Correlation values close to 0 are calculated for 
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variables that have weak to no relationship (variables appear to be independent of each 

other, one does not influence another). The correlation coefficient tests linear 

relationship between the variables. 

Correlation coefficient has been computed between each tested characteristic and the 

DEM difference. The findings are outlined in the results section. 

 

 

Multiple regression 
In multiple regression analysis, instead of trying to determine strength of 

relationships between different (individual) variables, all chosen (independent) 

variables are used as an input to finding a best-fit equation, that computes the dependent 

variable as closely as possible as a function of the independent variables. This analysis 

has been performed as the desirable outcome of this research was to find multiple 

characteristics that when present together, would flag possible data issues. 

With this in mind, multiple regression has been used to study the combined 

relationship between the measure of accuracy and the different derived point cloud 

characteristics. The values have been computed using Excel. The findings can be seen 

in the results section. 

 

4.2 Additional analysis 
A major cause of low data accuracy is a misclassification of point cloud. A 

second approach of data assessment focused on studying class 2 (ground) and class 3 

(low vegetation) point cloud characteristics. Two separate CSV files are used in this 

additional analysis: one for each of the studied classes. Each file summarises the same 

characteristics derived for the 5m x 5m cells: original and filtered densities, height 

range and standard deviation, and intensity average, range, and standard deviation. 

Average values have been pulled out to spot any trends, and they can be seen in the 

graphs in results section. 

 

Further analysis included using a density 0.05 filter (refer to “Adaptive thin and 

point count” section in appendix D: Detailed Methodology), because it shows larger 

differentiating potential than 0.1 filter (and identical to 0.025 filter), and standard 

deviation values for height and intensity (these differences are higher than ranges or 

averages if looking at percentage difference). These three derived characteristics have 

been summarised for the two classes in the Figure 24 in the Results section.  
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5. Results 

5.1 Correlation 
“Table 2: Correlation coefficient” shows the computed correlation coefficient 

values based on the exported sample data. Only correlation values between the absolute 

DEM difference (the measure of accuracy) and the different characteristics are shown 

below (relationships between different characteristics, although present, are omitted 

here). 

 

     Table 2: Correlation coefficient 

  DEM (absolute difference) 

DEM_abs_diff 1 

Class_variety 0.23926 

Density_orig -0.12393 

Density_01 0.232303 

Density_005 0.229077 

Density_0025 0.229077 

Height_Range 0.16291 

Height_StdDev 0.178945 

Intensity_Average -0.00946 

Intensity_Range -0.00846 

Intensity_StdDev -0.00658 

RetNum_Avg 0.05629 

ScanAngle_Avg 0.103354 

Slope 0.209059 

 

The computations do not show any significant linear relationships between the used 

measure of accuracy and the tested variables. A more in-depth interpretation of the 

results is summarised below. 

The coefficient is especially close to 0 for all intensity related characteristics, 

showing that high, low, changeable, or consistent intensity cannot indicate possible 

accuracy issues – there is no visible link. 

Scan angle, slope, height range and standard deviation are all related variables, that 

influence the incidence angle of a laser beam with the ground. Correlation values are 

low, even though the relationship is known. There are some reasons why these variables 

do not appear to be strongly correlated. Firstly, as proven in the previous research (as 

described in the literature review), the relationship exists between the accuracy and the 

incidence angle between the laser beam and the surface, and while that angle is 

influenced by terrain variability and the scanning angle, it has not been explicitly 

computed and analysed in this paper. Secondly, other factors may have a higher impact 

on accuracy, diluting the results. Lastly, analysed areas may not be sloping sharply 

enough to show the accuracy issues, and furthermore, this relationship is likely not 

linear, and therefore not ideal to capture with correlation coefficient. 
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Interestingly, the average number of returns shows very low correlation with the 

measure of accuracy, while class variety shows the highest correlation from all tested 

variables. This is somewhat contradictory – when a number of returns is higher than 1, 

it indicates a presence of other classes. Looking at the data, the average number of 

returns (for class 2 points only), was 1, sometimes 2, and very rarely a higher value. 

Lack of correlation indicates that if a laser beam penetrated through to the ground, the 

accuracy was not influenced or compromised. The class variability relationship with 

the accuracy measure, on the other hand, implies that possibly areas that have a range 

of ground covers, such as a mix of different vegetation and/or man-made structures, 

can result in lower accuracies. Nevertheless, as mentioned previously, this relationship 

does not appear to be significant. 

Original density shows an insignificant negative relationship with the accuracy 

measure. This is not surprising: in open areas, point density should be fairly uniform 

before applying any thinning algorithms, and in vegetation covered areas, ground point 

density would be lower, and potentially easier to miss-classify – therefore slightly 

higher errors are expected when point density is lower, which is exactly what a low, 

but negative correlation coefficient pictures. 

Density of filtered point clouds show some relationship with the measure of 

accuracy. The computed coefficients have almost double the magnitude of unfiltered 

density data, and are positive, indicating that the less points per cell, the higher the 

chances that the data does not have accuracy issues. This was expected, as smooth 

surfaces indicate more reliable measurements than rough, highly variable ones (where 

tall grass could have been wrongly classified as ground). Less thinning (preserving 

more detail: 0.05m and 0.025m) resulted in slightly less meaningful relationship with 

the measure of accuracy than a coarser algorithm (0.1m). 

Out of the tested variables, class variety and density of points (after applying 

thinning filters) showed the strongest relationship with the accuracy measure (however, 

in both cases it was below 0.24). Below scatter plots show class variety (Figure 19) and 

filtered (0.1) point count (Figure 18) charted against the absolute DEM difference.  

 
Figure 18: Scatter plot: Trends of thinned point counts. No clear relationship visible. 
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Figure 19: Scatter plot: Trends of class variety. No clear relationship visible. 

 

Higher correlation values have been computed between some tested variables, 

as would be expected (for example, height range, height standard deviation and slope 

are all highly correlated, with values above 0.87). The relationship between class 

variety and density of thinned points was approximately 0.44 for the 0.1 thinning 

algorithm and 0.49 for the 0.05 or the 0.025 thinning algorithm, indicating that the 

correlation does exist, but is not very significant. The relationship between the class 

variety and the 0.1 thinned point count has been plotted and can be seen below (Figure 

20). 

 
Figure 20: Scatter plot: Trend between class variety and thinned point count. No clear relationship 

visible. 

 

The relatively weak relationship between these derived point cloud 

characteristics leads to a possibility that sometimes accuracy deterioration could be 

linked to one of these variables. Other times, it could be linked to another variable. 

There is a chance that when examining multiple variables simultaneously, the 

relationship (between a combination of variables and the accuracy deterioration) would 

be more meaningful. 
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5.2 Multiple regression 
Table below contains results of multiple regression analysis. 

 
Table 3: Multiple regression 

 
In this case, as noted before, correlation does exist between “independent” 

variables (there is a case of multicollinearity), and therefore multiple regression results 

can be unreliable. It is perhaps also worth mentioning that the coefficients shown in the 

bottom-most portion of the Table 2 are different to correlation coefficients computed 

in the previous section: the coefficient here is a multiplier of specific variable in the 

best-fit equation. It is partially related to a magnitude of influence on the dependent 

variable, however, it must be noted that different units of measure would affect (scale) 

this value (note low coefficients for intensity derived variables) hence, it cannot be 

deducted that the higher the value, the more influential it is on a final result, as was the 

case with the correlation coefficient. 

The most meaningful value in the multiple regression analysis is the “R Square” 

value visible in the top section of Table 3. The multiple coefficient of determination, 

R2, is a measure of percentage of variability in the dependent variable (absolute DEM 

difference), that can be explained by (computed with) the regression equation, and in 

this analysis it is approximately 0.1185. In other words, less than 12% of “low 

accuracy” can be explained using the regression equation. This is a very low value, 

proving that a combination of any of the tested variables cannot be used to determine 

possible Lidar accuracy problems. 
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5.3 Additional analysis 
Average cell values for class 2 (ground) and class 3 (low vegetation) have 

been computed and can be seen in graphs below. 

 

 
Figure 21: Additional analysis: average value comparison between class 2 (ground) and class 3 (low 

vegetation): filtered point density (with 0.1m, 0.05m and 0.025m filter tolerance) 

On average, cells contained more points for low vegetation than for ground, 

after applying various size density filters (Figure 21). 

 

 
Figure 22: Additional analysis: average value comparison between class 2 (ground) and class 3 (low 

vegetation): height range and height standard deviation 

On average, vegetation shows higher height range and standard deviation per 

cell (Figure 22). 
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Figure 23: Additional analysis: average value comparison between class 2 (ground) and class 3 (low 

vegetation): average intensity, intensity range and intensity standard devation 

Ground points tend to have lower intensity, as well as less variable intensity 

within cells as compared to low vegetation (Figure 23). 

Although some trends are apparent, it is not clear if specific values of these 

characteristics can point towards correct or wrong classification of Lidar points. 
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Class 2 (ground): Class 3 (low vegetation): 

  

  

  
Figure 24: Class 2 (ground) and Class 3 (low vegetation) comparison. Each graph shows the 

percentage of cells falling within each threshold. For density filter tolerance 0.05, it shows what 

percentage of cells had 1-2 points, 3-4 points etc. For height, it shows what percentage of cells had 

a standard deviation of 0 to 0.05, 0.05 to 0.1 etc. 
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As may be seen on the histograms in Figure 24 above, in density comparison, 

more cells have been classified in all categories of 13 points and above for Class 3 than 

Class 2. There is no sharp cut-off value at which it could be deduced that the class 2 

point may be misclassified, and in fact should belong to class 3, however, that 

probability rises with each extra point counted within a cell. Similarly, class 3, low 

vegetation, shows a consistently larger percentage of cells in higher categories of height 

standard deviation than class 2 – ground. The value is lower only in the lowest 

threshold: 0 to 0.05. Again, there is no identifiable cut-off point, and, in this case, the 

percentage of cells in higher categories decreases for both classes in a pattern not 

allowing us to draw any conclusions regarding the probability of misclassification. 

Intensity standard deviation comparison is slightly more promising in detecting 

classification issues. Low vegetation yields higher intensity standard deviations 

compared to the ground. 7.09% of class 3 cells had intensity standard deviation of above 

110, while only 2.21% of class 2 cells fell in this category. 
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6. Discussion and conclusions 

Work on this project included the manipulation of the point cloud (clipping point 

cloud portions, reclassifying data, extracting elevation information, summarising 

various point metadata), and exporting various information in tabular form to perform 

analysis in the form of statistical as well as graphical outputs. 

The primary methodological focus was on the comparison of ground elevation obtained 

from the full dataset (assumed correct heights) and elevation obtained from reclassified 

point clouds originating from separated flight passes. Different point cloud 

characteristics (evaluated at 5mx5m cell level) were assessed against the discrepancy 

between the two elevation models. 

Additional analysis included comparisons of point cloud characteristics 

between ground lidar points and low vegetation lidar points. 

None of the computed correlation values were significant. Similarly, multiple 

regression analysis didn’t detect any strong relationships between the tested lidar point 

cloud characteristics and the measure of accuracy. A comparison between class 2 and 

class 3 showed trends, however, no usable, specific values that could help with error 

detection could be derived. 

 

The efforts described in this paper did not lead to developing a successful 

method for modelling areas within Auckland region that would have a potentially lower 

accuracy of Lidar data. If a stronger relationship between one (and ideally more) of the 

tested variables and the DEM absolute difference (the used measure of accuracy) would 

have been detected, further investigation could have been performed to fine-tune the 

testing and compute a meaningful regression equation. Then, analysis could be 

performed on larger areas or sites of interest (this time only extracting the independent 

variables needed as inputs to a regression equation). Zones of computed possibly lower 

accuracy could have been determined and visualized on a map or exported (for example 

as shapefiles) for future reference. Unfortunately, as described in the results section 

above, no meaningful relationships have been detected. 

 

6.1 Research shortcomings 
There are few reasons why no constructive results came out of this project. 

One obvious rationale could be that the low accuracy cannot be simply modelled using 

this available point cloud (and its metadata). This is most likely at least partially true: 

Even if results would be more promising, still only a percentage of low accuracy areas 

could be computed using this type of modelling. 

Another reason for a failure of this experiment is that it had some flaws. First 

and foremost, the accuracy measure is far from ideal. In any other research paper 

tackling Lidar accuracy, a reliable survey information dataset has been used to 

determine the point cloud height correctness. This type of data has not been available, 

certainly not for large areas that have been analysed. For that reason, a discrepancy 

between digital elevation models computed from individual flight passes and the DEM 

values based on combined data was used, as described. Obviously, this is not ideal, as 
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a combined flights DEM is used here as the “true” height value, which would not 

always be the case. This has certainly been a trade-off: being able to work with large 

volumes of Lidar data across different low vegetation covered areas, but without a 

reliable enough accuracy measure. It is my belief that this crucial component of the 

thesis research design is the biggest problem in my methodology. 

It is, however, not the only problem. There are some other considerations. One 

of them are different settings that could have been used in the computing functions 

executed with LAStools, especially the cell size used to analyse the data. It has been 

explained in the methodology section, why a cell size of 5m by 5m has been used (the 

resulting simplicity of the experiment being one of the bigger factors). When exploring 

the outputs of combined numerical values, however, it can be seen that this was likely 

not an ideal approach for some of the tested variables, and more meaningful values 

could have been extracted if a different cell size was used. If continuing research along 

these lines is conducted in a similar manner, my recommendation would be to 

differentiate cell sizes for different variables and use a procedure that would overlay 

the different size outputs instead. 

Another approach that could be examined is a possibility of treating the 

accuracy as a binary measure (either acceptable or not), instead of as a continuous 

spectrum. It could have been interesting to see if any relationships would emerge in that 

scenario. Different statistical testing would have to be considered in such case. 

Furthermore, it deserves restatement, that a proven, existing relationship between the 

accuracy and the incidence angle of the laser pulse, has not been properly treated in this 

research. The methodology developed as described in “Accuracy estimation for laser 

point cloud including scanning geometry” (Schaer et al., 2007) could have been 

incorporated to produce better results (however, in the absence of any other potentially 

meaningful variables, it is not needed). 

Finally, the analysis of the results that has been described in this paper is 

problematic. Firstly, computing correlation has been used to spot any significant 

relationships between the tested variables and the measure of accuracy. Then, multiple 

regression has been used to see if a meaningful relationship exists when combining the 

variables. As stated previously, when initially investigating the topic, and designing the 

thesis work, it was hoped that some relationships would be discovered with correlation 

computations, and that multiple regression could then lead to obtaining a formula for 

flagging possibly lower accuracy Lidar data. This has certainly not happened, and a 

final possible reason for that is the non-linearity of the relationships between the tested 

variables and the measure of accuracy. Both: correlation and multiple regression, 

assume (and test) linear relationships. However, it is indeed possible that existing 

relationships (if any) could be non-linear, but instead follow different patterns (for 

example exponential). 

 

6.2 Further research 
The idea of combining different variables, that each individually show 

relationship with accuracy, to determine with more confidence if portions of data have 

reliable, high quality, has its merits. Previous research (as well as simply understanding 
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Lidar technology and geometry principles) has indicated that the relationship between 

incidence angle and accuracy does exist. If any other variable is proven to show similar 

relationship, there is potential to revisit the methodology proposed in this paper. 

One of the variables not tested in this paper, due to the lack of availability, was the 

thickness of the waveform part forming the detected peak (and resulting in point 

record). 

In “Exploring the potential of full waveform airborne Lidar features and its 

fusion with RGB image in classification of a sparsely forested area” (Babadi M., Sattari 

M., Pour S. I.) the authors explore more precise vegetation classification from the point 

cloud, using waveform shape information – pulse characteristics. The paper also refers 

to multiple studies where point characteristics such as intensity and pulse width were 

used in classification of different vegetation species (as opposed to relying mostly on 

geometry of a point cloud). These pulse characteristics, unavailable for my study, could 

be used as additional test parameters. 

Furthermore, a future study could include data from different Lidar system 

types. “A Photon-Counting Full-Waveform Lidar” (Du B.-C., Li Z.-H., Shen G.-Y., 

Zheng T.-X., Zhang H.-Y., Yang L., Wu G.) describes a system that records the number 

of photons returned to the instrument in a number of very small-time intervals, therefore 

mapping a waveform. This way, the obtained information (such as waveform peak and 

waveform width) about each recorded point is easier to quantify. It is somewhat a 

hybrid between the linear-mode full-waveform and photon-counting discrete-point 

systems. The authors write that: “The complexity of the waveforms is greatly reduced 

with short laser pulses, which facilitates the extraction of the signal pulse information. 

By virtue of the echo full-waveforms, more parameters of the scattering surface can be 

analyzed than in a traditional discrete-point Lidar, such as the vertical structure, peak 

position, peak amplitude, peak width and backscatter cross section, which are utilized 

to characterize the surface features of the targets for classification.” In the described 

test study, it is shown, for example, that peak width can help with detecting sloping 

surfaces. As it is known that incidence angle affects the recorded point accuracy, peak 

width recorded against the point could potentially signal (a portion of) discrepancy 

between the true and measured location. Other recorded pulse quantities could also be 

used in a similar study to the one described in this thesis, to check for possible 

relationship with accuracy. 

 

6.3 Final word 
During work on this paper, a method for modelling low data quality has not 

been determined. There is certainly space for further investigations and/or 

improvement, as described in previous sections. For now, when using available Lidar 

data in applications requiring high accuracy elevation information, extra care must be 

taken. Firstly, point clouds covering the area of interest should be visually inspected. 

Secondly, data can be compared with older Lidar fly overs. If there is an inconsistency 

between different datasets, it should be evaluated if an expected change over time has 

occurred, based on available aerial imagery or possibly other data and local knowledge. 

Finally, a high precision terrestrial survey (of sample of the area of interest) may be 
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needed, to ensure Lidar data accuracy meets the requirements and can be used in a 

specific case.  
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Appendix A 
Lidar 2016/2017 information (extracted from original text file): 

 

This digital mapping dataset was created from airborne LiDAR sensor data collected 

2016-17. The date that the data was collected is documented in the tile layout shapefile 

that accompanies the datasets. 

 

The Point Cloud data is in LAS v1.2 and ESRI 3D point shape file formats. The LAS 

files contain classes 1- Unclassified, 2 - Ground, 3 - Low vegetation (0 – 0.3m), 4 - 

Medium vegetation  (0.3 – 2m), 5 - High vegetation 2m &gt; , 6 – Buildings, 9 - 

Water,10 Bridges .  Data is stored in LINZ Topo50 1k tiles (720m x 480m). Raw Point 

Cloud density is at least 4 points per square metre over open ground. Vertical accuracy 

is +/-0.1m @ 68% confidence. Point cloud heights are recorded in the Auckland 1946 

NZVD2016 and NZVD2016 datums. Coordinates are NZTM. Coastal and intertidal 

data was collected at one and one half hours either side of low tide. 

 

As part of the contract deliverables a final report will be prepared at the time of 

acceptance of the last data delivery that details the procedures followed in the creation 

of this dataset and which documents the results of point cloud accuracy checks. 

 

The Airborne Global Position System (AGPS), inertial measurement unit (IMU), and 

raw scans are collected during the LiDAR aerial survey. The AGPS monitors the xyz 

position of the sensor and the IMU monitors the orientation of the aircraft. During the 

aerial survey laser pulses reflected from features on the surface and are detected by the 

receiver optics and collected by the data logger. GPS locations are based on data 

collected by receivers on the aircraft and base stations on the ground. The AGPS, IMU, 

and raw scans are integrated using proprietary software developed by Optech the and 

delivered with the Optech LiDAR System. The resultant file is in a LAS binary file 

format. The LAS file version 1.2 format can be easily transferred from one file format 

to another. It is a binary file format that maintains information specific to the LiDAR 

data (return#, intensity value, xyz, etc.). The unedited data are classified to facilitate the 

application of the appropriate feature extraction filters. A combination of proprietary 

filters is applied as appropriate for the production of bare-earth digital elevation models 

(DEMs). Interactive editing methods are applied to those areas where it is inappropriate 

or impossible to use the feature extraction filters, based upon the design criteria and/or 

limitations of the relevant filters. These same feature extraction filters are used to 

produce elevation height surfaces. 

 

Filtered and edited data are subjected to rigorous QA/QC according to the agreed 

quality control plan and procedures. Very briefly, a series of quantitative and visual 

procedures are employed to validate the accuracy and consistency of the filtered and 

edited data. Ground control is established by registered surveyors. A suitable number 

of points are selected for calculation of a statistically significant accuracy assessment. 
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Accuracy validation and evaluation is accomplished using proprietary software to apply 

relevant statistical routines for calculation of Root Mean Square Error (RMSE). 

 

NEDF Metadata 

  Acquisition Start Date: 01 November 2016 

  Acquisition End Date: 29 June 2017 

  Sensor: LiDAR 

  Device Name: Optech 

  Flying Height (AGL): 1650 

  INS/IMU Used: Applanix 

  Number of Runs: UNK 

  Number of Cross Runs: UNK 

  Swath Width: UNK 

  Flight Direction: UNK 

  Swath (side) Overlap: UNK 

  Horizontal Datum: NZGD2000 

  Vertical Datum: AUK46 

  Map Projection: NZTM 

  Description of Aerotriangulation Process Used: NA 

  Description of Rectification Process Used: NA 

  Spatial Accuracy Horizontal: 0.3 

  Spatial Accuracy Vertical: 0.1 

  Average Point Spacing (per/sqm): 4 

  Laser Return Types: 4 pulses (1st 2nd 3rd 4th and intensity) 

  Data Thinning: 1 

  Laser Footprint Size: 0.3 

  Calibration certification (Manufacturer/Cert. Company): NA 

  Limitations of the Data: NA 

  Surface Type: DEM 

  Product Type: Points 

  Classification Type: Level 1 

  Grid Resolution: 1 

  Distribution Format: LAS 

  Processing/Derivation Lineage: NA 

  WMS: NA? 
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Appendix B 
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Appendix C 
Software used in Master Thesis “ALS (AIRBORNE LIDAR) ACCURACY: CAN 

POTENTIAL LOW DATA QUALITY OF GROUND POINTS BE 

MODELLED/DETECTED? CASE STUDY OF 2016 LIDAR CAPTURE OVER 

AUCKLAND, NEW ZEALAND.” 

 

Displaz 
Displaz is a software designed to visualize point cloud data. It enables user to view 

multiple laz/las files in the same time, display points by their characteristics (such as 

class or point source ID), query points x,y,z locations, zoom, rotate and limit view by 

radius from chosen point. Moreover, the software allows user to interactively customize 

visualizations by accessing part of software’s code (this functionality has been used for 

Figure 2 (Point cloud and recorded point properties, thesis background section). 

Although the only software’s ability is viewing point cloud files, it is a powerful tool 

for inspecting data. More information about Displaz can be accessed through a github 

page: https://github.com/c42f/displaz. 

 
Figure 25: Displaz 

FugroViewer 
FugroViewer is another software designed for visualizing point cloud data. Apart from 

symbolizing points by chosen by the user attribute, it has few more advanced options, 

such as overlaying points over a reference imagery, visualizing TIN and contours, 

inspecting points in different views (top down, side, 3D) and investigating sliced data 

(narrow long portion of point cloud). That last function is the main reason the software 

was useful in interrogating the data. More about this software package can be found on 

https://www.fugro.com/about-fugro/our-expertise/technology/fugroviewer. 
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Figure 26: FugroViewer 

LAStools 
LAStools is a software suite designed to process point cloud data. This highly efficient 

software is ideal for working with large datasets that can consist of millions of points. 

LAStools can be executed through a native program with user interface, as toolboxes 

that can be added to other software packages, such as ESRI’s ArcGIS Pro, or as 

commands in scripts. Extensive documentation (in text file format) is available for 

every available command, with multiple examples of usage. In this project, LAStools 

have been executed through batch files, which gives the user most flexibility and 

enables processing of multiple files at once. More information on LAStools can be 

found on website: https://rapidlasso.com/lastools/. 
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Figure 27: example bat file executing LAStools - "lasoverlap" 

Notepad ++ 
Notepad++ is a text editor, that has been used to write batch files executing LAStools. 

https://notepad-plus-plus.org/. 

Windows PowerShell 
Windows PowerShell is a Windows application (https://docs.microsoft.com/en-

us/powershell/) and has been used in this project to execute LAStools through bat files 

(while bat files can be executed just by double clicking them, executing them through 

Windows PowerShell allowed trouble-shooting on some occasions). 

FME 
FME (Feature Manipulation Engine) is a software package distributed by Safe 

Software. FME can work with a rich variety of formats and allows users to create simple 

to complex data manipulation workflows consisting of connected transformers. More 

information about FME can be accessed through Safe’s site: 

https://www.safe.com/fme/. 
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Figure 28: FME 

ArcGIS Pro 
ArcGIS Pro is a desktop GIS software from ESRI. It allows data manipulation, 

publishing, as well as creating visual products (maps, plans). In this project, ArcGIS 

Pro has been used to inspect and visualize data and create some of the figures for this 

report. More about this software package can be viewed on Esri’s website: 

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview. 

 
Figure 29: ArcGIS Pro 
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Microsoft Excel 
Excel spreadsheets have been used to interrogate numerical data outputs and analyse 

correlations. 

Licensing 
Some of the above software packages are freely available – these include Displaz, 

FugroViewer and Notepad ++. Others have been accessed using licenses acquired by 

Wood & Partners Consultants Ltd. 

Other notes 
The above-mentioned software packages have been used in this project due to their 

availability/familiarity. Other software packages might have been used to produce 

similar or the same results. Moreover, few of these programs have overlapping 

functionality, and on some occasions, the decision on which software to use in which 

circumstances was based solely on a personal preference. 
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Appendix D 
Detailed methodology. 

Workflow – ArcGIS Pro 
The first step of the workflow was creating a polygon shapefile (named “TestAreas”) 

and adding features that intersected with low vegetation areas as described in section 

“Data selection”. Spatial join geoprocessing tool (with 1 to many setting) was then used 

to output information of all Lidar tiles that intersected the “TestAreas”. Maximum of 4 

tiles intersected any selected polygon. New field (“directory”) was added to the 

resulting feature class, and file directory of each tile was computed using field 

calculator ('E:/2016AKL_LiDAR/MtEdenAUK46/RPC_'+!Name!+'.laz'). Resulting 

list of file directories has been copied to a text file “listoftiles.txt”. Both the shapefile 

and the text file are used in processes outlined in the next section. 

 
Figure 30: Tiles intersecting test areas - ArcGIS Pro table view 

Workflow – LAStools – Methodology 1 
Copy laz files 

Firstly, appropriate laz files were copied to a new directory. List of tiles in text form 

has been placed in the same folder as batch files and PowerShell has been opened from 

the same directory. 

The inputs in this step include text file created in previous step (using ArcGIS Pro) and 

original laz files. 

Below figure shows the contents of batch file 1_CopyLaz.bat. Input directory is a folder 

with all available Lidar laz files. Output directory is selected (it gets created when file 

is executed). Source and target coordinate systems and vertical datum are set (no 

reprojection takes place so it is really a house-keeping part of the script, however, it 

also ensures that when numerical values are used in subsequent scripts, the metric 

system is used). In lines 10 to 12 the output directory (if pre-existing) including 

subdirectories gets deleted in silent mode (without requiring confirmation) and then 

empty new output directory gets created. It is part of most of used scripts, and was 

useful when trying different settings, re-running batch files etc. Finally, LAStools are 

called: las2las command is used, with settings to use contents of text file for list of files, 

specified source and target coordinate systems, specified output directory and an output 

in laz format. 
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Figure 31: 1_CopyLaz.bat 

Using batch file for copying files is quicker than manually copying each one, is scalable 

(larger areas, bigger number of files could easily be copied if required) and reduces 

possibility of human error. 

 

Clip laz files 

In the second step, shapefile with area extents (created as described in previous section 

- “Data selection”) is used to clip laz files: file with clipping extent is firstly defined in 

line 3 and then used as input in line 13. Lasclip function is using all laz files in input 

directory as input, and outputs clipped data in laz format. 

 
Figure 32: 2_ClipLazByShp.bat 

Output files from this step are used both in steps: “Create DEMs (original 

classification” and “Split flightlines”. 

 

Create DEMs (original classification) 

Las2dem function was used to create digital elevation model files based on clipped laz 

data. Again, all laz files from stated input directory were used as input. Setting multiple 

cores was used to speed up the processing. Only class 2 (ground) was used to create the 

DEM. Step defines the resolution of 5m. Elevation was used to write values to a raster 

(other options include slope, intensity and more). Output format was set to ascii. No 

supporting KML file was produced. Output files were assigned a suffix 

“_DEM5m_orig” for easy recognition. 
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Figure 33: 3_CreateDEMs_orig.bat 

Las2dem function uses point cloud to temporarily triangulate a (high resolution) surface 

and then rasterises that tin to a user specified resolution raster – therefore individual 

points/cells (centre values) are not less accurate when step is increased – just smaller in 

numbers. 
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Split flightlines 

Clipped laz files were also used as input in “lassplit” function, that separated each laz 

file into multiple files, based on their point source ID, which is related to individual 

flight lines (default in this function). 

 
Figure 34: 4_SplitFlightLines.bat 

The idea is to derive information from individual flight lines and compare this data to 

discrepancy between DEM created from individual flight and original DEM (produced 

as described in “Create DEMs (original classification)” section). 

 

Reclassify ground 

Lasground is a tool for bare earth extraction – it classifies points into ground and non-

ground (in line 16, option to leave non-ground points in their original classification is 

used). By default, only last return is taken into consideration. Most important setting 

included below – an offset – has been selected to be 0.05 - it sets a tolerance of distance 

above ground estimate (ground points form a layer rather than flat surface of no 

thickness, due to survey accuracy, and offset relates to the allowable thickness of that 

layer). If the number is set too low, it will cause small number of points to meet the 

criteria, while if it is set too high, low vegetation is likely to be mis classified as bare 

earth. 0.05 is a reasonable offset to use considering aerial Lidar accuracy. 

 
Figure 35: 5_Reclassify.bat 

While different software and more sophisticated methods were used to originally 

classify point cloud for Auckland Council, before it was passed on to users, the 
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geometry of points was still at core of that classification, and therefore it is believed 

that this reclassification (although more simplistic) and extraction of further products 

will result in valuable material for analysis. 

 

Create DEMs (reclassified individual flight lines) 

Laz files with reclassified, individual flight lines, were used to create a series of DEMs, 

similarly as described in section “Create DEMs (original classification)”. 

 
Figure 36: 6_CreateDEMs_FlightlinesReclass.bat 

The absolute difference between cell values of rasters created in this step and values 

created based on original data, will be used as a measure of accuracy in the analysis. 

 

Adaptive thin and point count 

One of examined properties was roughness of point cloud representing ground. To test 

it, adaptive thinning of point cloud was used. Adaptive thinning is a function that can 

typically be used to decrease the size of data without compromising accuracy too much, 

by removing points that are not contributing to a change of tin by more than a selected 

by user tolerance. It is a very useful tool when needing to use the data in software not 

designed to handle (typically very large) point clouds. Consider figure 37: if selected 

vertical tolerance is set to a very low value, both green and blue points would remain; 

if tolerance is set a bit higher, green point would be removed from point cloud while 

blue one would remain; and if tolerance is very high, both green and blue points would 

be removed (and data size most reduced). The higher the tolerance, the lower the 

subsequent products accuracy, and the lower the number of points in output point cloud. 

On flat areas (or, rather, on those of consistent slope), even thinning with low tolerance 

can reduce amount (and size) of data drastically. 

 
Figure 37: Adaptive thinning supporting graphic 

In this experiment, thinning algorithm is tested with 3 different tolerances: 0.1, 0.05 

and 0.025m, and later the number of remaining points in regular grid cells is counted. 

The rougher the surface, the more points should remain after thinning. The reason for 
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this test was to see if low vegetation wrongly classified as ground would show different 

(stronger) height variation (rougher point cloud). 

One thing to note here is that thinning is influenced by reclassification offset tolerance 

described in “Reclassify” section – point cloud will appear less rough if low offset was 

used. 

 
Figure 38: 7_AdaptiveThin_01_05.bat 

Script shown on the figure above was used to execute the lasthin function. Both input 

and output are in laz format. The most important setting, as explained above, is the 

“adaptive”: 0.1 has been selected for the vertical tolerance, and 5 is the maximum 

allowable spacing between points (this ensures that even on very flat areas, some points 

are preserved). Identical script was also executed for tolerances of 0.05 and 0.025 (with 

changed output directory, output file suffix and obviously a changed adaptive setting). 

Original (flight separated, reclassified) and thinned out laz files were then used as inputs 

to point count scripts executed using lasgrid. 

 
Figure 39: 8_LasGrid_PCount_Orig_5.bat 
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Figure 40: 8_LasGrid_PCount_Thin01_5.bat 

2 out of 4 scripts are shown above. Grid distance of 5 was used again, to comply with 

DEMs and Ascii format was selected for outputs. Point counting scripts that were used, 

only differ in input and output directories and suffixes. 

The products consist of ascii files (plus supporting projection files), where regularly 

spaced values stand for number of ground points counted within each cell. 

 

Slope 

Slope has been computed using las2dem function, with option to output slope instead 

of default height. Reclassified individual flight lines point clouds were used as inputs. 

Outputs, with 5m resolution, have been produced in asc format. 

 
Figure 41: 8_Las2DEM_Slope.bat 

As mentioned in literature overview (“ALS Accuracy”), it is known that there is a 

relationship between Lidar accuracy and slope (or more precisely, the angle at which 

laser beam hits the surface, which is related to slope), however, it may not be visible in 

this data (see results section). 
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Scan angle 

Like slope, scan angle is related to (influences) the incidence angle. It has been 

computed as an average for each cell. 

 
Figure 42: 8_LasGrid_ScanAngleAvg.bat 

Class variety and number of returns 

To check if presence of different features, such as man-made structures or higher 

vegetation influences accuracy, number of different classes present within each cell has 

also been computed and written to asc files. Because the selected areas were specifically 

selected to cover low vegetation (with very little class variety), this is just a 

supplementary test. 

 
Figure 43: 8_LasGrid_ClassVar.bat 

Average number of returns has also been computed (for points of class 2), and it is 

related to class variety: if only ground was recorded, the number of returns should be 1 

or close to 1, and if other features were recorded, before beam reached the ground, the 

number would be higher. Interestingly, if class variety suggests presence of different 

land covers (vegetation on top of ground), but average number of returns is very close 
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to one, it could mean that each laser beam ether recorded vegetation or ground, but not 

both (did not penetrate through vegetation). 

 
Figure 44: 8_LasGrid_RetNumAvg.bat 

Height data 

Another point cloud characteristic that was examined, was height related information. 

Height range was computed for each cell. This is in a way related to slope: the higher 

the range - the higher the terrain slope; however, larger height range on flat areas could 

indicate some data issues. Figure 45 pictures the script. Additionally, to height range, 

height standard deviation within 5x5m cell was computed (Figure 46). 

 
Figure 45: 8_LasGrid_HRange.bat 
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Figure 46: 8_LasGrid_HStdDev.bat 

Intensity 

Intensity of Lidar points was also amongst the focus of analysis. Intensity is recorded 

for each point and according to “Methods from information extraction from LIDAR 

intensity data and multispectral LIDAR technology” (2018, Scaioni M., Höfle B., 

Baungarten Kersting A.P., Barazzetti L., Previtali M., Wujanz D.), it can help with data 

classification. Intensity depends on variety of factors, but one of the main ones is the 

number of returns: the same surface under the same conditions will return points of 

different intensity, if part of the beam has been already reflected by different object(s), 

and therefore not full portion has reached and bounced off that surface. To remove this 

major factor, only the points that had been recorded with laser beam that had only 1 

return (“keep_number_of_returns 1” option) have been used to compute intensity range 

(Figure 47), average intensity (Figure 48) and intensity standard deviation (Figure 49). 

 
Figure 47: 8_LasGrid_IntensityRange.bat 
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Figure 48: 8_LasGrid_IntensityAvg.bat 

 
Figure 49: 8_LasGrid_IntensityStdDev.bat 

Workflow – LAStools – Methodology 2 
Second analysis approach used a subset of data created by 4_SplitFlightLines.bat 

script, that was followed by: 

- Adaptive thin and point cloud for class 2 and class 3 separately 

- Height range, height standard deviation, intensity (average, range and standard 

deviation) for class 2 and class 3 separately 

Scripts used in the second analysis approach are identical to those in the methodology 

1 and differ mostly in input/output directories. “Keep_class” function is used to create 

outputs for classes 2 and 3. 

 

Workflow – FME 
Chart below (Figure 50) provides a summary of methodology 1 data processing using 

FME. Firstly, each ascii file gets converted to points, x and y values are written to 

attributes and so is the raster value (appropriate attribute names are assigned, such as 

“Height_Range”, Intensity_Average” etc.). Original DEM values are (inner) joined to 

each reclassified DEM value (based on X and Y attributes) and then the absolute 

difference in Z values between the DEMs is computed for each point. In the meantime, 

all point cloud characteristics raster datasets were joined with each other in a series of 

succeeding outer joins (outer joins are used to still retain points that would fail to have 
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some of the values, for example when data was filtered on “keep_number_of_returns 

1” asc file would include null values when all ground points in a cell were a result of 

second or higher return). Points with combined point cloud characteristics, now written 

into specific attributes, were then joined to DEM points (again, based on x, y). Finally, 

all points were written into an ESRI file geodatabase as point feature classes: one class 

per each file with separated flight passes for easy identification of data origin. 

 

 

 
Figure 50: FME workflow Methodology 1 

Figure below pictures an FME workbench designed to carry out the process as 

described above. On the left, there are “readers” – source files (one reader has been set 

for each ascii file type, for example class variety rasters are in one reader, and original 

density rasters are in another reader. FME transformers are symbolised by blue colour 

– these are various processing tools (for example attribute creators, value extractors, 

feature joiners, testers). On the right, there are “writers” – tools that export prepared 

data to specified formats (in this case, point feature classes in gdb and a csv file). 

 
Figure 51: FME workbench (Methodology 1) 

Methodology 2 data processing is shown in the flowchart below. Uniformly to the 

first approach, points are getting derived from asc files and joined based on their 

location. This time, no join to DEM is needed. Outputs have been filtered to ignore 

cells with below 5 points (original point count) as computing standard deviations or 

ranges on very small number of points is not desirable. The process shown below has 

been followed twice (once for each of the two analysed classes). 
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Figure 52: FME workflow Methodology 2 

 

FME workbench used in Methodology 2 can be seen below. 

 
Figure 53: FME workbench (Methodology 2) 
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