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Abstract

Simultaneous Localization And Mapping (SLAM) is an important component in
solving the problem of autonomous navigation � allowing machines such as self-
driving cars and mobile robots to �nd their way in the world without human
instruction. Though there is a steadily growing body of literature in the �eld of
SLAM, far fewer works currently address using hardware acceleration to speed up
this computationally heavy task.

That is precisely the concern of this thesis project, in which one of the largest
bottlenecks in feature based visual SLAM � feature matching � is investigated
for hardware acceleration. After comparing several state of the art methods, the
Hamming Distance Embedding Binary Search Tree (HBST) is identi�ed as the
best candidate for a hardware-based feature matching system; and the speci�cs of
such a system design are presented in detail.

As a means of reducing memory requirements by up to 50%, thus enabling a
component of the system to reside in on-chip memory, a new way of storing binary
trees was invented: the Heterogeneous Binary Tree Array (HBTA). This method
enables binary trees with di�erent sizes of data in their internal and leaf nodes
to be stored in an array-based layout with signi�cantly less overhead than a tra-
ditional approach; thereby enhancing cache performance, prefetching capabilities,
and minimizing storage space.
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Popular Science Summary

What if we could release a swarm of butter�y sized robots to explore and map a
forest? Imagine sending a tiny helicopter, the size of a �st, to �y along a country
road and check it for potholes, all without needing a human to look at it. With
this thesis project, we take a step closer towards that vision of the future.

For robots to do this type of work on their own, they need to be able to
move around on their own, to navigate and �nd their way in the world. A way of
accomplishing this is known as Simultaneous Localization And Mapping (SLAM),
in which a robot is able to both build up a map of its surroundings and use
that map to navigate at the same time, using a camera to look at the world. This
project looks at one of the most important building blocks of SLAM, called feature
matching, and how to make it as e�cient as possible.

There are already many systems using SLAM today, from self-driving cars to
robot vacuum cleaners. These systems run on normal computer chips, programmed
with software which performs all the work required for SLAM. This is all well and
good when you have a car battery to run o� or only drive around for half an hour
before going home to charge like a robot vacuum. But if we want to shrink down to
the tiny robots mentioned at the start the battery would drain far too quickly, or
have to be so heavy the robot could barely lift it, when running SLAM in software.

Luckily, there are other options! Computers are great because we can program
them to do anything we want. All it takes is a bit of code and the exact same
computer chip can write emails, play video games, or even send commands to the
Mars rover. But as the saying goes, computers are jacks of all trades and masters
of none. Specialized hardware is the true king of e�ciency; it's made to do one
job and one job only, but it does it faster and using less battery than a computer.

So to achieve the e�ciency we strive for, this project developed a specialized
hardware component which speeds up one of the slowest and most energy-intensive
parts of SLAM. An algorithm was found which is both very e�cient and suitable
for implementation in hardware, and a design based around this algorithm was
created. Several tricks and optimizations were used to squeeze the best possible
performance from each part of the system, and a brand new invention was created
to cut the memory requirements in half for one of the components! In total, the
design created in this project is expected to improve several hundreds of thousands
of times on the current state of the art's performance, drastically lowering the
battery requirements for the tiny robots of the future.
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Chapter1
Introduction

In recent years the horizons of automation have been rapidly expanding. In the
past we had only industrial machines, carefully tuned by experts to repeat a single,
predictable task. Now we not only have machines for which the behavior can be
con�gured by laypeople, but also machines which can modulate their own behavior:
autonomous robots.

For such automated systems, the problem of navigating the world is highly
relevant. For some applications movement may be unnecessary, or constrained to
some area which can be speci�ed by a human operator. However, some systems
are required to operate much more freely � for example self-driving cars. For
such systems it is prohibitive � or counter to the point, in the case of self driving
cars � to rely on human oversight.

Hence, the problem area of autonomous navigation is of growing interest. One
method of achieving autonomous navigation � which will be further explained in
the Background chapter � is Simultaneous Localization And Mapping (SLAM);
a process in which an agent simultaneously creates an approximate map of its
surroundings, and determines its position in the map.

This project focuses on a speci�c visual SLAM system known as ORB-SLAM2[1].
Speci�cally, the project aims to implement a component of the ORB-SLAM2 sys-
tem in FPGA hardware. The component in question constitutes a major bottle-
neck in ORB-SLAM2, hence why it was chosen as a focus.

Through hardware acceleration of key components in the ORB-SLAM2 pipeline,
power and area requirements for the resulting system-on-chip are reduced. By
achieving these reductions a new class of SLAM enabled systems may become
feasible; for example insect sized drones operating with real-time performance.

There is an ongoing e�ort at the university's Department of Electrical and In-
formation Technology (EIT) to investigate other components of the ORB-SLAM2
system and their potential avenues for hardware acceleration in a system-on-chip.
This thesis project serves as a contribution to that e�ort, and its results are ex-
pected to inform future endeavors at the department.

The component of the ORB-SLAM2 system that this project aims to specify
is called feature matching. The Background chapter will explain the concept be-
hind feature matching and its importance to SLAM in further detail. To put it
brie�y, feature matching is a very computationally demanding task, which entails
comparing thousands of points from one set to thousands of points from another,
and pairing up the ones closest to each other.
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2 Introduction

To achieve the FPGA implementation High-Level Synthesis (HLS) is used.
HLS is a paradigm of hardware design o�ering a greater level of abstraction than
RTL[2]. It allows regular software code, e.g. C++ code, to be synthesized into
hardware � provided it adheres to the constraints posed by HLS.

At the onset of this project, three goals were decided on. In order of impor-
tance, these were:

� To devise an FPGA implementation of feature matching with a throughput
capable of handling at least 2,000 feature points per frame at a rate of 30
frames per second. The motivation for this goal was to feasibly handle
the throughput required in an ORB-SLAM2[1] system operating with VGA
video quality (640×480 pixels) at 30 frames per second.

� To minimize the power consumption of the implementation; which was an-
ticipated to be largely in�uenced by the number of o�-chip memory ac-
cesses. Since the motivation for implementing this hardware accelerator is
to reduce power consumption, it naturally follows that the implementation
should strive for such reductions, too.

� To specify the implementation through C++ based HLS. This goal was
chosen both as a means for myself to learn HLS, and in the hopes of gaining
further insight into aspects of HLS development that may be useful in future
students' endeavors.

The remainder of this report will �rstly go over further background and moti-
vation for the work. Secondly a review of feature matching strategies found in the
literature will be presented, and motivation as to why they were rejected for use
in this project. Following that, the strategy which was chosen will be introduced
and a feature matching system based on that strategy will be elaborated on.

As part of the devised feature matching system, a new method is presented
for e�ciently storing binary trees storing di�erent sizes of data in their internal
and leaf nodes; which optimizes for cache performance and achieves up to a 50%
reduction in storage space.

Following the system speci�cation, the results of the project will be presented
and discussed. Lastly, a conclusion summarizing the work will be presented, and
a number of avenues for future works to explore will be suggested.



Chapter2
Background

As the Introduction chapter highlighted, the growing need for automation in the
modern world necessitates increasingly intelligent systems. Autonomous naviga-
tion was identi�ed as a highly relevant capability for such systems.

While there are di�erent types of autonomous navigation � approachable with
di�erent techniques � we will focus on SLAM for this project. In SLAM a system
simultaneously creates a continuously updated estimate of the world around it, and
determines its location within this estimate[3]. SLAM not only enables a robot to
navigate a new environment without any prior knowledge of it, but also to create
a map for future use. For example, a SLAM enabled drone could be deployed in a
warehouse and tasked to explore it until a complete 3D map depicting every wall,
aisle, and shelf is obtained.

SLAM is a general technique applicable for use with several di�erent types
of sensors. For this work we are particularly interested in visual SLAM � a
subset of SLAM in which visual input from one or several cameras is used � since
cameras are both cheap and able to provide rich information about the recorded
environment[1].

An in-depth explanation of visual SLAM is beyond the scope of this paper,
but the general concept can be intuitively understood. If you close your right eye
and focus your gaze on some object a few meters away, then close your left eye and
open the right instead, you will see the object jump a small distance to the left
� and the rest of the world for that matter. Of course, we realize that our point
of view has simply moved a small distance to the right, rather than the entire
world moving the opposite way. Through comparing images from its camera, a
system implementing visual SLAM can come to this same conclusion; with math
substituting for the role of a visual cortex.

Of course, the camera doesn't see objects, it sees pixels. We may get pixels with
the same values in completely opposite corners of an image, or all the pixels may
change intensity from one image to another due to changes in lighting. Clearly
we can't compare lone pixels from one frame to another and hope for sensible
results. A popular and robust method for solving this issue is feature-based visual
SLAM[3]; in which feature points are identi�ed in each image.

Feature points are regions of visual interest in an image, parts of it that can
be assumed to hold some meaning. An image of a completely white wall isn't
interesting. But if there's a dark rectangle to the side of the white wall, you've
just found a doorway. Hence, the edge between the doorway and the wall is

3



4 Background

interesting, and should have several feature points along it. Beyond just marking
a region of interest, feature points all come with their own sort of �ngerprint: a
feature point descriptor. Comparing these �ngerprints from one image to another
is what allows a visual SLAM system to recognize movement, and calculate how
the camera must have moved within the world to result in such movement. Figure
2.1 illustrates this concept, in which corresponding parts of the same object are
marked with the same color of dots, analogous to feature points.

(a) A candle pictured from two di�erent angles with faux

feature points marking corresponding parts.

(b) The two pictures overlaid

with each other, with

lines marking correspon-

dence between the faux

feature points.

Figure 2.1: An illustration of the concept behind feature matching.

Just like a regular �ngerprint may di�er slightly depending on the amount
of pressure applied or angle of holding something, feature point descriptors are
rarely an exact match; as they too end up taken from di�erent angles or varying
lighting conditions. Therefore, when comparing feature point descriptors, we are
concerned with �nding closely matching points. This process is known as feature
matching, and is the focus of this thesis.

Before we can start matching features, we need to de�ne what we mean by a
close match, and to do that we need to know what our feature points look like.
In this project we target the ORB feature descriptor[4]. The ORB descriptor is
used in ORB-SLAM2[1], which is the visual SLAM system this project aims to
accelerate the feature matching component of.

An ORB feature descriptor is a binary sequence of 256 bits. The distance
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between ORB descriptors is determined by their Hamming distance, which is a
measure of how many bit positions the binary sequences di�er in. Feature match-
ing on ORB descriptors is then a matter of �nding the descriptor with the lowest
Hamming distance for each given query, also known as the nearest neighbor prob-
lem.

Feature matching is a computationally demanding task, and often becomes
a bottleneck in systems dependent on it[5], [6]. In particular, for an ORB-based
visual SLAM system such as ours, feature extraction and feature matching are by
far the two slowest tasks[3]. Thus, this thesis project aims to mitigate one of these
bottlenecks; by devising a hardware based system for feature matching that can
leverage the increased processing power of a dedicated circuit.
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Chapter3

Rejected feature matching strategies

This section presents several methods for feature matching that were considered,
but ultimately rejected, for use in the system. The core idea behind each method
will be brie�y explained, followed by the reasoning for choosing not to use it. For
further details the reader is referred to the respective original publications.

3.1 Brute force

Brute force is the standard against which all other strategies are judged. As
the name suggests, brute force feature matching involves linear iteration over all
candidates when �nding a match for a query. Though the method requires no
overhead beyond placing all the candidate features in contiguous memory, the
linear complexity of querying � amounting to quadratic complexity when the
candidate set and query set are of the same size � renders this method infeasible
when scaled up.

3.2 Locality-Sensitive Hashing

To reduce the number of feature descriptors that need to be retrieved from memory
and iterated through, Locality-Sensitive Hashing (LSH) organizes features into a
hash table[7], [8]. As the name suggests, LSH leverages a hashing function which
tends to map points which are close to each other to the same bucket.

LSH suits itself well to hardware implementation, as previous works have
demonstrated[7], [8]. These works both concern themselves with feature matching
in an object recognition setting, however.

Whereas the database to be queried is unchanging in object recognition, SLAM
requires a constantly changing database; as the frames against which to match
change. This introduces an additional complexity which the system must address.

The additional problem to be solved in adapting LSH for SLAM was not
reason enough to reject the strategy. Rather, LSH was rejected as the lesser of two
good options. Compared to the feature matching strategy which was chosen, LSH
has signi�cantly worse accuracy and three orders of magnitude slower processing
times[9].

7



8 Rejected feature matching strategies

3.3 Hamming Weight Tree

Hamming weight, also known as population count, is a measure on a binary se-
quence equal to the number of set bits. Hamming weight is closely related to
Hamming distance, since Hamming distance between sequences a and b may be
calculated as the Hamming weight of a⊕ b.

The Hamming Weight Tree (HWT) is a structure introduced by Eghbali, Ash-
tiani, and Tahvildari [10], which leverages some observations they make on the
relationship between Hamming weights and Hamming distances:

� The di�erence between two sequences' Hamming weights is at most the
Hamming distance between them.

� If the sequences are split into several subsequences, the sum of the Ham-
ming distances between corresponding pairs of subsequences is equal to the
Hamming distance between the original sequences.

Making use of these observations, a depth one HWT is constructed by creating
a node for each possible Hamming weight a binary sequence can have. Since ORB
feature descriptors are 256 bits wide, anywhere between zero bits and all 256 bits
can be set. Because this is an inclusive range, the HWT ends up with a total of 257
nodes at depth one. The input sequences are assigned accordingly to whichever
node corresponds to each sequence's Hamming weight.

To query the structure a radius r must be selected, for which all sequences
within Hamming distance r to the query sequence will be returned. This is
achieved by �rst �nding the Hamming weight of the query, and then searching
only those nodes in the tree corresponding to Hamming weights within r of the
query's weight. For example given r = 2 and a query with Hamming weight 100,
nodes 98, 99, 100, 101, and 102 would be searched.

Eghbali, Ashtiani, and Tahvildari proceed to extend the HWT to arbitrary
depths by de�ning the procedure by which a node is split into descendants. This
involves splitting the sequences and creating a new node for each combination of
subsequence Hamming weights that add to match the parent. For example node
100 would split into nodes [0,100], [1,99] · · · [99,1], [100,0]. Similarly at the next
depth level node [50,50] would split into [[20,30],[5,45]] among others.

Revisiting our example query of Hamming weight 100 with r = 2, let's assume
the �rst half of the query has weight 60 and the second half has weight 40, adding
to 100. When the search goes down node 100, the candidates among its children
would be [59,41], [60,40], and [61,39]. If these aren't leaf nodes, the query's sub-
sections are split again for a total of four subsections, and the Hamming weights
of these are considered when searching the children of the three candidate nodes.

The following were the chief reasons for deciding not to pursue the HWT
method further:

� The data structure is a tree with both a high and variable branching factor,
which was anticipated to require an excessive amount of o�-chip memory
accesses to construct and traverse.

� As the original paper discusses[10], HWT is primarily suited to �nding neigh-
bors within a given Hamming radius, while nearest neighbor queries � which
we are interested in � require multiple searches at iteratively larger radii.
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� There is a quadratic dependence on the radius r in the time complexity for
search. Since the radius can often be large and vary signi�cantly within a
single dataset[10] this risks both a slow and inconsistent implementation.

3.4 Randomized CAM lookup

One idea which was under consideration was to store feature vectors in a Content
Addressable Memory (CAM) and repeatedly generate mutations of a query vector
in hopes that the mutated query would then correspond to the actual query's
nearest neighbor. The probability of generating an appropriate mutation was
however found to be far too low for practical use.

Let L be the length of a feature vector, d be the the Hamming distance from
a query vector to its nearest neighbor, and n be the number of bits randomly
selected for mutation.

There are
(
d
d

)(
L−d
n−d

)
ways to select n bits which include all d bits in which the

nearest neighbor di�ers from the query. With a total
(
L
n

)
ways to select n bits,

the probability of selecting a superset of the di�ering bits is:

P (superset) =

(
d
d

)(
L−d
n−d

)(
L
n

) =
n!(L− d)!

L!(n− d)!
(3.1)

Let us choose to �ip a bit contained in the chosen superset with probability pf .
To achieve the desired mutation only the exact bits in which the nearest neighbor
di�ers from the query must be �ipped. This gives us:

P (desired | superset) = pdf (1− pf )
n−d (3.2)

Hence the overall probability of generating the desired result, a mutation of the
query vector that equals the query's nearest neighbor, is:

P (desired) =
n!(L− d)!

L!(n− d)!
pdf (1− pf )

n−d (3.3)

Let T be the number of trials required to successfully match a query with its
nearest neighbor with probability pm.

pm = 1− (1− P (desired))T ⇐⇒ T =
ln (1− pm)

ln (1− P (desired))
(3.4)

Numerical methods were used to analyze equations 3.3 and 3.4 for di�erent values
of d, n, and pf with the targeted length L = 256. Through this analysis the
randomized CAM lookup strategy was found to be infeasible. To minimize T the
optimal parameters found by the numerical analysis were always n = d and pf = 1.
However, P (desired) decreased rapidly in value with increasing nearest neighbor
distances d. Even for a nearest neighbor with Hamming distance d = 6 from the
query P (desired) ≈ 2.7e−12, which for a target matching probability pm = 90%
would require T ≈ 8.5e11 trials. For the same pm this increases to T ≈ 9.4e14 for
a nearest neighbor at distance d = 10.
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As the above analysis demonstrates, the randomized CAM lookup strategy
would only work for matching features within very low Hamming distances of
each other. For a more thorough analysis of the strategy one would have to
consider �nding a nearest neighbor within Hamming distance dmax, rather than
one at exactly distance d. Consideration would also need be taken to ensure that
the query's nearest neighbor is actually matched, rather than any neighbor within
distance d. Both of these issues could be resolved by performing consecutive
attempts with 1 ≤ d ≤ dmax until a match is found. The mathematical analysis
for this method is however uninteresting, as it would obviously require even more
trials than the simpler method.



Chapter4

The chosen approach

This chapter will introduce the feature matching strategy which was deemed the
best option out of the methods investigated over the course of this project, based
on both performance and the simplicity of implementation in hardware.

The chosen strategy will �rst be introduced on a conceptual level, after which
the system that implements it will be discussed in more detail.

4.1 Hamming Distance Embedding Binary Search Tree

Schlegel and Grisetti [9] introduced the Hamming Distance Embedding Binary
Search Tree (HBST) data structure, which was integrated into the feature match-
ing hardware implementation.

The essential concept underpinning HBST is to reduce the linear search re-
quired for brute force matching to a logarithmic search by organizing feature de-
scriptors into a binary tree.

Figure 4.1 illustrates some of the speci�cs of an HBST constructed from the
set of input feature descriptors dj .

Figure 4.1: An example of an HBST taken from [9].
©2018 IEEE

11



12 The chosen approach

Each feature is found in exactly one of the tree's leaf nodes, however multiple
distinct features may belong to the same leaf node.

Rather than containing features, each internal node of the HBST holds an
index ki ∈ [0, dim(d)− 1] specifying a bit position in the feature descriptors. For
this work dim(d) = 256, the width of an ORB feature.

In �gure 4.1 we see that features are organized according to these indices, with
the position indicated by a particular node ensuring that all features to the left of
the node have a zero in that position, and vice versa for features to the right.

Algorithm 1 Querying the HBST.

1: procedure NearestNeighbor(query)
2: node← root
3: while node.features = NULL do ▷ Not a leaf
4: bit← query[node.index]
5: if bit = 0 then
6: node← node.left
7: else

8: node← node.right
9: end if

10: end while

11: return BruteForce(node.features, query)
12: end procedure

Figure 4.2: An example of query lookup in HBST taken from [9].
©2018 IEEE

Algorithm 1 describes the procedure by which a nearest neighbor is found for a
query from among the descriptors contained in an HBST. Intuitively this procedure
can be understood as �nding the leaf node to which the query would belong to if it
were included in the tree. Figure 4.2 illustrates the querying behavior for a single
node. The query descriptor 0100 has a nearest neighbor 0000 in one of the tree's
leaves, while the other leaf containing 1111 is not the nearest neighbor. Cases
(a) and (b) exemplify a shortcoming of HBST: the choice of index ki can impact
whether the nearest neighbor is found as in case (a), or not found as in case (b).
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While there exists no known method of choosing indices such that the true
nearest neighbor is guaranteed to be �ndable for any arbitrary query, Schlegel and
Grisetti point out that for practical applications it is usually su�cient to �nd a
feature descriptor "similar enough" to a query.

Schlegel and Grisetti specify two criteria for choosing a node's index. Firstly,
the same index may occur at most once along any path from the root to a leaf.
Secondly, indices should be chosen such that the features are split as evenly as
possible; with as close to a 50% bit frequency as possible in that position, across
the population of features belonging to the given node's subtree. This metric
strives to keep the tree balanced.

Though a method is de�ned for insertion into a preexisting HBST, no such
method is given for deletion. This serves as an obstacle for a visual SLAM system,
in which the set of feature points for which to perform feature matching may
change between frames. To resolve this, the proposed system constructs a new
HBST any time the set of features changes.

As we shall see later on, HBST achieves a competitive degree of accuracy
on industry standard benchmarks with its approximate nearest neighbor �nding.
Furthermore, the drawback of having to construct a new HBST each time the set
of feature points included changes will be shown to constitute a manageable cost.

4.2 System design

Figure 4.3: A block diagram overview of the sys-
tem.

Figure 4.3 shows a simple
block diagram of the proposed
system design. The solid ar-
rows indicate the �ow of data
through the system, while the
dotted arrows indicate the ex-
ternal I/O interface of the sys-
tem. Controller blocks have
been omitted for the sake of
brevity.

As the interface suggests,
the system has two separate
modes of operation. The �rst
mode is that of constructing
the HBST, which is invoked
once some external process has
populated the feature memory
with feature descriptors.

Construction of the HBST is the more complex of the two modes. The Feature
Organizer block plays the main part in this procedure; in which it is responsible
for accessing and rearranging the descriptors of the Feature Memory, as well as
supplying the information to be stored in the Tree Memory to the Tree Encoder
block.

The second, simpler mode of operation is querying the HBST once constructed.
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The Tree Matcher block's function is to traverse the tree represented in the Tree
Memory � according to the procedure introduced in algorithm 1 � until a leaf
of the tree is reached. The Bruteforce Matcher block is then delegated the task of
�nding the feature descriptor nearest to the query from among those belonging to
the leaf.

With this brief overview in mind, we will now delve deeper into the speci�cs of
the system design. Firstly discussing the conceptual and practical separation of the
feature and tree memories, and in particular a newly devised method of storage
utilized by the tree memory. Thereafter the procedures by which the HBST is
both constructed and utilized will be speci�ed, and insights on how they may be
implemented in hardware will be discussed.

4.2.1 Feature organization

The ORB feature descriptors to be matched against are stored in a contiguous
block of memory, to improve cache performance by locality of references. Depend-
ing on the design of other components involved in the SLAM pipeline it may be of
interest to utilize a ping-pong memory organization for the feature memory; while
one memory block is being used for feature matching another can be populated
with the next batch's features, after which the roles of the blocks are switched to
use the newly populated memory for feature matching while the old features are
replaced.

For the tree structure's leaf nodes to reference a set of features from the feature
memory, all features belonging to a particular node must be grouped together. To
achieve this the features are partitioned into contiguous subsections of the feature
memory, the lengths of which are encoded in the tree structure along with the
memory location. No additional information is stored in the feature memory, only
the feature descriptors themselves. The uniformity of the memory is important
for the procedure by which the features are partitioned, which will be described
after introducing the organization of the tree structure.

4.2.2 Tree organization

Figure 4.4: Eytzinger
layout.

A well known way to represent binary trees is the
Eytzinger layout[11], [12]. As illustrated in �gure 4.4,
the Eytzinger layout stores a binary tree in a one di-
mensional array. The indices of a node's children are
determined by the parent node's index, for a parent
node at index i the left child will have index 2i+1 and
the right child index 2i+2. This indexing scheme starts
at zero and goes through every natural number, ensur-
ing that the underlying array may be fully utilized.

Let us consider the most obvious alternative to the
Eytzinger, a tree representation where each node contains a memory reference
to its left and right child, in addition to the data of interest. Compared to this
"pointer chasing" layout, the Eytzinger layout provides the following bene�ts:

� Superior locality of references, thus enabling better cache performance.
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� No extra memory is required for a node to reference its children, since they
are inferred by the parent's index.

� The predictable memory locations of a node's descendants allows for a simple
and e�cient prefetching scheme to be utilized. All descendants of the same
node in the same generation (i.e. depth) are stored contiguously, so they
may all be prefetched as part of the same block.

As explained above, the Eytzinger layout has many desirable properties for
use in a hardware implementation. However one drawback of using an array-
based scheme such as the Eytzinger layout is that all components of an array
must occupy the same amount of memory. As we have seen, the HBST contains
di�erent information in its internal and leaf nodes; the discriminating bit index
and the feature descriptors associated with the leaf, respectively.

It would seem that to utilize an array-based scheme such as the Eytzinger
layout, each node would need space to store both the data relevant to internal
nodes and leaf nodes, even if only one or the other is used. This redundant
storage is obviously a waste of memory, albeit a lesser waste than a "pointer
chasing" scheme would incur.

To even further optimize memory e�ciency, a new method was devised for
encoding asymmetrical data, such as the kind required by HBST, into a compact
Eytzinger array representation. This method is the Heterogeneous Binary Tree
Array (HBTA).

4.2.3 Heterogeneous Binary Tree Array

As the name suggests HBTA is a method of encoding a binary tree containing
asymmetrical, or heterogeneous, information into an array representation; specif-
ically a tree in which the internal nodes contain smaller pieces of data than the
leaf nodes.

Figure 4.5 illustrates the core concept behind HBTA. A precondition for the
encoding is that only leaf nodes contain the larger type of data, while the internal
nodes contain the smaller data � labeled data and index respectively in the
�gure.

To di�erentiate between the nodes a single bit of metadata is introduced for
each node, labeling internal nodes with a zero and leaf nodes with a one. Then
to ensure the heterogeneity of the structure, leaf nodes are expanded into "leaf
subtrees"; a subtree of some implementation-de�ned depth su�cient to encode
the larger data.

Encoding data into a leaf subtree follows a straightforward procedure. First
store as many bits of the data as will �t into the root of the leaf subtree, then
move onto the next node in turn and do the same for it. In �gure 4.5 a breadth
�rst traversal has been used. Breadth �rst ordering has the bene�t of nodes at
the same depth being adjacent in memory, which may simplify access patterns for
storage and reconstruction. However the concept is equally applicable for depth
�rst traversal � which may entail simpler controller logic than breadth �rst � or
any other traversal order.

Because we assume that the leaf subtree is of a prede�ned depth only the
subtree root's metadata bit is required to encode the structure of the tree. This
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Figure 4.5: The conceptual transformation behind HBTA.

means that all other nodes in the subtree may encode the actual data in their meta-
data bits, which reduces the total amount of overhead required for the structure;
especially as the leaf subtree depth increases.

4.2.4 Construction

The procedure utilized for construction of the HBST in the speci�ed hardware
implementation follows a conceptually simple, recursive approach. The details
of this procedure will be illustrated in algorithm 2, after which the procedures
utilized by the algorithm will be explained.

As previously stated, the feature descriptors constituting the HBST are pre-
sumed to exist in a contiguous block of memory as a precondition to the following
procedure.

Algorithm 2 HBST construction.

▷ initial_range: The range of features to construct the HBST from.
1: procedure Construct HBST(initial_range)
2: root_index← 0
3: Process Node(root_index, initial_range)
4: end procedure

▷ node_index: Node's index in Eytzinger layout.
▷ range: Range of features to process.

5: procedure Process Node(node_index, range)
6: bit_index←Pick Bitindex(range)
7: if bit_index = NULL then ▷ No suitable partitions left.
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8: Encode Leaf(node_index, range)
9: return

10: end if

11: Encode Internal(node_index, bit_index)
12: [range_l, range_r]←Partition(range, bit_index)
13: node_index_l← 2 ∗ node_index+ 1
14: node_index_r ← 2 ∗ node_index+ 2
15: Process Node(node_index_l, range_l)
16: Process Node(node_index_r, range_r)
17: end procedure

Pick Bitindex

This procedure is implemented by the Feature Organizer block and its subblock
of the same name, shown in �gure 4.3.

As illustrated by algorithm 2, construction of the HBST starts by considering
the entire collection of feature descriptors that specify the tree. From this range of
features a bit index is selected according to the criteria speci�ed by Schlegel and
Grisetti [9]; i.e. the index for which the frequency of that bit being set is as close
to 50% as possible in the given population of features.

To ensure the HBST scheme remains favorable, a parameter δmax is de�ned.
If the bit selection procedure �nds the frequency closest to 50% to be at a distance
greater than δmax a selection is not made, and thus the recursion on that branch
of the tree ends. Schlegel and Grisetti [9] present good results for δmax = 10%,
but o�er no analysis or comparisons to justify this choice.

The speci�cation of HBST requires that no bit index is used more than once
along the same path from the root to any given leaf. Because this implementation
doesn't concern itself with insertions into the tree after construction, we can easily
convince ourselves that this criteria is upheld without any additional hardware
required.

Consider that all features partitioned into the left subtree of a given parent
node all must have a zero in the bit index used by the parent, and respectively all
features in the right subtree have a one in that position. This implies a frequency
of 0% and 100% respectively for that bit, neither of which will allow the index to
be selected by the procedure a second time (barring a nonsensical choice of δmax).

Implementation of this logic in hardware would seem to require a number of
registers equal to the feature descriptor width (i.e. 256), and an accompanying
set of incrementers; with an appropriate tradeo� between speed and area made
through a resource sharing pipeline. Each feature in the given range would then be
iterated over, and each register incremented in accordance with its corresponding
bit in the feature. Then the index of the register closest to half the range length
is selected, and checked to be within δmax.



18 The chosen approach

Partition

This procedure, too, is implemented by the Feature Organizer block, in its subblock
Partition, as illustrated by �gure 4.3.

Once a suitable bit index has been selected, the given range of features is
partitioned accordingly. We arbitrarily choose to partition the range such that
features with the selected bit set to zero come before those with the bit set to
one. Hence the predicate used in the following algorithm should return true if the
input's bit is zero at the selected index.

A well known partitioning algorithm suitable for a hardware implementation
is Hoare's[13] partition, exempli�ed in algorithm 3. Compared to its equally
well-known counterpart, Lomuto's partition[14], Hoare's algorithm requires half
as many memory swap operations[15]. With memory accesses being a bottleneck
in hardware implementations, particularly in the case of the feature memory which
is likely too large to �t on-chip, this is an important metric to optimize for.

Algorithm 3 Hoare's Partition.

Require: A function Predicate operable on the range's elements.
Ensure: Elements for which Predicate is true are partitioned ahead of others.
1: procedure Partition(range)
2: lo← 0
3: hi← Length(range)−1
4: while lo < hi do
5: while Predicate(range[lo]) and lo < hi do
6: lo← lo+ 1
7: end while

8: while not Predicate(range[lo]) and lo < hi do
9: hi← hi− 1

10: end while

11: if lo < hi then
12: Swap(range[lo], range[hi])
13: lo← lo+ 1
14: hi← hi− 1
15: end if

16: end while

17: end procedure

The hardware implementation of the partitioning procedure is straightforward.
Testing any given bit of a feature descriptor is trivially accomplished, as is the
swapping of elements. In theory the iteration from front-to-back and back-to-
front could be performed in parallel, though in practice the bottleneck of o�-chip
memory accesses may limit the usefulness of this parallelism.

An alternative to Hoare's algorithm which exhibits better performance on
general purpose modern computers is Alexandrescu's partition[16]. This algo-
rithm utilizes a sentinel value � a special value inserted among the actual data
to simplify some aspect of an algorithm � which eliminates bounds checking (i.e.



The chosen approach 19

lo < hi) from the algorithm. However for a hardware implementation bounds
checking is cheap, and the additional memory manipulation required to insert and
clean up the sentinel value is expensive, so Alexandrescu's algorithm is rejected
for the purposes of this system.

Encode Internal and Leaf

These procedures are implemented in the block Tree Encoder of the design shown
in 4.3. The Feature Organizer block is responsible for signaling the information
to be encoded, as the Feature Organizer is internally aware of the bitindex and
partition information which the Tree Encoder must encode.

As the names of these procedures imply, they concern themselves with encoding
information into the HBTA representation of the tree. For the sake of brevity it is
assumed in algorithm 2 that these procedures may directly access the tree memory.

The details of the encoding can be found in the section Heterogeneous Binary
Tree Array on page 15. Naturally, the index for this application of HBTA is the
bit index associated with each respective internal node. The data encoded in the
leaf subtrees speci�es the feature descriptors associated with the conceptual leaf
node.

Through algorithm 2 we achieve a feature memory recursively partitioned into
several contiguous subsections conforming to the constraints imposed by the con-
structed HBST � the leftmost subsection of the feature memory corresponds to
the contents of the leftmost leaf node in the HBST, the following subsection cor-
responds to the second leftmost leaf node, and so on.

The data that must be encoded into a leaf subtree in the HBTA to represent
the contents of a leaf node in the HBST, then, is the position and length of
the corresponding subsection of the feature memory. Simply concatenating the
memory address and length and storing the result su�ces.

Much like for a conventional function call in software, the recursive processing
found on lines 15 and 16 of algorithm 2 is appropriately realized in the hardware
implementation with a stack. The start and end point of the right side of the
partition must be preserved on the stack before continuing to process the left
side � recursing as needed � following which the right side information may be
popped from the stack and utilized.

In building the HBTA's leaf subtree it may be unnecessary to use a stack,
since the depth of the leaf subtree is known as a design parameter. A simpler
and perhaps more e�ective approach would be to embed the sequence of index
calculations required for the speci�ed traversal order directly into the design; e.g.
i→ 2i+ 1→ 2i+ 2→ 4i+ 3 · · · → 4i+ 6 for leaf subtree depth of 2 with breadth
�rst traversal. Of course, this approach may be counterproductive for particularly
deep leaf subtrees, in which case a stack should be used.

4.2.5 Querying

Querying the HBST follows algorithm 1, speci�ed on page 12. The procedure
corresponds to the Tree Matcher and Bruteforce Matcher blocks illustrated in
�gure 4.3, with the former responsible for signaling the latter.
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Once the HBST has been constructed to represent a set of input descriptors it
may be utilized to, for a given query descriptor, approximate a nearest neighbor
from the input set. Starting from the root node, the bit index speci�ed by the node
is inspected in the query descriptor. If the query has a zero in that position the
left child is visited next, otherwise the right child is visited. This continues until
a node with a one in its �rst bit is reached, indicating the start of a leaf subtree.
The leaf subtree is then traversed in the order speci�ed by the implementation,
whereupon the data stored in the leaf subtree may be retrieved.

With the data of the subtree obtained � the range's position and length �
the range in feature memory belonging to the reached node may be accessed. A
linear search is performed on this range, �nding the feature in the range with the
lowest Hamming distance to the query. This is the resulting approximate nearest
neighbor returned by the procedure.

Hamming distance may be computed in hardware simply by XORing the
query and candidate feature descriptors, followed by counting the number of set
bits in the result; e.g. with an adder tree. The linear search is then simply a
matter of storing the feature with the least distance and said distance in registers
until a candidate with a lesser distance is found to replace it. Whatever the feature
register holds at the end of the iteration is the result of the procedure.

As touched on previously, all nodes at the same depth level of the Eytzinger
layout are adjacent in memory. More speci�cally, any given node's descendant at
the same depth level are adjacent in memory. Per de�nition a node at index i
has its children at 2i + 1 · · · 2i + 2, while grandchildren are at 4i + 3 · · · 4i + 6.
In general, descendants at depth d from an ancestor at index i inhabit the range
2d(i + 1) − 1 · · · 2di + 2d+1 − 2. Taking this strong locality into consideration,
possibilities arise for cache optimizations and prefetching during traversal of the
tree.
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Results and discussion

This chapter will �rstly present the practical implementation results, followed by
a discussion of the performance and e�ciency of the HBST as implemented with
HBTA. Finally, the stated goals of the thesis project will be addressed and a
discussion on the degree to which they have been achieved will be presented.

5.1 Implementation results

One of the stated goals of this thesis project at the onset was for me to learn
HLS and use it to implement the feature matching system. While I was able to
absorb a great deal of knowledge reading about HLS, due to shifting priorities
and unforeseen developments over the course of the thesis there was not enough
time to fully implement the system. The Tree Encoder block, shown in �gure 4.3,
was chosen for implementation; as this block was deemed su�ciently independent
of the other blocks and of such a size that the implementation could be �nished
within the remainder of the project's timeframe.

Xilinx's Vitis HLS tool was used to implement the block in C++. For the
sake of example an HBTA leaf subtree depth of two was speci�ed for the imple-
mentation, allowing for 62 bits of partition data to be encoded. A depth �rst leaf
subtree encoding was used for the sake of simplicity.

The implementation target was a a Xilinx FPGA (XCZU7EV-2FFVC1156E),
for which the implementation results after place and route can be seen in table
5.1.

Table 5.1: Results of HLS implementation.

fmax Latency LUT FF CLB

Case A 391.5 MHz 4 cycles 200 105 35

Case B 383.6 MHz 3 cycles 230 88 41

The two di�erent cases presented in table 5.1 di�er in the array index calcu-
lations performed during encoding of the leaf subtree. In Case A the same pair
of calculations � 2i+ 1 and 2i+ 2 � were performed multiple times for di�erent
values of i in an attempt to minimize area by resource sharing. This created a
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data dependency in the subtree root's grandchildren, which were using the indices
calculated for the children as inputs to the aforementioned calculations.

Case B, then, eliminated this dependency by calculating all descendants' in-
dices solely based on the subtree root's index. This reduced the latency of the
block, and interestingly had a smaller impact to the FPGA resource usage than
anticipated. The 2% reduction in maximum frequency can be safely ignored, as
the reduced latency � which is directly related to the initiation interval since the
implementation isn't pipelined � allows for a higher overall throughput. Further-
more it is highly unlikely that this component would be the determining factor for
clock frequency in an implementation of the system as a whole.

5.2 Use of Heterogeneous Binary Tree Array in Hamming Dis-

tance Embedding Binary Search Trees

Firstly, as alluded to in the introduction of the concept, let us brie�y examine the
e�cacy of using the HBST. For a more in-depth analysis and discussion of the
method, the reader is referred to the original publication[9].

In the original work, a few alternative state of the art methods are compared
against HBST, alongside brute force. While the authors did �nd one of the com-
peting methods � DBoW2[17] with direct indexing � to outperform HBST in
terms of accuracy, the processing speed was found to be two orders of magnitude
faster for HBST. Compared to brute force, which of course is as accurate as can
be, HBST was �ve orders of magnitude faster.

As was touched on in section 4.2.2, the most obvious alternative to the Eytzinger
layout that HBTA is based on is a pointer based tree representation. Examining
the open source library[18] published alongside HBST[9], we can see that this is
indeed the representation implemented and measured by Schlegel and Grisetti.
Knowing the importance of cache locality, we can speculate that a software imple-
mentation using HBTA would perform even better.

Also alluded to in section 4.2.2 is the space requirement reduction obtained
by using HBTA as compared to the redundant storage of data pertaining both to
internal nodes and leaf nodes to achieve homogeneity. Let us now quantify these
savings.

Figure 5.1: Full binary trees.

Consider the data to be stored in the inter-
nal nodes to be of size d bits, and the leaf data
to be D bits. For a tree with N nodes the naive
approach's memory requirement is as follows;
keeping in mind each node must have space for
both the internal and leaf data to function with
the Eytzinger layout.

SizeNaive = N(D + d) (5.1)

An HBST is always a full binary tree; i.e.
one in which all nodes either have two or zero
children. This is readily apparent, as internal
nodes in HBST always branch to a zero side and a one side. A full binary tree
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containing N nodes always contains N−1
2 internal nodes, and N+1

2 leaf nodes. We
can convince ourselves of this fact by examining �gure 5.1. The only permissible
way to expand a full binary tree is to add two children to a leaf node, which turns
that leaf node into an internal node. Hence the net gain is two new nodes, one
new internal node, and one leaf node; which is in line with the stated formulae.

With this in mind, we can now calculate the memory requirement for HBTA.
Though in practice there are more than N nodes in an equivalent HBTA represen-
tation, we can conceptually consider the leaf subtrees as a single leaf node; with
one bit of overhead per leaf subtree, since the metadata bit can store useful data in
all nodes but the subtree root. The internal nodes also require one bit of overhead
each, for a total of N bits of overhead.

SizeHBTA =
N − 1

2
(d+ 1) +

N + 1

2
(D + 1)

=
N − 1

2
d+

N + 1

2
D +N

(5.2)

Putting together equations 5.1 and 5.2, we get the following ratio.
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Table 5.2: Examples of HBTA memory savings relative to the naive
approach.

N D d Ratio

∞ ∞ ∞ 50%

32,768 62 8 51.43%

32,768 26 8 52.94%

512 26 8 52.99%

Shown in table 5.2 are some illustrative examples of equation 5.3. Firstly the
asymptotic case, showing that HBTA approaches 50% memory usage for large
enough data. As the subsequent examples show however, in�nity is not necessary
to get reasonably close to the 50% mark. The values of d and D are therein
chosen as applicable to the project; 8 bits required for the indexing, while 26 and
62 correspond to fully utilizing leaf subtrees of depth one and two, respectively.
The choices of N are somewhat arbitrary, but do well to illustrate the comparable
savings for both small and large trees.

Presupposed by equation 5.3 and the values used in table 5.2 is that the data
of D bits precisely �ts in a leaf subtree of some depth, or more formally there
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exists a k such that D = (2k − 1)(d + 1) − 1. Without this presupposition the
analysis becomes more complex, since the nature of the Eytzinger layout requires
each leaf subtree to be full and complete, whether there is enough useful data to
�ll the whole tree or not.

For the purposes of the feature matching system, this might mean that the true
fraction of memory used by HBTA as compared to the naive approach is greater
than the 51-53% shown in table 5.2. This depends on the implementation of
addressing into the feature memory, and the maximum size of the feature memory
used in a full implementation of the system.

Consider as an example of extremely poor luck, if we required 27 bits to
specify the partition data. The leaf subtrees would have to be at a capacity of
62 bits, and through applying equations 5.1 and 5.2 once more with D1 = 27
and D2 = 62 respectively, the memory ratio would be 102.86% for N = 32, 768,
requiring more space than the naive approach. While this is obviously disastrous,
we can conjecture from observing the relatively little excess of 2.86% in a worst
case scenario, that for most cases � ones with less of an extreme discrepancy
between D1 and D2 � the method should still require less space.

Because the tree memory and feature memory are logically separate, they
may be physically separate as well. While the feature memory is likely to require
a prohibitive amount of memory for storing on-chip, it's plausible for an imple-
mentation to require a small enough tree memory that it can be integrated on-chip
� a plausibility made more likely by the size reduction introduced by HBTA.

5.3 Ful�llment of project goals

As introduced in the Introduction chapter, there were three goals set at the start
of this project. Restated brie�y, these were:

� Devising an FPGA implementation of feature matching capable of process-
ing 2,000 feature points per frame at 30 frames per second.

� To minimize the power consumption of the system; chie�y by way of mini-
mizing o�-chip memory accesses.

� To implement the system with C++ based HLS, and in so doing garnering
insights useful to future students' endeavors.

Since the part of the system which was implemented does not serve as a
throughput bottleneck, nor requires o�-chip memory accesses, there is no quanti�-
able result to meaningfully address either of the �rst two goals. From a qualitative
perspective, however, I consider these goals achieved to a satisfactory degree.

In basing the system on the HBST data structure, the time complexity of
feature matching became logarithmic; rather than linear as is the case for brute
force matching. An FPGA implementation, eSLAM[3], which utilizes brute force
matching, achieves 31.45 frames per second throughput.

Although eSLAM limits itself to 1,024 feature per frame, the reduction from
linear to logarithmic complexity should more than make up for the double num-
ber of feature points. Another caveat is that eSLAM implements ORB-SLAM,
not ORB-SLAM2. However, since ORB-SLAM2 does not make changes to the
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properties of feature matching found in its predecessor[1], this does not a�ect my
argument.

As was argued previously, the introduction of the tree memory separate from
feature memory, and the reduced storage requirements obtained by the introduc-
tion of HBTA in the tree memory, may allow the tree memory to be stored on-chip.
This, naturally, reduces the number of o�-chip memory accesses, and thereby helps
to minimize power consumption.

Additionally, traversing an HBST is of logarithmic complexity; compared to
the linear complexity of brute force. Thus, even if an implementation requires a
maximum tree depth larger than can be accommodated with on-chip memory, an
overall reduction in o�-chip memory accesses is still achieved.

The process of constructing the HBST introduces additional memory accesses
in terms of picking a bitindex and partitioning the feature memory for each branch.
However, the complexity of these operations isO(n log n), meaning that the system
taken as a whole still outperforms brute force in terms of memory accesses �
assuming, of course, a nontrivial number of queries are made after construction.

With regards to the third goal, although only part of the system was imple-
mented in practice, I was able to absorb a great deal of HLS knowledge from
literature, which helped to inform the work process and design decisions I under-
took over the course of the project. The greatest insight I had in working with
HLS was the relative ease with which a testbench could be implemented, and the
great sense of security in the correctness of my implementation it wrought.

Importantly, the presence of the testbench made it easy to make changes to
the design in an exploratory fashion; allowing me to test alternative ways of coding
the same behavior to �nd improvements in the synthesized result. While I may
have arrived at the more optimal implementation from the beginning had I been
working at a lower level, an HLS work�ow allowed me to both implement the
original version and optimize it at a faster rate than I would have working at a
lower level.
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Chapter6
Conclusion

This work has introduced the domain of autonomous navigation as an important
�eld of study to enable the increasing demands of automation and intelligent sys-
tems in the modern world. SLAM was introduced as a state of the art method for
solving one type of autonomous navigation problem; navigating in an unknown
environment. With applications in a wide variety of systems, such as self-driving
cars and autonomous drones, SLAM was shown to be an important research area.

Feature matching was introduced as one of the main performance bottlenecks
in SLAM, to which end this thesis project aimed to resolve the bottleneck through
hardware acceleration in an FPGA. To achieve a scalable solution, several strate-
gies for feature matching were investigated to achieve better performance than a
linear brute force strategy.

The HBST was found to be the most suitable method. It demonstrated the
fastest processing times among its competitors � �ve orders of magnitude faster
than brute force � and an accuracy only outperformed by one of its competitors.
Furthermore, HBST had good properties for translating into hardware.

One of the main features of HBST leveraged in this work was the binary
tree structure. Using a newly devised method of storing binary trees, HBTA, the
binary tree structure could be e�ciently stored in an array-based layout. This
enabled superior caching and prefetching as compared to a pointer-based layout,
and through the use of HBTA the array's memory requirements are up to 50% less
than for a naive implementation.

The end result of the project was a detailed speci�cation of a feature matching
system leveraging the HBST structure, and the introduction of HBTA to reduce
memory requirements and enable part of the structure to reside in on-chip memory.
Additionally, one of the functional blocks of the system was implemented in C++
based HLS; leading to a discussion of insights into the HLS work�ow.

While the project encountered some unexpected challenges and changes of
course, the central goals that were decided on at the onset were still largely
achieved. Furthermore, the invention of HBTA and the various other optimizations
introduced throughout the system design speci�cation serve as valuable additions
to the results of the project.
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Chapter7
Future work

In this chapter three suggestions for future work are presented, which can elaborate
on what has been presented in this project.

Since the feature matching system speci�ed in this work was only partially
implemented, a natural continuation for a future work would be to implement the
remaining blocks of the design. Of particular interest would be to explore how the
�nished system could be tested; and ideally benchmarked with the KITTI dataset,
to compare against the state of the art.

The Pick Bitindex design block introduced on page 17 requires a number of
register and adders equal to the feature width: 256. A more e�cient implemen-
tation could not be devised, nor found in literature, in this project. However,
improving on the high resource cost of this seemingly simple operation seems like
a worthwhile future endeavor.

Lee et al. [7] introduce a Hu�man encoding of the feature descriptor database
in their LSH implementation. As this is an object recognition system, rather than
a SLAM system, the method relies on analyzing symbol frequencies in a static
database ahead of time. To extend this idea to SLAM, it would be interesting for
a future work to investigate whether certain symbols within feature descriptors are
more frequent than others in general. Such �ndings could then be used to devise
a compression scheme, thereby minimizing o�-chip memory requirements.
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