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Abstract 

The market for cryptocurrencies has been known to be volatile with an asymmetrical return 

distribution where occasional extreme returns appear. In later years options have been 

introduced on the asset; but due to the characteristics of cryptocurrency returns, researchers 

have found it troublesome to value these options. Primarily, research has been advocating for 

advanced pricing models and suggested the elemental Black-Scholes model to perform 

inferior to these models. The market for cryptocurrency options have grown rapidly, which 

puts into question whether the Black-Scholes model in today’s more liquid market can 

reliably predict option prices? If not, can the Heston model, which allows for stochastic 

volatility, be a better fit? This study is, to my knowledge, the first to evaluate the Heston 

model on options with Ethereum as underlying asset; wherefore it contributes to research by 

incorporating a broader analysis of the model’s performance on cryptocurrency options. 

Based on real market prices I calibrate and evaluate the two models on puts and calls with 

Bitcoin and Ethereum as underlying assets. My findings indicate that the Black-Scholes 

model outperforms the Heston model for all the four considered option types and that the 

models are better suited for valuing options on Ethereum than Bitcoin.  

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

Acknowledgements 

I would like to thank my supervisor Anders Vilhelmsson for guiding and supporting me 

throughout the process of writing this essay. Without your expertise in MatLab this study 

would have ended before it even started. I would also like to express my gratitude to my 

family who, despite not understanding the subject, took their time to proofread this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

 

Contents 
1. Introduction ....................................................................................................................... 6 

2. Theory ................................................................................................................................ 7 

2.1 Theoretical Background .............................................................................................. 7 

2.2 The Black-Scholes Model ........................................................................................... 7 

2.3 The Heston Model ....................................................................................................... 8 

3. Previous Research ............................................................................................................. 9 

3.1 Option Pricing Models and Traditional Asset Classes ................................................ 9 

3.2 Cryptocurrency Options ............................................................................................ 11 

4. Data .................................................................................................................................. 12 

4.1 Data Collection .......................................................................................................... 12 

4.2 Variables and Data Frame ......................................................................................... 13 

5. Method ............................................................................................................................. 13 

5.1 Black-Scholes Calibration ......................................................................................... 14 

5.2 Black-Scholes Assumption Evaluation ..................................................................... 14 

5.3 Heston Calibration ..................................................................................................... 15 

5.4 Model Performance Evaluation ................................................................................. 16 

6. Results and Discussion .................................................................................................... 18 

6.1 BTC and ETH put options ......................................................................................... 18 

6.1.1 Black-Scholes Implied Volatility ....................................................................... 18 

6.1.2 Black-Scholes Pricing Errors ............................................................................. 21 

6.1.3 Output From Calibration of the Heston Model .................................................. 22 

6.1.4 Heston Pricing Errors ......................................................................................... 23 

6.2 BTC and ETH call options ........................................................................................ 24 

6.2.4 Black-Scholes Implied Volatility ....................................................................... 24 

6.2.2 Black-Scholes Pricing Errors ............................................................................. 27 

6.2.3 Output From Calibration of the Heston Model .................................................. 28 

6.2.4 Heston Pricing Errors ......................................................................................... 29 

6.3 Comparative Analysis ................................................................................................ 30 

6.3.1 Black-Scholes and Heston .................................................................................. 30 

6.3.2 Different Underlying Assets (Black-Scholes) .................................................... 31 

6.3.3 Puts and Calls (Black-Scholes) .......................................................................... 32 

7. Conclusion ....................................................................................................................... 34 

8. References ........................................................................................................................ 36 

 



5 

 

Notations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K Strike price 

S Spot price 

c Call option price 

p Put option price 

r Interest rate 

σ Volatility 

BTC Bitcoin 

ETH Ethereum 

B-S Black-Scholes 

TTM Time to maturity 

M Moneyness 

ITM In-the-money 

ATM At-the-money 

OTM Out-of-the-money 

DOTM Deep-out-of-the-money 

DITM Deep-in-the-money 
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1. Introduction 

 

In the recent decade cryptocurrencies have risen in popularity and the market is constantly 

expanding with more cryptocurrencies. As for any other investment asset, the demand for 

hedging tools increases along with the demand for the underlying asset. This has become 

apparent, as the trade of future and option contracts on cryptocurrencies has intensified. In 

comparison to the futures market, the market for cryptocurrency options is still in its infancy 

and researchers have found it difficult to reliably value the options due to the characteristics 

of cryptocurrencies’ return distributions. Studies have consistently discovered a high level of 

excess kurtosis and skewness of the return distribution (Baur, Hong & Lee, 2018; Bianchi, 

2020), which do not fully coincide with traditional asset classes (Baur, Hong & Lee, 2018; 

Bianchi, 2020; Ram, 2019). When pricing options, researchers have tried bringing the issue to 

bay by using advanced pricing models, allowing for different types of jump processes. Hou et 

al. (2020) proposed jumps in the return and variance processes as well as cojumps to be of 

importance when valuing cryptocurrency options. Notwithstanding, Madan, Reyners and 

Schoutens (2019) suggested that stochastic volatility of the asset returns is of foremost 

importance since they found models with and without jumps to perform well as long as they 

allowed for stochastic volatility.  

When considering less advanced pricing models which assume a constant volatility of returns, 

such as the Black-Scholes (B-S) model, the research on cryptocurrency options is scarce. 

Madan, Reyners and Schoutens (2019) covered the B-S model when they studied options on 

Bitcoin (BTC) and concluded the model to perform poorly. Yet, since year 2019 the market 

for cryptocurrency options has become more liquid, and Ethereum (ETH) options have 

become increasingly popular with a quadrupled open interest during the year of 2021 

(Coinglass, n.d.). This puts into question whether the findings of Madan, Reyners and 

Schoutens (2019) regarding the B-S model are valid on today’s more liquid market and if the 

results are valid for ETH options.  

In practice, the B-S model systematically misvalues options (Black, 1975; Dupoyet, 2006; 

MacBeth & Merveille, 1979; Rubinstein, 1994), due to its crude assumption of constant 

volatility and log-normal distributed asset prices (Karlsson, 2009; Wu, 2019). For that reason, 

it is of interest to compare the B-S model’s performance on cryptocurrency options with a 

model which relaxes these assumptions. Hence the Heston model, allowing for stochastic 
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volatility, will also be evaluated in this paper. The Heston model has, to my knowledge, only 

been evaluated on BTC options in previous research, which makes this study the first to 

extend the analysis to ETH options. 

Both the B-S model and Heston model will be calibrated and evaluated based on stated 

market prices, with the aim to obtain an answer as to whether the B-S model reliably can 

estimate option values for cryptocurrencies and if not, is the Heston model a better fit? 

 

2. Theory 

 

2.1 Theoretical Background 

A call (put) option gives the holder the right to buy (sell) the underlying asset for an agreed-

upon price at some prespecified future time. If the investor is exposed to an asset, the option 

can be used to hedge the price risk of the exposure. That is, if the spot price of the underlying 

asset at maturity date is disadvantageous in comparison to the strike price, the holder will not 

exercise the option.  

When the option’s contract is entered, the holder must pay a premium, which is commonly 

known as the price of the option. For the investor it is usually of interest to find a theoretical 

value of the option, based on the probability of the option being exercised.  

 

2.2 The Black-Scholes Model 

Black and Scholes (1973) constructed an option pricing model based on the no arbitrage 

argument, which suggests that an investor cannot make a risk-free profit from a portfolio of 

short and long positions in the underlying asset and the option. In the absence of arbitrage, 

there can only exist one fair price for an option (Black and Scholes, 1973). To derive this 

price, Black and Scholes (1973) assumed the following: 

1. The price of the underlying asset follows a random walk in continuous time with a 

constant variance rate. The stock price distribution at the end of any finite interval is 

log-normal 

2. There are no transaction costs in buying or selling the underlying asset or the option 
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3. It is possible to borrow at the short-term interest rate, which is known and constant 

through time 

4. Short selling is allowed 

5. The option is European, and its underlying asset does not pay any dividends 

Based on these assumptions, Black and Scholes (1973) developed a closed form solution of 

options pricing, where the option value only depends on time, the price of the underlying asset 

and known constants: 

 

𝑐 = 𝑆𝑡 ∗ 𝑁(𝑑1) − 𝐾 ∗ 𝑒−𝑟(𝑇−𝑡) ∗ 𝑁(𝑑2) 

𝑝 = 𝐾 ∗ 𝑒−𝑟(𝑇−𝑡) ∗ 𝑁(−𝑑2) − 𝑆𝑡 ∗ 𝑁(−𝑑1) 

where 

𝑑1 =
𝑙𝑛 (

𝑆𝑡

𝐾) + (𝑟 +
𝜎2

2
) ∗ (𝑇 − 𝑡)

𝜎 ∗ √(𝑇 − 𝑡)
 

𝑑2 =
𝑙𝑛 (

𝑆𝑡

𝐾) + (𝑟 −
𝜎2

2
) ∗ (𝑇 − 𝑡)

𝜎 ∗ √(𝑇 − 𝑡)
 

and N() is the standard normal density function. 

Furthermore, the volatility in formula 1 cannot be directly observed and thus must be 

estimated. Hull (2018) described there to be multiple methods for estimating the volatility, but 

that the most common approach is to utilize the volatility implied by the market. This 

volatility should, according to assumption number one above, be constant and therefore not 

vary depending on time to maturity or strike price. 

 

2.3 The Heston Model 

Heston (1993) called attention to the shortfalls of the B-S pricing model and suggested that its 

return skewness and strike price biases can be explained by an arbitrary correlation between 

the underlying asset’s returns and a non-constant variance. Heston (1993) presented the 

following processes for the underlying asset price and variance, where dz1(t) and  dz2(t) are 

correlated Weiner processes: 

 (1) 
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{
𝑑𝑆 = 𝜇 ∗ 𝑆 ∗ 𝑑𝑡 +  √𝑣(𝑡)  ∗ 𝑆 ∗ 𝑑𝑧1(𝑡)

 𝑑𝑣(𝑡) = 𝑘[𝜃 − 𝑣(𝑡)]𝑑𝑡 +  𝜎 ∗ √𝑣(𝑡)  ∗ 𝑑𝑧2(𝑡)
      

    

As shown in the formula, the variance of the underlying asset’s return is determined by five 

parameters: The long-run mean variance 𝜃, the mean reversion speed k, the correlation of the 

Weiner processes 𝛿, the current variance v(t) and the volatility of the volatility parameter σ 

(Heston, 1993). 

To obtain the price formula for a European call option, Heston (1993) assumed all investors to 

require the same return independently of his/her risk-exposure and that it is not possible to 

conduct arbitrage. Given these assumptions, the option value is a function of the spot price of 

the underlying asset, its variance and time: 

𝑐(𝑆, 𝑣, 𝑡)  =  𝑆 ∗  𝑃1  −  𝐾 ∗  𝑒𝑟(𝑇−𝑡)  ∗  𝑃2  

where P1 and P2 can be viewed as risk-neutral probabilities and r is the constant interest rate 

(Heston, 1993). To obtain the value for a put option, put-call-parity can be applied: 

𝑝 =  𝑐 +  𝐾 ∗  𝑒  − 𝑟 ∗ 𝑇  −  𝑆 

The full derivation of the Heston model is beyond the scope of this paper. 

 

3. Previous Research 

 

3.1 Option Pricing Models and Traditional Asset Classes 

The Black-Scholes model has been frequently used for pricing options; although, some 

researchers assert that it is an inferior model.  

In the years following the creation of the B-S model, researchers observed some systematic 

biases associated with the model. Black (1975) suggested that the model undervalued OTM 

options and overvalued ITM options. MacBeth and Merville (1979) found that the B-S values 

generally deviated from the market prices in the opposite direction: the model undervalued 

ITM calls, and this bias grew along with the time to maturity. Rubinstein (1985) observed 

both stock option pricing biases introduced by Black (1975) and by MacBeth and Merveille 

(3) 

(2) 

(4) 
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(1979), but at different time periods. Rubinstein (1985) concluded that the B-S model 

generally over- or underestimates non-ATM stock call option prices, and that this bias’s 

direction changes over time. 

Rubinstein (1994) applied the B-S model on stock index options and found that, based on data 

from the late 1980’s market crash, OTM put options were undervalued by the B-S formula. 

The author explained that these price discrepancies were related to higher implied volatility 

for options with lower strikes, in comparison to options with high strike prices. Hull (2018) 

described that this relationship between implied volatility and strike price for stock options, 

known as ‘volatility skew’, is still used by traders decades later. The skew can be explained 

by the asset price distribution, where the lognormal distribution assumed by the B-S model 

has a left tail which is too light and a right tail which is too heavy in comparison to the 

implied distribution (Hull, 2018).  

Dupoyet (2006) applied the B-S model on foreign currency options and observed that short 

term call options further from being ATM revealed higher pricing errors and implied 

volatilities than those closer to being ATM. Hull (2018) explained that this relationship 

between moneyness and implied volatility is a common occurrence for foreign currency 

options and can be explained by the asset price distribution where the lognormal distribution 

assumed by the B-S model is too heavy tailed in comparison to the implied distribution. 

The aforementioned studies show that the B-S model is associated with pricing biases whose 

direction depend on the asset class and the period of which the data represents. The causes for 

the pricing biases have been frequently discussed in financial literature and an abundance of 

pricing models have been developed to improve the prediction of option prices. Bakshi, Cao 

and Chen (1997) conducted a horserace amongst pricing models relaxing different 

assumptions of the B-S model. When comparing models with stochastic volatility, interest 

rates and jumps they concluded that “taking stochastic volatility into account is of the first-

order importance in improving upon the BS formula” (Bakshi, Cao & Chen, 1997, p. 2042-

2043).  

Heston (1993) presented an option pricing model allowing for stochastic volatility correlated 

with the spot returns and argued that it, in comparison to the B-S model, is a more appropriate 

pricing model for multiple asset classes. Karlsson (2009) compared the B-S and Heston 

models and found the Heston model to perform the best overall, due to its disregard of log-

normal distributed asset prices. Although, for ITM calls and calls with long maturities, the 
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Heston model performed inferior to the B-S model (Karlsson, 2009). By contrast, Zhang and 

Shu (2003) argued that the Heston model mispriced short-term call options severely and that 

the observed mispricing of ITM and OTM options decreased as the maturity increased. Wu 

(2019) found similar results when applying the two models on index options, although in 

contrast to Zhang and Shu (2003), the Heston model appeared to perform poorly for OTM and 

DOTM calls. 

Bhat (2019) applied the Heston model on foreign currency call options and discovered that for 

DOTM, OTM and ATM options, the pricing errors were larger than those for the B-S model. 

Furthermore, the author observed that the Heston model’s pricing errors for short maturity 

options were more notable than the B-S model’s. For options with longer maturities the 

Heston model performed better than the B-S model (Bhat, 2019).  

Prior research on the Heston model is equivocal regarding the Heston model’s performance 

for options at different levels of moneyness and maturity (Bhat, 2019; Karlsson, 2009; Wu, 

2019; Zhang & Shu, 2003). Nevertheless, the research suggests the Heston model to generally 

perform better than the B-S model. 

 

3.2 Cryptocurrency Options 

I have chosen to divide the previous research into traditional asset classes and 

cryptocurrencies because it appears to be uncertain what to categorize cryptocurrencies as. 

Baur, Hong and Lee (2018) identified the return distribution for BTC to have a high level of 

excess kurtosis and a considerable negative skewness, which appeared to be similar to 

precious metals, high yield corporate bonds as well as some currencies. By contrast, Bianchi 

(2020) found BTC and ETH return distributions to be positively skewed and discovered a 

moderate correlation between the return distribution of precious metals and cryptocurrencies, 

yet did not find any significant relationship between cryptocurrencies and other traditional 

asset classes. Ram (2019) suggested BTC to be an asset class of its own, with a vague 

correlation to traditional asset classes.  

Previous research appears to have agreed upon a high level of excess kurtosis in the return 

distribution for cryptocurrencies, but is dubious regarding the skewness (Baur, Hong & Lee, 

2018; Bianchi, 2020). Additionally, the classification of cryptocurrencies seems to be an 

ongoing discussion (Baur, Hong & Lee, 2018; Bianchi, 2020; Ram, 2019). 
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Madan, Reyners and Schoutens (2019) conducted an empirical study where they compared 

multiple pricing models’ performances in calculating the price of call options with BTC index 

as the underlying asset. The authors estimated option values using simple models, one of them 

being the B-S model, as well as more complex models with stochastic volatility (Heston) and 

models with jumps. When comparing the pricing errors, Madan, Reyners and Schoutens 

(2019) found that the models assuming constant volatility (B-S being one of them) performed 

the worst and that the Heston model along with one of the models allowing for jumps 

performed the best overall.  

The options market for cryptocurrencies has grown considerably since Madan, Reyners and 

Schoutens (2019) presented their research, which puts into question whether their findings are 

still valid and if they can be extended to ETH options. 

 

4. Data 

 

4.1 Data Collection 

It is, to my knowledge, not possible to download current or recent historical option data on 

BTC or ETH without being sponsored by or pay for a membership at the leading market 

players. Hence, the BTC and ETH option data was collected manually at 08:00 UTC every 

day for 14 days (11/10/2021-11/24/2021), from one of the leading market platforms. All the 

stated data on the platform was copied and pasted into an excel sheet. The format was not 

suited for calculations and contained multiple parameters not relevant to my research. 

Therefore, all data had to be reorganized into another spreadsheet and edited. Then the 

original spreadsheet was compared with the edited one, to minimize the risk of errors. After 

collection, all gathered data had to be united into yet another spreadsheet. The integrated 

spreadsheet was compared to the individual ones. This process was repeated for all the 

considered options: BTC calls, BTC puts, ETH calls and ETH puts. 

The data collection was cumbersome and therefore limited data could be collected within the 

time-frame of the research. The final data sets constitute a very small fraction of the 

population, considering that the cryptocurrency option contracts trade around-the-clock for 

365 days yearly. Furthermore, the collected data was restricted to European “vanilla” options, 

to facilitate comparison with prior research. 
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The historical and current values on the underlying indexes were publicly available for 

download on the same leading market platform from which the option data was collected. The 

spot index prices were gathered in tandem and the hourly spot prices for each date at 08:00 

UTC were matched with the collected options data. 

As described previously, the B-S model assumes a constant interest rate. The Heston model, 

however, may consider a varying interest rate. For the purpose of model comparison, the 

short-term interest rate was assumed to be constant at 5%.  

 

4.2 Variables and Data Frame 

The integrated spreadsheets of data contained time to maturity (days), strike price (USD) and 

market price for all options. The underlying asset for the BTC option contracts was a BTC 

index tracking the BTC to USD spot exchange. Similarly, the underlying asset for the ETH 

option contracts was an ETH index tracking the ETH to USD spot exchange. The market 

prices for the options were stated in BTC or ETH, therefore these prices were multiplied with 

the spot price of the underlying index; making all prices quoted in USD. An additional 

variable ‘moneyness’ was added to the data set, by dividing the strike price with the spot price 

(K/S). Hull (2018) described that moneyness, which is if often calculated this way, creates a 

more stable relationship to implied volatility than the strike price alone. Furthermore, all 

maturities were divided by 365 days, as TTM is quoted in days/year in the option pricing 

models.  

The revised variables were added to the final data sets and all data was listed by date. 

Additionally, observations with no stated market prices were removed from the data frame.  

 

5. Method 

 

The method to be described in this section was repeated four times, to obtain results for all the 

considered types of options contracts. The calibrations were performed in MatLab, and further 

calculations were done in R studio. 
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5.1  Black-Scholes Calibration  

To calculate the B-S option value from formula 1, the volatility of the underlying asset returns 

had to be estimated. A common approach for estimating the volatility is to utilize the 

volatility implied by the market’s option price (Hull, 2018). In accordance with this approach, 

an arbitrary value of the volatility parameter was set into formula 1. Then an algorithm was 

used to minimize the squared price difference by altering the guessed volatility.   

𝑓𝑜𝑟 𝑐𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛:        𝑚𝑖𝑛 𝑓(𝜎)  = 𝑚𝑖𝑛 [ 𝑐 𝑚𝑎𝑟𝑘𝑒𝑡  −  𝑐 𝐵−𝑆(𝜎) ]2 

𝑓𝑜𝑟 𝑝𝑢𝑡 𝑜𝑝𝑡𝑖𝑜𝑛:       𝑚𝑖𝑛 𝑓(𝜎)  =  𝑚𝑖𝑛 [ 𝑝𝑚𝑎𝑟𝑘𝑒𝑡 − 𝑝 𝐵−𝑆(𝜎) ]2 

This optimization problem was repeated for each option’s contract in the data set. The 

equation’s outputs were added to the data frame as implied volatilities. By inserting the 

implied volatilities into formula 1, the B-S option values were calculated and added to the 

data frame. 

 

5.2  Black-Scholes Assumption Evaluation 

The B-S model’s assumption of constant volatility means that the volatility shall not depend 

on either time to maturity or moneyness. To analyze whether the assumption was valid, both 

visual and statistical tools were utilized. A volatility surface was created by plotting the 

implied volatility against moneyness and time to maturity. For a constant volatility, the 

surface shall be flat. Additionally, a multiple regression model was arranged where the 

implied volatility was set as response variable, meanwhile moneyness and time to maturity 

were set as explanatory variables.  

𝜎 𝑖 =  𝛼 +  𝛽 1 ∗  𝑇𝑇𝑀 𝑖 +  𝛽2  ∗  𝑀 𝑖 +  휀 𝑖            for i = 1,..,n 

Before further analyzing the regression models, a Breusch-Pagan test was performed to 

determine if the error terms were homoscedastic (H0) or heteroscedastic (H1).  

𝐻0 ∶   𝑉𝑎𝑟 (휀𝑖| 𝑋) =  𝜎(휀)2 

𝐻1:     𝑉𝑎𝑟 (휀𝑖| 𝑋) =  𝜎(휀)𝑖
2
 

If the null hypothesis could be rejected at a 1%-level, White’s robust standard errors were 

utilized to obtain approximately correct estimates. If the null hypothesis could not be rejected, 

the ordinary least square estimates were computed.  



15 

 

To test whether the explanatory variables were significant, a Wald Chi-squared test with 

robust standard errors was computed with the following hypothesis: 

𝐻0 ∶   𝛽1 =  𝛽2  =  0 

𝐻1: 𝛽1 ≠  0 𝑎𝑛𝑑/𝑜𝑟 𝛽2 ≠  0  

A rejection of the null hypothesis would mean that at least one of the explanatory variables is 

significant and ought to be included in the regression model. In other words, that the implied 

volatility does depend on maturity and/or moneyness.  

 

5.3  Heston Calibration 

To calculate the Heston model’s option values, the five unknowns parameters in the variance 

process (see section 2.3) had to be estimated. Therefore, a vector (Ω) constituting of the five 

parameters was set with starting values.  

                                             𝛺 =  { 𝜃, 𝑣(𝑡), 𝑘, 𝜎, 𝛿 }   

Then, an algorithm minimized the squared difference between the market price and the 

Heston model’s value by altering the values in the vector. 

𝑓𝑜𝑟 𝑐𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛:   𝑚𝑖𝑛 𝑓(𝛺)  =    𝑚𝑖𝑛 [ 𝑐 𝑚𝑎𝑟𝑘𝑒𝑡  −  𝑐 𝐻𝑒𝑠𝑡𝑜𝑛(𝛺) ]2 

𝑓𝑜𝑟 𝑝𝑢𝑡 𝑜𝑝𝑡𝑖𝑜𝑛:   𝑚𝑖𝑛 𝑓(𝛺)   =    𝑚𝑖𝑛 [ 𝑝 𝑚𝑎𝑟𝑘𝑒𝑡  −  𝑝 𝐻𝑒𝑠𝑡𝑜𝑛(𝛺) ]2
 

Due to the optimization problem’s complexity, it required a considerable amount of computer 

power to be solved from a large data set. Hence, a subsample had to be assembled for the 

calculations. I adopted the ‘trial-and-error’ method combining different number of 

observations at different strike prices and maturities, searching for values on the parameters 

that would generate the least pricing errors. As this approach was highly time consuming 

when applying it to four option types, I settled with five different time to maturities: 1, 2, 16, 

51 and 135 days. Another obstacle was that the different option types (BTC put/call, ETH 

put/call) did not have the same number of stated market prices for the selected maturities. 

Therefore, a distinction was made between calls and puts, using different number of 

observations from the different maturities yet the same number of observations for the whole 

subset. 
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Table 1 Number of observations for calibration of the Heston model  

TTM BTC call BTC put ETH call ETH put 

1 9 7 9 7 

2 14 17 14 17 

16 17 17 17 17 

51 17 16 17 16 

135 11 11 11 11 

Total 68 68 68 68 

This table reports the number of observations, for the selected maturities, that were used for each options type 

when calibrating the Heston model. 

 

Furthermore, the starting values for the parameters had to be selected carefully. Crisóstomo 

(2014) described that the local minima which the algorithm finds highly depends on one’s 

initial guessed values for the parameters. Crisóstomo (2014) suggested that creating a frame 

of reasonable values for the parameters would be of advantage when searching for the optimal 

solution. I therefore set up the following bounds: 

- Long-run mean variance: 0 < 𝜃 ≤ 2  

- Initial variance: 0 < 𝑣(𝑡) ≤ 2 

- Mean reversion speed: 0 < k < 10 

- Volatility of the volatility parameter: 0 < σ ≤10 

- Correlation:  −1 ≤ 𝛿 ≤ 1 

Again, the ‘trial-and-error’ approach was used to test different values (within the bounds) for 

the parameters, to find the combination generating the smallest pricing errors. The guessed 

errors were altered by the algorithm in the optimization problem and the output values were 

used in formula 3 to solve for Heston’s option values. The estimated option values were then 

added to the data frame. 

 

5.4  Model Performance Evaluation 

In the calibration of the models, the optimization problems were solved by a root-finding 

algorithm which is based on the Newton-Raphson method. This method sometimes does not 

converge to a solution, due to the starting value being too far from the root. Consequently, the 
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calculations of the B-S and Heston models constituted of different number of missing values. 

For a more accurate comparison of the models, only options for which both models had an 

estimated value were used in further calculations.  

To evaluate the B-S and Heston models’ performances in pricing BTC and ETH options, the 

estimated prices were compared to the market prices by utilizing two measurements: mean 

absolute error (MAE) and mean squared error (MSE). 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑟𝑖𝑐𝑒 − 𝑚𝑜𝑑𝑒𝑙 𝑝𝑟𝑖𝑐𝑒|

𝑛

𝑖=1
 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑟𝑖𝑐𝑒 −  𝑚𝑜𝑑𝑒𝑙 𝑝𝑟𝑖𝑐𝑒)2

𝑛

𝑖=1
  

Both measurements give information on the goodness-of-fit and they complement each other 

due to their mathematical traits. MSE is a commonly used measurement, however it weights 

outliers heavily and thus may give a poor prediction when the data contains a lot of noise. 

Therefore, MAE will also be used, since it detects how close on average the model values are 

to the actual prices without punishing for outliers as much as MSE does.  

To detect if and how the pricing errors differed depending on maturities and levels of 

moneyness, the data was split into subsets in accordance with table 2 and 3. 

Table 2 Groups of time to maturity 

Short TTM Medium TTM Long TTM 

TTM < 21    21 ≤ TTM ≤ 60   TTM > 60 

This table reports the boundaries, expressed in days, which were used to define three levels of maturity: short, 

medium and long. 

Table 3 Groups of moneyness 

 DOTM OTM ATM ITM DITM 

Call M > 1.09 1.09 ≥ M > 1.03 1.03 ≥ M ≥ 0.97 0.97 < M ≥0.91 M < 0.91 

Put M < 0.91 0.91≤ M < 0.97 0.97 ≤ M ≤ 1.03 1.03 < M ≤ 1.09 M > 1.09 

This table reports the boundaries of moneyness (M=K/S) which were used to categorize the five levels of 

moneyness: DOTM, OTM, ATM, ITM and DITM. The boundaries are different for puts and calls, to match their 

different payoff functions. 
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6. Results and Discussion 

 

The number of options with an estimated value by B-S and by Heston differed, due to the 

algorithm not being able to compute the exact same number of estimates for both models. 

Hence, the data frame was narrowed down by omitting all N/A, resulting in a data frame of 

options where both the B-S and Heston models had an estimated option value. The number of 

option values that both models could estimate are presented in table 4. 

Table 4 Number of observations used to compute the results 

 BTC call BTC put ETH call ETH put 

Observations 2378 1991 2470 2135 

This table reports the number of observations for each options’ type that were used when evaluating the pricing 

models. 

As shown in table 3, there is a distinction between puts and calls regarding the levels of 

moneyness. The results are therefore divided into groups of puts and calls, in the purpose of 

reducing the risk of misconception. 

 

6.1  BTC and ETH put options 

 

6.1.1 Black-Scholes Implied Volatility 

Table 5 shows the results from the multiple linear regression models performed on the put 

options. The regression models have moneyness and time to maturity as explanatory variables 

and implied volatility as response variable. For both the BTC and ETH options, the null 

hypothesis of homoscedastic error terms could be indisputably rejected. Therefore, the 

regression models were computed by utilizing White’s robust standard errors. The 

coefficients for BTC were all highly significant and in addition, the Wald chi-square test 

reported that explanatory variables were jointly different from zero. In comparison to BTC, 

the coefficient for time to maturity was not as significant for ETH. The performed Wald test 

reported that at least one explanatory variable was significant. From the results presented in 

table 5, it appears that both the BTC and ETH put options’ implied volatilities depend on time 
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to maturity and moneyness, which is in opposition to the B-S assumption of constant 

volatility. 

Table 5 Regression outputs for BTC and ETH put options 

Response variable: Implied volatility BTC put  ETH put 

Constant 0.613 *** 

(0.000) 

1.096*** 

(0.000) 

Time to Maturity -0.392 *** 

(0.000) 

-0.176** 

(0.009) 

Moneyness 0.623*** 

(0.000) 

0.348*** 

(0.000) 

   

Breusch-Pagan test 0.000 0.000 

Wald X2-test 0.000 0.000 

This table reports the outputs from regressing implied volatility on moneyness and time to maturity, for BTC and 

ETH puts separately. The coefficients were computed with White’s standard errors. P-value in parentheses. 

Breusch-Pagan and Wald X2 statistics are stated as P-values, for P-values above 0.01 the null hypotheses are not 

rejected. Significance levels: *p<.05 **p<.01 ***p<.001.  

 

In figure 1 and 2, the volatility surfaces for ETH and BTC put options are presented. The 

options with moneyness above 2 have been removed, due to them being relatively few and 

thus resulting in a less visually representative and accurate surface. The volatility surface 

connects options with various levels of implied volatility, time to maturity and moneyness. 

For the ETH put options in figure 1, there appears to be a stable level of implied volatility for 

long maturity options which are ATM, OTM and DOTM. Nevertheless, a large part of the 

surface consists of peaks and troughs, especially so for ITM and DITM options. The highest 

peak in implied volatility appears to be reached by short maturity DOTM/OTM options. 

Similarly, the implied volatility for short maturity DOTM options is relatively high for BTC 

puts (figure 2), but also short maturity ITM and DITM options have high implied volatilities. 

For long maturity BTC puts, the implied volatility is quite stable, with the exception for 

DITM options. 
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Figure 1 Volatility surface for ETH put options 

 

 

This figure shows the three dimensional relationships between moneyness, time to maturity and implied 

volatility for ETH puts. Higher implied volatilities are presented with gradually warmer colors. Only options 

with moneyness (K/S) below 2 are incorporated into the figure. 

Figure 2 Volatility surface for BTC put options 

  

This figure shows the three dimensional relationships between moneyness, time to maturity and implied 

volatility for BTC puts. Higher implied volatilities are presented with gradually warmer colors. Only options 

with moneyness (K/S) below 2 are incorporated into the figure. 
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6.1.2 Black-Scholes Pricing Errors  

In table 6 the Black-Scholes pricing errors for BTC and ETH put options are presented by two 

metrics. Note that the values have been multiplied by 106.  

When isolating the analysis to ETH put options, the reported measurements are larger the 

longer maturity, which implies that the distance between actual prices and estimated values 

increases along with maturity. When splitting the data on levels of moneyness, both MAE and 

MSE are the highest for ITM and DITM options. In relation, the MAE and MSE are low for 

DOTM and ATM options. Furthermore, OTM options appear to score the middle ranking 

amongst the levels of moneyness.  

There seems to be a relationship between pricing errors and implied volatility. The DITM and 

ITM options are the most misvalued and in section 6.1.1 they were found to have the most 

varying implied volatility over time. ATM, DOTM and OTM options are less inaccurately 

valued and in the previous section they were found to have the most stable implied volatility 

over time, except for short maturities. The relationship between pricing errors and implied 

volatility appears to be inverse regarding time to maturity; since the pricing errors grew larger 

for longer maturities, meanwhile the levels of implied volatility decreased. 

When instead isolating the analysis of table 6 to BTC put options, the MAE and MSE are 

larger for options with longer maturity. When splitting the pricing errors on levels of 

moneyness and observing the MAE and MSE scores, one can conclude that the OTM option 

values are closest to the true prices. In contrast, ITM and DITM options achieve the highest 

MAE and MSE values. Both DOTM and ATM options have relatively low pricing errors.  

As discussed for ETH, the BTC DITM and ITM options are the most misvalued and in section 

6.1.1 they were found to have the highest implied volatilities. The reversed relationship 

between time to maturity and implied volatility appears to be valid for BTC puts too, since 

options with longer maturities are relatively highly misvalued, yet they have the steadiest 

implied volatility. 
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Table 6 Black-Scholes pricing errors for ETH and BTC put options 

 Groups MAE MSE 

  BTC put ETH put BTC put ETH put 

Total 1018 80 11 0.045 

Short TTM 468 31 2 0.006 

Medium TTM 775 67 7 0.053 

Long TTM 2140 156 30 0.091 

ITM 834 142 7 0.074 

DITM 2985 177 50 0.146 

ATM 687 55 2 0.011 

OTM 418 68 0.848 0.027 

DOTM 530 43 2 0.014 

This table reports the Black-Scholes model’s pricing errors for ETH and BTC puts in the form of MAE and 

MSE. The results are based on the full sample (Total) as well as subsamples on maturity and moneyness (K/S). 

All values have been multiplied by 106. Values above 1 are rounded to no decimals. Values below 1 are rounded 

to three decimals. 

 

6.1.3 Output From Calibration of the Heston Model  

As described in the method, a ‘trial and error’ approach was used to find starting values for 

the Heston model parameters which would minimize the pricing error. Note that this 

procedure was executed on a small subsample consisting of 68 observations for each options 

type. The final guesses I settled for are shown in table 7. In the same table, the algorithm’s 

output at a local minimum is also presented for each options type. For both BTC and ETH put 

options, the volatility of volatility parameter (σ) was found to be way higher than expected. In 

addition, the mean reversion speed (k) was quite large for the BTC put options (78.285), and 

extremely large for ETH put options (144.310). These outputs suggest the B-S assumption of 

constant volatility to be fallacious. The outputs for the parameters in table 7 were used to 

estimate the Heston option values for the whole data set. 
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Table 7 Heston parameters for ETH and BTC put options 

Parameters BTC put ETH put 

Guess Output Guess Output 

𝜃 1.200 2.515 0.650 0.667 

𝑣(𝑡) 0.900 2.738 0.800 1.216 

𝑘 2.500 10.559 1.000 316.244 

𝜎 5.000 78.285 0.900 144.310 

𝛿 0.800 0.8129 -0.900 0.108 

This table reports the guessed and optimized parameter values in the Heston model’s variance process for ETH 

and BTC puts. The parameters are the long-run mean variance 𝜃, the mean reversion speed k, the correlation 𝛿 of 

the Weiner processes, the current variance v(t) and the volatility of the volatility parameter σ. The optimized 

parameter values are computed by minimizing the squared difference between market price and model value. 

 

6.1.4 Heston Pricing Errors 

Table 8 presents the measures of the Heston model’s pricing errors. When isolating the 

analysis to ETH puts, the pricing error increases along with time to maturity. Both the MAE 

and MSE suggest DITM and ITM options to be the most mispriced. The least mispriced 

options are those who are DOTM, followed by OTM and ATM. 

A similar pattern in pricing errors for the different levels of moneyness and maturity can be 

concluded for BTC puts.  

Furthermore, all measurements are larger for the BTC puts than for the ETH puts no matter 

what level of moneyness or maturity. This finding indicates that the Heston model predicts 

ETH put option values closer to their market prices, compared to the BTC puts. 
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Table 8 Heston pricing errors for ETH and BTC put options 

Groups MAE MSE 

 
BTC put ETH put BTC put ETH put 

Total 2022 120 34396484 205592 

Short TTM 673 17 7558871 1292 

Medium TTM 1629 138 25926523 231859 

Long TTM 4613 244 86446943 455915 

ITM 1133 57 1668265 6476 

DITM 8415 541 180353533 1064942 

ATM 484 23 424548 1126 

OTM 530 21 850324 1206 

DOTM 499 14 1353290 700 

This table reports the Heston model’s pricing errors for ETH and BTC puts in the form of MAE and MSE. The 

results are based on the full sample (Total) as well as subsamples on maturity and moneyness (K/S). All values 

are rounded to no decimals.  

 

6.2  BTC and ETH call options 

 

6.2.4 Black-Scholes Implied Volatility 

Table 9 shows the results from the multiple linear regression models performed on the call 

options. For both BTC and ETH options, the null hypothesis of homoscedastic error terms 

could be rejected. Therefore, the regression models were computed by using White’s robust 

standard errors. The coefficient for time to maturity was not significant for the BTC 

regression. For the regression on ETH calls, the coefficient for moneyness was not significant. 

On a 1%-level, the null hypothesis in the Wald test could be rejected for both regression 

models. Therefore, the implied volatility depended on at least one of the explanatory 

variables.  
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Table 9 Regression outputs for BTC and ETH call options 

Response variable: Implied volatility BTC call  ETH call 

Constant 1.230 *** 

(0.000) 

1.191*** 

(0.000) 

Time to Maturity 0.024  

(0.452) 

0.059** 

(0.006) 

Moneyness -0.098*** 

(0.000) 

0.006 

(0.150) 

   

Breusch-Pagan test 0.000 0.000 

Wald X2-test 0.000 0.0017 

This table reports the outputs from regressing implied volatility on moneyness and time to maturity, for BTC and 

ETH calls separately. The coefficients were computed with White’s standard errors. P-value in parentheses. 

Breusch-Pagan and Wald X2 statistics are stated as P-values, for P-values above 0.01 the null hypotheses are not 

rejected. Significance levels: *p<.05 **p<.01 ***p<.001.   

 

In figure 3 and 4, the volatility surfaces for ETH and BTC call options are presented. Note 

that options with moneyness above 2 have been removed.  

For the ETH call options in figure 3, there appears to be a steady level of implied volatility for 

long maturity options which are ATM, OTM and DOTM. For short maturity options the 

implied volatility varies a great deal for all levels of moneyness, with the mere exception for 

options close to being OTM and ATM. The highest peaks in implied volatility appear to arise 

from ITM and DITM options. 

The surface for BTC calls (figure 4) is similar to the one for ETH. The implied volatility is 

stable for long maturity ATM, OTM and DOTM calls. Short maturity options appear to have 

the highest implied volatilities, except for ATM options. The highest measured implied 

volatility surfaces for DITM calls. 
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Figure 3 Volatility surface for ETH call options 

 

This figure shows the three dimensional relationships between moneyness, time to maturity and implied 

volatility for ETH calls. Higher implied volatilities are presented with gradually warmer colors. Only options 

with moneyness (K/S) below 2 are incorporated into the figure. 

Figure 4 Volatility surface for BTC call options 

 

This figure shows the three dimensional relationships between moneyness, time to maturity and implied 

volatility for BTC calls. Higher implied volatilities are presented with gradually warmer colors. Only options 

with moneyness (K/S) below 2 are incorporated into the figure. 
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6.2.2 Black-Scholes Pricing Errors 

Table 10 contains the measurements of pricing errors for BTC and ETH call options.   

When analyzing the ETH calls alone, both MAE and MSE increase along with time to 

maturity. The metrics are the lowest for ATM options, followed by OTM and DITM options. 

The measurement scores are the highest for DOTM and ITM calls.  

These findings may be traced back to the discussion in section 6.2.1. As it happens, the B-S 

model misvalues DOTM, ITM and DITM calls the most, and these options are also the ones 

with the highest peaks in the volatility surface. The reversed relationship between pricing 

errors and implied volatility seems to occur for time to maturity; for longer maturities the 

pricing errors are relatively large, yet the implied volatility is relatively stable in comparison 

to short maturities. 

For the BTC call options in table 10, the ATM options are the most correctly valued, followed 

by ITM calls. Options belonging to the other levels of moneyness have relatively large pricing 

errors. Additionally, the pricing errors increase along with time to maturity. When comparing 

these findings with the ones in section 6.2.1 for BTC calls, there appears to be an inverse 

relationship between time to maturity for pricing errors and implied volatility. However, for 

the levels of moneyness, the options with the largest pricing errors seem to coincide with high 

levels of implied volatility found in section 6.2.1. 
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Table 10 Black-Scholes pricing errors for ETH and BTC call options 

 Groups MAE MSE 

  BTC call ETH call BTC call ETH call 

All 1158 109 8 0.070 

Short TTM 490 31 1 0.005 

Medium TTM 829 43 3 0.009 

Long TTM 2036 229 17 0.171 

ITM 816 146 3 0.092 

DITM 1215 99 6 0.048 

ATM 726 58 2 0.014 

OTM 1168 80 10 0.034 

DOTM 1249 122 10 0.089 

This table reports the Black-Scholes model’s pricing errors for ETH and BTC calls in the form of MAE and 

MSE. The results are based on the full sample (Total) as well as subsamples on maturity and moneyness (K/S). 

All values have been multiplied by 106. Values above 1 are rounded to no decimals. Values below 1 are rounded 

to three decimals. 

 

6.2.3 Output From Calibration of the Heston Model 

Table 11 shows the guessed values of the parameters as well as the algorithm’s outputs at a 

local minimum. The guesses were relatively close to the outputs, except for the mean 

reversion speed (k). Furthermore, the output volatility-of-volatility parameter (𝜎) value was 

higher for ETH calls than for BTC calls. The outputs for the parameters in table 11 were used 

to estimate the Heston option values for the whole data sets of BTC and ETH calls 

respectively. 
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Table 11 Heston parameters for ETH and BTC put options 

Parameters BTC call ETH call 

Guess Output Guess Output 

𝜃 0.5 0.481 0.5 0.595 

𝑣(𝑡) 1 1.055 0.98 2.013 

𝑘 4 19.757 5 11.299 

𝜎 2 2.182 4 7.250 

𝛿 -0.5 -1 -0.98 -0.030 

This table reports the guessed and optimized parameter values in the Heston model’s variance process for ETH 

and BTC calls. The parameters are the long-run mean variance 𝜃, the mean reversion speed k, the correlation 

𝛿 of the Weiner processes, the current variance v(t) and the volatility of the volatility parameter σ. The optimized 

parameter values are computed by minimizing the difference between market price and model value. 

 

6.2.4 Heston Pricing Errors 

Table 12 shows the pricing errors for the Heston model on call options. For ETH calls, the 

OTM and DOTM options have the highest MAE and MSE scores. The same is true for BTC 

calls. When comparing the BTC errors to the ones for ETH options, it becomes apparent that 

the pricing errors are larger for BTC options.  
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Table 12 Heston pricing errors for ETH and BTC call options 

Groups 
 

MAE MSE 

BTC call ETH call BTC call ETH call 

All 652 49 1302604 8198 

Short TTM 438 18 1297723 1611 

Medium TTM 804 28 1565748 2326 

Long TTM 796 94 1167728 18391 

ITM 1075 58 4251974 9537 

DITM 1336 67 3323665 10739 

ATM 269 24 149358 1509 

OTM 215 24 196223 2919 

DOTM 388 52 301538 9372 

This table reports the Heston model’s pricing errors for ETH and BTC calls in the form of MAE and MSE. The 

results are based on the full sample (Total) as well as subsamples on maturity and moneyness (K/S). All values 

are rounded to no decimals.  

 

6.3  Comparative Analysis  

 

6.3.1 Black-Scholes and Heston 

The pricing errors for the B-S model (table 6 and 10) have been multiplied by 106, while the 

Heston model’s metrics (table 8 and 12) have not. Comparing the values makes it clear that 

for both puts and calls with the different underlying cryptocurrencies, the B-S model 

outperforms the Heston model. These results are the complete opposite of what Madan, 

Reyners and Schoutens (2019) found when comparing the models’ performances on 

cryptocurrency options. Furthermore, when splitting the samples into different maturities and 

levels of moneyness, the models misvalue options in a similar manner.  

In section 2.1 it became clear that the Heston model is not flawless, yet it generally performs 

superior to the B-S model due to it capturing the non-normality of asset returns (Bhat, 2019; 

Karlsson, 2009; Wu, 2019; Zhang & Shu, 2003). There are multiple plausible causes as to 

why the presented results are in contradiction to prior research. One reasonable explanation 

lies in the optimization problem of the variance process’ parameters; namely that the data may 
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be noisy, and if so “the landscape of the objective function is rugged, it is neither convex nor 

of any regular shape” (Chen, 2007, p. 30). Consequently, the algorithm does not work 

efficiently or accurately when locating a local minimum and the results highly depend on 

what minima the algorithm finds (Chen, 2007). Additionally, what solution the algorithm 

finds highly depends on what input values were used for the parameters (Crisóstomo, 2014).  

Another cause for the conflicting results is that the thousands of option values were estimated 

using the output parameter values from a very small sample. These parameters may have been 

a good fit for the small sample, however when applied to out-of-sample data they generated a 

poor fit. This issue has been recognized in previous research: “while a more complex model 

will generally lead to better in-sample fit, it will not necessarily perform better out of sample 

as any overfitting may be penalized” (Bakshi, Cao & Chen, 1997, p. 2005)  

Due to the B-S model’s strong outperformance of the Heston model in this study’s results, the 

rest of the analysis will be focusing on the B-S model. 

 

6.3.2 Different Underlying Assets (Black-Scholes) 

To compare the B-S model’s goodness-of-fit for puts and calls, table 13 was created which 

summarizes the MAE and MSE results in table 6 and 10. Due to the definition of moneyness 

being different for puts and calls, table 13 presents the spot price in relation to the strike price 

and combines DOTM (DITM) scores with OTM (ITM). In table 13, the box contains a B if 

the BTC pricing error measurements are less than those for ETH. If the pricing errors for ETH 

are less than those for BTC, the box contains an E. For all levels of moneyness and maturity 

the B-S model predicts the values for ETH options more accurately than for BTC, since all 

boxes in table 13 contain an E.  

The difference in model performances’ for ETH and BTC options may be due to the data on 

BTC options containing more noise. For some maturities, the collected data on BTC options 

included additional small and/or large strikes than for ETH. These contracts may not have 

been as liquid due to them being very DOTM/DITM; which might have affected their market 

prices and in turn effected the calibration of the model.  
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Table 13 Comparison of pricing errors for different underlying assets 

Groups Put Options 

BTC=B, ETH=E 

Call Options 

BTC=B, ETH=E 

All E E 

Short TTM E E 

Medium TTM E E 

Long TTM E E 

S > K E E 

S ≈ K E E 

S < K E E 

This table reports a comparison of the MAE and MSE values for ETH and BTC, which are presented separately 

in table 6 and 10. The DITM (DOTM) options have been integrated with ITM (OTM) options. The right column 

compares these pricing error measurements for calls alone. The left column compares the pricing errors for puts. 

If the box contains B, then BTC’s MAE and MSE scores are lower than ETH’s. If the box contains E, the 

reversed is true. 

 

6.3.3 Puts and Calls (Black-Scholes) 

In table 6 and 10 the MAE and MSE results for the B-S model were presented for puts and 

calls respectively. Table 14 compares these results for both BTC and ETH options. If the put 

options had lower MAE and MSE values in comparison to calls, the box contains a P. If the 

call options had lower scores in comparison to puts, the box contains a C. If the MAE and 

MSE values were contradictory, the box contains ‘N/A’. Table 14 does not include the term 

moneyness since the definition of moneyness differ for puts and calls.  

For the ETH options, the B-S model appears to value puts the most accurately overall.  For 

short and medium maturity options, the B-S mispriced calls less than puts. For options where 

the spot price was greater than the strike price, calls were the most accurately valued type of 

ETH option. Options with spot prices close to and below the strike prices, put options were 

valued closer to their market prices in comparison to calls. When incorporating the term 

moneyness, these results mean that the B-S model works the best for puts and calls being ITM 

and DITM. Meanwhile, OTM and DOTM options are the least accurately valued. 

Additionally, the B-S model’s performance on ATM puts is superior to calls. 
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In the left column of table 14, the results from comparing the pricing errors for BTC puts and 

calls are presented. The MAE and MSE scores were inconsistent for the first three groups. For 

long maturity options, the B-S model values BTC calls more accurately than puts. Only when 

the spot price was much larger than the strike price, calls were less misvalued than puts. For 

the rest relationships between the spot and strike price, puts were less misvalued than calls. 

When re-introducing the term moneyness, these results translate to the B-S model performing 

better for DITM calls than DOTM puts. For all other levels of moneyness, the model values 

puts more accurately than calls.  

 

Table 14 Comparison of pricing errors for puts and calls 

Groups BTC Options 

Put=P, Call=C 

ETH Options 

Put=P, Call=C 

All N/A P 

Short TTM N/A C 

Medium TTM N/A C 

Long TTM C P 

S < K P P 

S << K  P P 

S ≈ K P P 

S > K P C 

S >> K  C C 

This table reports a comparison of the MAE and MSE values for calls and puts, which are reported separately in 

table 6 and 10. The right column compares these pricing error measurements for ETH options alone. The left 

column compares the pricing errors for BTC options. If the box contains P, then the puts’ MAE and MSE scores 

are lower than the calls’. If the box contains C, the reversed is true. If the MAE and MSE scores are 

contradictory, the box contains N/A. 
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7. Conclusion 

 

The aim of this paper is to determine whether the B-S model can be used to reliably predict 

the values for cryptocurrency options; and if not, can the Heston model be a better fit? I used 

real market prices to calibrate the models and then proceeded to calculate the pricing errors. 

Based on the results, the conclusion is that the B-S model strikingly outperforms the Heston 

model for both ETH and BTC calls and puts. This finding is in opposition to previous 

research performed by Madan, Reyners and Schoutens (2019). Interestingly, Bhat (2019), 

Karlsson (2009), Wu (2019) and Zhang and Shu (2003) all found the Heston model to 

generally perform better than the B-S model. This puts into question whether the Heston 

model’s performance would have improved if one were to estimate the model parameters 

from a larger and less noisy data set and/or calibrate the model with other starting values.  

Both models appear to misvalue cryptocurrency options in a similar manner; they perform 

poorly for long term options, DITM puts and DOTM calls. In addition, the pricing errors 

generated by both models were higher for BTC than for ETH options. As these tendencies 

were in common for the two models, the issue may be caused by illiquidity and not model 

structure. Hence, no certain conclusion can be drawn regarding the described tendencies. 

Moreover, the B-S assumption of constant volatility was concluded to be invalid and there 

appeared to be a relationship between pricing errors and implied volatilities. For the different 

levels of moneyness, the options with large pricing errors corresponded to the options with 

high implied volatilities. For the different maturities, however, the options with large pricing 

errors had the lowest and most stable levels of implied volatilities.  

In summary, even though the B-S model’s assumption of constant volatility was invalid, the 

model was shown to be superior to the Heston model. The results brought additional light to 

the B-S model; it generally appeared to perform better for puts than for calls, and it estimated 

option values the most accurately for ETH options. All these findings are quite surprising, 

which creates an opening for future research to test whether the presented results are valid for 

a larger data set and if the Heston model’s performance can be improved. 

For an investor it is crucial to evaluate the price of the option since a market price too high 

may lead to considerable losses. This research however has shown that determining a 

theoretical value for cryptocurrency options is challenging and thus, it might be troublesome 
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to hedge an exposure to cryptocurrencies by trading options. Additionally, it is difficult to 

gain access to recent historical data needed for calibration and evaluation of the pricing 

models. This especially effects small traders who are not backed by an institution/company 

with access to the data, wherefore a disparity may appear between the leading insiders and the 

losing outsiders. 
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