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Abstract 

 

This essay aims to detect spatial autocorrelation present in the EKC relationship, as well 

as to find empirical evidence of said relationship. A panel data of 176 countries for the 

period 1990-2018 is used for the empirical part. Several spatial models are considered in 

this essay, namely the SDM, SAR model, SAC model and SEM. The main conclusions 

are: (i) there exists significant spatial autocorrelation in the CO2 emissions, (ii) significant 

evidence for a direct EKC relationship is found, (iii) the renewable energy consumption 

and the CO2 emissions are significantly and negatively correlated, (iv) among all models 

considered in this essay the SAR model with time and spatial fixed effects is the one with 

less information loss. 

Keywords: environmental Kuznets curve, spatial autocorrelation, panel data, CO2 

emissions, renewable energy consumption 
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1. Introduction 

 

The pollution-income relationship (PIR) is widely studied by many authors, trying to 

identify the relationship between environmental deterioration and economic growth. The 

most supported relationship is the Environmental Kuznets curve (from now on EKC). 

The EKC is a hypothesis that argues that it exists an inverted-U shaped relationship 

between pollution and income.  

The EKC hypothesis identifies two big phases in an economy. During the early phase 

there is a domination of the primary production. Since there is a limited economic activity, 

the waste generated is also limited. The economy presents a positive relationship between 

pollution and income during this period. Then, the economy moves to an industrial 

economy, where the secondary sector dominates. We have a stronger positive relationship 

between the two variables. Both income and pollution keep increasing until it gets to the 

turning point, where pollution is no longer linked to the increase in income. When the 

economy reaches that point, economic growth and environmental quality have a negative 

relationship. 

There are five major causes, apart from income, that can explain the EKC relationship. 

The first one is the income distribution. The basic idea is that there is a higher awareness 

of environmental issues in a country with a more equitable income distribution, hence 

environmental regulations are more likely to be imposed. The second one is international 

trade. This argument deals with the pollution haven hypothesis, which argues that 

developed countries are able to reduce pollution by importing pollution-intensive goods 

from (usually low-income) other countries. The third cause is structural change, including 

the transition from industry to the service sector, and technical progress, including 

improvements in production techniques. The fourth one is institutional framework. This 

deals with the idea that environmental improvements depend on public policies. Finally, 

the last cause is consumers’ preferences. This deals with the microeconomic implications 

of consumers preferences as a partial explanation of an inverted-U pattern (Kaika and 

Zervas, 2013a). 

The remainder of the essay is organized as follows. In Section 2 a brief literature review 

is presented. Section 3 describes the data used for the empirical part of the essay. Section 
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4 describes the methodology used. In Section 5 the results are presented. In Section 6 the 

conclusions are stated. 

 

2. Literature review 

 

The EKC literature can be traced back to Grossman and Krueger (1991, 1995), who 

studied the relationship between the emissions and the size of an economy. They found 

that during the first stages of a country’s development there is a positive relationship 

between emissions and size of an economy, while after reaching a certain income level 

the relationship becomes negative. They split this relationship in three main effects: scale 

effect, composition effects and technique effect. The scale effect means that a high 

consumption of fossil-fuel energy is needed to meet the demand for a high level of 

production output. The composition effect deals with the idea that when an economy 

moves from an energy-intensive economy towards a service-based economy, it increases 

its environmental sustainability. The technique effect deals with the idea that countries 

with higher income per capita levels can invest more money on research, inducing a shift 

from dirty to clean technologies. 

Among the wide EKC literature, the studies present different results regarding the 

pollution-income relationship. Some studies find a linear relationship between 

environmental depletion and income per capita (e.g., Azomahou et al., 2006), other 

studies find the typical inverted-U relationship (e.g., Iwata et al. 2011), while other studies 

find evidence for an N-shaped relationship (e.g., Friedl and Getzner, 2003). In addition, 

some studies some studies failed to find evidence of the EKC hypothesis for CO2 

emissions (e.g., Halicioglu, 2009). 

From a chronological point of view, the empirical studies of EKC for CO2 can be split in 

three main categories. The first category of studies, which starts around 1995, is mainly 

focused on the effect of income on CO2 emissions, without accounting for other 

explanatory variables. The majority of these empirical studies reject the EKC hypothesis. 

For instance, Moomaw and Unruh (1997) find an increasing and monotonous relationship 

between income and pollution. Other studies find evidence of an EKC for CO2 but with 
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a turning point of excessive size in per capita dollars (e.g., Holtz-Eakin and Selden, 1995). 

This first category of studies has an important lack of explanatory capacity because they 

are only focused on per capita income levels (Balado-Naves et al., 2018). Some authors, 

for instance Vincent (1997), argue that the EKC studies should be conducted in single 

country contexts. 

The second category of studies included new explanatory variables, using time series 

models instead of cross sectional or panel data models. From the late 1990’s to the mid 

2000’s the error correction models and autoregressive models became popular among the 

EKC studies. One of the main focuses of this category of studies was the effect of 

structural changes on the EKC relationship (Panayotou et al., 2000; Friedl and Getzner, 

2003; Cole, 2004). However, there was no consensus about the results. According to 

Balado-Naves et al. (2018) it may be due to the quality of the explanatory variables that 

they used. During this period, Friedl and Getznet (2003) tested the significance of the 

share of the services sector over GDP and found it non-significant. Lastly, the EKC and 

the structural change hypotheses were rejected by Azomahou et al. (2006). 

The third category of empirical studies can be divided in two subgroups. The first 

subgroup is characterized for using traditional panel data or time series. These studies 

also found a positive and monotonous relationship between a country’s income per capita 

and carbon dioxide emissions and large sized turning points (e.g., Kearsley and Riddel, 

2010; Franklin and Ruth, 2012 or Zhang and Zhao, 2014). The other subgroup of studies 

used Autoregressive distributed lag (ARDL) models (e.g., Coondoo and Dinda, 2008; 

Halicioglu, 2009; Narayan and Narayan, 2010; Iwata et al., 2011; Baek and Kim, 2013; 

Bölük and Mert, 2014, 2015; Baek, 2015; Al-Mulali et al., 2016). The ARDL studies fail 

to achieve a concordant result of the EKC hypothesis. However, they found a positive 

and significant impact of both nuclear and renewable energies on environmental 

protection. 

The majority of studies that have included spatial interactions are focused on China 

(Auffhammer and Carson, 2008; Chuai et al., 2012; Kang et al., 2016; Wang and Ye, 

2017). These studies have not found support for the EKC hypothesis, but they detected a 

significant spatial autocorrelation among Chinese provinces.  

Maddison (2006) used spatial models to analyse the emissions of several pollutants, 

concluding that there exists spatial autocorrelation between countries, specifically he 
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found that national emissions are influenced by the neighbouring income. Balado-Naves 

et al., (2018) also used spatial models to analyse the emissions of CO2, and found support 

for both direct and indirect EKC for all continents except for Oceania, where they found 

the opposite effect, an U-relationship between income and CO2 emissions. 

 

3. Data 

 

The qualitative data used for this essay comes from the World Development Indicators. 

The sample consists of 5104 observations from 176 countries and covers the period 

between 1990 and 2018. The dependent variable used is CO2 emissions per capita. The 

independent variables are GDP per capita and the renewable energy consumption as a 

percentage of the total final energy consumption. A natural logarithmic transformation is 

used for the CO2 and the GDP data, allowing to interpret the results in percentage terms. 

Descriptive statistics of the qualitative data used are presented in Table 1. 

The spatial data from which the spatial matrix have been developed is from Country 

borders database. 

In figure 1 we can see that there is a positive relation between CO2 emissions per capita 

and income per capita. However, for the countries with higher income per capita we can 

start to see a downward relationship between the two variables. If this negative 

relationship for high income-per-capita countries is statistically significant, it would 

imply the existence of an EKC relationship. 

CO2 emissions and renewable energy are negatively related, as can be seen in figure 2. A 

country with highest renewable energy consumption should be expected to have a lower 

CO2 emissions per capita. 
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TABLE 1: Descriptive statistics 

       
Variable  Mean Std. Dev. Min Max 

      

      

lnCO2 overall 0.574 1.588 -3.829 3.865 

 between  1.564 -3.363 3.563 

 within  0.297 -2.720 2.723 

      
lnGDP overall 8.106 1.595 4.506 12.103 

 between  1.502 5.225 11.524 

 within  0.546 5.372 10.063 

      

lnGDP2 overall 68.257 26.251 20.301 146.476 

 between  24.855 17.391 132.985 

 within  8.644 28.690 100.893 

      

Renewable 

Energy 

Consumption 

overall 33.923 30.444 0.000 98.304 

between  29.815 0.000 94.426 

within  6.541 2.439 83.626 

      

Notes: overall is statistic over time and countries, between is statistic between countries and 

within is statistic over time within a country. 

 

 

FIGURE 1: Relation between income per capita (in natural logarithm) and CO2 (in 

natural logarithm) 
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FIGURE 2: Relation between renewable energy consumption and CO2 (in natural 

logarithm) 

 

 

4. Methodology 

 

4.1. Standard EKC 

Following the specification from Balado-Naves et al. (2018), the following adjusted 

version of the general model is used: 

𝑙𝑛 𝑒𝑖𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑙𝑛 𝑥𝑖𝑡 + 𝛽2(𝑙𝑛 𝑥𝑖𝑡)2 + 𝛽3𝑅𝐸𝑖𝑡 + 𝜀𝑖𝑡 

where eit are the CO2 emissions per capita, xit is the income per capita and REit represents 

the renewable energy consumption (% of total final energy consumption) of country i at 

time t. The individual fixed effects are captured by 𝛼𝑖, the time fixed effects are captured 

by 𝛾𝑡 and 𝜀𝑖𝑡 is the error term. Due to data availability, the regressor energy intensity is 

not included in this essay. 

The signs for the parameters are expected to be as follows 
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i. 𝛽1 > 0 and 𝛽2 < 0. If the EKC hypothesis is true, the pollution per capita should 

increase with income per capita but have an inverse-U shape, implying that the 

coefficient for the quadratic term should be negative. 

ii. 𝛽3 < 0. It is expected that the higher the renewable energy consumption the lower 

are the carbon emissions per capita. 

 

4.2. Spatial EKC 

By using a spatial regression model, I am able to capture spatial interaction between 

observations, meaning that data points from one location affect data points from nearby 

locations.  

There are two big groups of spatial effects. The first one considers spatial dependence or 

autocorrelation, and the second one deals with spatial heterogeneity. This essay will 

account for spatial autocorrelation. Spatial autocorrelation is expressed by the moment 

condition 

𝑐𝑜𝑣[𝑦𝑖, 𝑦𝑗] = 𝐸[𝑦𝑖𝑦𝑗] −  𝐸[𝑦𝑖]𝐸[𝑦𝑗]  ≠ 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗 

where yi (yj) is the value of y at location i (j). This covariance structure “becomes 

meaningful from a spatial perspective when the particular configuration of nonzero i, j 

pairs has an interpretation in terms of spatial structure, spatial interaction or the spatial 

arrangement of the observations” (Anselin, 2001). 

The Moran’s I test statistic is computed in order to test for spatial autocorrelation. 

Following Kondo (2021), Moran’s I is given by 

𝐼 =  
𝑧𝑇𝑊𝑧

𝑧𝑇𝑧
 

where z is the (n x 1) demeaned and standardized dependent variable and W is the row-

standardized spatial weights matrix. Asymptotically, this statistic tends to zero. 

Therefore, a positive value suggests positive spatial autocorrelation and a negative value 

indicates negative spatial autocorrelation. The null hypothesis of Moran’s I test is that the 

data presents spatial randomization. The test statistic is given by 
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𝑧(𝐼) =
𝐼 −  𝐸[𝐼]

√𝑉𝑎𝑟[𝐼]
 

where E[I] and Var [I] are computed under the null hypothesis of spatial randomization, 

which are given by 

𝐸[𝐼] = −
1

𝑛 − 1
 

and 

𝑉𝑎𝑟[𝐼] = 𝐸[𝐼2] − (𝐸[𝐼])2 

The first term in the variance is calculated as follows 

𝐸[𝐼2] =

𝑛[(𝑛2 − 3𝑛 + 3)𝑆1 − 𝑛𝑆2 + 3𝑆0
2] −

𝑚4

𝑚2
2 [(𝑛2 − 𝑛)𝑆1 − 2𝑛𝑆2 + 6𝑆0

2]

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)𝑆0
2  

where 𝑚2 is the second moment about the sample mean and 𝑚4 is the fourth moment 

about the sample mean. The terms 𝑆0, 𝑆1 and 𝑆2 are given by 

𝑆0 = ∑ ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

  ,    𝑆1 =
1

2
∑ ∑(𝑤𝑖𝑗 + 𝑤𝑗𝑖)2

𝑛

𝑗=1

𝑛

𝑖=1

  ,    𝑎𝑛𝑑   𝑆2 =  ∑(∑ 𝑤𝑖𝑗

𝑛

𝑗=1

+ ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

)2

𝑛

𝑖=1

 

The Moran’s I test statistic follows a standard normal distribution under the null. 

According to Anselin (2001), Moran’s I test is the locally best invariant and “consistently 

outperforms other tests in terms of power in simulation experiments”. 

If Moran’s I test confirms that there exist spatial relationships for CO2 emissions per 

capita, the next step would be to choose between all spatial models in order to correctly 

capture the presence of spatial dependence.  

The spatial models considered in this essay are the following: spatial Durbin model 

(SDM), spatial autoregressive model (SAR), spatial autocorrelation model (SAC) and 

spatial error model (SEM). 

The spatial Durbin model includes an autoregressive term for the dependent variable as 

well as spatially lagged independent variables. The basic equation for the SDM is  
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𝑙𝑛 𝑒𝑖𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝜌𝑊𝑙𝑛 𝑒𝑖𝑡 + 𝛽1𝑙𝑛 𝑥𝑖𝑡 + 𝛽2(𝑙𝑛 𝑥𝑖𝑡)2 + 𝛽3𝑅𝐸𝑖𝑡

+ 𝜃1 ∑ 𝑤𝑖𝑗𝑙𝑛 𝑥𝑖𝑡

𝑁

𝑗=1

+ 𝜃2 ∑ 𝑤𝑖𝑗(𝑙𝑛 𝑥𝑖𝑡)2

𝑁

𝑗=1

+ 𝜃3 ∑ 𝑤𝑖𝑗𝑅𝑒𝑖𝑡

𝑁

𝑗=1

+ 𝜀𝑖𝑡 

In this model, ∑ 𝑤𝑖𝑗𝑙𝑛 𝑥𝑖𝑡
𝑁
𝑗=1 , ∑ 𝑤𝑖𝑗(𝑙𝑛 𝑥𝑖𝑡)2𝑁

𝑗=1  and ∑ 𝑤𝑖𝑗𝑅𝑒𝑖𝑡
𝑁
𝑗=1  represent the spatially 

lagged regressors. They capture the interaction effects of all j neighbors to country i via 

income per capita and renewable energy consumption. 

The SAC model adds a spatial autoregressive error to the SAR model 

𝑙𝑛 𝑒𝑖𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝜌𝑊𝑙𝑛 𝑒𝑖𝑡 + 𝛽1𝑙𝑛 𝑥𝑖𝑡 + 𝛽2(𝑙𝑛 𝑥𝑖𝑡)2 + 𝛽3𝑅𝐸𝑖𝑡 + 𝜈𝑖𝑡 

𝜈𝑖𝑡 =  𝜆𝑊𝜈𝑖𝑡 + 𝜀𝑖𝑡 

The basic equation for the SAR model is  

𝑙𝑛 𝑒𝑖𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝜌𝑊𝑙𝑛 𝑒𝑖𝑡 + 𝛽1𝑙𝑛 𝑥𝑖𝑡 + 𝛽2(𝑙𝑛 𝑥𝑖𝑡)2 + 𝛽3𝑅𝐸𝑖𝑡 + 𝜀𝑖𝑡 

In this model it is assumed that 𝜀𝑖𝑡~𝑁(0, 𝜎𝜀
2) and 𝐸(𝜀𝑖𝑡𝜀𝑖𝑠) = 0 for 𝑖 ≠ 𝑗 and/or 𝑡 ≠ 𝑠. 

It can easily be shown that the SDM and the SAC models nest the SAR model. For that 

reason, the SAR estimated parameters should be unbiased even when the SDM or the 

SAC are the true model (LeSage, 2014). 

Finally, the spatial error model (SEM), which is a special case of the SAC model, it is 

focused on the spatial autocorrelation in the errors 

𝑙𝑛 𝑒𝑖𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑙𝑛 𝑥𝑖𝑡 + 𝛽2(𝑙𝑛 𝑥𝑖𝑡)2 + 𝛽3𝑅𝐸𝑖𝑡 + 𝜈𝑖𝑡 

𝜈𝑡 =  𝜆𝑊𝜈𝑡 + 𝜀𝑡 

In all the models above eit are the CO2 emissions per capita, xit is the income per capita 

and REit represents the renewable energy consumption (% of total final energy 

consumption) of country i at time t. The individual fixed effects are captured by 𝛼𝑖, the 

time fixed effects are captured by 𝛾𝑡 and 𝜀𝑖𝑡is the error term. W is the spatial weights 

matrix. β, ρ, λ and θ are the coefficients to be estimated. 

The signs for the parameters from all spatial models above are expected to be as follows 
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i. 𝛽1 > 0  and 𝛽2 < 0. If here exists a direct EKC relationship the pollution per 

capita should increase with income per capita but have an inverse-U shape, 

implying that the coefficient for the quadratic term should be negative. 

ii. 𝛽3 < 0. It is expected that the renewable energy consumption and the CO2 

emissions per capita are negatively correlated. 

iii. If the SDM is the true model generating the data, the following significant 

parameters are expected: 𝜌 > 0, 𝜃1 > 0, 𝜃2 < 0, 𝜃3 < 0. However, 𝜆 is expected 

to be non-significant. This model would suggest the existence of an indirect EKC 

relationship. 

iv. If the SAR model is the true model generating the data, the following signs for the 

parameters are expected: 𝜌 > 0 and significant. On the other hand, 𝜃1, 𝜃2, 𝜃3 and 

𝜆 are expected to be non-significant. 

v. If the SAC model is the true model generating the data, the following signs for the 

parameters are expected: 𝜌 > 0 and 𝜆 > 0 and significant. However, 𝜃1, 𝜃2 and 

𝜃3 are expected to be non-significant. 

vi. If the SEM is the true model generating the data, it is expected 𝜆 > 0 and 

significant, while the rest of the parameters, 𝜌,  𝜃1, 𝜃2 and 𝜃3 to be non-significant. 

 

4.3. Model Selection 

The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are 

computed for model selection. AIC and BIC estimate the quality of every model, and 

therefore they can be compared choose the most fitting model. The model with the 

smallest AIC has the least information lost and for that reason it will be the model with 

the higher quality. The model with minimum BIC is the most likely to have generated the 

dependent variable, meaning that is the model with the largest posterior probability. 

The AIC and BIC are specified as follows 

𝐴𝐼𝐶 = −2{log[𝐿(𝛽̂)] − 𝑑𝑓(𝑦̂)} , 𝑎𝑛𝑑     𝐵𝐼𝐶 = −2{log[𝐿(𝛽̂)] − log (𝑁)𝑑𝑓(𝑦̂)} 

where 𝛽̂ is the vector of estimated parameters in the chosen model. 

When it comes to choose between both criterions there is no clear choice. On one hand, 

BIC is asymptotically consistent, meaning that as the sample size goes to infinity the 
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probability that BIC will select the true model approaches to one. On the other hand, AIC 

minimizes the risk of selecting a bad model from all candidate models (Burnham and 

Anderson 2004). For these reasons, both criterions will be considered in this essay. 

 

5. Results 

 

To begin with, a Hausman test for the general model is computed in order to test whether 

a random effects or fixed effects specification should be used. The null hypothesis of the 

test is that a random effects model is preferred. The alternative hypothesis is that a fixed-

effects model is preferred. Table 2 shows the results of said test. The null hypothesis can 

be rejected at 1% confidence level and therefore a fixed effects specification should be 

used. 

 

TABLE 2: Hausman test 

chi2(3) 129,64 

Prob > chi2 0,0000 

 

 

Table 3 presents the results for the standard EKC model using fixed-effects. This model 

finds all three independent variables significant at 1% significance level. This model 

confirms the expectations regarding the coefficient’s signs, since 𝛽1 > 0, 𝛽2 < 0 and 

𝛽3 < 0. There is a positive and significant relationship between emissions per capita and 

income per capita, as well as a negative relationship between emissions per capita and 

income squared per capita. In addition, there is a negative and significant relationship 

between the emissions per capita and the renewable energy consumption. This model 

finds significant evidence of a EKC relationship. 
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TABLE 3: Standard EKC 

  

lngdp 

0.629*** 

(0.0355) 

  

lndgp2 

-0.029*** 

(0.002) 

  

re 

-0.023*** 

(0.0004) 

  

  

R2 0.7952 

  

AIC -1802.418 

  

BIC -1776.267 

  

Notes: Standard deviation in parentheses. Significance level: ***p<0.01, **p<0.05, *p<0.1. 

 

The next step is to test for spatial randomization in our sample. As mentioned in Section 

4, the Moran’s test is computed for that reason. The results of the test are stated in Table 

4. We find the Moran’s I test statistically significant at 1% level for each year and 

therefore the null hypothesis of spatial randomization can be rejected. Additionally, since 

I > 0 for every year, a positive spatial autocorrelation should be captured by all spatial 

models considered. 

Once the existence of spatial dependence for CO2 emissions per capita has been 

confirmed, it is still necessary to choose between all spatial models in order to correctly 

capture the presence of spatial dependence. As mentioned in Section 4.2, four different 

spatial models will be used. Specifically, the spatial Durbin model (SDM), the spatial 

autoregressive model (SAR), the spatial autocorrelation model (SAC) and the spatial error 

model (SEM). 
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TABLE 4: Moran’s I test 

    
Year I z(I) p-value 

    

    

2018 0.633 9.155 2.5253E-19*** 

2017 0.639 9.243 1.1176E-19*** 

2016 0.635 9.181 1.9874E-19*** 

2015 0.635 9.183 1.9447E-19*** 

2014 0.644 9.310 6.0333E-20*** 

2013 0.644 9.314 5.8102E-20*** 

2012 0.652 9.425 2.0409E-20*** 

2011 0.650 9.402 2.5493E-20*** 

2010 0.646 9.343 4.4223E-20*** 

2009 0.661 9.547 6.4701E-21*** 

2008 0.640 9.251 1.0416E-19*** 

2007 0.635 9.180 1.9933E-19*** 

2006 0.625 9.040 7.1801E-19*** 

2005 0.633 9.147 2.7054E-19*** 

2004 0.635 9.174 2.1156E-19*** 

2003 0.656 9.472 1.3131E-20*** 

2002 0.646 9.328 5.101E-20*** 

2001 0.649 9.382 3.0708E-20*** 

2000 0.651 9.409 2.383E-20*** 

1999 0.656 9.475 1.2805E-20*** 

1998 0.662 9.558 5.7718E-21*** 

1997 0.659 9.515 8.7316E-21*** 

1996 0.662 9.564 5.4711E-21*** 

1995 0.666 9.619 3.224E-21*** 

1994 0.654 9.441 1.7673E-20*** 

1993 0.677 9.765 7.8855E-22*** 

1992 0.677 9.769 7.5788E-22*** 

1991 0.693 9.997 7.9143E-23*** 

1990 0.694 10.008 7.1314E-23*** 

    

Note: I represents the value of the Moran’s I for each year and z(I) is the test statistic value. 

Significance level: ***p<0.01, **p<0.05, *p<0.1. 

 

The results for the Spatial Durbin model (SDM) are stated in Table 5. The results for this 

model present differences depending on the chosen specification. When using a time 

fixed-effects model there is no statistical evidence of a direct EKC relationship, since 𝛽2, 

the coefficient for the squared income per capita, is not statistically significant. On the 

other hand, 𝜃1 is positive and significant, and 𝜃2 is negative and significant. The income 
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per capita and the squared income per capita from the j neighboring countries are 

statistically significant to explain the emissions of CO2 per capita of country i. This would 

imply the existence of an indirect EKC relationship. In addition, 𝜃3 is positive and 

significant, implying that there might be a positive relationship between the renewable 

energy consumption from country j to the emissions of CO2 of country i, which can come 

as a surprise. 

The spatial fixed-effects SDM finds significant support for a direct EKC, since 𝛽1 is 

positive and significant and 𝛽2 is negative and significant. Additionally, there is a 

significant and negative relationship between renewable energy consumption and CO2 

emissions. In this model, 𝜃2 is negative and significant at 5% level, which means that an 

increase in the income of country j would affect negatively the emissions of country i if 

they are neighbors. 

When using time and spatial fixed-effects, a significant relationship of at least 5% 

confidence level is found for all three independent variables, while there is no significance 

in the effects of the regressors of the j neighbors to the emissions per capita of country i.  

Nevertheless, all three specifications of the SDM find a positive and significant ρ, 

confirming that the emissions of one country have a positive effect on their neighbor’s 

emissions. 

Regarding the AIC and the BIC for this model, we can rank these models from worst to 

best, the model with time fixed-effects being the worst and the model with time and 

spatial fixed-effects being the best. When moving from the time FE specification to the 

spatial FE specification we have a difference of 9,766,765 for the AIC and a difference 

of 9.766,764 for the BIC. Choosing the time and spatial FE instead of the spatial FE ends 

with a difference of 18,238 for both the AIC and the BIC. This difference is definitely 

smaller than the previous one, but still significant in order to choose a correct specification 

(Burnham and Anderson, 2004). 
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TABLE 5: Spatial Durbin model (SDM) 

     

 Time FE Spatial FE Time and Spatial FE 

    

    

lngdp 

0.971*** 

(0.2909533) 

0.485*** 

(0.0426517) 

0.476*** 

(0.144) 

    

lndgp2 

-0.189 

(0.017) 

-0.020*** 

(0.003) 

-0.018** 

(0.009) 

    

re 

-0.019*** 

(0.002) 

-0.021*** 

(0.0004) 

-0.021*** 

(0.003) 

    

    

Wlngdp 

0.290** 

(0.123) 

-0.126** 

(0.058) 

--0.099 

(0.173) 

    

Wlngdp2 

-0.035*** 

(0.010) 

0.004 

(0.004) 

0.006 

(0.011) 

    

Wre 

0.057** 

(0.003) 

-0.0009 

(0.0009) 

-0.001 

(0.002) 

    

    

rho 

0.409*** 

(0.526) 

0.278*** 

(0.016) 

0.273*** 

(0.039) 

    

    

R2 0.7953 0.8013 0.8230 

    

AIC 7556.455 -2210.31 -2228.548 

    

BIC 7608.757 -2158.008 -2176.246 

    

Notes: Standard deviation in parentheses. Significance level: ***p<0.01, **p<0.05, *p<0.1. 

 

Table 6 shows the results for the SAR model. The results for the SAR model indicate a 

positive and significant at 1% level relationship between emissions per capita and income 

per capita, as well as a negative and significant at 5% level relationship between emissions 

per capita and income squared per capita. In addition, the renewable energy consumption 

affects negatively the emissions per capita. This model also finds significant spatial 
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spillovers, meaning that emissions from one country have a positive relationship with the 

neighboring countries’ emissions. 

Again, following the AIC and the BIC, the model specification with time and spatial fixed 

effects has much lower values than the other two models. This implies that the last model 

minimizes the information loss among all three specifications, and therefore it is the one 

closer to the true model. 

 

TABLE 6: Spatial autoregressive model (SAR) 

     

 Time FE Spatial FE Time and Spatial FE 

    

    

lngdp 

1.125*** 

(0.277) 

0.438*** 

(0.134) 

0.442*** 

(0.136) 

    

lndgp2 

-0.042*** 

(0.015) 

-0.020*** 

(0.008) 

-0.016** 

(0.008) 

    

re 

-0.019*** 

(0.002) 

-0.022*** 

(0.003) 

-0.021*** 

(0.003) 

    

    

rho 

0.169*** 

(0.033) 

0.255*** 

(0.036) 

0.275*** 

(0.037) 

    

    

R2 0.8492 0.7968 0.8249 

    

AIC 8092.69 -2185.158 -2230.709 

    

BIC 8125.378 -2152.469 -2198.021 

    

Notes: Standard deviation in parentheses. Significance level: ***p<0.01, **p<0.05, *p<0.1. 

 

The results for the SAC model are stated in Table 7. When using the SAC model, we find 

evidence of a direct EKC since 𝛽1 is positive and significant at 1% confidence level, and 

𝛽2 is negative and significant. In the time and spatial fixed-effects specification, 𝛽2 is 
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only significant at 10% confidence level, while for the other specifications is significant 

at 1% confidence level. 

 

TABLE 7: Spatial autocorrelation model (SAC) 

     

 Time FE Spatial FE Time and Spatial FE 

    

    

lngdp 

1.454*** 

(0.280) 

0.464*** 

(0.146) 

0.423*** 

(0.142) 

    

lndgp2 

-0.049*** 

(0.016) 

-0.021*** 

(0.008) 

-0.154* 

(0.008) 

    

re 

-0.018*** 

(0.002) 

-0.022*** 

(0.003) 

-0.021*** 

(0.003) 

    

    

rho 

0.0579 

(0.037) 

0.225*** 

(0.085) 

0.296*** 

(0.081) 

    

lambda 

0.438*** 

(0.061) 

0.048 

(0.011) 

0.040 

(0.103) 

    

R2 0.8523 0.7989 0.8234 

    

AIC 7494.993 -2185.044 -2227.739 

    

BIC 7534.22 -2145.818 -2188.512 

    

Notes: Standard deviation in parentheses. Significance level: ***p<0.01, **p<0.05, *p<0.1. 

 

In this model we found disparities regarding the significance in the spatial terms included 

in the regression. On one hand, when using time fixed-effects λ, which captures the effect 

of a spatial autoregressive error, is significant at 1%. On the other hand, when using time 

fixed-effects or both time and spatial fixed-effects ρ is positive and significant while λ is 

non-significant, meaning that there exists a significant spatial autoregressive term for the 

dependent variable, but not for the error term. 
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According to the AIC and BIC, the model that performed best is the one that included 

time and spatial fixed-effects, and the model taking into account only time fixed-effects 

is the one that performed worst. Therefore, the evidence for ρ being significant is larger 

than the evidence for λ being significant.  

The results for the spatial error model (SEM) are stated in Table 8. In this model we find 

significant evidence of a direct EKC since 𝛽1 > 0 and 𝛽2 < 0. The renewable energy 

consumption affects negatively the CO2 emissions. Additionally, there is a significant and 

positive λ, meaning that there is a spatial autoregressive error. 

By comparing the AIC and the BIC for the three specifications we can rank them from 

the time fixed-effects being the worst to the time and spatial fixed-effects being the best 

specification since it is minimizing the information loss.  

 

TABLE 8: Spatial error model (SEM) 

     
 Time FE Spatial FE Time and Spatial FE 

    

    

lngdp 

1.421*** 

(0.282) 

0.613*** 

(0.145) 

0.621*** 

(0.144) 

    

lndgp2 

-0.046*** 

(0.016) 

-0.028*** 

(0.008) 

-0.027*** 

(0.009) 

    

re 

-0.019*** 

(0.002) 

-0.022*** 

(0.003) 

-0.021*** 

(0.003) 

    

    

lambda 

0.485*** 

(0.051) 

0.298*** 

(0.042) 

0.290*** 

(0.043) 

    

    

R2 0.8513 0.7995 0.811 

    

AIC 7533.212 -2117.774 -2142.394 

    

BIC 7565.9 -2085.085 -2109.705 

    

Notes: Standard deviation in parentheses. Significance level: ***p<0.01, **p<0.05, *p<0.1. 
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TABLE 9: Time and Spatial Fixed-Effects Models 

      

 

SDM withTime 

and Spatial FE 

SAR with Time 

and Spatial FE 

SAC with Time 

and Spatial FE 

SEM with Time 

and Spatial FE 

     

     

lngdp 

0.476*** 

(0.144) 

0.442*** 

(0.136) 

0.423*** 

(0.142) 

0.621*** 

(0.144) 

     

lndgp2 

-0.018** 

(0.009) 

-0.016** 

(0.008) 

-0.154* 

(0.008) 

-0.027*** 

(0.009) 

     

re 

-0.021*** 

(0.003) 

-0.021*** 

(0.003) 

-0.021*** 

(0.003) 

-0.021*** 

(0.003) 

     

     

Wlngdp 

--0.099 

(0.173)    

     

Wlngdp2 

0.006 

(0.011)    

     

Wre 

-0.001 

(0.002)    

     

     

rho 

0.273*** 

(0.039) 

0.275*** 

(0.037) 

0.296*** 

(0.081)  

     

lambda   

0.040 

(0.103) 

0.290*** 

(0.043) 

     

     

R2 0.8230 0.8249 0.8234 0.811 

     

AIC -2228.548 -2230.709 -2227.739 -2142.394 

     

BIC -2176.246 -2198.021 -2188.512 -2109.705 

     

Notes: Standard deviation in parentheses. Significance level: ***p<0.01, **p<0.05, *p<0.1. 

 

On the whole, all models that include a spatial term in the specification find strong 

evidence of spatial autocorrelation in the model, in the form of an autoregressive term in 

the dependent variable or in the error term, but not both simultaneously. In Table 9 the 
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results for the four considered models with time and spatial fixed-effects are presented 

for an easier comparison. 

Regarding model selection, the models with time and spatial fixed-effects performed best 

regarding the AIC and BIC, while models with only time-fixed effects performed the 

worst among all other models. The SAR model with both time and spatial fixed-effects 

performed the best, with an AIC of -2.230,709; a BIC of -2.198,021 and a R2 of 0,8249. 

Since it is the model with lower values of AIC and BIC, it is the model with the lowest 

information loss and therefore it is the model that is closest to the true model generating 

the data. This model finds the variables income per capita and renewable energy 

significant at 1% level, while the squared income per capita significant at 5% level. The 

spatial autoregressive term is also strongly statistically significant. According to this 

model  𝛽1 > 0 and 𝛽2 < 0, and therefore it suggests the existence of a direct EKC 

relationship. In addition, 𝛽3 < 0, meaning an increase in renewable energy consumption 

would decrease CO2 emissions. Lastly, ρ is also positive and significant, as expected from 

the Moran’s I test. This imply that the CO2 emissions from one country are positively 

correlated with the CO2 emissions from the neighboring countries. 

The SDM and SAC models with time and spatial fixed-effects have an AIC and BIC that 

is pretty close to the SAR model ones. That does not come as a surprise since both models 

nest the SAR model, and the extra parameters compared to the SAR model are not 

statistically significant. 

 

 

6. Conclusions 

 

An analysis for the presence of spatial autocorrelation in the environmental Kuznets curve 

model is performed using panel data from 176 countries during the period 1990-2018.  I 

started by estimating a standard EKC model without accounting for spatial spillovers, and 

we found evidence of a EKC relationship between CO2 emissions and income per capita. 

I then added spatial autocorrelation terms to the regression, and estimated again the EKC 

relationship using four different spatial models. Even with spatial interactions, there is 
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statistically significant evidence of an EKC relationship, understood as a positive effect 

of income and a negative effect of income squared.  

Overall, the result of the analysis indicates that there is statistically significant spatial 

autocorrelation in the EKC. The model selection is based on the Akaike information 

criterion (AIC) and the Bayesian information criterion (BIC). The model that performed 

best according to both criterions is the spatial autoregressive model. That would imply 

that the SAR model with time and spatial fixed-effects is the one closer to the true model 

generating the data among all considered models. 

The lack of explanatory variables is the main limitation of this essay. The main objective 

was to have a panel data set with the maximum countries and years. For that reason, 

multiple explanatory variables that other studies found significant in order to explain the 

EKC are not included in this essay. Another limitation is the heterogeneity of the countries 

considered. Two suggestions are made for future research. The first suggestion is to 

perform the regressions in smaller groups of countries to better capture the spatial 

heterogeneity (e.g., by continents).  The second suggestion is to perform emissions 

forecasts given the estimations.  
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A. List of countries 

TABLE 10: List of countries 

Andorra Gambia, The Nicaragua 

United Arab Emirates Guinea Netherlands 

Afghanistan Equatorial Guinea Norway 

Antigua and Barbuda Greece Nepal 

Albania Guatemala Nauru 

Armenia Guinea-Bissau New Zealand 

Argentina Guyana Oman 

Austria Honduras Panama 

Australia Croatia Peru 

Bosnia and Herzegovina Haiti Papua New Guinea 

Barbados Hungary Philippines 

Bangladesh Indonesia Pakistan 

Belgium Ireland Poland 

Burkina Faso Israel Portugal 

Bulgaria India Paraguay 

Bahrain Iran, Islamic Rep. Qatar 

Burundi Iceland Romania 

Benin Italy Serbia 

Brunei Darussalam Jamaica Russian Federation 

Bolivia Jordan Rwanda 

Brazil Japan Saudi Arabia 

Bahamas, The Kenya Solomon Islands 

Bhutan Kyrgyz Republic Seychelles 

Botswana Cambodia Sudan 

Belarus Kiribati Sweden 

Belize Comoros Singapore 

Canada St. Kitts and Nevis Slovenia 

Central African Republic Korea, Rep. Slovak Republic 

Congo, Rep. Kuwait Sierra Leone 

Switzerland Kazakhstan Senegal 

Cote d'Ivoire Lao PDR Suriname 

Chile Lebanon Sao Tome and Principe 

Cameroon St. Lucia El Salvador 

China Liechtenstein Syrian Arab Republic 

Colombia Sri Lanka Eswatini 

Costa Rica Liberia Chad 

Cuba Lesotho Togo 

Cabo Verde Lithuania Thailand 

Cyprus Luxembourg Tajikistan 

Czech Republic Latvia Tunisia 

Germany Libya Tonga 

Djibouti Morocco Turkey 



28 

 

Denmark Moldova Trinidad and Tobago 

Dominica Madagascar Tuvalu 

Dominican Republic North Macedonia Tanzania 

Algeria Mali Uganda 

Ecuador Myanmar United States 

Estonia Mongolia Uruguay 

Egypt, Arab Rep. Mauritania Uzbekistan 

Spain Malta St. Vincent and the Grenadines 

Ethiopia Mauritius Venezuela, RB 

Finland Maldives Vietnam 

Fiji Malawi Vanuatu 

France Mexico Samoa 

Gabon Malaysia Yemen, Rep. 

United Kingdom Mozambique South Africa 

Grenada Namibia Zambia 

Georgia Niger Zimbabwe 

Ghana Nigeria   

 


