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Abstract

As the field of Internet of Things grows more popular, its potential

in fault detection becomes apparent. Much work has been done

in the area where the main techniques used are machine learn-

ing methods. While powerful, they often require a large amount

of computational power. A computationally cheap alternative to

analyse recordings of mechanical doors for deterioration is pre-

sented and analysed in this report. By utilising repeated measure-

ment of the same door sound, spectral analysis and data reduction,

an efficient method to detect long term trends is developed. The

method show some potential in detecting deterioration without re-

quiring the same amount of computations as the machine learning

techniques. The best precision was achieved using a power spectra

estimated with Welch’s method. However, the exact precision of

the method can not be concluded based on the analysis in this re-

port but needs more testing and collection of more real world data.
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1 Introduction

During recent years, a spike in usage of IOT-technologies (Internet of Things) can be seen in

many industries. Fine monitoring and control of devices is now a requirement to be able to

provide the best possible products and service to customers. A large motive to using IOT is the

possibility to collect large amounts of data through various sensors. The data can be used to

further develop a product or to monitor an installation to ensure adequate performance. The

latter is what ASSA Abloy hopes to achieve using sound as a source of information.

A large part of ASSA Abloy’s services involves automated doors and other entrance systems.

These automated doors need to perform seamlessly where the doors open upon detecting a per-

son fast enough to not hinder the person and silent enough to not cause annoyance. Naturally,

such a system involves many moving parts such as engines, rails, belts, cogs etc. Deterioration

of one or many of these parts could result in the aforementioned performance requirements

not being met, or in the worst case the door fully breaking down. Machine deterioration does

not only pose a problem in mechanical door systems. In, for example, compressed air systems,

mechanical deterioration leading to air leakage can result in unnecessary high energy costs [1].

To provide the best possible product to the end user, the risk of failure needs to be minimised.

The risk can partly be reduced by monitoring the system and taking pre-emptive measures

such as changing parts or repairing the door before trouble arise. This is where IOT is a useful

tool. If the door can be constantly monitored by sensors, then an imminent failure could be

detected and prevented. One measure of the health of the door can be obtained by recording

the audio generated when using the door. Often when there is breakage in the moving parts of

a mechanic system, sounds or vibration occur which can be recorded with a microphone and

analysed [2, 3, 4].

Such analysis has been done successfully numerous of times, often using computationally ex-

pensive machine learning techniques [5, 6]. But, since ASSA Abloy has thousands of concurrent

door installations and the analysis would ideally be done for each installation, such expensive

analysis at the door is not feasible. Additionally, the doors communicate over a metered net-

work which removes the possibility of sending all audio to a centralised cloud where expensive

computation could occur. The challenge, therefore, is to efficiently detect recordings which

with adequate confidence contain some anomaly.

The mechanical door systems produce sound signals that are non-stationary in nature. These

signals will be analysed both in time and in frequency using various methods. The frequency

spectrum, spectrogram and reassigned spectrogram will be used for analysis in the frequency

domain. Initially, manual analysis will be done to decide if a deterioration sound is present in

the door sound but the goal is to perform such analysis automatically using the aforementioned

methods.
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1.1 Motive of using sound for this analysis

Sound is used on a daily basis by the average person to analyse the surroundings. This is

especially true when focus lies on mechanical entities such as cars, elevators, bikes etc. When

there is breakage in mechanical systems there is a risk that parts become misaligned which

results in friction forces not intended in the initial design of the system which in turn produce

sounds. ASSA technicians often use these sounds to perform an initial diagnostics on a door,

gaining some insight into the problems before needing to disassemble the door. The method in

this report will attempt a similar analysis and therefore be restricted to detecting recordings

which contain anomalous sounds detectable by human ear. This allows any findings to be veri-

fied by simply listening to the recordings and removes the need to know the actual mechanical

wear of the door components. It also focuses the analysis on sounds which can actually cause

annoyance to people nearby. Furthermore, the fact that ASSA technicians listen to the door as

a part of a diagnosis further motivates this restriction.

1.2 Previous work

Earlier work on failure prediction using time frequency analysis has been done by Feng et.

al. where various time frequency approaches to detecting engine failure was done [2]. Another

attempt at analysing vibrations in gearboxes using time frequency analysis was done in an article

by Chen et. al. where the authors used an iterative approach to increase the resolution in the

time frequency distributions [3]. A final method of fault detection for rotating machinery using

time frequency analysis is presented by Gan et. al. [4]. A method combining time frequency

representations with more expensive deep learning approaches is presented by Zhang et. al. [5].

In photovoltaic systems fault detection based on supervised machine learning through Principal

Component Analysis is presented in [7] and auto-encoders are used for sensor-fault detection

in [8].

1.3 Research questions

• Can deterioration of a door be manually detected using sound analysis tools?

• Can deterioration of a door be automatically detected using sound analysis tools?

• Can such an automatic analysis be efficient enough to run on a micro controller?

• Can simulated data be used to test an automatic analysis?
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2 Theory

2.1 Time series and signal sampling

A time series is essentially a set of points which are ordered in time. Examples of every day

time series are the value of a stock over time, some temperature measured each day or an audio

recording which is the type of time series this report will focus on. An audio recording is a

series of air pressure measurements done at a fixed interval called the sample rate which is

usually denoted fs in academic literature. The most common sample rate for recording audio

is 44 100 Hz and dates back to the compact disk (CD) format.

2.1.1 Fourier transform
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Figure 1: A sine wave with a frequency of 5 Hz and amplitude 1 (left) and the absolute value

of its Fourier transform (right).

When audio is captured, it is done so in the time domain and to analyse the frequency contents

of the audio one needs to transfer the signal to the frequency domain. This can be done

using a Fourier transform and the result is illustrated in figure 1 where a simple sine wave is

transformed from the time domain to the frequency domain. The Fourier transform essentially

decomposes a function into components and is for an input signal x(t), −∞ < t <∞ formulated

mathematically as

X(f) =

∫ ∞
−∞

x(t)e−i2πftdt, −∞ < f <∞ (1)

[9]. By taking the absolute value of the Fourier transform (|X(f)|) one gets the magnitude

function which is what is plotted in the right graph in figure 1 and |X(f)|2 is called the

spectrum. The Fourier transform presented in eq. 1 takes a continuous function x(t) and

produces a continuous transform X(f). In any real world example, the incoming signal is not

continuous but a set of discrete values as a consequence of the sampling previously described.

Therefore, a discrete version of the continuous Fourier transform (DFT) is required and can be
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formulated as

Xl =

N−1∑
n=0

xne
− i2π

N
ln (2)

where xn is a set of N complex numbers [10]. The Fourier transform is essential for the

field of spectral analysis and is used in a range of applications - many with a requirement on

performance. The (re)introduction of the Fast Fourier transform (FFT) by J.W. Cooley and

J.W. Tukey in 1965 allowed for fast computation of the Fourier transform and is considered

one of the most important algorithms ever discovered [11]. The discovery of the FFT, however,

could have already been done in the early 1800s by Gauss as a means of quickly calculating

the movement of planetary bodies [12]. Roughly speaking, the FFT exploits symmetry in the

Fourier transform to divide the sum in eq. 2 into equal parts, both containing M = N/2

elements. This can be done recursively as long as M is a power of 2. For each division of

elements, half the amount of computations are required to find the Fourier transform. As a

result of this optimisation, the FFT has a time complexity of O(N log(N)) while the original

DFT has a time complexity of O(N2) [13].

The DFT maps N discrete values in the time domain to N discrete values in the frequency

domain. To map N discrete values in the time domain to a continuous function in the frequency

domain, one can use a discrete time Fourier transform (DTFT) which is found by letting n→∞
in eq. 2 [14].

From the DTFT, one can calculate what is called a periodogram which is analogous to the

spectrum for the continuous Fourier transform. A window function h(n) is used to extract a

finite range of points in the time domain. The periodogram is then calculated by squaring the

magnitude function calculated from these points together with a scaling factor:

P (l) =
1

N

∣∣∣∣∣
N−1∑
n=0

h(n)xne
− i2π

N
ln

∣∣∣∣∣
2

(3)

assuming the window function has a length of N [14]. The periodogram has the same time

complexity as the FFT but is done on fewer points since the window length usually is shorter

than the total amount of points.

2.1.2 Welch’s method

When using real world data, there is usually some amount of noise in the data. This noise

can have a large effect on the appearance of the periodogram and result in false peaks or

peaks with low resolution. In essence, the periodogram is not well suited for data with high

variance. A well known method for reducing variance in data is averaging and it turns out that

averaging works well here too. Bartlett’s method splits a sequence of N points into K equal

parts, windows these parts, calculates the DFT and finally the periodogram for each of these

parts. The parts are then averaged to retrieve a single spectrum with a lower variance then

the original periodogram in exchange for a lower frequency resolution [15]. This method was
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modified by Peter D. Welch to include some overlap D between each part. As a consequence

of the shape of window functions, more information is retained in the centre of the window

compared to the edges. The overlap reduces the loss of information in the edges and further

enhances the resulting spectrum.

The periodogram in eq. 3 can be modified to only include a segment of length L of the total

points N . Let this periodogram be called Pm. The segment can overlap with another segment of

the same length L with D overlapping points. Create K segments such that (K−1)∗(L−D) =

N , i.e. the segments include all points N . Now calculate the K modified periodogram as

Pm(l) =
1

L

∣∣∣∣∣
L−1∑
n=0

h(n)xne
− i2π

L
ln

∣∣∣∣∣
2

(4)

and average them to retrieve the spectral estimate

Pwelch(l) =
1

K

K∑
k=1

P km(l) (5)

[16]. Since the periodogram consists of calculating multiple periodograms and averaging them,

the time complexity is the same as for the periodogram with a factor K equal to the number

of periodograms:

O(Pwelch) = O(KL log(L)) (6)

2.1.3 Spectrogram and marginals

The Fourier transform, in its unmodified form, takes exactly one input signal x and generates

exactly one frequency spectrum. If one were interested in how the frequency changes over

time in an input signal, the Fourier transform in itself would not help. A method to analyse

frequency as a function of time is to use a spectrogram which involves dividing the input signal

into equal parts and computing the Fourier transform for each of these parts. The parts are

then combined to form a function that maps time and frequency to an amplitude. This can be

done using the short-time Fourier transform (STFT):

X(t, f) =

∫ ∞
−∞

x(τ)h∗(τ − t)e−i2πfτdτ, −∞ < t, f <∞ (7)

where h is a window function centred at time t. The window used for the spectrograms in this

report is a Hann window. The spectrogram is then found in the same manner as the spectrum

in the Fourier transform:

Sx(t, f) = |X(t, f)|2, −∞ < t, f <∞ (8)

[9]. Picking a proper window size is vital to be able to resolve specific components in the

analysed signal. Due to the uncertainty principle, one can not have both perfect time resolution
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and frequency resolution. There is therefore always a trade-off between these resolutions. A

rule of thumb is, however, to pick a window size similar to the length of the components one is

interested in [9].

As with the Fourier transform, the continuous spectrogram has a discrete version more suitable

for machine computation. The spectrogram can be discrete in either time, frequency or both

time and frequency. The latter, being the only practically useful alternative, is defined as

Sx(n, l) =

∣∣∣∣∣
N−1∑
n1=0

xn1h
∗(n1 − n+M/2)e−i2πn1

l
L

∣∣∣∣∣
2

(9)

where M is the length of the window h. This definition of the discrete spectrogram requires

performing an FFT for each value n. This is, however, not required as the calculations can be

done for every Nstep value where Nstep can be as large as M/8 without significant visual change

[9]. The resulting time complexity of the spectrogram is O( N
Nstep

L log(L)).

The spectrogram produces an representation of how the frequency content changes over time

and can, given a specific frequency and time point, return the occurrence of that specific fre-

quency at that specific time point. For some applications where there are changes in many

frequencies concurrently at specific time points, an interest might be how the total frequency

contents changes with respect to time and not how specific frequencies change. Such a repre-

sentation can be found by calculating the time marginals by simply integrating the spectrogram

over all frequencies:

Mx(t) =

∫ ∞
−∞

Sx(t, f)df (10)

[9] which for the discrete case involves summing the spectrogram over frequencies:

Mx(n) =
∞∑

f=−∞
Sx(n, f). (11)

This will result in a measure on how the total frequency content of a signal changes over time

and is sensitive to transient changes in all frequencies. The time complexity is similar to the

spectrogram but also involves summing all frequencies which results in a time complexity of

O( N2

Nstep
L log(L)).

2.1.4 Reassigned spectrogram

Due to the uncertainty principle, one can not achieve perfect localisation in either frequency

or time. A method to increase the localisation of the spectrogram in either frequency, time or

both is the reassigned spectrogram. Given the spectrogram Sx(t, f) from equations 7 and 8

with ω = 2πf , the reassigned spectrogram is defined as

RSx(t, ω) =

∫ ∞
−∞

∫ ∞
−∞

Sx(t1, ω1)δ(t− t̂x(t1, ω1), ω − ω̂x(t1, ω1))dt1dω1 (12)
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which results in each value (t, ω) being relocated to corresponding (t̂x, ω̂x). δ(t, ω) is the two

dimensional Dirac impulse which retrieves the instantaneous time and frequency at a location

and is defined as ∫ ∞
−∞

∫ ∞
−∞

f(t, ω)δ(t− to, ω − ω0)dtdω = f(t0, ω0). (13)

The reassigned time and frequency components are defined by

t̂x(t, ω) = t+ <
(
Xth(t, ω)

Xh(t, ω)

)
, ω̂x(t, ω) = ω + =

(
Xdh/dt(t, ω)

Xh(t, ω)

)
(14)

with Xth(t, ω) and Xdh/dt(t, ω) being STFTs (eq. 7) of the signal x(t) using a time multiplied

window t ∗ h(t) and the time derivative window dh(t)/dt respectively [9].

2.1.5 Autoregressive models

An autoregressive (AR) model is a model which output depend linearly on some number of

previous values. The order p of the model determines how many previous values the output

depend on and an AR(p) model is defined as

Xt = α+ β1Xt−1 + . . .+ βpXt−p + εt. (15)

where α is a constant, β1, . . . , βp are parameters and εt white noise. AR models are commonly

used to model various time-varying processes but can also be used to generate different types

of noise depending on the order of the model. An AR(0) model is a white noise process which

spans all frequencies while an AR(2) model can be constructed to output noise with a specific

peak frequency. The frequency peak location is determined by the parameters β1, β2 and can

therefore be moved to produce various types of noise [17].

2.2 Data distributions
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Figure 2: A Q-Q plot of data sampled from a normal distribution against a normal distribution

(left) and an exponential distribution (right).
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Data retrieved from a process such as door deterioration will conform to some data distribution.

Deciding which distribution the data follows is important to be able to make assumptions on

the data. It is also important when trying to describe the data with various models and can

be used to pick or discard specific models. Finding the distribution of some specific set of data

is not always an easy task but likely involves thorough analysis of the data and visualisation

of the data with various methods. One such visualisation tool to give an idea on how a set of

data follows a specific distribution is the quantile-quantile (Q-Q) plot. A Q-Q plot produces a

visualisation of the data with respect to a specific distribution which provide easy to interpret

visual feedback on how well the data conforms to the distribution. Producing a Q-Q plot is done

by plotting the quantiles of the data against the quantiles of the theoretical distribution in a

scatter plot. If the distribution of the data is the same as the theoretical distribution, the points

in the scatter plot should form a straight line. This behaviour can be seen in figure 2 where

data sampled from a normal distribution is plotted against two different distributions. In the

left plot the theoretical distribution is a normal distribution which results in a straight line as

expected. In the right plot, however, the theoretical distribution (an exponential distribution)

is not the same as the actual one which results in a clearly skewed line.

2.3 Computational efficiency

Since this report assumes calculations are done in an environment where computational power

is limited, it is important to have tools to analyse the computational efficiency of a specific

set of calculations. A micro controller, for example, does not offer the same computing power

as a desktop PC or a dedicated server. An important aspect of analysis on the edge node

is therefore the computational efficiency of the implementation. Each step in the analysis

process will require some amount of computational effort and care will therefore need to be

taken to optimise each step. Generally the largest gain for the least effort can be made by

firstly optimising the most computationally heavy parts of the process. However, to be able to

compare the computational need of various steps, a measure is needed.

Time complexity is a measurement of the general computational effort needed for a specific

algorithm or a function. A so called big O (O) notation is used to compare algorithms and

is based on the limit behaviour of the algorithms, i.e. how the algorithm performs when the

amount of elements processed grows arbitrarily large. The measure, by definition, also ensures

that the worst possible performance of an algorithm is proportional to the O time complexity

[18]. One example is sorting a list which, for some sorting algorithms, has a time complexity

of O(n2) where n is the amount of elements in the list. The worst case performance of the

algorithm is therefore that n2 comparisons are needed to sort the list but in reality, fewer

comparisons are likely required. For example, if the list is already sorted, only n comparisons

are needed (to traverse the list and verify that each element is in its correct position).
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2.3.1 Vectorisation

It is obvious that the lower the amount of calculations, the faster the algorithm. Reducing the

amount of needed calculations should be the first priority when optimising machine instructions

but there are other ways to optimise the running time of a specific algorithm or program. One

common way to speed up execution of code is to vectorise it. Vectorisation essentially means

that instead of performing an operation on each element in an array separately, the operation

is done on multiple elements simultaneously. These elements, however, need to be adjacent in

memory for vectorisation to be possible.

Vectorisation in python can be achieved using the NumPy package. NumPy introduces a data

structure which is precisely mapped in memory to allow for vectorisation. NumPy also contains

a large amount of methods which serve as an interface to C libraries. Since C is a low level

language and python is not, these methods execute faster than the same method in python and

are essential for achieving adequate efficiency in python [19].

9



3 Data collection

Two separate data collections were performed during this project, both on the ASSA Abloy

premises in Landskrona. The first collection was done in the test lab in a controlled test

environment and the resulting data set will be referred to as the Lab data set. The other was

done in an office space on a live installation and this resulting data set will be referred to as

the Live data set.

3.1 Capture of audio

All audio captured is done so with a sample rate of 44 100 Hz and a resolution of 18 bits.

3.2 Recording door sounds

Initial real world data was collected by recording door opening and closing cycles with mobile

phones of models Samsung Galaxy s9 and Samsung Galaxy s21. The phones were held at

distances between a few centimetres to an arms length from the door. Since no stand was used

to ensure consistent recording distances, these recordings are inconsistent in volume levels and

requires some normalisation before usage.

Figure 3: Raspberry PI (A) connected to a breadboard with a recording circuit (B). The blue

chip in the lower part of the breadboard (C) is a MEMS-microphone.

Later on, recording was done using a micro-controller with a connected microphone. The

hardware set-up is shown in figure 3 and a more detailed description can be found in the next

chapter. Initially, start of recording was triggered by a logical signal which also triggered an

opening cycle in the door. Data acquired using this method is naturally normalised in both
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maximum amplitude and time due to the microphone being at a consistent distance away from

the door and the recordings started by a logical signal coupled with the door.

Figure 4: Location of the Raspberry PI (A) together with a pulse signal generator (B) which

triggers start of recording and the door opening cycle. The actual slide door can be seen in

the lower part of the image and the microphone is pointed towards it. This set-up was used to

collect the lab data set.

During the recordings in this environment the microphone was placed close to the machinery

at the top of the door, pointed towards the door. The approximate vertical distance from the

door was 0.1 meters. See figure 4 for an image of the set-up. This logical signal was sent to the

door and the MCU in approximately 20s intervals continuously for a couple of days producing

several thousands of recordings.

Figure 5: Image of the door used in the live data set collection where the Raspberry PI is

located on top of the roof tile with microphone pointed towards the centre of the door (A) and

the location of the lock sound source (B).

This set-up was only available in a controlled test environment and not at a typical door

installation due to requiring an external logical signal for triggering a door cycle. To be able
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to gather data in another environment, a simple implementation was developed to trigger on

a threshold sound level. Some of the doors have locks which produce a relatively loud and

short audio spike when unlocked. The sound stream from the microphone was continuously

monitored for such spikes and a recording was started upon detection. Naturally, this set-up

is more prone to erroneous recordings due to ambient sounds triggering recordings or slight

inconsistencies in lock sound levels leading to missed recordings. An image of this set-up can

be seen in figure 5.

Since this collection took place at a door in use in the ASSA Abloy office space (not a test lab),

data was only collected when someone passed the door which resulted in much fewer recordings

per day compared to the lab environment. Therefore this collection took place during several

weeks where data from the micro-controller (MCU) was retrieved multiple times. Retrieving

data involved moving the MCU and then placing it back for further collection. Since the MCU

was not mounted, this slightly changed the microphone position and orientation between each

session which could further increase inconsistencies in the data.

3.2.1 Hardware components and protocols

A Micro-controller (MCU) is essentially a small computer, often with a fraction of the

computing power of a normal desktop computer. Due to a small size and low cost, MCUs are

used in a range of industries for various tasks ranging from control of machinery to gathering

of data. The MCU used in this project is a Raspberry Pi B+ and is visible in figure 3.

To communicate between MCUs and other chips, a common interface to use is General-

purpose input/output (GPIO). The Raspberry Pi has 48 GPIO pins which are located on

the right end of the chip in figure 3.

Several of these GPIO pins are occupied by cables connected to a breadboard (B in figure

3) which is a component widely used in development environments to test various hardware

circuits.

Connected to this breadboard is a Micro-electro-mechanical systems (MEMS) micro-

phone which is a hardware component for recording audio. MEMS are essentially a group

of components having sizes in the micrometer range. Being small in size results in MEMS

components common usage in mobile phones. MEMS microphones is also easily manufactured

and provide an adequate recording quality [20].

Audio was recorded as per the I2s standard which is a protocol for serial communication be-

tween audio devices in integrated circuits. The microphone used in this project had a precision

of 18 bits [21].
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3.3 Resulting data sets

The lab data set consists of almost 12 000 recorded door cycles over 3 days. Due to the door

being situated in a test environment together with several other doors, the amount of external

noise in this data set is high. There are sounds from other doors opening and closing but also

voices and other external sounds.

The live data set contains much fewer recordings since recordings are only captured when

someone passes the door. The data collection ran for multiple weeks and resulted in around

2400 recordings. The amount of external noise in this environment is low compared to the test

lab. Examples of common external sounds are voices or footsteps.

To be able to verify the results found in the analysis, recordings late and early in the data

collection was manually compared by listening to the recordings. Some care is also taken to

pick recordings with minimal external noise. The recordings picked for comparison will also be

used in part of the analysis and be referred to as the early recording and late recording.

In the lab data set an audible difference is present between the early and late recording as a

rattling sound in the first half of the recordings had appeared. In the live data set, no audible

difference is present.
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4 Method

This chapter mainly describes the proposed method for detecting deterioration of door but also

how collected real world data and simulated data was used to test the method.

4.1 Changing representations of the input signal

The proposed method will not only be used on the time domain signal but also on the frequency

contents of the signal and the time marginals of the signal spectrogram. The method will only

be described for the time domain but is applied in the exact same way in all representations.

4.2 Preprocessing

4.2.1 Normalisation

Prior to using the data for analysis, some of the data required normalisation in sound amplitude

and time offset. Each recording had amplitudes scaled to the interval [−1, 1] by dividing each

recording by its maximum amplitude. The recordings were also shifted in time to ensure that

door sequences started at the same point in time. This was done either manually or by using

common patterns in the recording such as amplitude peaks present in all recordings.

4.2.2 Extraction of deterioration sounds

Figure 6: Recording of a door opening sequence containing a deterioration (squeaking) sound

(left). A high pass filter is applied and the location of the deterioration sound decided (middle).

Lastly, the recording is cropped to only include the deterioration sound (right).

To simulate deterioration in the door, recordings from already deteriorated doors was used. The

deterioration sounds were located and extracted by cropping and filtering the original recording

as is shown in figure 6.
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4.3 Proposed detection of deteriorated doors

Firstly, the data will be manually analysed using five different representations. The representa-

tions are energy - the energy of the time signal, Welch - the frequency spectrum estimated with

Welch method from eq. 5 using a window size of 20 ms, spectrogram - the discrete spectrogram

defined in eq. 9 with a window size of 10 ms, marginals - the time marginals calculated from

a spectrogram with a window size of 20 ms as per eq. 11 and the reassigned spectrogram -

the reassigned spectrogram from eq. 12 using a window size of approximately 30 ms. After

manually analysing the data with these methods, the energy, Welch and marginals will be used

for automatic analysis. Since the automatic analysis is independent on representation, only the

method applied to the time domain will be described in the upcoming chapters.

4.3.1 Grouping and aggregation of recordings

Figure 7: Illustration of the grouping and aggregation of a recording in time. The left graph

visualises the time audio signal which a door produces during its opening sequence. The middle

graph displays the energy of this signal which is split into ten parts where the mean energy

of each part is calculated to produce the histogram in the right graph. The middle figure is

overlayed with the right figure to illustrate how the recording is split and aggregated.

The basis of all proposed methods is the data reduction achieved by grouping and aggregating

data points into fewer data points. Figure 7 illustrates the process on a typical recording of a

door opening sequence. The data points are split into n equal parts and some aggregation is

done on each part. Some examples of aggregation are taking the mean, median, maximum or

min of the data points in each part. Typically, n is much smaller than the actual amount of data

points which results in a relevant reduction in the amount of data points. This data reduction

results in fewer required calculations and increases the efficiency of the method. Splitting the

data into parts will also capture localised differences in the data while reducing noise as can be

seen in figure 7 where the rough differences in amplitude in the original signal still is visible in

the histogram.
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4.3.2 Comparing processed recordings

Figure 8: Representation of how aggregated groups in individual recordings are compared.

Each group consists of multiple bars in the left plot and one corresponding line in the right

plot. One group is highlighted in green in both plots to more clearly visualise the connection

between the representations.

After grouping and aggregating, each recording is represented only by its n groups. The right-

most plot in figure 7 shows the final representation of one recording. Each group has a value

which, given consistent grouping and aggregation, is comparable to the same group in another

recording. By grouping and aggregating a series of recordings, one can construct a series of

values for each group. Figure 8 illustrates how multiple grouped and aggregated recordings can

be used to construct multiple time series. These time series now constitute a measure on how

various parts of the original data changes over multiple recordings. Using the grouping and

aggregation visualised in figure 7, if there is a change in amplitude between recordings, this

change will be visible in the time series.
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4.3.3 Detecting changes between recordings

Figure 9: Several time series of grouped recordings where one specific group is highlighted in

green. This group initially has a mean µ1 over some recordings but after a while the mean for

this specific group is shifted upwards to a new mean of µ2. One can also see smaller, seemingly

random, variation for both the highlighted group and the yellow groups which does not indicate

a shift in the mean. This is not real data but an exaggerated example to clearly show a shift

in the mean.

The time series in figure 8 contain some natural variation due to external sounds such as voices

or other ambient sounds. The mean of each group, however, is assumed to be constant over

many recordings when the door functions normally without anomalous sounds. If the door

starts to deteriorate and anomalous sounds starts to occur in each recording, the mean should

be shifted as a result. Essentially, each group should follow some distribution with mean µ1

and variance σ2 during normal operation. If the door starts to deteriorate, the mean of any

number of groups should start shifting to some new mean µ2. An example of this can be seen

in figure 9 where one group has its mean shifted upwards. Consistent changes in group mean

such as in the figure should be detected while ambient variation (which is also visible in the

figure) should be ignored. Deciding when the time series reach a new mean µ2 is arbitrary and

therefore the value x of each point will be used as a more specific measure of the deviation from

the original mean.

A baseline model of each group can be created by calculating the mean and variance of each

group over a number of recordings. A measure of how much a new point x deviates from the

baseline model mean µ can then be determined using Z-scores:

z =
x− µ
σ

(16)
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where σ is the standard deviation of the baseline model. If z is close to 0 the new point likely

belongs to the baseline model while any deviation from 0 indicates a change in the sound of the

door. For |z| > k the point deviates k standard deviations σ from the original mean. A large

z can arise from a temporary external sound and does not necessarily indicate a deteriorated

door. The challenge is to detect a consistent change in z over many recordings which minimises

the possibility of an external sound causing the increase.

4.3.4 Detecting a consistent change while eliminating temporary variance

To be able to detect a consistent change from the mean, some cumulative measure has to be

used. Such a measure can be constructed in a number of ways, but in this report a method

called cumulative sum control chart (CUSUM) will be used. A cumulative measure zic is initially

set to z0c = 0 and updated for each recording xi accordingly:

zi+1
c = max(0, zic +

xi − µ
σ
− α) (17)

where α is some user defined constant which regulates how sensitive the algorithm is [22]. If xi

is close to the mean µ, the middle term is close to 0 which transforms the expression into

zi+1
c = max(0, zic − α) (18)

where zic will decrease to 0. If, however, xi is significantly greater than µ, the middle term will

be positive and contribute to zi+1
c . Assume the middle term has the positive value β, then the

expression can be written as

zi+1
c = max(0, zic + β − α) (19)

and whether zic increases or decreases is determined by the following inequalitieszi+1
c − zic > 0 ⇐⇒ β > α

zi+1
c − zic ≤ 0 ⇐⇒ β ≤ α.

(20)
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Figure 10: Visualisation of how zc develops over 500 recordings for one group. The top plot

shows the group values of one specific group together with a mean µ (red dashed line) and one

standard deviation σ (magenta dashed line) calculated from the first 10 recordings. A 10 point

moving average is also displayed in yellow. The bottom plot shows how zc changes over the

recordings with varying α.

Essentially, if the value xi starts to deviate consistently from the mean µ, then zic will start

to increase, signifying a consistent shift from the original mean. By picking a large α, the

implementation allows a large deviation from the original mean before zic starts to increase

which could be useful in areas where large amounts of noise is to be expected. Picking a small

α, however, will result in the implementation being highly sensitive to changes in input levels.

Deciding whether a specific door is in a deteriorated state based on zic can be done in a number

of ways. A simple threshold could be used to determine deterioration once zic grows larger

than this threshold. A bit more advanced approach where one requires zic to be larger than a

threshold over several recordings could also be used. Implementation of a decision system is

unfortunately out of scope for this report and will not be studied further.

4.4 Testing the performance of the method

The proposed procedure was tested on both simulated data and on real world data collected

from two different slide doors.

4.4.1 Using real data as input

Firstly, recordings captured early and late in the data sets were manually compared as de-

scribed in chapter 3.3. After that, manual spectral analysis was done in the representations
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presented in the beginning of chapter 4.3 to determine the visibility of deterioration in each of

the representations. Lastly, in the automatic analysis, the previous manual analysis was used

to determine whether the automatic analysis was successful by comparing the results.

4.4.2 Simulation of door deterioration to generate input data

Since deterioration of a door occurs slowly and with small incremental tear, collecting real world

data where the deterioration is visible is cumbersome. Therefore, to make the assessment of

the method more robust, a small amount of data was used together with some assumptions on

the deterioration process to simulate multiple real world processes.

A few recordings of the same door opening cycle was used as a baseline for the simulation.

A “ground truth” recording was chosen as a foundation to generate simulated samples. This

recording was manually analysed to ensure no anomalous sounds were present. Using this

recording, various types of disturbances could then be added. These disturbances can be split

into true and false disturbances were true disturbances are sounds arising from deterioration in

the door and false disturbances are sounds from the environment.

True disturbance was simulated by incrementally adding an actual deterioration sound ex-

tracted from another door. A deterioration factor was used to decide the amplitude gain of

the added deterioration and was typically increased incrementally up to a certain level over

a simulation to mimic a real deterioration process. The deterioration sound level was capped

to reach a maximum value of 20 % of the largest amplitude in the base recording. This level

resulted in a faint, but audible, sound of the deterioration when added to the recording. The

deterioration sound used is a squeaking sound which is visualised in the rightmost plot in figure

6. Since the deterioration sound is much shorter than the actual door recordings, the location

of the sound can be varied and the expected disturbed groups decided. This is done by simply

placing a high amplitude disturbance at a specific location and performing the grouping and

aggregation. The differing groups are determined to be affected by the deterioration sound.

This is done to decide if the deterioration score actually reflects a disturbance (true positive)

or if the score is high as a result of added artificial noise (false positive). The three groups with

largest response to the raw true disturbance in each representation was used. If the method

decided deterioration occurred in any of those groups it is deemed successful in identifying the

deterioration. Since no specific score breakpoint is defined, a non-zero score during the last 20

% recordings is deemed a detection of deterioration. This measure ensures that the z-score is

larger than α in eq. 17 over many iterations.
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Figure 11: Disturbance in the form of AR(2) noise added to a recording in various amounts.

The percentage refers to the maximum amplitude of the noise in the range [0, 1].

Figure 12: Disturbance in the form of a child playing added to a recording in various amounts.

The percentage refers to the maximum amplitude of the noise in the range [0, 1]. In the

rightmost plot, the disturbance sound is made transparent to reveal the recording.

Various false disturbances was used during the simulation to assess the robustness of the pro-

posed algorithm. AR(2) noise with a peak frequency of 350 Hz was added together with various

recordings from the UrbanSound8K data set of noises often found in urban environments such

as cars, car horns, voices, etc. [23]. Three levels of AR(2) and Urban noise power was tested

to asses how loud the noise can be before the method fails. The three levels tested for the

AR(2) noise were 10%, 50% and 100% of the standard deviation σ of the base recordings and

is visualised in figure 11. The three levels tested for the urban noise were 10%, 50% and 100%

of the maximum possible noise amplitude in the range [0,1] i.e. 20% will result in a maximum

amplitude of 0.2. One such recording was added for each simulated door recording and an

example of urban noise levels can be seen in figure 12.
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Since the performance could depend on the location of the added true disturbance, 61 trials

with varying disturbance location were run and the results summarised.

4.4.3 Measuring method success or failure

Measuring whether the method did not detect deterioration is done based on the proposed

scoring system. Since a score that deviates from zero during many iterations indicates some

permanent change in the sound of door, the minimum value of the score during the last record-

ings will be used as a measure. Let zmind be the minimum score for the last 20% of recordings for

a specific group. If if zmind is different from zero then the method has detected a deterioration

and the deteriorated group is decided as the group with highest zmind . If zmind is zero then no

deterioration is present in the specific group and if zmind is zero for all groups the door is deemed

healthy. As a measure of the amount of deterioration for a specific group, the mean score is

used for the last 20% recordings.
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5 Analysis and results

In the automatic analysis using the method described, 10 groups were used for each represen-

tation. The aggregation method used is the mean in each group.

5.1 Real world data used

The two real world data sets collected were used to test the method. One recording from early

in the data collection was picked and compared to one recorded in the end of the data collection

by manually listening to the recordings. The recordings picked for comparison will also be used

in part of the analysis and be referred to as the early recording and late recording.

In the lab data set an audible difference was present between the early and late recording as a

rattling sound in the first half of the recordings had appeared. In the live data set, no audible

difference is present.

5.1.1 Distribution of the real world data

The distribution of the individual groups in the real world data will be analysed by partly

using a Q-Q plot where the data in each group is plotted against a lognormal distribution but

also by plotting a histogram with the data. Before producing the plots, an attempt to remove

outliers was made by removing the 2% largest and 2% smallest values in each group. The energy

representation is used and the group that fits the best and the worst to the distributions are

visualised for both data sets.

Figure 13: Q-Q plots and distribution plots together with a fitted distribution for the energy

representation using data from the lab data set. The left column contains an example of a

group which fit the distribution well and the right column contains an example of one that fits

less well.
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Figure 13 visualises the fit of two different groups to the lognormal distribution. The groups

are based on data from the lab data set. Group 1 seems to fit well to the distribution while

group 3 seems to fit poorly. This might indicate that group 3 should belong to some other

distribution.

Figure 14: Q-Q plots and distribution plots together with a fitted distribution for the energy

representation using data from the live data set. The left column contains an example of a

group which fit the distribution well and the right column contains an example of one that fits

less well.

Figure 14 visualises how two groups fit to the lognormal distribution. The groups are based on

data from the live data set. Group 0 fits well with the distribution while group 8 fits less well.

The worst fitting group for this data set, however, has a much better fit than the worst group

from the lab data set in the right column in figure 13. The poor fit for group 3 in the lab data

set likely appears as a consequence of deterioration which is not present in the live data set.

5.2 Visibility of deterioration in various representations

The early and late recordings picked earlier will be used to analyse the visibility of deterioration

in the various representations.

5.2.1 Energy representation

To more clearly see differences in the time domain, the energy of the recordings will be calculated

and displayed.
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Figure 15: The energy representation of the two picked recordings from each real world data

set. The top row contain recordings from the lab data set and the bottom row from the live

data set. The y-axis is equal for recordings from the same data set.

Figure 15 shows the energy representation of the early and late recordings from each data set.

For the lab data set, there is a clear increase in energy in the late recording when compared to

the early recording. This increase corresponds with an audible rattling in the later recording not

present in the early recording and should therefore be regarded as a result of the deterioration

sound. The late recording in the live data set also has a slight increase in energy which could

indicate a shift in the door sound. The difference is, however, too small to regard it as evidence

for deterioration.

5.2.2 Welch representation

To analyse how the frequency contents of the door sound develop over time, a frequency spec-

trum estimated using the Welch method in eq. 5 is analysed. If audible deterioration occurs

between the early and late recordings it should also be visible in this representation.
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Figure 16: The Welch representation of the two picked recordings from both data sets. The top

plot contains the recordings from the lab data set while the bottom plot contains the recordings

from the live data set. The y-axis is in logarithmic scale.

Figure 16 shows the Welch representation of the late and early recordings from each data set.

The two spectra differ more for the lab data set than for the live data set. For the lab data set

(upper plot) there seems to be overall more frequency contents in the late recording compared

to the early. This is especially visible for the higher frequencies. For the live data set (lower

plot) the only clearly visible differences are the peaks in the higher frequencies where the late

recording has a new peak just below 15 000 Hz but also no peak around 17 500 Hz which the

early recording has.

It is hard to draw any conclusions regarding deterioration from these plots but it is clear the

overall frequency contents have increased in the lab data set, indicating more sounds present

in the recording. The differences between the recordings could also be under-exaggerated due

to the logarithmic axis. Using a linear axis would require some high pass filtering due to the

amount of disturbance in the low frequencies which is why a logarithmic axis is chosen.

5.2.3 Spectrogram representation

Since the deterioration sounds can consist of short transient sounds which span many fre-

quencies it can be interesting to create a spectrogram of the recording as per eq. 9. The

spectrogram should visualise these short sounds clearly as vertical lines if they span a large

range of frequencies.
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Figure 17: The spectrogram representation of the two picked recordings from the data sets using

a window size of 10 ms. The top row contains recordings from the lab data set and the lower

row from the live data set. A lighter colour represent a larger amplitude for the specific time

and frequency. The colour ranges are equal for recordings from the same data sets.

Figure 17 shows the spectrogram representation of two recordings from each data set. The

spectrograms for the two data sets both contain vertical lines which indicate short sounds

spanning all frequencies. There is, however, a visible difference between the spectrograms for

the early and late recordings for the lab data set which is not visible when comparing the

recordings in the live data set. The difference between the recordings in the lab data set consist

of multiple clearly visible vertical lines in the first half of the recording. These lines corresponds

well with the audible rattling in the recording and has therefore likely appeared as a consequence

of the deterioration.

5.2.4 Marginal representation

The vertical lines in the spectrogram are highly localised in time and spread out in frequencies.

It could therefore be interesting to sum the spectrogram over frequencies which will produce

peaks where the vertical lines are. This is done by calculating the time marginals as defined in

eq. 11.
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Figure 18: The marginals representation of the two picked recordings from the data sets using

a window size of 20 ms. The top row contains recordings from the lab data set and the lower

row from the live data set. The y-axis is equal for recordings from the same data set.

Figure 18 shows the marginals representation of two recordings from each data set. For the lab

data set the marginals contain significant differences in the same time region as in figure 17

where the vertical lines in the spectrogram are summed to peaks in the time marginals. Using

the same reasoning as for the spectrogram representation, these peaks indicate some new sound

in the recording. As for the live data set the marginals differ more clearly than the spectrogram

representation which might indicate some change in the door sound. It is possible that a slight

rattling sound similar to the one in the lab data set has appeared but is too faint to detect

by listening to the recording. Unfortunately, this is hard to determine since one would need

more data from the door which is not available at the time of writing. This should, however,

definitely be further investigated since it shows potential in detecting deterioration before it is

audible.

5.2.5 Reassigned spectrogram representation

Due to the uncertainty principle, highly time localised sounds can be smeared over multiple time

points in order to achieve adequate frequency resolution. By time reassigning the spectrogram

of the recordings using eq. 12 one might achieve even more localised vertical lines where

deterioration sounds are present.
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Figure 19: The reassigned spectrogram representation of the two picked recordings from the

Lab dataset using a window size of approximately 30 ms. A lighter colour represent a larger

amplitude for the specific time and frequency.

Figure 19 shows the reassigned spectrogram representation of two recordings from the lab data

set. The reassigned spectrogram is noisy but the frequency lines are sharper and more localised

compared to the spectrogram in figure 17. The reassigned spectrogram for the late recording

contain highly visible vertical lines which are not apparent in the reassigned spectrogram for

the early recording. The difference in the reassigned spectrograms is even more apparent than

in the normal spectrograms, further indicating some new sound in the late recording.

No reassigned spectrograms is displayed for the live data set since they are practically identical

for the early and late recordings.

5.3 Notes on automatic detection of deterioration

Automatic detection of deterioration was done using the energy, Welch and marginal repre-

sentations. To allow for fair comparison between the performance between the representations,

α was set to 1 and the highest zmind was used as a comparison measure. The same amount of

training points (200) was also used in each case to find σ and µ for the base model in eq. 17.

Only moving averages of group values will be visualised for each representation and specific

scores of interest highlighted later. Since one data set contains an audible difference while

the other does not, a performance measure differs between these data sets. Where an audible

difference is present (lab data set), a high deterioration score indicates good performance while
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an overall low deterioration score is preferable when no deterioration can be heard (live data

set).

5.4 Real world data with audible deterioration (lab data set)

5.4.1 Grouping the energy representation
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Figure 20: A 100 point moving average of group values over some 5000 recordings from the lab

data set. The grouping is done on the energy representation with mean as aggregation. Each

time series has its values adjusted so that the first value is zero to see difference between groups

more easily.

Figure 20 shows the moving averages of groups based on the energy representation. The

recordings come from the lab data set but every other recording was removed due to limitations

in computing memory. The moving averages are calculated with a window of 100 points and

each time series is adjusted to start at zero to increase visibility of differences.

Some of the time series revolve around zero over all recordings (groups 6-9) while the other

groups see a varying increase in group value with groups 0, 3 and 4 having the largest increases.

The fact that the moving averages for some of the groups increase during the process strongly

indicates an increase in the sound amplitude of the door. External noise should not cause a

steady increase such as this since the amount of noise should increase and decrease throughout

the process.
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5.4.2 Grouping the Welch representation
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Figure 21: A 100 point moving average of group values over some 5000 recordings. The grouping

is done on the Welch representation with mean as aggregation. Each time series has its values

adjusted so that the first value is zero to see difference between groups more easily.

Figure 21 is processed an visualised similar to figure 20 but with the logarithm of the Welch

representation. All groups seem to deviate from zero in the end of the process but group 8 has

the largest deviation. Group 0 deviates the least but still has a clearly visible deviation. This

increase in moving average for all groups reflects the phenomena seen in the spectrogram in

figure 17 where the vertical lines present in the late recording span all frequencies and should

therefore contribute to an increase in all moving averages. Since group 8 includes the later part

of the spectrum in figure 17 it is also expected to have the largest increase.
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5.4.3 Grouping the marginal representation
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Figure 22: A 100 point moving average of group values over some 5000 recordings. The grouping

is done on the marginal representation with mean as aggregation. Each time series has its values

adjusted so that the first value is zero to see difference between groups more easily.

Figure 22 is processed an visualised similar to figures 20 and 21 but with the marginal represen-

tation. The moving averages are very similar to the ones for the energy representation in figure

20 which is expected since there is some localisation in time contrary to the Welch represen-

tation where only the frequency contents are analysed. The groups which remain close to zero

seem to vary less for the marginal representation when compared to the energy representation

which could indicate that the marginal representation is better at suppressing external noise.

5.4.4 Summary

Table 1: Summary of the performance on the lab data set where the group with the highest

zmind is presented together with the mean score for the group and the total mean deterioration

score of all groups. α = 1 in eq. 17 has been used for each domain.

Representation

Group with

highest zmind zmind for this group

Total mean

score

Energy 3 10 311 976

Welch 8 32 737 3 753

Marginal 3 17 432 2 092
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Table 1 summarise the score results from the lab data set where an audible difference between

early and late recordings exist. The largest zmind and mean total score is both produced in the

Welch representation with the energy and marginal representations having significantly lower

scores.

5.5 Real world data without audible deterioration (Live data set)

5.5.1 Grouping the energy representation
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Figure 23: A 100 point moving average of group values over some 2500 recordings from the

live data set. The grouping is done on the energy representation with mean as aggregation.

Each time series has its values adjusted so that the first value is zero to see difference between

groups more easily.

Figure 23 shows the moving averages of groups based on the energy representation from record-

ings in the live data set. The moving averages are calculated with a window of 100 points and

each time series is adjusted to start at zero to increase visibility of differences. All of the time

series hover around zero with group 4 deviating temporarily in the later recordings. This in-

crease in moving average is likely not connected to the door since it is only temporary. It could

occur due to external noise or as a result of relocation of the micro controller and microphone.

External noise would, however, likely affect more than one group since it should happen at

random times during the recording. It could also appear as a result of some door mechanism

which produces a sound at a similar time point each recording but since the group moving

average decreases again after a few hundred recordings it should not represent some permanent
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deterioration.

5.5.2 Grouping the Welch representation
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Figure 24: A 100 point moving average of group values over some 2500 recordings. The grouping

is done on the Welch representation with mean as aggregation. Each time series has its values

adjusted so that the first value is zero to see difference between groups more easily.

Figure 24 is processed and visualised similar to figure 23 but with the logarithm of the Welch

representation. No group seems to deviate from zero significantly apart from group 7 which

seems to deviate towards lower group values. Group 8 also seems to occasionally deviate

temporarily from zero. Variation for both these groups is only temporary and very sporadic. If

the variation was due to deterioration one would expect the variation to occur more slowly and

then remain above some new level permanently. As for the energy representation, the variation

seen in these groups is likely not due to door deterioration. Since the decrease for group 7 occurs

throughout all remaining recordings one can not know whether the moving average returned

to zero after a while. The variation seems to start after approximately the same number of

recordings as for the energy representation in figure 23 which could indicate a similar source.
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5.5.3 Grouping the marginal representation
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Figure 25: A 100 point moving average of group values over some 2500 recordings. The grouping

is done on the marginal representation with mean as aggregation. Each time series has its values

adjusted so that the first value is zero to see difference between groups more easily.

Figure 25 is processed an visualised similar to figures 23 and 24 but with the marginal repre-

sentation. The group values for this representation behave similar to the group values for the

energy representation where most groups have values close to zero throughout the process and

group 4 deviates temporarily. For the energy representation in figure 23, the groups seem to

vary together where any increase or decrease sometimes affects all groups. This is not equally

apparent for the marginal representation where variation in different groups seems more inde-

pendent. As for the other representations, the moving averages for the marginal representation

show no sign of permanent deterioration.
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5.5.4 Summary

Table 2: Summary of the performance on the Live data set where the group with the highest

zmind is presented together with the mean score for the group and the total mean deterioration

score of all groups. α = 1 in eq. 17 has been used for each domain.

Representation

Group with

highest zmind zmind for this group

Total mean

score

Energy - 0.0 0.2

Welch - 0.0 0.1

Marginal - 0.0 0.4

Table 2 present the group with the largest mean deterioration score together with the total

mean deterioration score for each representation. For all representations, zmind is zero which

means no deterioration is detected in any group. This conforms well with the appearance of

the moving averages for this data set where no group deviates from zero significantly.

5.5.5 Comparing performance on the data sets

The lab data set was determined to contain a deterioration process which is what the proposed

method suggested in all representations as per table 1. The method can therefore be regarded

as successful in detecting the change in door sound during the period of collecting the data set.

The live data set had no audible deterioration which is also what the method concluded as per

table 2. The method can therefore ignore the random variation in the data set and does not

falsely regard the door as deteriorated.

5.6 Simulated data

Due to the large amount of simulations run (3 AR noise levels and 3 urban noise levels which

results in 9 combinations), the simulation results will only consist of tabulated deterioration

score information and only examples of moving averages of the group values. As described

in the method formulation, the expected disturbed groups are found and used to decide if the

method was successful in detecting the deterioration or if artificial noise resulted in a high score.

Since the deterioration is shifted in time, the frequency contents do not change. This results

in the same groups deteriorating each run for the Welch representation. These groups are 4, 1

and 5 in order of decreasing deterioration. All scores calculated use an α = 1 for comparability.
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5.6.1 Grouping the energy representation
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Figure 26: Moving average of an energy rep-

resentation with the lowest amount of urban

and AR noise (10 %).
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Figure 27: Moving average of an energy repre-

sentation simulation with the highest amount

of urban and AR noise (100 %).

Table 3: Success rate of the energy representation in detecting deterioration for various noise

levels.

Urban

AR
10% 50% 100%

10% 1.00 1.00 1.00

50% 0.41 0.49 0.57

100% 0.00 0.00 0.00

Table 4: zmind on simulated data with various noise levels using the energy representation.

Urban

AR
10% 50% 100%

10% 10696.37 11401.94 13328.87

50% 43.96 48.00 59.06

100% 0.00 0.00 0.00

Figures 26 and 27 show how a simulation with minimal noise differ from a simulation with

maximal noise. In the minimal example one can see how the added true deterioration is clearly

visible as it shifts two group values upwards without much variation. In the high noise example

the true deterioration is barely visible due to the amount of variation from the added noise.
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Only a slight increase above the rest of the groups can be seen for group 1 in the end of the

simulation. In comparison to the real world moving averages, the low noise example seems to

have too little variation due to external noise while the high noise example have perhaps too

extreme amounts of noise.

Table 3 displays the performance of the energy representation on simulated data where deterio-

ration is present. The representation seems to suffer greatly from the urban noise while the AR

noise seems to not affect the performance. The AR noise seems to even improve performance in

the medium urban noise level. This is likely due to the increase in training standard deviation σ

in eq. 17 which in turn suppress some variation in the data. Consequently, the more consistent

change in group values is therefore captured while random noise ignored, leading to a higher

success rate. The scores in table 4 also increase for higher levels of AR noise which is not con-

sistent with the previous argument of higher σ. A higher σ should lower the score in eq. 17 but

an explanation could be that the added AR noise increases the energy of the recording which

then increases x in the equation, leading to a larger score. The fact that AR noise increases

performance could be an indication that a larger α is needed to reduce the sensitivity of the

method.

Overall, the energy representation seems to perform well only in low urban noise levels and is

unaffected by AR noise.

5.6.2 Grouping the Welch representation
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Figure 28: Moving average of a Welch repre-

sentation simulation with the lowest amount

of urban and AR noise (10 %).
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Figure 29: Moving average of a Welch repre-

sentation simulation with the highest amount

of urban and AR noise (100 %).
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Table 5: Success rate of the Welch representation in detecting deterioration for various noise

levels.

Urban

AR
10% 50% 100%

10% 0.95 1.00 1.00

50% 0.89 0.95 0.92

100% 0.34 0.43 0.52

Table 6: zmind on simulated data with various noise levels using the Welch representation.

Urban

AR
10% 50% 100%

10% 63619.79 58909.81 48535.69

50% 3456.55 3448.56 3373.54

100% 363.60 308.48 467.92

Figures 28 and 29 show the moving averages of a low noise and high noise example in the Welch

representation. Similar to the energy representation, in the low noise example the deteriorating

groups are clearly visible. In the high noise example, group 0 seems to contain extreme amounts

of variation in comparison to the other groups. It is likely that the main frequency contents of

the added noise is in the low frequency range which is reasonable since part of the noise comes

from machinery or vehicles.

Table 5 displays the performance of the Welch representation on simulated data where dete-

rioration is present. The representation performs well for both low and medium urban noise

and similarly to the energy representation, the performance increases with more AR noise. The

explanation is likely similar to the energy representation where the increase in σ results in less

proneness to noise. The scores in table 6 decrease with more AR noise which is what one would

expect as per the discussion in the previous chapter (5.6.1). Overall, the Welch representation

seems to be able to identify a deteriorating door with high accuracy in the low and medium

urban noise levels and with lower accuracy for the high urban noise level.

One might expect group 0 in figure 29 to be determined as the most deteriorating group by

the method. This is, however, often not the case. Since group 0 is not a part of the true

deteriorating groups as described in chapter 5.6, determining this group as the deteriorating

group will result in a false positive. The success rate for the high noise scenario in table 5 is
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fairly high, indicating that group 0 is not determined deteriorated most of the time. It seems

the variance in the group is taken into account which would reduce the score sensitivity for the

group.

5.6.3 Grouping the marginal representation
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Figure 30: Moving average of a marginal

representation simulation with the lowest

amount of urban and AR noise (10 %).

0 200 400 600 800 1000 1200 1400 1600
Recording

−0.0003

−0.0002

−0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

Gr
ou
p 
va
l 
e

Gro ping real world marginals (100 point MA)
Gro p

0
1
2
3
4
5
6
7
8
9

Figure 31: Moving average of a marginal

representation simulation with the highest

amount of urban and AR noise (100 %).

Table 7: Success rate of the marginals representation in detecting deterioration for various

noise levels.

Urban

AR
10% 50% 100%

10% 1.00 1.00 1.00

50% 0.97 0.89 0.93

100% 0.00 0.00 0.02

Table 8: zmind on simulated data with various noise levels using the marginal representation.

Urban

AR
10% 50% 100%

10% 25226.08 24660.67 24655.31

50% 234.76 267.42 243.02

100% 0.00 0.00 0.13
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As for the simulations in the energy and Welch representations, figures 30 and 31 contain

amounts of noise which differs greatly. The low noise example seems even less affected by the

noise compared to the other representations which could be a result of added deterioration

sound spanning many frequencies resulting in larger marginals. In the high noise example the

same groups can be seen growing large in the end of the simulation. They, however, only barely

stand out from the external noise.

Table 7 shows the performance of the marginal representation on simulated data where deterio-

ration is present. The representation performs well for low and medium urban noise and seems

unaffected by the AR noise which neither increases nor decreases performance by any significant

amount. The marginal representation seems to even perform slightly better than the Welch

representation on the medium urban noise environment. Table 8 shows the corresponding scores

where a similar conclusion can be drawn.

5.6.4 Summary of performance on simulated data

Overall, the Welch representation seems to perform the best among the three with the marginal

representation performing slightly worse and the energy performing well below the other two.

The only representation with an ability to detect deterioration in the high urban noise level is

the Welch representation where, in the best scenario, half of the runs are correctly labelled.
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Figure 32: Moving average of an energy repre-

sentation simulation with the lowest amount

of urban noise (10 %) and highest amount of

AR noise (100 %).
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Figure 33: Moving average of a Welch repre-

sentation simulation with the lowest amount

of urban noise (10 %) and highest amount of

AR noise (100 %).

Using simulated data allows for customisation of the noise levels and more control over the

deterioration process. The representations have varying performance with the Welch represen-

tation having the best performance. It seems the frequency spectrum has some resilience to

both the AR and urban noise.

Figures 32 and 33 visualise a simulation moving average with low urban noise and high AR

noise for the energy and Welch representations. For the energy representation the added noise
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is barely visible at all while slight variation in group 0 can be seen in the Welch representation.

The AR noise has a peak in f = 350Hz which concentrates the noise to the first group in the

Welch representation which is why the noise is visible in that representation. But overall, the

AR noise seems to have little to no effect on the simulations even though figure 11 gives the

impression of high noise levels. For the energy representation the noise is likely suppressed

due to the averaging in the group. Since the noise is added uniformly to the whole recording,

it simply averages to approximately zero in each group. For the Welch representation the

averaging described in eq. 5 can be the reason. The method is designed to try to reduce

variance by smoothing and seems to work as intended. Evidently, the representations are not

particularly susceptible to uniform noise. This is also reflected in the performance tables where

the added AR noise seems to have no impact on performance.
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6 Discussion

6.1 Manual detection of deterioration

For multiple representations the expected deterioration in the lab data set is visible. Since the

change in door sound is actually audible, one can verify that the new patterns in the various

representations actually correspond with deterioration. For the live data set it is harder to give a

verdict. The writer concluded, by listening to the recordings, that no deterioration had occurred

and in most representations only faint signatures of change are visible. Since there is no clear

definition of how audible a deterioration needs to be it boils down to a subjective decision by

the writer. This strongly increases the overall proneness to error in the manual analysis since

a reader of this report might suggest that deterioration can be seen in the representations.

This problem could and should be fixed by creating a better definition of what counts as a

deterioration and where the line between normal and faulty operation should be drawn.

6.2 Automatic detection of deterioration

The automatic detection of deterioration is successful in low to medium levels and fails for higher

noise levels. A number of parameters which could improve performance are not tested in this

report. For example, a larger amount of groups could likely increase the performance since the

deterioration sounds seem highly localised. This would, however, result in more calculations

and is therefore a trade-off. Different choices of aggregation can also be tested together with

other choices of α in eq. 17.

When comparing the deteriorated groups in table 1 with the distribution plots in figure 13

one can see that the group that fit the worst to the distribution (group 3) is also the most

deteriorating group according to the analysis. One could therefore perhaps exploit this to

further improve the method. Overall, the data is determined to be lognormally distributed but

the scoring system presented does not take this into account. Adjusting the score based on this

should therefore also be examined.

6.3 Difference between real and simulated data

The environment in which the method is supposed to operate is highly unpredictable. A single

door in an office environment can be subject to a range of different sounds such as voices,

machines, alarms or even other doors nearby. Including doors at other locations such as train

stations or shopping malls further increases the variety in the ambient sounds experienced. Such

an environment is hard to simulate since one would need a large amount of varying variables

together with countless amounts of simulation runs to cover a broad amount of cases. It is

therefore likely that the simulated data is not representative of how the average real world

deterioration process behaves. The simulated data created in this report only includes one

kind of deterioration sound (squeaking) and therefore does not cover a broad range of possible
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deterioration sounds. Instead, focus has been put on simulating a surrounding environment

with varying amounts of noise. Both entirely artificial signals in forms of AR processes was

added but also actual recordings of urban noise with varying strengths which might provide a

more realistic ambient environment.

When comparing moving averages from simulated data to the real world results there are some

differences. Mainly, the real world data seems to contain slower variation where the moving

average changes more slowly, indicating some correlation between recordings not captured in

the simulated data. This could, for example, be the fact that recordings during a specific time

period of the day (or day of the week and so on) contain more of a specific type of noise.

Temporary deviations such as the one seen for group 4 in figure 23 is not produced by the

simulation either. Adequate testing of how those types of variation affect the method can

therefore not be tested with the simulations performed in this report. A relevant question to

ask is also whether this variation is due to an actual external noise source or due to repositioning

of the microphone. If the latter is the case then simulations should not include such variation

unless repositioning of the microphone is something which needs to be accounted for when

performing the analysis.

The quality of the live data set should therefore be questioned since the recording is triggered

by a lock sound and the position and orientation of the microphone changed during the data

collection. This data set could therefore contain invalid recordings which are triggered by

ambient sounds, or missing recordings when the triggering failed. The slight orientation changes

might also impact the recordings which could be why some groups for this data set deviate

sporadically from zero.

6.4 Comparing speed of calculation

The quickest representation to calculate is the energy representation since it only requires

taking the absolute value and element-wise squaring. It, however, performs the worst out

of the three representations tested. The marginal representation is most costly to calculate

but provides a better performance than the energy representation while being outclassed by

the Welch representation. The Welch representation is also cheaper to compute than the

marginal representation which perhaps constitute a good balance between performance and

computational cost. Since no practical measurement of the computational needs was done, one

can not conclude if the method can be run on a micro controller. This is something that should

be done to assess the practical viability of the method.
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7 Conclusion

The data representations used in this report can all capture signs of deterioration when it is

audible. Since no exact definition of deterioration is stated it is hard to deduce whether non-

audible deterioration could be detected using any of the representations. Automatic detection

of deterioration was attempted using three representations and seems possible in each repre-

sentations even if the Welch representation seems to perform the best. The efficiency of the

method is theoretically fast but no effort has been put into practically timing the implementa-

tion. It is therefore difficult to decide if the analysis can be run on a micro controller without

further investigation. The simulated data produced is useful when doing an initial benchmark

of the method. The amount of possible variation in the real world data is, however, hard to

produce in a simulation which is why more effort should be put into collecting real world data

for further testing.

7.1 Future work

This being a report with high emphasis on developing a method it leaves several question marks

which should be further researched. Most importantly, more testing needs to be done to assess

the potential in the method. More data needs to be collected to reduce the need for reliance on

mostly simulations as a measure of the method performance. The data collected also needs to

be diverse and include multiple deteriorating and non-deteriorating doors to cover a larger range

of possibilities. More advanced simulation methods such as Generative Adversarial Networks

(GANs) could also be tested to see if more realistic data can be generated.

No effort has been put into practically timing the execution of the algorithms proposed in this

report which is highly relevant. Only the theoretical time complexity has been presented. The

time complexity should give an idea on the execution time but will not reflect the effective

execution time since mechanisms such as vectorisation and other factors are not put into ac-

count. If the execution time is measured then future optimisation of the code is also easier.

Also related to performance is down-sampling of the recording which likely could be done to

further increase the speed of the method.

Only one scoring systems is examined in this report. There are, however, likely better alterna-

tive scoring systems which provide a better feedback on the amount of deterioration. A score

based on a combination of the representations could also be constructed and tested. The report

does not provide a clear way of interpreting the scores either but only states that a high score

should indicate deterioration. Taking a decision based on the score should therefore also be

examined.

As a way of reducing the variance in the data and avoiding erroneous results, an attempt to

detect noisy recordings and ignore them could also be tested. This might allow a more sensitive

scoring system since one could rely more on the recordings representing the state of the door

and not external noise.
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