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Abstract

The aim of the thesis is to develop an adaptive Kalman Filter algorithm for Digital
Pre-Distortion (DPD) and to study its relevance as a Power Amplifier (PA) DPD
method. The purpose of a DPD is to counter the non-linearity effects of a PA.
The Kalman Filter is used as an optimizer for a General Memory Polynomial
(GMP) model. With help from the Kalman Filter optimizer, the GMP model
can numerically approximate the inverse of the non-linear behavior of a PA and
apply it to the signal as Pre-Distortion before it passes through the PA, thereby
counteracting the non-linearity effects of the PA. The Kalman Filter algorithm
is compared with a Least Squares adaptive algorithm as a benchmark. The
results show that the Kalman Filter algorithm has potential to be a low memory
cost adaptive algorithm with more stability and better performance than the
benchmark.
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1 Introduction and Previous Works

The aim of this thesis is to develop an adaptive Kalman Filter (KF) algorithm for
Digital Pre-Distortion (DPD) and to study its performance, versatility and relevance
as a DPD method. In this thesis the KF algorithm is used to estimate and opti-
mize the coefficients of a General Memory Polynomial (GMP) which is one way to
model the non-linear behaviour of a Power Amplifier (PA). The choice of a GMP
over other models was due to its ability to consider cross term dependencies of the
signal together with its relatively high performance shown in previous work [6]. This
thesis also looks at whether or not there are benefits in considering said cross term
dependencies in conjunction with the KF algorithm. The GMP coefficients can be
estimated and optimized in a few different ways, each way with its trade-offs between
performance and complexity. This thesis includes a comparison with a less complex
algorithm, an adaptive Least Squares (LS) algorithm. The LS algorithm is developed
to have the same data intake per iteration and a similar learning rate as the KF
algorithm in order to make the performance comparison as fair as possible.

The goal of DPD is to increase the functionality and effectiveness of a PA. A PA is a
device in a communications system in charge of increasing the power of a signal be-
fore it is transmitted via an antenna. The higher the power of the signal, the farther
the range of the antenna i.e. the information can be transmitted at larger distances.
In order to attain higher signal power, the input power of the signal to the PA is
raised, but when the input power is too high, the PA starts to exhibit non-linear
behaviour. Non-linear behaviour leads to distortion and power leakage, which are
intolerable consequences in accordance with regulatory laws. The DPD counteracts
the non-linear behaviour, and allows for linear behaviour at higher input power and
therefore higher output power, which in turn is a more energy efficient use of the PA.

Many DPD methods have been developed in recent years. These methods have grown
in complexity and performance as hardware has improved. A neural network with
two hidden layers, using a combination of linear and non-linear activation functions
was developed in 2011 [5]. A ’Low Complexity Extended Kalman Filter’ was devel-
oped in 2017 [10] which used an Extended Kalman Filter to train a neural network.
The idea of using support vector machines for non-linearity compensation in PA’s
has been around a while [1] and more recently in 2019 a twin support vector machine
approach showed promising results [11].

This thesis is structured so that the results and discussion are as intelligible as pos-
sible. Part 2 is about why PA’s are used and what problems arise by using them.
Section 2.1 gives an overview of the mathematical implications of a PA. It should
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become relatively apparent in section 2.1.1 why a PA is necessary, what the amplifi-
cation of a signal entails, what a non-linear system is, and why it affects the signal.
Then section 2.1.2 discusses how the non-linearity of a PA is countered by DPD.
Section 2.2 contains an overview of some relevant DPD performance metrics, namely
Adjacent Channel Leakage Ratio in section 2.2.1, Saturation Rate in 2.2.2, and Am-
plitude and Phase Modulation in section 2.2.3. Part 3 introduces what the General
Memory Polynomial is and why it is relevant to use as part of DPD, it includes the
mathematical definition of a the GMP and discussions of why it is defined the way it
is and how it is optimized. The KF algorithm is introduced in part 4, the mathemat-
ical definition is thoroughly described along with some intuitive ways of interpreting
the algorithm. Section 4.1 goes into detail about how the Kalman Filter is applied
to optimize the coefficients of the GMP model. Part 5 contains a multitude of per-
formance results of the KF algorithm as well as some discussion of the interpretation
of the results. Results include testing different parameters for the GMP and testing
different sample sizes per iteration of the KF algorithm. Analysis of the results and
discussions of future research are given in part 6 as well as some general reflection
on choices made during the creation of the KF algorithm. The PA model and data
simulation is written in MATLAB [4] as are all the algorithms developed in this paper.
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2 About the Power Amplifier

2.1 Radio Frequency Power Amplifiers

The Power Amplifier (PA) is a vital component in wireless communication systems.
It amplifies signals so that they are more easily detectable by the receiver. In essence,
a strengthened signal reduces information loss between sender and receiver. The in-
stantaneous power of a signal is measured as the squared magnitude of the signal1

Pxt = |xt|2 = |Ixt + iQxt |2 = I2xt
+Q2

xt
, (1)

where xt represents a sample value of the signal at instance t, and the signal is in
I/Q form, a rectangular representation of polar coordinates.

A PA generally behaves quite well on its own for relatively low power input signals.
Behaving well in the sense that increasing the input power linearly increases the
output power of the PA. It is often the case for a modern PA that higher efficiency
is achieved at a higher signal input power [8], a common metric for efficiency in this
case is Power-Added Efficiency (PAE) which is expressed as

PAE =
Pout − Pin

Pdc

,

where Pdc represents the electrical power required to run the PA. Since the PA is one
of the components in a wireless communication system that consumes a relatively
large amount of electrical power, it is crucial that it is as efficient as possible.
When the PA is well behaved; at its ideal performance, its function could be described
as

g(xt) = c1xt , (2)

where c1 > 1 is some constant 2 and xt again represents some sample value at instance
t of the signal. In other words, the output of the PA is a scalar multiple of the input.
This would then result in an increased power output in accordance with (1):

Pg(xt) = |g(xt)|2 = c21(I
2
xt

+Q2
xt

) .

Naturally, the solution of increasing efficiency then lays in increasing the input power
of the signal. However, PA’s reach an input power threshold - often referred to as a

1In this thesis, power related measurements will be represented in decibel-milliwatts (dBm) but
the conversion will be omitted in equations.

2Representative of the Gain of the PA and therefore assumed to be larger than 1

Page 3



A Kalman Filter Digital Pre-distorter Algorithm Jonathan Foley

compression point - shown in Figure 1 at which the relation between input and out-
put power of the PA loses its linearity. Despite the non-linearity, the input domain
succeeding the compression point is valuable real-estate because higher energy effi-
ciency is still achieved with higher input power after this point. Hence, the objective
becomes to counteract the side-effects of non-linearity past the compression point.

Figure 1: Illustration of Compression point and the relationship between Input power
and Output power of the a Power Amplifier.

2.1.1 Non-Linearity Impediments

The PA’s effect on the power of the signal becomes non-linear with input power
greater than at the aforementioned compression point. This leads to intermodulation
distortion and spectral regrowth. Spectral regrowth is essentially power leakage into
the side-lobes of the power spectrum of the signal. This leakage may corrupt neigh-
bouring signal channels, regulatory laws therefore limit how much power leakage is
tolerated.

Past the compression point, it can no longer be assumed that the PA behaves as in
eq. (2) but rather that

g(xt) =

{
c1xt, for Pin ≤ Pcp

f(xt), for Pin > Pcp
(3)
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where Pcp is the compression point. In general f(xt) differs from PA to PA, and
before trying to figure out what it is and how to counter its effect on the signal, it is
important to know how it affects the signal.

The function f(xt) is unknown. It represents the behaviour of a PA after the com-
pression point but this thesis is void of speculation as to its exact form. However,
to illustrate how this unknown function might affect the signal, a simple polynomial
can be used as an example. Let it be assumed that:

f(xt) = c1xt + c2x
2
t + c3x

3
t ,

where c2 and c3 are two coefficients such that f(xt) reasonably represents the non-
linear effects of a PA3. Then, noting that the I/Q signal is a rectangular representation
of polar coordinates, i.e. I = A · cosωt , Q = A · sinωt, the signal can be rewritten
in Eulers form to

I + iQ = A(cosωt+ i sinωt) = Aeiωt . (4)

It can then clearly be seen that when the signal is put through the PA, the output
would show

g(xt) = c1Ae
iωt + c2A

2ei(2·ωt) + c3A
3ei(3·ωt) , (5)

which contains two new angles 2 · ω and 3 · ω which are the antagonists of the PA
that contribute to power leakage into neighbouring frequencies.

2.1.2 Counteracting Non-Linear Impediments with Digital Pre-Distortion

The general idea of Digital Pre-Distortion (DPD) is to influence the signal before
it passes through the PA in order to achieve the desired - scalar multiple of input -
output. In essence, it is an attempt to find the inverse of the PA function and apply it
to the signal before it enters the PA. If an exact PA function existed and was known
and if it was continuous and injective around the input sample value, then an inverse
could be found and applied to the signal if the input power surpasses the compression
point, i.e.

g[f−1(xt)] = xt ,

though the gain (c1) would be excluded from the inverse so as to maintain the effect
of amplifying the signal, which is fine if:

3This type of polynomial is actually quite a good representation of a PA’s non-linear behaviour
given the correct values of c2 and c3
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f =
g

c1
⇒ g[f−1(xt)] = c1xt . (6)

Though, as was established, a function g that truly represents the PA is not assumed
to be known. It is clear nonetheless that eq. (6) shows the ideal outcome of a DPD,
and so that is what a DPD aims to achieve. This is illustrated in Figure 2

Figure 2: Illustration of DPD counteracting the PA effects.

In order to formulate a strategy for counteracting the non-linear impediments, it is
helpful to first understand what assumptions can be made about the PA and to know
what type of information is at hand. In general, it is quite reasonable to say that
at the very least, some sequential segment of the input signal to the PA and the
corresponding output signal from the PA is available4. Furthermore, the PA is a
piece of hardware, and it is known to exhibit memory effects from thermal - electrical
influences. It then follows that it is reasonable to find a numerical approximation
of the inverse effect of the PA. To do so, a general function which has the ability
to mimic the behaviour of the PA must be established. In this thesis, said function
will take the form of a General Memory Polynomial (GMP) which will be further
discussed in part 3.

4Depending on the sample size of the system or what memory is available
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2.2 Performance Measures

2.2.1 Adjacent Channel Leakage Ratio

One of the main issues with non-linearity is power leakage into neighbouring frequen-
cies. The Adjacent Channel Leakage Ratio (ACLR) is considered a good performance
measure for whether or not power leakage has been reduced. If successful, DPD will
cause the ACLR to decrease. The ACLR is defined as

ACLR =

∫
AdjC
|G(xt)|2df∫

MC
|G(xt)|2df

(7)

where G(xt) represents the Fourier transform of the PA output g(xt)
F−→ G(xt) and

is normally rescaled to dBm. AdjC and MC are the domains of integration, namely
the adjacent channels and the main channel respectively. The squared magnitude
of the Fourier transform of a time dependent signal is generally referred to as the
Power Spectral Density (PSD) of a signal, which shows the distribution of power
over frequencies. In essence, the ACLR compares the band-limited spectrum of the
adjacent channels to the main channel, and if the power leakage is reduced, the ACLR
will be proportionally reduced. An illustration of ACLR on a signals PSD can be seen
in Figure 3.

2.2.2 Rate of Saturation

Adaptive algorithms have the capability to change parameter estimations given new
behaviour in the information received. A more detailed description can be found in
part 4, but importantly, when an algorithm is adaptive, an essential performance
metric is the rate at which the algorithm can adapt, i.e. its saturation rate. There
are a multitude of things that will affect the learning rate of the an algorithm. Most
significantly, if the model used to emulate the PA is underspecified or incapable of
representing the actual behaviour of the PA, the algorithm will simply keep chang-
ing its estimated parameters with each update, since the model never quite fits the
data. For instance, if the model proposed to emulate the PA is a linear function, the
algorithm would not be able to find a stable coefficient parameter if the input power
is higher than the compression point threshold, since the behaviour of the PA after
this point is non-linear.

The rate of saturation of the algorithm is seen as Mean-Squared Error (MSE) per
signal iteration. The MSE is calculated as
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Figure 3: Power Spectral Densities of a simulated input signal and the same signal
when put through a simulated Power Amplifier. Also highlighting the main and adja-
cent channels.

MSE =
1

n

n∑
i=1

(
xi −

g[f−1(xi)]

c1

)2

, (8)

where g[f−1(xi)] represents the ith data sample that has been digitally pre-distorted
and passed through the PA5.

The MSE is not only an important metric when measuring the rate of saturation, but
the final MSE also determines how dissimilar the pre distorted signal is to the true
signal. If the MSE is too high, the information in the amplified signal would have
lost information.

2.2.3 Amplitude and Phase Modulation

Input power and its relation to output power is a characteristic of the PA which
perhaps most obviously illustrates non-linearity, however, non-linearity affects more
than just the power of the signal. In almost all cases, PA’s will be driven by modu-

5The MSE will also be represented in dBm for consistency in units.
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lated6 signals, a better understanding of the PA behaviour can be found by studying
the phase modulation and amplitude modulation of the output signal with varying
input power. Generally, two more characteristics [3] are used to describe the PA7,
namely amplitude modulation to amplitude modulation (AM/AM) and amplitude
modulation to phase modulation (AM/PM). The AM/AM characteristic can be seen
by looking at the magnitude of the instantaneous gain against the input power as
shown in Figure 4. The magnitude of the instantaneous gain is defined as

|Gaininst| =
|xout|2

|xin|2
=
I2out +Q2

out

I2in +Q2
in

, (9)

where xout = Iout + iQout , xin = Iin + iQin and will generally be represented in dBm.

The AM/PM characteristic can be seen by looking at the phase of the instantaneous
gain against the input power, seen in Figure 5. The phase can be derived by recalling
Eulers form from eq. (4)

I = Acosθ , Q = Asinθ ⇒ Q

I
=
sinθ

cosθ
= tanθ ⇒ θ = tan−1

(
Q

I

)
,

then the phase of the instantaneous gain is found as

Gaininst = xout − xin = tan−1
(
Qout

Iout

)
− tan−1

(
Qin

Iin

)
. (10)

Figure 4: AM/AM characteristic of
the PA

Figure 5: AM/PM characteristic of
the PA

6Modulation is the process of varying the properties of a carrier signal. Benefits include increasing
range of communication and multiplexing, among others.

7There are PM/PM and PM/AM characteristics as well but since the PA’s intent is to affect the
amplitude of a signal, these characteristics do not provide much information.
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The dispersion of the AM/AM and AM/PM plots in Figures 4 and 5 indicate how
severe the memory effects of the PA are. Had there been no memory effects, there
wouldn’t have been differences in distortions at the same input power. It can be
seen in Figure 4 for instance, that at −30 dBm input power, the gain distortion is
anywhere between +4 dBm and −3 dBm, so the distortion of the samples depend on
their position in the signal sequence i.e. they depend on memory. If a DPD performs
well, the dispersion should be reduced, and distortions should decrease.

Page 10



A Kalman Filter Digital Pre-distorter Algorithm Jonathan Foley

3 Memory Polynomials

A Memory Polynomial (MP) model can be convenient to use when a system input has
some dependence on previous inputs, as implied in the name, it considers ’memory’.
The MP model is capable of modelling non-linear behaviour, it splits the input into
weighted summands of inputs at different lags with the option of summands having
dependence on the amplitude8 to the kth power at said lag. The MP model is described
as

yMP (n) =
∑
k∈Ka

∑
l∈La

aklx(n− l)|x(n− l)|k , (11)

where Ka and La are sets of polynomial order and memory respectively more about
these sets is discussed in the following section.

The coefficients akl are to be found as a solution to a set of linear equations such
that the model reflects the desired behaviour. It is important here to have an idea
of where dependencies of the system lay, it is easy to have an over-fitted model with
too much memory. It is a sensible assumption in the case of a PA system that much
of the memory is inherited from nearby lags and then tapers off since the physical
(thermal) memory of a PA is likely monotone and gradual. This entails that, likely,
much of the behaviour of the PA will be contingent on nearby lags.

3.1 General Memory Polynomial

The General Memory Polynomial (GMP) model is essentially an extension of the
MP, it differs by including cross terms which allows for considering dependencies
on amplitudes of leading and lagging input terms. The output of a GMP model is
described by its input as

yGMP (n) =
∑
k∈Ka

∑
l∈La

aklx(n− l)|x(n− l)|k+∑
k∈Kb

∑
l∈Lb

∑
m∈Mb

bklmx(n− l)|x(n− l −m)|k+∑
k∈Kc

∑
l∈Lc

∑
m∈Mc

cklmx(n− l)|x(n− l +m)|k ,

(12)

8In this case amplitude, but the MP is applicable when inputs do not represent signals or waves
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where Kb and Lb should be seen as sets of cross term polynomial order and memory
at lag up to Mb, respectively. Similarly Kc and Lc should be seen as sets of cross
term polynomial order and memory at forward lag up to Mc. akl , bklm and cklm
are coefficients to be found as a solution to the system and will be represented in a
coefficient vector, ααα, whose elements are compiled by the union of the following sets.

A = {ak,l | k ∈ Ka, l ∈ La}∪{bk,l,m | k ∈ Kb, l ∈ Lb, m ∈Mb}
∪ {ck,l,m | k ∈ Kc, l ∈ Lc, m ∈Mc} ,

(13)

where Ka ∪ La ∪ Lb ∪ Lc ∈ N0, Kb ∪ Kc ∪Mb ∪Mc ∈ N. Then the elements of A
are brought into the complex vector space9 C|A|×1 and compiled in the vector ααα. The
GMP output will, for the sake of compactness be represented in this thesis as

yGMP (n) = xTk,l,m(n)ααα , (14)

where xk,l,m(n) ∈ C|A|×1 is a vector of the unique summands in (12). The following
is an example of what the model looks like when Ka = {0, 1, 2}, Kb = Kc = {1, 2},
La = {0, 1} , Lb = Lc = {0}, Mb = Mc = {1}

yGMP (n) = a0,0x(n) + a1,0x(n)|x(n)|+ a2,0x(n)|x(n)|2 + a0,1x(n− 1)+

a1,1x(n− 1)|x(n− 1)|+ a2,1x(n− 1)|x(n− 1)|2 + b1,0,1x(n)|x(n− 1)|+
b2,0,1x(n)|x(n− 1)|2 + c1,0,1x(n)|x(n+ 1)|+ c2,0,1x(n)|x(n+ 1)|2 .

(15)

It should be noted that the summations are over sets and not lists. Often the partial
sums of the GMP are defined as sums from 1 : Lb for instance, which would include
each integer from 1 to Lb. Including each of these terms is not necessarily benefi-
cial, since more summands contribute to complexity and summands may or may not
contribute very much to minimizing the error of the model [6]. Hence, the algorithm
allows choosing partial sums such as perhaps only odd lags Lb = [1, 3, 5] which may
turn out to be more significant summands. Examples of this are shown in part 5.
If there are enough summands that contribute considerably to the accuracy of the
model, suitable coefficients need to be found so that the model represent the PAs
behaviour well enough to use its inverse as a pre-distortion method.

9Complex vector space due to the nature of the problem at hand
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3.2 Least Squares as an Optimizer

As far as optimizers go, Least Squares Method (LS) is a relatively simple and often
reliable method to use. It finds the coefficients ααα as a solution to a linear system
minimizing the square error. Here, to illustrate how the LS method works, let X be
some arbitrary input with weights ααα with the target output Y , the aim is to minimize
the square error:

||Xααα− Y ||2 = (Xααα− Y )T (Xααα− Y )

= Y TY − Y TXααα−αααTXTY +αααTXTXααα .

The next step is to take the partial derivative w.r.t ααα and set it to zero

∂

∂ααα

(
Y TY − Y TXααα−αααTXTY +αααTXTXααα

)
= 0

⇒− 2XTY + 2XTXααα = 0 ,

since Y TXααα and αααTXTY are an equivalent scalar. Then solving for ααα

2XTXααα = −2XTY ⇒ ααα = (XTX)−1XTY . (16)

Eq. (16) is the solution for least squares. However, when finding the inverse of the
PA function, the coefficients should be found by mapping the outputs to the inputs
via the GMP model rather than inputs to outputs. In order to symbolize that, X
is replaced with Y and Y with X, an appropriate LS solution for the inverse PA
function is then:

ααα = (Y TY )−1Y TX . (17)

A somewhat adaptive LS method algorithm is used in this paper to compare perfor-
mance with the KF algorithm. In order to do so with as low bias as possible, the
algorithm was designed such that it would take in the same amount of information
per iteration as the KF algorithm, and share similar stability and saturation rate.
The ααα is then adaptively updated with new information depending on the size of the
error of the previous estimate:

αααt = αααt−1 + λ(Y TY )−1Y TXeeet−1 , (18)

where eee = x(N)− yTk,l,m(N)αααt−1 and λ is a user-determined parameter often referred
to as learning rate.
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4 Kalman Filter

The Kalman Filter (KF) is a state estimation algorithm widely used in dynamic
systems where state changes are sequentially dependent. It is an algorithm which
combines two correlated but separate noisy sequences to estimate a hidden state se-
quence. It has the potential to be competitive as an optimizer for the GMP since
it is an adaptive algorithm that does not require relatively10 much physical memory.
It does not need to store any information about past iteration estimates, but as the
covariance matrix (introduced later in this section) is updated, important informa-
tion about the dependencies between coefficients is considered in each iteration of the
algorithm.

In order to estimate the hidden state sequence, the standard KF combines a linear
state transition model and an observation model, they are generally described in the
following way:

xt = Atxt−1 +Btut + wt

yt = Ctxt + vt ,
(19)

where:

� xt is some state vector, which are inputs to a system whose output is yt

� At is a matrix describing the natural development of the state from time t− 1
to t in the specified system

� Bt is a matrix describing the behaviour of the controlled input ut to the system

� wt is the process noise , vt is the observation noise

� Ct is a mapping from input to output of the system

As can be seen in eq. (19), xt is prevalent in both the state transition and the obser-
vation model, and both models contain uncertainty in wt and vt. The KF combines
the two models to make an estimate of the true state xt with reduced uncertainty11.

The KF algorithm is often described as having two steps, a prediction step and
an update step. The prediction step uses the state transition model to predict the

10This will of course depend on the amount of summands in the GMP model
11Assuming that the algorithm converges, i.e. the observation and predicted observation difference

decreases
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state xt as well as the covariance matrix Σt (representing the preciseness of the state
estimation) in the following way:

x̂t = Atxt−1 +Btut

Σ̂t = AtΣt−1A
T
t +Rt ,

(20)

where Rt = E[wtw
T
t ] is a covariance matrix of the process noise. x̂t and Σ̂ are often

referred to as the a priori state and covariance estimate. The update step is when
the algorithm combines the information from the prediction and the observation. It
contains the following calculations,

Kt =
Σ̂tC

T
t

CtΣ̂tCT
t +Qt

xt = x̂t +Kt(yt − Ctx̂t)

Σt = (I −KtCt)Σ̂t ,

(21)

where Kt is the Kalman Gain, Qt = E[vtv
T
t ] is the observation covariance matrix, xt

is the a posteriori state estimate and Σt is the a posteriori covariance of the state
estimate. The outputs of the KF xt and Σt are the predictions updated with infor-
mation from the observation yt. The derivations of Kt and the covariance matrix Σt

update step are omitted in this thesis as they are quite lengthy and do not necessarily
contribute to the understanding of the algorithm. For the intents and purposes of
this thesis, with regards to their derivation, it suffices to say that Kt is derived as a
minimizer of the estimate covariance.

Taking a closer look at Kt a helpful interpretation of how the observation and pre-
diction are combined can be found. Kt is in some sense a trust-weighting of the two
contributors of information (the prediction and observation) about the true state,
where the contributor with least variance gets most trust as shown in Figure 6. To
illustrate this, one can look at the extreme cases for Kt. If

Σ̂t 6= 0 , Qt = 0→ Kt =
Σ̂tC

T
t

CtΣ̂tCT
t + 0

=
1

Ct

→ xt =
yt
Ct

,

meaning that the KF algorithm estimate is solely estimated with information from
the observation if the observation covariance matrix is equivalently zero. Whereas if
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Σ̂t = 0 , Qt 6= 0→ Kt =
0

0 +Qt

= 0→ xt = x̂t ,

meaning that the KF algorithm estimate is instead solely estimated with information
from the predicted state when the state prediction covariance is zero. When the
KF is applied to a reasonable system, Kt in a one dimensional problem is such that
Kt ∈ [0, 1] and similarly in the multivariate case, every element in the Kt matrix is
non-negative and less than or equal to 1.
Recalling the observation model in eq. (19), the a posteriori state estimation can be
rewritten as

xt = x̂t +Kt(yt − ŷt) , (22)

since Ct is a mapping from the state space to the observation space, Ctx̂t would map
a predicted state to a predicted observation. Eq. (22) shows that if the difference
between the observation and the predicted observation becomes smaller, then the
update to the predicted state x̂t becomes smaller as well.

To give a simple example of a single iteration estimation, consider the location of a
moving object: If an object is moving in a direction with a certain velocity, a predic-
tion for the next observation would be the direction of the object, multiplied by the
velocity and time until the next observation. However, unbeknownst to the predictor,
the object may have changed direction or velocity. The observation of the location of
the object would then likely be different than what was predicted. Bearing in mind
that both observation and prediction contain uncertainty, the Kalman Filter would
estimate the true location to be at the intersection of probable locations between the
predicted and observed location giving a more likely estimate of the location.
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Kmax
t

Kt

x̂ x xobs
state

px

Figure 6: One-dimensional illustration of joint distribution.

Figure 6 is a pedagogical illustration of how two Gaussian distributed variables cre-
ate a joint Gaussian distribution with lower variance. The standard Kalman filter
considers the case where both the process and observation noise is Gaussian, which
entails that the joint distribution of the two random variables is also Gaussian.

4.1 Applying the Kalman Filter

It may not be entirely obvious how to optimize the GMP model with the KF, this
sections goes into detail about how to apply the KF in the GMP optimization. The
hidden states to be estimated by the KF are the coefficients ααα of the GMP, then the
states transition model can be defined as

αααt = Atαααt−1 +Btut + wt , (23)

where αααt is a vector of the coefficients of the memory polynomials as in eq. (14),
At = I since the optimal coefficients are assumed to stay constant12, Bt = 0 , ut = 0
since there is no controlled input altering the development of the coefficients, and
wt = 0 since there is no state transition process that noise can be attributed to. So
in this case the state transition model is

αααt = αααt−1 , (24)

12For one particular PA
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Now to consider the observation model. The mapping is explained in the GMP model
itself, however, the way to go about finding an inverse to the PA function, is to do an
inverse mapping. As in section 3.2, the GMP is used to map the outputs to the input
in order to find the coefficients which correctly depict the behaviour of the inverse
of the PA. Once these coefficients have been found, the GMP should be applied to
the input before entering the PA, such that after having gone through the PA, the
signal remains the same. Recalling eq. (12) but substituting n with t for continuity of
notation and physical representation of signal values being a time dependent sequence:

yt =
∑
k∈Ka

∑
l∈La

aklxt−l|xt−l|k+∑
k∈Kb

∑
l∈Lb

∑
m∈Mb

bklmxt−l|xt−l−m|k+∑
k∈Kc

∑
l∈Lc

∑
m∈Mc

cklmxt−l|xt−l+m|k ,

which can be expressed as in eq. (14), while interchanging x for y to signify the
inverse

xt = yTk,l,m,tαααt + vt , (25)

where vt is the observation noise and ααα is the aforementioned coefficient vector. The
prediction and update steps can then be defined for this system as

α̂ααt = αααt−1 ∈ C|A|×1

Σ̂t = Σt−1 ∈ C|A|×|A| ,
(26)

where Σ0 is initiated at some reasonable value for the system and updated in the
update step which in this system is defined as

Kt =
Σ̂tyk,l,m,t

yTk,l,m,tΣ̂tyk,l,m,t +Qt

∈ C|A|×q

αααt = α̂ααt +Kt(xt − yTk,l,m,tα̂ααt) ∈ C|A|×1

Σt = (I|A| −Kty
T
k,l,m,t)Σ̂t ∈ C|A|×|A| ,

(27)

where q is the number of samples per iteration and yk,l,m,t ∈ C|A|×q is the mapping
from output to input or C−1t from eq. (19).
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Complex Covariance

When using a Kalman Filter on a complex system it should be mentioned that the
covariance matrix Σt does not entirely represent the second order statistics of the
complex variables in ααα [7]. When considering complex random variables, there is a
second order statistic called pseudo covariance which must be considered as well as
the usual covariance, in order to fully characterize the second order statistic of the
complex variable.

The type of Kalman Filter which does not include pseudo covariance, is referred to
as a Conventional Complex Kalman Filter (CCKF) [9] and is what is used in this
thesis. Though there are methods for including the pseudo covariance, in this thesis
it has been sufficient not to. This is perhaps due to the nature of the problem. It is
quite reasonable to assume - since the PA’s main function is to affect the amplitude
of the signal, as opposed to the phase - that the summands of the GMP contain
enough variations of phase to represent the inverse of the PA as a linear combination
of complex summands with real valued coefficients.

4.2 Kalman Filter Algorithm Step-by-Step

Before discussing the results, this section clarifies step-by-step how one iteration of
the KF algorithm works. The assumption here is that some section of the signal is
ready to enter the PA. The length of the section of the signal will be denoted by q.
So an input signal of length q samples will be annotated as xqt where t represents the
tth sample of length q. Then the output of the PA is correspondingly denoted yqt , i.e.
using the function g as in eq. (3)

g(xqt ) = yqt . (28)

As mentioned in the previous section, the GMP model is at this point applied to the
output so that it can be mapped to the input as a linear combination of the GMP13

summands as in eq. 29.

13The parameters of the GMP Ka, La, Kb, Lb, Mb, Kc, Lc, Mc are pre-determined by the user
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xqt ≈
∑
k∈Ka

∑
l∈La

akly
q
t−l|y

q
t−l|

k+∑
k∈Kb

∑
l∈Lb

∑
m∈Mb

bklmy
q
t−l|y

q
t−l−m|

k+∑
k∈Kc

∑
l∈Lc

∑
m∈Mc

cklmy
q
t−l|y

q
t−l+m|

k ,

(29)

where the coefficients akl, bklm, cklm ∈ ααα are either random numbers in (0, 1] if t = 0
at initialization, or if t > 0, ααα is the previous estimation of the algorithm. The error
of this mapping is then found as

xqt −
∑
k∈Ka

∑
l∈La

akly
q
t−l|y

q
t−l|

k+∑
k∈Kb

∑
l∈Lb

∑
m∈Mb

bklmy
q
t−l|y

q
t−l−m|

k+∑
k∈Kc

∑
l∈Lc

∑
m∈Mc

cklmy
q
t−l|y

q
t−l+m|

k = eqt .

The Kalman Gain Kt is at this point also calculated, in order to establish the afore-
mentioned ’trust weighting’ of prediction vs. observation. It is found as

Kq
t =

Σ̂ty
q
k,l,m,t

(yqk,l,m,t)
T Σ̂ty

q
k,l,m,t +Qt

, (30)

where if the covariance matrix of the prediction Σ̂t is low relative to the observation
covariance matrix Qt then the predicted state estimates α̂αα will be trusted more, and
be updated with smaller changes in the next step of the algorithm, namely the update
step of the coefficients α̂αα

αααt = α̂ααt +Kq
t (eqt ) . (31)

Then the covariance matrix Σ̂t is updated, again in accordance with the Kalman Gain

Σt = (I|A| −Kq
t (yqk,l,m,t)

T )Σ̂t . (32)

Equations (31) and (32) are now the updated coefficients and covariance respectively
and are used as predictors in the next iteration of the algorithm as shown in eq. (26)
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The goal of the algorithm is to reduce the error eqt and the covariance matrix Σq
t . If

either of the two are large, the KF algorithm will update the estimated coefficients
in correspondingly large increments, and vice versa. With good coefficient estimates,
the updates will be smaller and converge to optimal coefficients.

When coefficients for the GMP that maps the output of the PA to the input are found,
the GMP now represents the inverse function of the PA, which then is applied to the
input signal before it enters the PA as shown in eq. (6). Figure 7 is an illustration
of the flow of a signal section xqt through the DPD and how the input and output is
processed by the KF algorithm in order to update the GMP coefficients in the DPD.

Figure 7: Illustration of the flow of the PA and DPD part of a communications system
with an adaptive step.
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5 Results

All of the signal data used in this thesis follows the Wideband Code Division Multiple
Access (WCDMA) modulation scheme and is simulated and provided by Ericsson AB.
A simulated PA is also used in this thesis. The PA model was developed in previous
work by [2] and is based on a Mini-circuits System In Package (MSiP) surface mount
IC (model no: YSF-322+) at −2dBm input power, made of GaAs with E-PHEMT.

For the table of results in Table 1 the initial coefficients of the GMP model ααα0 were
sampled from a uniform distribution in [0, 1]. Σ0 was selected as the identity matrix
scaled down by a factor 10: I · 10−1, and the observation covariance matrix Qt was
chosen to be the same: I ·10−1. The sample section length q was 16. There are defini-
tively options when choosing the initial values. In particular, changing Σ0 will affect
convergence rate but also stability, it is chosen here to have good stability such that
the algorithm consistently converges to optimal coefficients. When Σ0 was chosen to
be larger, the results would converge faster but not necessarily be stable enough to
stay at the lowest MSE.

5.1 Varying the General Memory Polynomial parameters

The parameters of the GMP were chosen to show how their variation would affect
the MSE and ACLR. When the number of coefficients increases, the saturation rate
generally decreases. This means that the GMP variants with less coefficients will
reach their saturation quicker, i.e. the coefficients stabilize and there is no need for
further iterations.

Test 0 in the table of Table 1 is the MSE and ACLR of the non-processed signal i.e.
when no DPD has been applied. Tests 1 : 6 are meant to illustrate the effects of
increasing lag parameter La (tests 1 : 3) and polynomial order parameter Ka (tests
4 : 6) without varying other parameters. It is clear that while La parameters allow
for lowering the MSE of the pre-distorted signal output, it has very little affect on
the ACLR, whereas the Ka parameters seem to have the complementary affect of
lowering the ACLR more than the MSE. When combined, in tests 7 : 9 better results
are achieved in MSE, while still maintaining a lowered ACLR.
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In essence, tests 1 : 9 are the standard Memory Polynomial model since only La

and Ka are non-empty sets. Tests 10 : 14 then serve to show if there is a benefit to
employing the GMP at all. These tests show that while there does not seem to be
any great improvement is MSE, the ACLR is lowered, particularly while utilizing the
lag envelope parameters (Lc, Kc, Mc). Test 14 which contains non-empty sets for
all parameters, shows the best result compared to the previous test, though it also
consists of most summands - each with a unique coefficient. This entails that, with
the adaptive Kalman Filter algorithm as optimizer, utilizing the GMP seems to be
beneficial.

Tests 15 : 17 are conducted with the same parameters as in tests 18 : 20 but with
100 rather than 500 signal iterations, they strengthen the notion that the GMP out-
performs the standard Memory Polynomial even further. Test 15 considered only
odd numbers contained in the polynomial order parameter sets Ka, Kb, and Kc while
test 16 was similar but with even numbers, it seems that the odd number polynomial
order parameters could contribute more to minimizing MSE while even number poly-
nomial orders contributed more to ACLR decrease (shown in tests 18 and 19 with 500
iterations). Notably, both the MSEs and ACLRs from tests 15 : 17 improved when
increasing the iteration count to 500 in tests 18 : 20. It is also clear from Figure 12
and 13 that many of the coefficient values have not yet stabilized, but their gradient
is far lower at 500 than at 100 iterations.

Tests 21 and 22 are examples of the algorithm performing quite well despite not hav-
ing nearly as many summands as in test 15 : 20. Finally tests 23 : 25 show that
simply increasing the amount of summands does not directly lead to improvement in
MSE and ACLR, even when iterating up to 1500 times.

It can be seen in Figures 9 and 11 that, though quite a few of the coefficient estimates
seem stable, a handful are still either increasing or decreasing. It is reasonable to as-
sume that when one coefficient increases, others may very well be negatively correlated
and decrease as a reaction. Clearly when looking at the respective saturation graphs,
this behaviour is decreasing the MSE, quite slowly however, and perhaps tweaking
the variance Σ0 would allow these to converge faster to their optimal saturated values.
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Table 1: Results of the Kalman Filter Algorithm while varying GMP parameters and
signal iterations. MSE and ACLR results are in dBm

Test La Ka Lb Kb Mb Lc Kc Mc MSE ACLR Coefs Iter

0 -39.72 -37.68

1 [0,1] [0] -45.55 -38.98 2 100

2 [0:2] [0] -45.57 -38.99 3 100

3 [0:3] [0] -45.63 -38.98 4 100

4 [0] [0,1] -43.42 -40.43 2 100

5 [0] [0:2] -43.65 -41.37 3 100

6 [0] [0:3] -43.69 -41.44 4 100

7 [0,1] [0,1] -46.86 -40.25 4 100

8 [0,1] [0:2] -47.45 -41.13 6 100

9 [0:2] [0:2] -47.48 -41.16 9 100

10 [0,1] [0,1] [0,1] [1] [1] -46.87 -40.25 6 100

11 [0,1] [0,1] [0,1] [1,2] [1] -47.22 -40.68 8 100

12 [0,1] [0,1] [0,1] [1] [1] -46.87 -40.26 6 100

13 [0,1] [0,1] [0,1] [1,2] [1] -47.26 -40.72 8 100

14 [0,1] [0,1] [0,1] [1,2] [1] [0,1] [1,2] [1] -47.32 -40.97 12 100

15 [0:3] [0,1,3,5] [0:2] [1,3,5] [1,2] [0:2] [1,3,5] [1,2] -47.84 -41.77 52 100

16 [0:3] [0,2,4,6] [0:2] [2,4,6] [1,2] [0:2] [2,4,6] [1,2] -47.66 -41.43 52 100

17 [0:6] [0:5] -47.77 -41.51 42 100

18 [0:3] [0,1,3,5] [0:2] [1,3,5] [1,2] [0:2] [1,3,5] [1,2] -47.87 -42.17 52 500

19 [0:3] [0,2,4,6] [0:2] [2,4,6] [1,2] [0:2] [2,4,6] [1,2] -47.92 -42.13 52 500

20 [0:6] [0:5] -47.86 -41.89 42 500

21 [0:2] [0:2] [0,1] [1,3] [2] [0,1] [1,3] [2] -47.63 -41.57 17 100

22 [0:2] [0,1] [1,3] [2] [0,1] [1,3] [2] -47.73 -41.94 17 500

23 [0:6] [0:5] [0:6] [1:3] [1:3] [0:6] [1:3] [1:3] -47.62 -41.63 168 100

24 [0:6] [0:5] [0:6] [1:3] [1:3] [0:6] [1:3] [1:3] -47.66 -42.05 168 500

25 [0:6] [0:5] [0:6] [1:3] [1:3] [0:6] [1:3] [1:3] -47.66 -42.06 168 1500
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Figure 8: MSE vs iterations test 13
from Table 1

Figure 9: Real coefficients vs iterations
test 13 from Table 1

Figure 10: MSE vs iterations test 17
from Table 1

Figure 11: Real coefficients vs itera-
tions test 17 from Table 1

Figure 12: MSE vs iterations test 18
from Table 1

Figure 13: Real coefficients vs itera-
tions test 18 from Table 1
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5.2 Least Squares Adaptive Algorithm Results

Table 2 shows the results of tests 9, 13, 14 and 17 when the LS algorithm is used in-
stead of the KF algorithm. In general, the LS algorithm seemed to be less stable and
less consistent. It was also far less reliable and saturated slower when the amount of
summands increased. Clearly test 17 had at this point not reached a good saturation
which ended up increasing ACLR rather than decreasing it. The performance was
quite good in test 13 but still performed worse than the KF algorithm.

Table 2: Some comparative results of the Least Squares Filter Algorithm labelled in
accordance with the results from Table 1. MSE and ACLR results are in dBm

Test La Ka Lb Kb Mb Lc Kc Mc MSE ACLR Coefs Iter

9 [0:2] [0:2] -44.18 -40.79 9 100

13 [0,1] [0,1] [0,1] [1,2] [1] -46.36 -40.28 8 100

14 [0,1] [0,1] [0,1] [1,2] [1] [0,1] [1,2] [1] -40.47 -36.45 12 100

17 [0:6] [0:5] -39.45 -36.86 42 100

Figures 15 and 17 show that the development of the coefficients in the LS algorithm
do not show the same consistency or stability as in Figures 9 and 11 which represent
the same GMP models but with the KF algorithm. There are quite clear signs that
the KF algorithm is comparatively more consistent in the dispersion of coefficient
estimates, and they seem stay within the interval [−0.5, 1] or so. The KF algorithm
also handles large GMP models far better than the LS algorithm, Test 17 from Table
1 has 42 GMP summands, the LS algorithm was almost 8 dBm higher in MSE after
100 signal iterations.
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Figure 14: MSE vs iterations LS test
13 from Table 2

Figure 15: Real coefficients vs itera-
tions LS test 13 from Table 2

Figure 16: MSE vs iterations LS test
17 from Table 2

Figure 17: Real coefficients vs itera-
tions LS test 17 from Table 2

5.3 Kalman Filter Algorithm Performance Metrics

The KF algorithm Test 19 performed the best of the few GMP models that were op-
timized, Figures 18 and 19 show the reduced dispersion of the AM/AM characteristic
and the AM/PM characteristic. This entails that the memory effects of the PA have
been reduces by the DPD. Figure 20 illustrates a clear decrease in ACLR in the Pre-
Distorted signal PSD. The reduction in ACLR may not seem incredibly drastic, but
on the left and right hand sides of the main channel, the edges of the signal14 there
is a PSD value decrease of −8 dBm and −10 dBm respectively. In general, after this
much reduction of the ACLR, the error between true signal and Pre-Distorted output
is so small that it has a hard time driving the algorithm to update its estimates.

14Which is most vital since due to antenna behaviour
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Figure 18: AM/AM characteristics be-
fore and after KF DPD with GMP
model from Test 19

Figure 19: AM/PM characteristics be-
fore and after KF DPD with GMP
model from Test 19

Figure 20: Power Spectral Densities of KF DPD output (Yellow), non-DPD output
(Red), and true signal (Blue)
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6 Conclusion

The performance of the KF algorithm was better in MSE and ACLR in each com-
parative test than the benchmark, but this does not necessarily mean that it is a
suitable replacement algorithm, there are other things to consider such as memory
and computational cost.

The computational cost of the KF algorithm may or may not be too high to effectively
implement in a communications system, this is difficult to comment on in general. In
terms of memory however, the only additional memory that the KF algorithm needs
when compared to the LS algorithm, is the Σt matrix. According to the results, it is
very arguable that Σt is worth the memory cost. Even quite a small Σt matrix (for a
relatively small GMP model) gives a considerable performance improvement in MSE,
ACLR, and reduction in memory effects.

The Σt matrix is a covariance matrix of the estimated hidden states ααα which seems
to contribute hugely to the stability and consistency of the development of the co-
efficients. Not only did the KF algorithm show more consistency and stability in
coefficient development, but it also considers potential correlation between coeffi-
cients. This allows for peculiar behaviour of coefficient optimization. It entails that
for instance, two coefficients can be negatively correlated i.e. as one decreases, the
other increases. When looking at the Rate of Saturation and the development of
coefficients in Figures 8 and 9 it is clear that the MSE is still on a downwards slope,
while some coefficients are not stabilized. In fact, it is quite clear that there is one
coefficient which is quite drastically still increasing and two are still decreasing at a
lower rate. Combined, if these three coefficients are correlated then the three sum-
mands may contribute to a sequence which is converging, then the sequence in turn
has its own optimal combined contribution to the optimization of the GMP model.

There may be a discussion to be had about the use of the Conventional Complex
Kalman Filter [9] in this thesis. Not including the pseudo covariance of the complex
variables, may very well have been what caused the KF algorithm to drive the complex
parts of the coefficients to zero. Though as previously mentioned, it could also be due
to the nature of the problem. Since the PA’s main function is to increase the power of
the signal, which should affect the amplitude of the signal rather than the phase. then
the summands of the GMP could very well contain enough variations of the signal
to represent the inverse of the PA as a linear combination of complex summands
with real valued coefficients. This could very well be an oversight, though having
real rather than complex coefficients minimizes memory and computational costs,
which could outweigh the value of a potential performance increase when including
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the pseudo variance.

6.1 Future Adaptations

There are possible adjustments to improve performance in the choice of Qt and Σ0

which affect the convergence rate of the algorithm. Of course there is then a trade
off between stability and convergence rate. There are also potential combinations
of a Kalman Filter and a Neural Network, as mentioned in the introduction, which
show promising results, but again at the cost of complexity, there is always a balance
between performance and hardware requirement that must be considered.

In the spirit of trying to make this KF algorithm even more efficient, in terms of
using less memory, and computing smaller matrices, there was an attempt during
this project, to systematically reduce the amount of summands in large GMP models
that seemed to not contribute much. In this case, the ’contribution’ to optimizing
the GMP model was simply seen as how large the coefficient of the summand was.
For instance, if a coefficient was less than 0.05 after 100 iterations perhaps, it would
be omitted and the algorithm would continue to optimize the remaining coefficients.
This showed poor results however. The problem seemed to stem from the fact that
a low valued coefficient could still be strongly correlated to another coefficient, and
then the contribution of its correlated coefficient would be reduced if the low valued
partner was removed.

For future expansions of this project, a similar attempt to find an optimal GMP
could be tried, but rather than removing summands with low valued coefficients,
add the criteria that they must also be relatively uncorrelated to other coefficients.
This information can be found from the empirical data obtained by the KF in the Σt

matrix, it contains all the information about covariances between the coefficients.

Page 30



A Kalman Filter Digital Pre-distorter Algorithm Jonathan Foley

References

[1] Toshiyuki Eda, Takanori Ito, Hiromitsu Ohmori, and Akira Sano. Adaptive
compensation of nonlinearity in high power amplifier by support vector ma-
chine. IFAC Proceedings Volumes, 34(14):243–248, 2001. IFAC Workshop on
Adaptation and Learning in Control and Signal Processing (ALCOSP 2001),
Cernobbio-Como, Italy, 29-31 August 2001.

[2] Himanshu Gaur and Md Zahidul Islam Shahin. Efficient dpd coefficient ex-
traction for compensating antenna crosstalk and mismatch effects in advanced
antenna system, 2018. Student Paper.

[3] Fadhel M. Ghannouchi, Oualid Hammi, and Mohamed Helaoui. Behavioral Mod-
elling and Predistortion of Wideband Wireless Transmitters. John Wiley & Sons,
2015.

[4] MATLAB. version 9.7.0 (R2010b). The MathWorks Inc., Natick, Massachusetts,
2019.

[5] Farouk Mkadem and Slim Boumaiza. Physically inspired neural network model
for rf power amplifier behavioral modeling and digital predistortion. IEEE Trans-
actions on Microwave Theory and Techniques, 59(4):913–923, 2011.

[6] Dennis R. Morgan, Zhengxiang Ma, Jaehyeong Kim, Mike G. Zierdt, and John
Pastalan. A generalized memory polynomial model for digital predistortion of
rf power amplifiers. IEEE Transactions on Signal Processing, 54(10):3852–3860,
2006.

[7] Bernard Picinbono and Pascal Bondon. Second-order statistics of complex sig-
nals. IEEE Transactions on Signal Processing, 45(2):411–420, 1997.

[8] Frederick Raab, P.M. Asbeck, S.C. Cripps, Peter Kenington, Z.B. Popovic, Nick
Pothecary, John Sevic, and Nathan Sokal. Power amplifiers and transmitters for
rf and microwave. Microwave Theory and Techniques, IEEE Transactions on,
50:814 – 826, 04 2002.

[9] Gang Wang, Shuzhi Sam Ge, Rui Xue, Ji Zhao, and Chao Li. Complex-valued
kalman filters based on gaussian entropy. Signal Processing, 160:178–189, 2019.

[10] Linhuang Wu, Kaixiong Su, Zhifeng Chen, and Pingping Chen. A low complexity
extended kalman filter algorithm for neural network digital predistortion of power
amplifier. In 2017 International Conference on Green Informatics (ICGI), pages
17–24, 2017.

Page 31



A Kalman Filter Digital Pre-distorter Algorithm Jonathan Foley

[11] Jin Xu, Weiliang Jiang, Linhua Ma, Mingyu Li, Zhiqiang Yu, and Zhen Geng.
Augmented time-delay twin support vector regression-based behavioral modeling
for digital predistortion of rf power amplifier. IEEE Access, 7:59832–59843, 2019.

Page 32


