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Abstract

In brain connectivity research the relative phase between two EEG oscillations is par-
ticularly relevant, as it could provide information about the conduction delay between
two regions. However, due to EEG signals containing large amounts of noise and
spurious connections, the relative phase is seldom estimated. The aim of this thesis
is to explore the possibilities of estimating relative phase using an algorithm based
of the scaled reassigned spectrogram (ScRe-Spec) and the matched phase reassign-
ment (MPR). Through simulations it is shown that both the Rényi entropy and the
time-frequency concentration are suitable methods for evaluating the reassigned spec-
trograms. The algorithm is shown to give more correct estimations in comparison to
other relative-phase estimation methods when the signal to noise ratio is low. Lastly,
when tested on two real EEG-data examples, the algorithm shows promising results.
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Populärvetenskaplig sammanfattning

Ny metod för att mäta fas-skillnader i hjärnsignaler

Bättre och mer robusta metoder för att mäta fas-skillnader mellan elekt-
riska signaler i hjärnan behövs för att f̊a bättre insikt i hur olika delar av
hjärnan kommunicerar. I detta arbete undersöks en ny metod kallad relo-
kaliserat kors-spektrogram. Denna metod visar sig vara mer exakt än tv̊a
konventionella metoder under vissa förutsättningar.

Metoden introducerades först 2020 och g̊ar ut p̊a att representera en sökt signal i b̊ade
tid och frekvens, till skillnad fr̊an vanliga metoder som estimerar fas. P̊a detta vis
blir det lättare att urskilja den sökta signalen fr̊an störningar. Dessutom kan metoden
representera signaler med mycket hög upplösning d̊a dessa är i fas. Genom att förskjuta
en signal i tid tills hög upplösning uppn̊as kan man estimera fas-skillnaden mellan
signalerna.

D̊a signaler inspelade med elektroencefalografi (EEG), den vanligaste tekniken för att
avläsa elektriska signaler i hjärnan, oftast domineras av störningar krävs det robusta
metoder för att utläsa signalerna. Lyckligtvis var det just i signaler med mycket brus
som den nya metoden klarade sig bättre än andra.

Det finns många fördelar med att använda sig av EEG för att avläsa hjärnsignaler,
s̊asom att tekniken är billig och mobil, men framförallt är den inte invasiv. Detta gör
tekniken attraktiv inom b̊ade sjukv̊ard och forskning. D̊a fas-skillnaden mellan EEG-
signaler kan ge mycket information om hur olika omr̊aden i hjärnan kommunicerar,
skulle den nya metoden kunna bidra med kunskapsutveckling inom omr̊adet. Even-
tuella variationer av den här typen av kommunikation i hjärnan kan vara relaterade
till flera neurofysiologiska sjukdomar, s̊asom schizofreni, Parkinsons och Huntingtons
sjukdom, men även autism och dyslexi. Det finns dessutom ett stort intresse inom
psykologin att ta reda p̊a var specifika minnen uppkommer i hjärnan, vilket kräver
bättre och mer robusta metoder med hög upplösning för att analysera EEG. Detta
skulle den nya metoden kunna uppfylla.

Den främsta nackdelen med den nya metoden är att den endast fungerar p̊a korta
signaler av en viss form. För att metoden ska kunna användas effektivt bör ocks̊a viss
information om signalen vara känd p̊a förhand. Sammanfattningsvis har metoden goda
förutsättningar för att kunna estimera fas-skillnader i EEG.
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1 Introduction

Electroencephalography (EEG) is a monitoring method of the electrical activity present
on the scalp, and can give insight of the neurological processes underneath. It is ex-
tensively used for diagnosing epilepsy, sleep disorders and brain death [1] and is also
commonly used in research of various neurological disorders and conditions. EEG
can furthermore be used for Brain Computer Interface (BCI) applications, and has
the great advantage of being non-invasive, as well as affordable and practical in real
applications [2].

In recent years, much research has been dedicated to brain connectivity as it is believed
to play an important role in neural communication between different areas of the brain.
Brain connectivity is therefore essential in both basic and applied neurobiological re-
search. Furthermore, several neurological disorders and variations are believed to be
connected to variations in brain connectivity, such as Parkinson’s and Huntington’s
disease, schizophrenia, autism and dyslexia [3].

The relative phase between different EEG oscillations is particularly relevant in EEG
brain connectivity measurements. Phase-synchronization measurements aims to meas-
ure phase consistency between oscillations, which indicates connectivity. In these
measurements, the instantaneous relative phase is a key component and is estim-
ated using the Hilbert transform. In other connectivity measurements, such as cross-
correlation, the relative phase influence the measurements indirectly. Although the
relative phase is a central characteristic in brain connectivity, and could provide in-
formation about the conduction delay between two regions [4], it is seldom estimated
directly. The reason for this could be a lack of robust estimation methods that can
withstand the large amounts of noise present in EEG. This thesis will attempt to
close this gap by exploring the possibilities of an alternative method for estimating
the relative phase in EEG.

In Sandsten et al. [5], the matched-phase reassignment (MPR), a novel estimation
method of the relative phase is introduced. The method aims to reassign the energy
of a cross-spectrogram between two transient signals with known equal envelopes. As
optimal time-frequency resolution of the reassigned cross-spectrogram only is achieved
when the signals are in phase, a time-shift corresponding to the relative phase can be
found. A related method called the scaled reassigned spectrogram (ScRe-Spec) have
been used to estimate signal parameters of transient Gaussian signals [6] [7].

In this thesis, a two-step algorithm to estimate relative phase will be implemented,
combining the ScRe-Spec with the MPR method. Through simulations, the thesis
aims to improve the understanding of and further investigate the ScRe-Spec and the
MPR. The two-step algorithm will then be used on two real data examples in order to
explore its possibilities for EEG applications. The thesis aims to answer the following
questions:
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• Which time-frequency concentration measurement is best suited for evaluation of
the reassigned cross-/spectrograms in the two-step algorithm - the Rényi entropy
(RE), the time-frequency concentration (TFC) or the Gini index (GI)?

• How accurate is relative phase estimation using the two-step reassignment method
in comparison to other established methods?

• Is it possible to estimate relative phase between signals in EEG using the imple-
mented two-step reassignment method?

2



2 Theory

This chapter aims to briefly introduce the reader to the subjects relevant to this
thesis. In Section 2.1 the spectrogram and variants of the reassigned spectrogram will
be presented. The concentration measurements used to evaluate the reassignments in
this project are listed in Section 2.2. A brief introduction of EEG and filters are found
in Section 2.3 and 2.4 respectively.

2.1 Time-frequency analysis of transient signals

Signals of very short duration in comparison to a entire measurement are often referred
to as transients or transient signals. In this thesis project, we will define transient
signals to be of the following form

x(t) = a(t− t0)e−jω0t, (2.1)

where t0 is the centre time, ω0 is the frequency and a is the envelope. In Figure 2.1(a)
and (b), two examples of transient signals are plotted.
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Figure 2.1: Examples of transient constant frequency signals. The sampling frequency is
fs = 128 Hz. In (a), the envelope is given by a decaying exponential function
(with zero for t < 0) with t0 = 0.5 s and f0 = 5 Hz. In (b), the envelop of the
signal is Gaussian with t0 = 1 s, f0 = 5 Hz and σ = 30. The plot in (c)
illustrates two transients with equal Gaussian envelopes, where σ1 = σ2 = 30
but different centre times and frequencies. For the first signal t01 = 0.90 s and
f01 = 5 Hz, and for the second signal t02 = 1.1 s and f02 = 7 Hz.

In (b) the envelope is given by a Gaussian function, such that a(t) = g(t), where

g(t) = exp

(
−t2

2σ2

)
. (2.2)

The scaling parameter σ regulates the length of the signal. The length of such a signal
we define as the length in which 99% of the energy resides, that is

1

σ
√
π

∫ L/2

−L/2
g(t)2dt = 0.99, (2.3)
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where σ
√
π =

∫∞
−∞ g(t)2dt is the total energy of a Gaussian signal. Solving the equation

above, the signal length is then given by

L = 2σ erf−1(0.99), (2.4)

where erf−1 is the inverse error function. In Figure 2.1(c), two transient Gaussian
signals of equal length and different frequencies are seen. These will serve as examples
for the time-frequency representation methods in the following sections.

2.1.1 The spectrogram

In order to gain better understanding of the time and frequency content in a non-
stationary or transient signal, the signal is often represented in the time-frequency
domain. The most common time-frequency representation is the spectrogram, which
is given by

Shx(t, ω) = |F h
x (t, ω)|2, (2.5)

where

F h
x (t, ω) =

∫
x(τ)h∗(τ − t)e−jωτdτ. (2.6)

is the short-time Fourier transform (STFT) with window function h of time-series x.
The window function h is chosen such that it is centred around t, which makes the
STFT a local measurement of the frequency content in x around t. The shape of the
window-function affects the resolution in different ways, where some windows might
increase the possibility to detect low amplitude signals and others may reduce them
[8]. One commonly used window function is the unit energy Gaussian function given
by

hλ(t) =
1

π1/4
√
λ

exp

(
−t2

2λ2

)
(2.7)

where λ is a parameter which regulates the length of the window. Due to the uncer-
tainty principle, the choice of λ affects the time-frequency resolution of the spectrogram
[8]. When the window is long, more frequency content of the signal is available and
similar frequencies are more easily separated. However, this comes at the expense
of a more smeared out signal in time. This is illustrated in Figure 2.2, where the
spectrogram of the signals in Figure 2.1(c) is illustrated for different choices of λ.

Several other methods have been suggested to achieve increased resolution in time-
frequency representations, for example the Wigner distribution and ambiguity kernels.
Another method which has gained much attention in recent years is the reassigned
spectrogram.

2.1.2 The reassigned spectrogram & the scaled reassigned
spectrogram (ScRe-Spec)

The main idea of the reassigned spectrogram is, as the name suggests, to reassign the
energy of the spectrogram to more localised points. How the energy is re-distributed is
determined by the reassignment vectors t̂(t, ω) and ω̂(t, ω). According to these vectors,
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Figure 2.2: Spectrogram of signals in Figure 2.1(c), using Gaussian windows with
different parameters λ. When the window is short in (a), the signals are well
separated in time but smeared out in frequency. Using a long window as in
(c), the signals are well separated in frequency but smeared out in time.

the energy in (t, ω) is moved to the new point (t̂(t, ω), ω̂(t, ω)). Optimal reassignment
is achieved when all energy is reassigned to the centre time t0 and frequency ω0 of the
signal, such that (t̂(t, ω), ω̂(t, ω)) = (t0, ω0).

The reassigned spectrogram is given by [9]

RShx(t, ω) =

∫ ∫
Shx(s, ξ)δ(t− t̂x(s, ξ), ω − ω̂x(s, ξ))dsdξ (2.8)

where Shx is the spectrogram of signal x using some window function h, and δ is the
two-dimensional Dirac-delta function, such that∫ ∫

f(x, y)δ(x− x0, y − y0)dxdy = f(x0, y0). (2.9)

The reassignment vectors are given by

t̂(t, ω) = t+ ct<
(
F th
x (t, ω)

F h
x (t, ω)

)
(2.10)

ω̂(t, ω) = ω − cω=

(
F

dh/dt
x (t, ω)

F h
x (t, ω)

)
, (2.11)

where F th
x and F

dh/dt
x are the STFT of x using window function t · h(t) and dh/dt

respectively. If the constants are set to ct = cω = 1, the original (or normal) reassign-
ment is archived.

The reassignment vectors in Equations 2.10 and 2.11 can be further simplified if certain
assumptions about the signal and window function are made. If x is given by a tran-
sient signal defined as in Equation 2.1, it has been shown that optimal reassignment
is achieved when h(t) = a(−t), and ct = cω = 2 [10]. In Sandsten and Brynolfsson [6]
and Brynolfsson and Sandsten [7], they derive the reassignment vectors for the scaled
reassigned spectrogram (ScRe-Spec). If x is assumed to be a transient signal with a
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Gaussian-envelope with scaling parameter σ, and the window function is given by the
unit-energy Gaussian with parameter λ in Equation 2.7, the reassignment vectors are
simplified to [6] [7]

t̂(t, ω) = t− ct
λ2

λ2 + σ2
(t− t0) (2.12)

ω̂(t, ω) = ω − cω
σ2

λ2 + σ2
(ω − ω0). (2.13)

Optimal reassignment is achieved when the constant scaling factors in Equation 2.12
and 2.13 are set to

ct =
λ2 + σ2

λ2
(2.14)

cω =
λ2 + σ2

σ2
. (2.15)

Optimal reassignment can therefore be achieved for any λ if the scaling parameter,
σ, is known. This is of course rarely the case. However, the scaling parameter σ can
be estimated from a set of predefined candidates σi by choosing the candidate which
gives the most concentrated ScRe-Spec. In Figure 2.3, scaled reassigned spectrograms
for different candidates are shown. It is seen that optimal reassignment indeed occurs
when σi = σ in (b).

Figure 2.3: ScRe-Spec of signals in Figure 2.1(c). In (a), (b) and (c), different candidate
scaling parameters σi are used in the reassignment vectors in Equation 2.14
and 2.15. The Gaussian window parameter is set to λ = 40, and the true
scaling is σ = 30.

A summary of how the scaling parameter σ can be estimated using this method is
shown below. In Brynolfsson and Sandsten [7], a more complex version of this al-
gorithm is used, including several iterations with zoomed in directories of candidate
scaling parameters σi, and a non-linear least-square minimisation step to fine-tune the
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parameters.

Algorithm 1: Estimation of σ using the ScRe-Spec

Define vector of candidate scaling parameters σi.
Calculate Shx = |F h

x |2, F th
x and F

dh/dt
x using window hλ in Equation 2.7.

for each σi do

Set ct =
λ2+σ2

i

λ2

Set cω =
λ2+σ2

i

σ2
i

Calculate the ScRe-Spec according to Equation 2.8.
Calculate the concentration of the ScRe-Spec.

end
Choose the candidate σi which gives optimal concentration.

The concentration of the ScRe-Spec is calculated using one of the concentration meas-
urements presented in Section 2.2.

2.1.3 The matched phase reassigned cross-spectrogram (MPR)

In Sandsten et al. [5] the theory of matched reassigned spectrograms was extended to
cross-spectrograms. The cross-spectrogram between two signals y1 and y2 is given by

Shy1,y2(t, ω) = F h
y1

(t, ω)(F h
y1

(t, ω))∗, (2.16)

where F h
yn once again is the STFT with some window function h. The general reas-

signed cross-spectrogram is similar to before given by

RShy1,y2(t, ω) =

∫ ∫
|Shy1,y2(s, ξ)|δ(t− t̂y1,y2(s, ξ))δ(ω − ω̂y1,y2(s, ξ))dsdξ, (2.17)

with the following reassignment vectors

t̂y1,y2(t, ω) = t+ ct<

(
F th
y1

F h
y2

+
F th
y2

F h
y1

)
(2.18)

ω̂y1,y2(t, ω) = ω − cω=

(
F

dh/dt
y1

F h
y2

+
F

dh/dt
y2

F h
y1

)
. (2.19)

If the two signals are further assumed to be given by

yn(t) = Anx(t)e−jφn , n = 1, 2, (2.20)

where x(t) is a transient signal defined in Equation 2.1, and the window function is
assumed to match the signal envelope h(t) = a(−t), the reassignment vectors can be
simplified to

t̂y1,y2(t, ω) = t− ct
1

2

A2
1 + A2

2

A1A2

cos (φ2 − φ1)(t− t0) (2.21)

ω̂y1,y2(t, ω) = ω − cω
1

2

A2
1 + A2

2

A1A2

cos (φ2 − φ1)(ω − ω0), (2.22)
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where An is the amplitude and φn is the phase of the n:th signal. From the expressions,
we see that optimal reassignment, i.e. t̂y1,y2(t, ω) = t0 and ω̂y1,y2(t, ω) = ω0, occurs
when ct = cω = 2A1A2/(A

2
1 + A2

2) and φ2 − φ1 = 0.

Because of this, the method is suggested to be used for estimation of relative phase
∆φ = φ2 − φ1 between two signals. As a phase difference corresponds to a time-shift
according to

∆t =
∆φ

2π
T, (2.23)

where T is the period, the relative phase can be estimated by applying time-shifts to the
second signal and find which time-shift gives optimal concentration of the reassigned
cross-spectrogram.

As the signals and the spectrogram in practice are discrete in time and frequency,
the minimal time-shift that can be applied is the sample time, or 1/fs, where fs is
the sampling frequency. For the rest of this report, the time-shift will be expressed
in number of samples, denoted k and called time-lag. The estimated time-lag will be
denoted k̂ and the true time-lag is denoted k0 = ∆φ

2π
T 1
fs

.

A summary of the relative phase-estimation procedure described in Sandsten et al. [5]
is presented below.

Algorithm 2: Estimation of ∆φ using the MPR

Define vector of candidate time lags ki.
for each ki do

Apply the time lag to the second signal, such that y′2(t) = y2(t+ ki).
The first signal is still y′1(t) = y1(t).

Calculate F h
y′n

, F th
y′n

, F
dh/dt
y′n

using window h in Equation 2.7.

Estimate amplitudes Â1, Â2.

Set ct = cω = 2 Â1Â2

Â1
2
+Â2

2 .

Calculate the MPR according to Equation 2.17.
Calculate the concentration of the spectrogram.

end
Choose the candidate ki which gives optimal concentration.

In the paper, the amplitudes were estimated as the maximum amplitudes of the signals.
Next, some possible concentration measurements will be presented.

2.2 Measurements of time-frequency concentration

Several different concentration measurements have been suggested in order to eval-
uate the performance of TF-representations [11]. As previously mentioned, the TF-
representations are in practice discrete. The evaluation methods below will therefore
be presented over discrete time n and frequency m. Usually the spectrograms are cal-
culated using fast Fourier transform (FFT), which computes NFFT spectrogram values
for frequencies between 0 Hz and fs Hz, excluding fs.
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Rényi entropy (RE)

The Rényi entropy is currently the most popular measurement for evaluating the
reassigned spectrogram [5, 6, 7, 10], and is the one used in the two algorithms above.
For any discrete TF-representation, S(n,m), the Rényi entropy over a chosen region
is given by

RE =
1

1− α
log2

n2∑
n1

m2∑
m1

(
S(n,m)∑n2

n1

∑m2

m1
S(n,m)

)α
(2.24)

where α, due to stability advantages, usually is set to 3 [12]. The discrete region
n ∈ [n1, n2] and m ∈ [m1,m2] corresponds to some region in time-frequency, t ∈ [t1, t2]
and ω ∈ [ω1, ω2]. In the equation above, S(n,m) is normalised by its energy in the
chosen region. Another option is to normalise S(n,m) by its volume. Then, the volume
normalised Rényi entropy is given by

V RE =
1

1− α
log2

n2∑
n1

m2∑
m1

(
S(n,m)∑n2

n1

∑m2

m1
|S(n,m)|

)α
. (2.25)

For both RE and VRE, more concentrated TF-representations result in smaller meas-
urement values. As the reassigned spectrogram always is real-valued and non-negative,
the two measurements will yield the same results.

Time-frequency concentration (TFC)

Similar to kurtosis, the time-frequency concentration (TFC) measures the ”sharpness”
or ”peakness” of a TF-representation. The TFC is given by

TFC =

∑n2

n1

∑m2

m1
S4(n,m)(∑n2

n1

∑m2

m1
S2(n,m)

)2 , (2.26)

where more concentrated TF-representations result in a higher TFC-value.

Gini Index (GI)

The Gini Index (GI) was first introduced in economics as a measurement of inequality
in wealth distribution. As GI, in more general terms, measures the sparsity in a
distribution, it has been shown to be a suitable measurement in other fields as well,
for example in signal processing [13]. To calculate the GI for TF-distributions, all
values of S(n,m) over the chosen region, n ∈ [n1, n2], m ∈ [m1,m2], are first organised
into a sorted vector s(1) ≤ s(2) ≤ ... ≤ s(N). Then, the GI is given by

GI = 1− 2
N∑
l=1

s(l)

||x||l
N − l + 0.5

N
, (2.27)

where ||x||1 =
∑N

l=1 |s(l)|. More concentrated TF-representations are more sparse and
have more unequal distribution of power, and therefore give higher values of GI.
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2.3 Connectivity in EEG

2.3.1 The cerebral cortex & EEG signals

The cerebral cortex is the out-most layer of the brain, about 2 to 3 mm thick. Different
regions of the cortex are primarily responsible for different functions such as speech,
voluntary movement and different senses as seen in Figure 2.4a. The whole cortex
consists of roughly 10 billion neurons, which collectively generate a measurable electric
field.

Electroencephalography (EEG) is one monitoring method, where electrical activity
present on the scalp is measured by electrodes. The electrodes are usually placed
according to the standardised 10-20 system. This system involves placement of elec-
trodes on the pre-frontal (Fp), fronal (F), temporal (T), parietal (P), occipital (O),
and central (C) lobe. In order to increase resolution, a new 10-20 system has been
introduced with more electrodes. The electrode placement of this system is seen in
Figure 2.4b.

EEG signals often exhibit oscillatory behaviour and are in many cases well modelled as
short-term stationary processes. Certain frequency bands are especially common and
their origin have been subject for investigation for as long as EEG has existed. The
delta rhythm, < 4 Hz, is of large amplitude and is prominent during deep sleep. The
theta rhythm, 4−7 Hz, occurs during drowsiness, the alpha rhythm, 8−13 Hz, is most
prominent in relaxed states in the occipital region when the subjects eyes are closed,
and the beta rhythm, 14− 30 Hz, is of low amplitude in the fronal and central regions
of the scalp mainly during certain stages of sleep. The highest frequency band is the
gamma rhythm, > 30 Hz, and can be found during active information processing [1, p.
34]. In memory research, alpha and beta rhythms appears to be related to semantic
encoding 1, whereas theta and gamma rhythms are activated during non-semantic
encoding [14].

Event related potentials (ERP) are measurable electrical responses to external stimuli.
These are often well-modelled as deterministic [1, p.194-195], and are characterised by
their very short duration and low amplitude compared to the stochastic oscillations
described previously. In settings where ERPs are of interest, the stochastic oscillations
are therefore often considered as noise, even though they are of neurological origin.
Also of neurological origin is the 1/f-noise, which is characterised by a power spectrum
that decays as 1/f [15].

2.3.2 Connectivity measurements

The brain is made up by a network of neurons. The connections between neural masses
can be either anatomical, which describes physical connections, or functional, which
refers to simultaneous activation of similar patterns in different regions of the brain. An

1Semantic processing, in a psychological context, is the processing happening after we hear a
word, making us put it in a context which leads to deeper encoding of its meaning. Non-semantic,
or shallow, encoding is easier to forget.
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(a) Illustration of the cerebral cortex and the
placement of areas primarily related to
certain neurological functions. [16]

(b) Image of the electrode placement in the new
10-20 system [17].

.

Figure 2.4

extension of the latter is effective connectivity, which also intends to measure a causal
relationship between neural masses [18]. As functional and effective connectivity are
believed to play an important role in neural communication, much research is dedicated
to the topic.

Many functional and effective connectivity measurements aim to measure, either dir-
ectly or indirectly, the consistency between phases of EEG oscillations. Some of these
are presented below.

Hilbert transform

The instantaneous relative phase ∆φ(t) between two time-series s1 and s2 can be
estimated from the complex-valued analytic series z1 and z2. These are given by [19]

zi(t) = si(t) + jHT(si(t)), (2.28)

where HT is the Hilbert transform. The relative phase between two such signals are
given by

∆φ(t) = arg

(
z1(t)z∗2(t)

|z1(t)||z2(t)|

)
, (2.29)

where z∗2 is the complex conjugate of z2.

Although the Hilbert transform is sometimes used to estimate relative phase directly
as a measurement of effective connectivity [20], it is perhaps more often found for
calculating the phase-locking value (PLV) or the phase lag index (PLI) presented
below.

In Kovach [21] some concerns about these measurements are presented. As the compu-
tation of the analytic signal, directly or indirectly, involves a non-linear operation that
introduces broad spectral leakage, these measurements may sometimes be difficult to
interpret.
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Phase-Locking Value (PLV)

The PLV is commonly used for measuring phase synchronization, which is a measure-
ment of functional connectivity. For two channels, the PLV is given by [19]

PLV = | 1
T

T−1∑
t=0

ej∆φ(t)|, (2.30)

where T is the number of samples and ∆φ(t) is the relative phase given by the Hilbert
transform in Equation 2.29. The expression should be interpreted as a summation of
vectors of length one in the complex plane. If the vectors are all in the same direction,
and thus have equal relative phases, the resulting PLV is one. If the relative phases
differ and the vectors are not in the same direction, the resulting PLV is less than one,
with a minimal value of zero. The PLV is thus a measure of consistency of the relative
phases ∆φ(t).

Phase Lag Index (PLI)

Similar to the PLV, the PLI is a phase synchronization measurement used to measure
functional connectivity, and is given by [19]

PLI = | 1
T

T−1∑
t=0

sign(j∆φ(t))|. (2.31)

Due to the sign-function in the expression, the PLI will be insensitive to relative phases
of 0. This is can sometimes be an advantage compared to the PLV due to reasons that
will be described on the next page.

Pearson’s linear correlation coefficient (CORR)

Pearson’s linear correlation coefficient (CORR) is sometimes used to measure func-
tional connectivity [22]. It is given by

CORR =

∑t2
t=t1

(y1(t)− y1)
∑t2

t=t1
(y2(t)− y2)√∑t2

t=t1
(y1(t)− y1)2

√∑t2
t=t1

(y2(t)− y2)2

, (2.32)

where it has been limited to time samples between t1 and t2. The mean value during
this time interval is denoted yi.

Other measurements

In addition to the phase synchronization measurements PLV and PLI, and functional
connectivity measurement CORR, other measurements have been suggested, such as
spectral coherence and Granger causality. Measurements of effective connectivity other
than the Hilbert transform are Granger causality, transfer entropy and correlation [20].
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2.3.3 Problem with source leakage

In all these measurements, one needs to be cautious of source leakage [18]. When
electrical activity originating from two separate sources is measured by electrodes on
the scalp, electrical activity from one source can ’leak out’ and mix with the elec-
trical activity from the other source. As the same activity is measured in both elec-
trodes, they falsely seem to be phase synchronized. The relative phase between the
electrode measurements will be zero, as the source leakage is instantaneous. Some
phase-synchronization measurements are especially equipped to tackle such spurious
connections, such as PLI, but are equally insensitive to true zero-lag connections. An-
other way to reduce the influence of source leakage is by first applying a spatial filter,
such as the surface Laplacian [23].

2.4 Brief overview of filters

Given a discrete time-varying input signal x(n), the output signal from a linear time-
invariant (LTI) filter is given by the following convolution

y(n) = (h ∗ x)(n) =
∞∑

k=−∞

h(k)x(n− k), (2.33)

where h now is the filter impulse response. When the input is an impulse, that is,
a Dirac delta function δ, the output is simply given by the impulse response. The
convolution in Equation 2.33 is equivalent to multiplication in frequency domain, such
that

Y (ω) = H(ω)X(ω), (2.34)

where H is called the transfer function.

LTI filters are often divided into two categories, finite impulse response (FIR) filters
and infinite impulse response (IIR) filters [24]. Causal FIR filters can be further
expressed as

y(n) =
M−1∑
k=0

bkx(n− k), (2.35)

where bk is the k:th filter coefficient and M is the number of coefficients. As the
output only depends on the input values, the impulse response is finite. These filters
are therefore always stable and are easy to implement. Also, if the impulse response is
symmetric, the FIR filter will have linear phase response. This means that no phase
distortion of the signal will occur.

Causal IIR filters can be written as

y(n) = −
N∑
k=1

aky(n− k) +
M−1∑
k=0

bkx(n− k), (2.36)

where the output depends on both input values and previous output values. The
recursive behaviour of the filter makes the input response infinite. These filters are
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very computationally efficient as they typically require very few filter coefficients in
comparison to FIR filters. They will however have a non-linear phase response such
that the original phases of the input-signal will be distorted.

In offline filtering settings, causal IIR filters can be filtered both forward and backward
in time to achieve zero-phase filtering. The entire filtering operation is non-causal and
is called forward-backward filtering [25].
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3 The two-step algorithm

The main goal of the algorithm is to estimate a time-lag k̂ corresponding to the relative
phase ∆φ between two transient signals y1 and y2. The MPR procedure in Algorithm
2 assumes that the envelope a(t) of the signals is known and uses the matched window,
h(t) = a(−t), in the STFT. In settings where the signal-to-noise ratio (SNR) is low,
such as in EEG, this assumption may be difficult to fulfil. By assuming the signals to
have Gaussian envelopes, they at least can be allowed to be of unknown length. Then,
the ScRe-Spec in Algorithm 1 can be used to first estimate the scaling parameter σ,
which determines the signal length, and after that the MPR can be used to estimate
the relative phase using a matched Gaussian window.

To put simply, the two-step algorithm is constructed as follows:

1. Estimate the scaling parameter σ of both y1 and y2 using the ScRe-Spec in
Algorithm 1. Then, take the average of these estimations as the final estimation
σ̂.

2. Estimate the time-lag k̂ using the MPR in Algorithm 2, where the window is
given by a unit energy Gaussian function with scaling parameter σ̂.

A more detailed description of the procedure is presented in Algorithm 3 on the next
page. In the algorithm, the scaling parameter can be estimated iteratively if J >
1, such that the ScRe-Spec is initialized with some λ, and then updated with the
previous estimation σ̂. The signal amplitudes can be estimated from the square root
of the maximum amplitude of the spectrogram inside the defined region t ∈ [t1, t2]
f ∈ [f1, f2]. In addition to the scaling parameter and time-lag estimations, the centre
time t0 and frequency f0 can be estimated from the maximum value of the MPR. In
the next chapter, simulations will be made to determine the following:

• Whether the scaling of the window should be iteratively estimated, that is,
whether J in Algorithm 3 should be one or more.

• Which TF-concentration measurement should be used.

In the beginning of the project, another algorithm for estimating σ̂ and k̂ under the
same assumptions was constructed. A variant of the MPR was used and the TF-
concentration was calculated over a grid of candidate scaling parameters and time-lags
(σi, kj). As this method was both slower and less robust than the two-step method, it
was soon discarded. The MPR variant that was used in this algorithm is presented in
Appendix A.1.
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Algorithm 3: Two-step algorithm for estimation of time-lag k.

Define a vector of candidate scaling parameters σi.
Define a vector of candidate time-lags ki.
Define a region, t ∈ [t1, t2], f ∈ [f1, f2], over which the TF concentration of the
reassignments should be measured.

Set initial window function parameter λ1.
for j=1,...,J, or until convergence do

Calculate the ScRe-Spec of signal 1, y1, using window function parameter
λj for each σi. Choose the candidate σi which gives optimal
concentration over the defined region as the estimate σ̂1.

Calculate the ScRe-Spec of signal 2, y2, using window function parameter
λj for each σi. Choose the candidate σi which gives optimal
concentration over the defined region as the estimate σ̂2.

Set σ̂ = σ̂1+σ̂2
2

.
Update window function parameter λj+1 = σ̂.

end
for each ki do

Apply time delay to signal 2, such that y′2(k) = y2(k + ki).
Signal 1 is still y′1(k) = y1(k).

Calculate F h
y′n

, F th
y′n

, F
dh/dt
y′n

using a unit energy Gaussian window with
scaling parameter σ̂.

Estimate amplitudes Â1, Â2.

Set ct = cω = 2 Â1Â2

Â1
2
+Â2

2

Calculate the reassignment vectors from Equation 2.12 and 2.13. Calculate
the reassigned cross-spectrogram according to Equation 2.17.

Calculate the TF-concentration of the reassigned cross-spectrogram over
the defined region.

end
Choose the time-lag ki which gives optimal concentration.
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4 Simulations

4.1 Overview

Before the two-step algorithm was used on real EEG-data, the two parts were first
tested on simulated data for two kinds of noise and different signal-to-noise ratios
(SNR). Both white Gaussian noise and simulated EEG-noise was used. In all sim-
ulations, the sampling frequency was set to fs = 128 Hz, and M = 300 trials were
simulated for each SNR-level. The spectrograms were calculated using NFFT = 1024
points in the FFT. The signal scaling parameters were always σ = 50 samples long,
with t0 = 1.51 s and f0 = 7 Hz. The signal phases were generated as φ1 ∼ U(−π, π),
and φ2 = φ1 + ∆φ, where ∆φ was varied between simulations. The simulated time-
series were N = 512 samples long.

In Table 4.1, an overview of all simulations can be seen. After the SNR definition and
EEG-noise model have been introduced, the simulations will be presented in greater
detail in Sections 4.2 through 4.4.

4.1.1 Definition of signal-to-noise ratio (SNR)

The simulated time-series are given by

zi(t) = yi(t) + ni(t), i = 1, 2, (4.1)

where yi(t) is the transient signal defined in Equation 2.20, and ni(t) is the noise in
respective channel. The noise in each channel have identical spectral density, such
that Rn(ω) = Rn1(ω) = Rn2(ω). The total noise power in each channel is calculated
as

Pn =
1

2π

∫ πfs

−πfs
Rn(ω)dω, (4.2)

where fs is the sampling frequency.

The SNR is then defined as

SNR = log10

(
max
t

y1(t)2

Pn

)
(4.3)

where max
t

y1(t)2 is the maximum squared amplitude of signal 1. Instead of the squared

amplitude, the transient signal energy is often used. This was however considered
to be inconvenient as this definition would depend on the number of samples used.
Moreover, the SNR definition i Equation 4.3 enables straight-forward comparisons
between simulations where the amplitude of the second signal varies as the noise
amplitude remains constant. As the amplitude of signal 2 decreases, the problem gets
more difficult.
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Simulation Conc. meas. Noise ∆φ A1, A2

Section 4.2. Estimation of
signal scaling parameter σ
using iterative, J = 4, or
non-iterative,

All White U(−7π/8, 7π/8) 1

J = 1, ScRe-Spec with dif-
ferent concentration meas-
urements.

EEG U(−7π/8, 7π/8) 1

Section 4.3. All White U(−7π/8, 7π/8) 1
Estimation of time lag k us- EEG 0 1
ing MPR with different con- EEG U(π/8, 7π/8) 1
centration measurements. EEG U(−7π/8, 7π/8) 1

Appendix A.2. RE White U(−7π/8, 7π/8) Varied
Amplitude estimation. EEG U(−7π/8, 7π/8) Varied

Section 4.4.1. Disturbance
signal at time t0 + ∆t but
equal frequency. Phases

RE,
t ∈ [1.25, 1.75] s
f ∈ [6.5, 7.5] Hz

White U(−7π/8, 7π/8) 1

of disturbance signals are
φd1 = 5/8π and φd2 =
−5/8π.

EEG U(−7π/8, 7π/8) 1

Section 4.4.2. Disturbance
signal with frequency f0 +
∆f but equal time. Phases

RE,
t ∈ [1.25, 1.75] s
f ∈ [6.5, 7.5] Hz

White U(−7π/8, 7π/8) 1

of disturbance signals are
φd1 = 5/8π and φd2 =
−5/8π.

EEG U(−7π/8, 7π/8) 1

Table 4.1: Overview of simulation parameters.

Two example simulations with different SNR using white Gaussian noise can be seen
in Figure 4.1. The two signals have equal amplitude and a relative phase of π/2.
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Figure 4.1: Two signals (blue and orange) of equal amplitude with phase-difference π/2
with added Gaussian white noise.
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4.1.2 EEG noise model

EEG noise was simulated in accordance to the procedure described in Barzegaran
et al. [15]. The noise was modelled to consist of alpha- (n

(i)
α ), 1/f- (n

(i)
1/f ) and white

measurement noise (n
(i)
e ), such that the local noise in one channel was given by

n
(i)
local(t) = n(i)

α (t) + n
(i)
1/f (t) + n(i)

e (t). (4.4)

This noise was used in the SNR definition in Equation 4.3 for the EEG-simulations.

However, the noise that was used in the simulated signals in Equation 4.1 was further-
more mixed across the channels to imitate source leakage. The total noise in channel
1 was then given by

n1(t) = n(1)
α (t) +Hαn

(2)
α (t) + n

(1)
1/f (t) +H1/fn

(2)
1/f (t) + n(1)

e (t), (4.5)

and vice versa in channel 2, where Hα and H1/f are mixing constants. The spectral
density of the total noise and the resulting squared coherence between the channels
are seen in Figure 4.2. In Figure 4.3 two simulations using EEG noise can be seen for
different SNR.
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Figure 4.2: To the left: the spectral density of the total EEG noise in Equation 4.5. To
the right: the coherence between the total noise in the two channels.

4.2 Estimation of signal scaling parameter σ

In order to investigate the performance of the ScRe-Spec in Algorithm 3 using iterative
(J = 4) or non-iterative (J = 1) estimation and different concentration measurements,
simulations using white Gaussian noise and EEG noise were made. In the iterative
estimations, the maximum number of iterations in Algorithm 3 was set to J = 4,
and in the non-iterative estimations it was set to 1. The simulated signal amplitudes
were A1 = A2 = 1, and the relative phase ∆φ between the signals was randomly
drawn from U(−7π

8
, 7π

8
) in each trial. The initial window function parameters λj were

randomly drawn from U(30, 70) and the candidate signal scaling parameters were
σi = 30, 31, ...70. The concentration of the ScRe-Spec was evaluated over the whole
spectrogram.
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Figure 4.3: Two signals (blue and orange) of equal amplitude with phase-difference π/2
with added EEG noise according to Equation 4.5.

In Figure 4.4(a) and 4.5(a), the percentage of correctly estimated σ is plotted against
SNR for white noise and EEG noise respectively. In (b) the corresponding mean square
errors (MSE) are plotted, where the MSE of σ is defined as MSE = 1

M

∑M
m=1(σ− σ̂m),

where m denotes the m:th trial for given SNR.

For both white and EEG noise, we see that the estimations using GI perform poorly for
low SNR in comparison to RE and TFC. Non-iterative estimation using both RE and
TFC seems to be slightly more accurate, or about as accurate as iterative estimation
for low SNR. For low SNR, non-iterative estimation also appears to result in smaller
MSE. In the white noise simulations in Figure 4.4, the RE and the TFC using non-
iterative estimation result in similar amounts of correct estimations and similar MSE.
However, when simulations were made using EEG noise in Figure 4.5, the RE appears
to yield slightly more correct estimations for SNR larger than 5, whereas the TFC
measurement resulted in smaller MSE for low SNR.

The reason for this can be seen in Figure 4.6, where histograms of the estimated
signal scaling parameters σ̂ using non-iterative estimation with different concentration
measurements for SNR=-5 using EEG noise are shown. The RE seem to be slightly
more biased towards shorter estimations than the TFC, and more often picks the
smallest possible candidate σi.

From these simulations we draw the conclusion that non-iterative estimation of σ, in
addition to being computationally faster, is also generally more robust than iterative
estimation. As GI gave inaccurate estimations for low SNR, RE or TFC seem to be
the better choices for the σ-estimation part of the algorithm. As only 300 simulations
were used for each SNR, it is difficult to know whether one method is significantly
better than the other. As the RE is the more conventional choice for evaluating the
ScRe-Spec, this is the measurement that was chosen for this step in the algorithm as
well.
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Figure 4.4: The simulations were made using white Gaussian noise. In (a), the
percentage of correctly estimated σ is plotted against SNR. The signal scaling
parameter is considered to be correctly estimated if σ̂ ∈ [49, 51]. In (b) the
corresponding MSE is show.
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Figure 4.5: The simulations were made using EEG noise. In (a), the percentage of
correctly estimated σ is plotted against SNR. The signal scaling parameter is
considered to be correctly estimated if σ̂ ∈ [49, 51]. In (b) the corresponding
MSE is shown.
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Figure 4.6: Histograms of the estimated signal scaling parameter σ̂ for SNR = -5.
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4.3 Estimation of time-lag k

In order to investigate how the σ-estimation affects the estimation of k, the MPR
was evaluated for three different window scaling parameters, λ = σ̂ = 40, 50, 60.
The aim was moreover to investigate which concentration measurement of RE, TFC
and GI result in most robust estimations. The signal amplitudes were as before set
to A1 = A2 = 1 and the candidate time-lags were ki = −9,−8, ..., 9 corresponding
to phase-lags between −0.9844π and 0.9844π. The amplitudes were assumed to be
correctly estimated, such that A1 and A2 in the reassignment vectors in Equation 2.13
were set to 1.

4.3.1 White noise simulations

For the white noise simulations, the phase lags were randomly generated from U(−7π
8
, 7π

8
).

In Figure 4.7a, the percentage correctly estimated time-lags k̂ is plotted against SNR
for different concentration-measurements, and different window scaling parameters.
The estimation is considered to be correct if the error |k − k̂| is less than 1. Three
things are especially interesting in these plots.

1. The RE and the TFC perform equally well using a matched window, i.e. λ =
σ̂ = 50.

2. When σ is under-estimated, the accuracy drops for higher SNR, where the TFC
is least affected.

3. When σ is over-estimated, the accuracy drops for higher SNR, where the GI is
least affected and RE and TFC perform equally.

The same drop in accuracy occurs under the no noise circumstances as illustrated in
Appendix A.2. Although it at first appears strange, it is most likely the product of
violating the matched window assumption in the MPR. The different concentration
measurements seem to be more or less affected by this violation. Histograms of the
estimation errors (k − k̂) when σ̂ = 40 and SNR = 15 are shown in Figure 4.7c. It
can be seen that all concentration measurements (mostly) result in estimation errors
between -2 and 2 for this SNR. For the GI, no perfect estimations are made and most
estimations are two samples off. For the RE, few perfect estimations are made and
most estimations are one or two samples off. For the TFC, most estimations are one
sample off. The same behaviour occurs when the window is too long, with the only
difference being that GI is somewhat less affected.

This is not a major drawback for any of the concentration measurements as the error
is limited to two samples. From the MSE plots in Figure 4.7b, we see that RE and
TFC perform approximately equal. When the SNR decreases, as in Figure 4.7d, the
problem becomes negligible, and the number of perfect estimations increases for all
concentration measurements.

Furthermore, the simulated data was divided into two classes; they could either have
negative or positive relative phase. In order to investigate the performance of a binary
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Figure 4.7: White noise simulation results for estimation of k.
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classifier, the true positive classification rate (TPR) is plotted against the false positive
rate (FPR) for different thresholds in a so called receiver operating characteristic
(ROC) curve. In Figure 4.8a and 4.8b, ROC curves are plotted for different estimated
σ. In these plots, the MPRs ability to correctly classify the time-lag k as either positive
or negative is investigated. For SNR=-5, we see that the RE is preferable. As the
SNR increases however, the RE and TFC perform equally well.
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Figure 4.8: ROC curves for a binary classifier, where the time-lags are classified as either
negative or positive.

4.3.2 EEG noise with signals in phase

Due to source leakage, the noise in two EEG channels will have a phase difference of
zero. In order to investigate the different concentration measurements sensitivity to
this, the simulations were divided into the following two cases:

1. The signals have a relative phase of zero, ∆φ = 0, just as the noise.

2. The signals have a relative phase that is non-zero and positive, such that ∆φ ∼
U(π/8, 7π/8).

In Figure 4.9a, the zero-lag simulation results can be seen. The percentage of correct
estimations for all concentration measurements are high even for low SNR. This can be
explained by the additional zero-lag synchronization in the noise. For higher SNR when
σ̂ = 40 and σ̂ = 60, the proportion decreases due to violating the matched window
assumption discussed previously. In these cases the TFC seem to perform better than
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the other measurements. However, for low SNR the TFC performs poorly, and gets
relatively large MSE as seen in Figure 4.9b. The cause of this is seen in Figure 4.9c,
where the errors are more smeared out compared to the other measurements. Most
likely, the TFC is less sensitive to the zero-phase lag caused by the spectral leakage,
but instead makes more random estimations.

As before, the GI perform poorly for high SNR. As its MSE is relatively low, this
indicates that it consistently estimates lags close to zero.

The RE is somewhere in between the TFC and GI, as it perform similarly to GI for
low SNR and similarly to TFC for high SNR, when σ̂ = 50, 60.
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(b) Resulting MSE of the time-lag estimations k against SNR.
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(c) Histograms of the time-lag estimation error k − k̂ for SNR = 0, and σ̂ = 40.

Figure 4.9: EEG noise simulation results for estimation of k. The relative phase was zero.
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4.3.3 EEG noise with signals out of phase

In these simulations the relative phase was generated as ∆φ ∼ U(π/8, 7π/8). From
the percentage correct estimations in Figure 4.10a, we see similar results to the white
noise simulations. The MSE plots in 4.10b seem to differ however. In comparison to
the white noise simulations, the GI result in overall lower MSE relative to the other
measurements. The TFC result in somewhat higher MSE for low SNR.

From the histograms in Figure 4.10c and 4.10d, we see that most time-lags are under-
estimated for SNR=-5. This is explained by the zero-phase lag in the EEG noise.
Once again we see that the TFC is least affected by this. When the SNR=7.5, we see
that the GI still is under-estimating the time-lag, whereas the RE and the TFC make
fairly accurate estimations.

4.3.4 Negative or positive phase classification with EEG noise

In order to construct ROC curves for the binary classifier previously presented, EEG
simulations were made with relative phases generated from U(−7π

8
, 7π

8
). The resulting

ROC curves for different SNR and different estimated signal scaling parameters σ̂ can
be seen Figure 4.11. For really low SNR, when SNR = -5, the GI seems to make
slightly more correct classifications. When SNR increases to SNR=0, the TFC gets
slightly more accurate than both the RE and the GI for σ̂ = 50 and σ̂ = 60. As the
SNR increases even more, to SNR=5 and above, the RE and the TFC becomes equally
accurate.

4.3.5 Time-lag estimation conclusions

From the simulations we draw the following conclusions. In both the white noise and
EEG noise simulations, the GI displayed poor performance in comparison to the other
measurements.

Under the white noise circumstances, the RE and TFC displayed similar performance.
When the matched window assumption was violated and the window was smaller, the
TFC resulted in a higher number of correct estimations estimations than the RE for
large SNR, but the RE did not make errors larger than 2 samples. From the ROC
curves, the RE displayed slightly better performance than the TFC for low SNR.

Under the EEG noise circumstances, the RE seemed to be slightly more sensitive than
the TFC to zero-phase source leakage. However, maybe because of this, the TFC
resulted in a wider variety of estimations and displayed larger MSE for low SNR. In
the ROC curves their performance was approximately equal.

In conclusion the TFC was on par with the RE in terms of estimating time lag in the
MPR. It is therefore difficult to say which measurement is more suitable for this use.
As the RE is the more conventional choice for evaluating reassigned spectrograms, it
was used in the two-step algorithm in the following simulations.
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(c) Histograms of the time-lag estimation error k − k̂ for SNR = -5, and σ̂ = 40.
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(d) Histograms of the time-lag estimation error k − k̂ for SNR = 7.5, and σ̂ = 40.

Figure 4.10: EEG noise simulation results for estimation of k. The relative phase was
randomly generated from U(π/8, 7π/8).
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Figure 4.11: ROC curves for a binary classifier, where the time-lags are classified as
either negative or positive.
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4.4 Disturbance simulations - comparison with other

methods

Next, the two-step algorithm was compared to two other relative phase-estimation
methods presented in Section 2.3.2, the Hilbert transform and Pearson’s linear cor-
relation coefficient (CORR). These were evaluated in the same manner as the MPR,
i.e. different time-shifts ki were applied to the second signal and then the optimal
time-shift was chosen as the estimation. For the Hilbert transform, the mean value of
the instantaneous relative phases in Equation 2.29 was calculated for each time-shift
ki. The lag which gave minimum value was chosen as the estimation. The algorithm
was furthermore compared to Pearson’s linear correlation coefficient given in Equation
2.32. The time-lag which gave maximum correlation was used as the estimation.

In Figure 4.12, the correlation and Hilbert transform based measurements are plotted
when evaluated for a simulated signal without noise. We see that the measurements
either have a peak or a valley at the lag corresponding to the true relative phase. In
the Figure, the true phase was ∆φ = −0.1π.
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Candidate lag k
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Hilbert
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0

Figure 4.12: Illustration of how the time-lag, corresponding to the relative phase ∆φ, was
estimated.

The RE in the two-step algorithm was evaluated over t ∈ [1.25, 1.75] s and f ∈
[6.5, 7.5] Hz, whereas the other measurements were evaluated over t ∈ [1.25, 1.75] s.
In the two-step algorithm the candidate scaling parameters were σi = 30, 31, ..., 70, and
the amplitudes were estimated from the spectrogram. For all methods the candidate
time lags were ki = −9,−8, ..., 9. The signal of interest was simulated as before, with
A1 = A2 = 1, ∆φ ∼ U(−7π/8, 7π/8).

4.4.1 Disturbance in time

In addition to the simulated signal of interest with centre time t0 = 1.51 s, identical
disturbance signals with centre times td0 ∈ [1.51, 3.0] s were included. In channel 1,
the phase of the disturbance was φd1 = 5π/8 and in channel 2 it was φd1 = −5π/8.
An example is shown in Figure 4.13. White Gaussian noise, as well as EEG noise, was
added to evaluate the different relative phase estimation methods.

The white noise simulation results are seen in Figure 4.14. In (a), the percentage
correct estimations are plotted against SNR when the disturbance signal was close to
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Figure 4.13: Example of simulated signals with disturbance signals at td0 = 3.0 s.

the signal of interest. In (b) the disturbance signal was further away from the original
signal, making it easier for the methods to differentiate between the two. In (c), the
percentage correct estimations are plotted against a range of disturbance centre times
td0 when the SNR is kept constant at SNR = 5. The corresponding MSE of all these
plots are seen in Figure 4.15.

The same kind of plots but with EEG noise can be seen in Figure 4.16 and Figure
4.17.
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Figure 4.14: Results from white noise simulations. In (a) and (b), the percentage correct
estimations against SNR is shown. In (a), the disturbance signal is close in
time to the signal of interest, and in (b) it is far away. In (c), the SNR is
kept constant, and the percentage correct estimations are plotted against
the centre time of the disturbance signal. The centre time of the signal of
interest is t0 = 1.51 s.
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Figure 4.15: Corresponding MSE of the results in Figure 4.14.

From the white noise simulations in Figure 4.14, we see that all measurements, but
especially the 2-step algorithm, perform poorly when the disturbance signal is close
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in time. When the disturbance is far away, the two-step algorithm perform slightly
better for low SNR. The corresponding MSE in 4.15 reveal that although the Hilbert
transform gave more correct estimations than the two-step algorithm for high SNR, the
estimations from the two-step algorithm resulted in smaller MSE for the simulations
in (b) and (c).

In Figure 4.14(c), we see that the two-step algorithm is about equally bad for all
td0 < 2.0 s when SNR = 5. Even though the RE measurement window was set to t ∈
[1.25, 1.75] s, the algorithm wasn’t able to perform any better for disturbance signals
outside the window at td0 = 2.0 s, than for signals inside the window. Furthermore,
the performance of the two-step algorithm plateaus for td0 > 2.5 s, which is around 1
s after t0 = 1.51 s. The other methods seems to plateau slightly before this. Similar
results are seen in the EEG simulations Figure 4.16 and 4.17.
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Figure 4.16: Results from EEG noise simulations. In (a) and (b), the percentage correct
estimations against SNR is shown. In (a), the disturbance signal is close in
time to the signal of interest, and in (b) it is far away. In (c), the SNR is
kept constant, and the percentage correct estimations are plotted against
the centre time of the disturbance signal. The centre time of the signal of
interest is t0 = 1.51 s.
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Figure 4.17: Corresponding MSE of the results in Figure 4.16.

We try to gain additional insight about the two-step algorithm by looking at at Figure
4.18, where the cross-spectrograms and the optimal MPR of the same kind signals are
shown. The true time-lag was k0 = 0, which corresponds to ∆φ = 0, and no noise was
added. Although the signals are noise free and the matched window assumption is
fulfilled, the MPR have issues estimating the correct time-lag due to the disturbance
signal. The estimation errors in the figure is no more than 2 samples. The exact same
estimations were made using the TFC instead of the RE.
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Figure 4.18: The cross-spectrogram and corresponding MPR for a estimated time-lag k̂
for different disturbance times td0. The signals were simulated without
noise, and k0 = 0. In all plots λ = σ̂ = 50. In (a)-(b): td0 = 2.01 s. In
(c)-(d): td0 = 2.26 s. In (e)-(f): td0 = 2.51 s. The red squares illustrate the
window over which the RE was evaluated.

4.4.2 Disturbance in frequency

Similarly to the simulations in Sandsten et al. [5], disturbance signals with centre
frequency fd0 ∈ [4, 10] Hz, but centre time td0 = t0 = 1.51 s were included in these
simulations. As in the previous simulations, the phases were φd1 = 5π/8 and φd1 =
−5π/8. An example of the resulting signals are shown in Figure 4.19, where no noise
was added. In Figure 4.20 and 4.21, the results from the white noise and EEG noise
simulations are shown.
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Figure 4.19: Example of simulated signals with disturbance signals at td0 = 1.51 s with
centre frequency fd0 = 10 Hz.
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From both the white and EEG noise simulations, we see that the two-step algorithm
is superior to the other methods. This is unsurprising as the other methods are unable
to separate between signals in frequency domain, which was also noted in Sandsten
et al. [5]. Although the measurement window was set to f ∈ [6.5, 7.5] Hz, we see from
4.20(a) and 4.21(a) that the two-step method was unable to make correct estimations
when the disturbance was just outside the window, when fd0 = 7.75 Hz. When SNR
= 10 in Figures 4.20(c) and 4.21(c), we see that the two-step method is able to make
correct estimations for fd08 Hz and fd06 Hz, a bit outside the measurement window.
The number correct estimations plateau about fd0 > 8.5 Hz and fd0 < 5 Hz.

-10 0 10 20

SNR

0

20

40

60

80

100

c
o
rr

e
c
t 
e
s
ti
m

a
ti
o
n
s
 o

f 
la

g
 %

(a) f
d0

 = 7.75 Hz

2-step

CORR

Hilbert

-10 0 10 20

SNR

0

20

40

60

80

100

(b) f
d0

 = 10 Hz

4 6 8 10

f
d0

 [Hz]

0

20

40

60

80

100
(c) SNR = 10

Figure 4.20: Results from white noise simulations. In (a) and (b), the percentage correct
estimations against SNR is shown. In (a), the disturbance signal is close in
frequency to the signal of interest, and in (b) it is far away. In (c), the SNR
is kept constant, and the percentage correct estimations are plotted against
the centre frequency of the disturbance signal. The centre frequency of the
signal of interest is f0 = 7.0 Hz.
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Figure 4.21: Results from EEG noise simulations. In (a) and (b), the percentage correct
estimations against SNR is shown. In (a), the disturbance signal is close in
frequency to the signal of interest, and in (b) it is far away. In (c), the SNR
is kept constant, and the percentage correct estimations are plotted against
the centre frequency of the disturbance signal. The centre frequency of the
signal of interest is f0 = 7.0 Hz.

4.4.3 Discussion & conclusions

From the simulations we draw the conclusion that the two-step algorithm make su-
perior estimations compared to the other measurements when a disturbance signal in
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frequency is present. When a disturbance signal close in time is present, the two-
step algorithm only outperforms CORR and the Hilbert transform when the SNR
is low. When SNR is high, and the disturbance signal is adequately far away from
the signal of interest, the two-step algorithm make fewer correct estimations than the
other methods. However, it still results in smaller MSE than the Hilbert transform.
This indicates that the estimations from the two-step algorithm are more concentrated
around the true lag than the estimations using the Hilbert transform.

From these and previous simulations, two potential causes for the algorithm’s low
performance in high SNR have been observed:

1. Slight deviations to the lag-estimations due to incorrect estimations of the signal
scaling parameter σ by the ScRe-Spec, which leads to a violation of the matched
window assumption in the MPR.

2. The disturbance signal being too close to the signal of interest, violating the
assumed signal model in the MPR in Equation 2.20.

Although the algorithm doesn’t appear to be very robust against violating these as-
sumptions in high SNR, the errors are small, and the algorithm outperforms other
methods when SNR is low. The two-step method therefore seems to be a suitable
alternative to the other relative phase estimation methods when the signals can be
assumed to be oscillating Gaussian transients.

From the simulations we also observed that the algorithm was unable to make correct
estimations when the disturbance signal was too close to the signal of interest, even
though the disturbance centre time and frequency was outside the measurement win-
dow. As only one window size and one signal scaling parameter were used in these
simulations, it remains unclear how the evaluation window affects the estimations, and
if a better window could be chosen.

Some other differences between the two-step algorithm and the other methods are
also worth noting. As the two-step algorithm involves several FFT-computations and
the reassignment involves computations of rather large matrices, the two-step method
is significantly slower than the other methods. This is of course a huge drawback
in certain settings. To use this method, some prior information about the signal
is needed, such as time and frequency to determine a suitable window, frequency
to determine suitable candidate time-lags and signal scaling parameter to determine
suitable candidate sigmas.

However, with the increased computation time also comes more information. The
two-step algorithm is able to provide additional information, such as the signal scaling
parameter and the time and frequency of the maximum peak in the cross-spectrogram.

In future investigations the algorithm could also be compared to the coherence, which
similarly to correlation is used as a measurement of functional connectivity. As the
coherence measurement assumes stationary signals, which the studied transients def-
initely isn’t, this measurement was excluded from the simulations.
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5 Real data examples

After a final two-step algorithm had been constructed, it was tested on two types of
real EEG data.

5.1 Phase-estimation in multi-channel EEG with

flickering light

Three EEG data sets called bl1, bl2 and bl3 were investigated. The measurements
were recorded from 12 channels: F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, Oz and O2.
During the recordings, flickering light of 9 Hz was presented in front of a person with
closed eyes. The light was present for 1.4 s in bl1, 1.8 s in bl2 and 1.0 s in bl3. The
data was recorded with a sampling frequency of 256 Hz.

This kind of flickering light give rise to detectable event related oscillations (ERO) in
the brain, containing the same frequency as the presented light. One would expect
the ERO to first arise at the back of the head, as the primary visual cortex is located
there. Then the signal would spread and appear in other parts of the brain.

Time-frequency representations of the O2-channels are seen in Figure 5.1. For bl1 and
bl2, the flickering light signal is strong and visible in the plot. In bl3 it is not.

Figure 5.1: Spectrogram of the O2-channel of the different data sets bl1 bl2 and bl3,
using different window scaling parameters.

The two-step algorithm was used to estimate the signal lengths and time-lag. The
Fourier transform was evaluated in 1024 points and the RE was calculated over a
limited area f ∈ [f1, f2] = [8, 10] Hz. As the duration of the flickering lights were
known, the RE was calculated over those times and only a small set of candidates
were investigated. The data-set specific parameter choices are listed in Table 5.1. The
following candidate time-lags were investigated ki = −8,−7, ..., 8, which corresponds
to phase-differences between −0.5625π and 0.5625π if the frequency is assumed to be
9 Hz.
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Table 5.1: Parameters used for each data set. The corresponding signal scaling
parameters in Equation 2.4 as well as the flickering light durations are also
listed.

Set Initial λ [t1, t2] Candidate σ Corr. lengths Ref.
bl1 85 [6.7, 8.3]s {85, 86, ..., 105} {1.2095,..., 1.4941} s 1.4 s
bl2 115 [10.3, 12.3]s {115, 116, ..., 135} {1.6364,..., 1.9210} s 1.8 s
bl3 65 [4.6, 5.8]s {65, 66, ..., 85} {0.9249,..., 1.2095} s 1.0 s

All channels were compared to the O2-channel, placed at the back right of the head.
Note that, as the algorithm calculates the mean value of two estimated signal scaling
parameters, and one channels always was O2, this estimation will have an (unfairly)
large influence on these estimations. In order to get a more fair representation of the
estimated signals lengths, one should instead use the ScRe-Spec on each individual
channel.

The estimated signal lengths are presented in Table 5.2, and the estimated time-lags
in Figure 5.2 to 5.4. The signal lengths are slightly longer than the reference flickering
light durations for bl1 and bl2. This could be caused by many things. The estimations
of the signal-length in O2 could be too long, the signal length definition in Equation
2.4 could be an ill-suited conversion, or the electrical responses could simply be longer.
The signal lengths were under-estimated in bl3. This was expected as the signal was
difficult to see in Figure 5.1, and the ScRe-Spec is slightly biased towards shorter
window lengths in settings with low SNR.

Table 5.2: Estimated signal lengths using the two-step algorithm, where each channel was
compared to O2.

Channel pair bl1 bl2 bl3

F3-O2 1.4799 s 1.9068 s 1.0316 s
Fz-O2 1.4870 s 1.7787 s 0.9676 s
F4-O2 1.3518 s 1.9139 s 0.9534 s
C3-O2 1.4585 s 1.8641 s 0.9320 s
Cz-O2 1.4728 s 1.8641 s 0.9534 s
C4-O2 1.3874 s 1.8925 s 0.9320 s
P3-O2 1.4799 s 1.8427 s 0.9320 s
Pz-O2 1.4728 s 1.8783 s 0.9320 s
P4-O2 1.4372 s 1.8498 s 0.9320 s
O1-O2 1.4656 s 1.8143 s 0.9320 s
Oz-O2 1.4870 s 1.8925 s 0.9392 s
Mean 1.4528 s 1.8634 s 0.9489 s

From the resulting Figures, the patterns in bl1 and bl2 were expected. In both cases
the time-lag between F4 and O2 is 4, which corresponds to 15.6 ms or a relative phase
of 0.2813π. As the O2 signal wasn’t visible in the spectrogram in Figure 5.1, the
difficulty of estimating the time-lag increases, and it is expected for the estimations
to differ.
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Figure 5.2: Estimated
time-lags
compared to O2
in bl1.

Figure 5.3: Estimated
time-lags
compared to O2
in bl2.

Figure 5.4: Estimated
time-lags
compared to O2
in bl3.

5.2 Classification of two-channel auditory ERO

Next, the algorithm was used on the data set described in Persson [26]. In this data,
the subjects were first presented with visual stimulation. After 0.6 seconds, auditory
stimulation was presented in either left or right ear. Comparing two EEG oscillations,
one on each side of the head, it is possible that the presentation side may affect
the relative phase between them. This example aims to explore the possibilities of
determining the auditory presentation side from EEG recordings alone, recorded on
opposite sides of the head.

5.2.1 Description of data

Data from subject 10 was used, containing recordings from 352 trials and 60 channels.
The sampling rate was 1000 Hz during recording, but was later downsampled to 500
Hz. A high-pass filter at 0.1 Hz was applied and the data was baseline corrected using
the average. Line-noise at 50 Hz was reduced and artefacts were manually removed.
Independent component analysis (ICA) was used to remove other artefacts. A more
detailed description of the data acquisition and pre-processing can be found in Persson
[26].

5.2.2 Procedure

In contrast to the previous example, the time and frequencies of the EROs were un-
known. The first step was therefore to find relevant signals which were induced by
the auditory stimulation. In order to estimate relative phase, the signals should be of
the same frequency and be phase-synchronized. Although it is uncertain whether the
ERO would be of the same frequency in each trial, this was assumed in order to limit
the number of possible signal locations.
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A relevant frequency interval as well as relevant channels were found through the
following procedure:

1. In order to separate between visual and auditory ERO, the data was divided
into ’time after visual onset’, between 0 and 0.6 s, and ’time after auditory
onset’ between 0.6 and 2 s. The data-sets were down-sampled to 250 Hz.

2. The data sets were then band-pass filtered. Forward-backward filtering was
applied using filtfilt in MATLAB, with a 2:nd order Butterworth bandpass
filter (that is, a 4:th order IIR filter) using butter. Filtering was applied for
several 3 Hz frequency intervals, ranging from 2 Hz to 15.5 Hz.

3. The PLI was then calculated between opposite EEG-channels for each frequency
band, and was averaged over all trials.

In Figure 5.5, some plots of the PLI for a specific frequency band can be seen. To the
left is the PLI during times with visual stimulation and to the right during auditory.
As described previously, the PLI was calculated between opposite EEG-channels which
explains the symmetry. When the frequency band is f ∈ [8, 11] Hz in (a), no strong
synchronization is present except during visual stimulation.

In (b), when f ∈ [9.5, 12.5] Hz, there are synchronized oscillations during auditory
stimulation exclusively. Some of these are also present in (c), when f ∈ [11, 14] Hz.
therefore FT7-FT8, C3-C4 and AF3-AF4 were chosen as suitable channel-pairs for
frequencies between 9 and 14 Hz.

The two-step algorithm parameters were first ”calibarated” on the AF7-AF8 trials.
A few different λ, evaluation window sizes, candidate signal scaling parameters and
candidate time-lags were investigated during this step. Some suitable parameters
were then chosen and used on all trials for all three channel-pairs. The RE evaluation
window was set to t ∈ [0.6, 1.5] s and f ∈ [9, 14] Hz. The data was once again
downsampled to fs = 250 Hz. The STFT were evaluated in 1024 points and the
initial window scaling parameter was set to λ = 35. The following candidate scaling
parameters were investigated, σi = {25, 26, ..., 40}, corresponding to signal lengths
between 0.3643 and 0.5828 s.

The aim was classify whether sound was presented in the left or the right ear by estim-
ating the relative phase between corresponding ERO. Keeping the left channel EEG
oscillation fix, the right channel was shifted in time in the algorithm. An illustration
of this can be seen in Figure 5.6 where the blue signal, called signal 1, is fix. The
orange signal called signal 2 has a phase that is φ2 = φ1 + ∆φ, where ∆φ > 0 in the
left plot and ∆φ < 0 in the right. The sound was thus considered to come from the
right ear (orange signal) if the estimated time-lag was positive, and from the left ear
if the time-lag was negative.

The candidate time-lags investigated were ki = {−9, 8, ...,−1, 1, 2, ..., 9}, where the
zero-lag was excluded in order to always be able to make a classification. For 9 Hz
signals, a time-lag of 9 corresponds to a relative phase of 0.648π, and for 14 Hz signals
it corresponds to a relative phase of 1.0008π.
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(a) PLI was calculated for filtered signals with cutoff-frequencies [8, 11] Hz.

(b) PLI was calculated for filtered signals with cutoff-frequencies [9.5, 12.5] Hz.

(c) PLI was calculated for filtered signals with cutoff-frequencies [11, 14] Hz.

Figure 5.5: A selection of topographical maps of the PLI between opposite channels. In
the left plots PLI was calculated for signals between 0 and 0.6 s, and in the
right plots between 0.6 and 2.0 s.
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Figure 5.6: Plots of signal pairs with different phase. In (a) ∆φ > 0 and in (b) ∆φ < 0.
In (a), signal 2 ”comes before” signal 1, and vice versa in (b).
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5.2.3 Results

In Table 5.3, the proportion correctly classified trials are listed, as well as the cor-
responding p-value for a binomial distribution with n = 352 trials and probability
p = 0.5. If the classifications are random, it should be equally likely for the trial to be
classified as ”left”, that is when k̂ = {−9,−8, ...,−1}, or right, when k̂ = {1, 2, ..., 9}.
In the column called ”total” the total proportion correct classifications are listed. In
”left” and ”right” the proportion correct classifications from respective sound-side are
listed. In 174 trials, the word was presented in the left ear and in the remaining 178
trials, the word was presented in the right ear.

Table 5.3: In the first column, the channel pairs are listed. To the right, in column two
and three, is the proportion correctly classified trials when the true sound side
was either left or right. The total proportion correct classifications are listed in
column four. The corresponding p-value for a binomial distribution with
probability p = 0.5, is shown in the last column.

Channel-pair left right total p-value

TF7-TF8 0.6092 0.5393 0.5739 0.0023
C3-C4 0.6034 0.5225 0.5625 0.0082

AF3-AF4 0.5460 0.6067 0.5767 0.0017

For all channel-pairs, around 57% of the trials were correctly classified. Although
these stats aren’t very good for a usable classifier, it could be an indication that the
algorithm does find some signals which have different relative phases depending on the
presented sound side.

Another less exciting explanation could be that the algorithm classified noise present
in all channels due to source leakage. Then, the algorithm was calibrated to make the
noise seem like a reasonable classifier, which was also found in the other channels.

To further investigate the validity of these findings, it would be interesting to test the
algorithm on other subjects in the study, using the same parameters. It would also be
interesting to test the algorithm on a simpler data set without visual stimulation and
with simpler auditory stimulation.

The signal scaling parameters were on average estimated to 35, which is the same as
the initial window scaling parameter. At the time of writing, it is unknown whether
this is a coincident or not.
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6 Conclusions

6.1 Which TF-concentration measurement is best

suited for evaluation?

From the initial simulations, we found that the RE and the TFC displayed similar
performance in both parts of the two-step algorithm. The measurements were almost
identical for the white noise simulations, except that the TFC gave a higher num-
ber of correct estimations estimations when the signal scaling parameter was under-
estimated. During the EEG noise simulations it moreover appeared to be less sensit-
ive to source leakage, but generally resulted in more random estimations which gave
slightly larger MSE. This is reasonable as the other measurements instead estimated
the source leakage zero-lag. Although the RE was ultimately used, the TFC could
possibly be a more suitable option.

6.2 How accurate is the two-step algorithm in com-

parison to other methods?

The two-step algorithm showed superior performance when disturbance signals close
in frequency was present. This is of course reasonable as the other methods were
limited to the time-domain, and unable to separate signals in frequency. In this sense,
it is possible that the two-step algorithm had an unfair advantage, as the signals are
represented in TF-domain.

The algorithm was more sensitive to disturbances close in time than the Hilbert trans-
form and Pearson’s linear correlation coefficient. To what extent this is something
inherent to the method, and how it is affected by the chosen evaluation window should
be further investigated.

The two-step algorithm resulted in more accurate estimations when the SNR was low
and any disturbance was adequately far away from the signal of interest. In high
SNR, the other methods were more accurate. As the resulting MSE of the algorithm
estimations still was lower than the MSE from the Hilbert transform, it is reasonable
to believe that the matched window assumption was violated in some cases, causing
the estimations to deviate one or two samples. When precise estimations are required
in high SNR settings, this is of course a problem. However, if the SNR is high, there
may be more information available about the signal envelope, and it would perhaps
be unnecessary to estimate the signal scaling parameter.

The method furthermore assumes the signals to be Gaussian, which isn’t always ap-
plicable.
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6.3 Is it possible to estimate phase-lag between

EEG-signals using the two-step algorithm?

From the flickering light example, we saw that the algorithm indeed could estimate the
phase-lag with reasonable results. However, the practicality of the method is worth
discussing.

First of all, the method is very slow compared to for example the Hilbert transform.
The algorithm is thus ill-suited for exploratory purposes. Furthermore, the algorithm
requires some prior information about the signals of interest, such as its location in
time and frequency, and preferably also a suitable signal scaling parameter. Only then
can the initial parameters be set efficiently.

In EEG, the Hilbert transform is mainly used in phase-synchronization measurements
such as PLI and PLV. Whether the two-step method or the MPR could be used for
similar purposes could be further investigated.

All concentration measurements in the MPR in the two-step algorithm were affected by
source leakage and became more or less biased towards zero-lag. This could possibly
be reduced if the algorithm was combined with a spatial filter to remove spurious
connectivity, such as the surface Laplacian.
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A Appendix

A.1 Derivation of Matched Phase Reassignment

variant

In the beginning of the thesis, a combination of the MPR and ScRe-Spec was used to
estimate (σ, k) in a grid of candidates. A short derivation of this method is presented
here.

Assume two signals described by

yn(t) = Anx(t)e−iφn (A.1)

where An is the amplitude and φn is the phase and x is a transient signal given by

x(t) = a(t− t0)e−iω0t (A.2)

where to, f0 are the centre time and frequency, and a describes the signal envelope.
The cross-spectrogram between two such signals is as usual given by

Shy1,y2(t, ω) = F h
y1

(t, ω)(F h
y1

(t, ω))∗, (A.3)

where F h
yn is the STFT with some window function h. In Sandsten et al. [5], the

general reassigned cross-spectrogram is given by

RShy1,y2(t, ω) =

∫ ∫
|Shy1,y2(s, ξ)|δ(t− t̂y1,y2(s, ξ))δ(ω − ω̂y1,y2(s, ξ))dsdξ, (A.4)

with the following reassignment vectors

t̂y1,y2(t, ω) = t+ ct<

(
F th
y1

(t, ω)

F h
y2

(t, ω)
+
F th
y2

(t, ω)

F h
y1

(t, ω)

)
(A.5)

ω̂y1,y2(t, ω) = ω − cω=

(
F

dh/dt
y1 (t, ω)

F h
y2

(t, ω)
+
F

dh/dt
y2 (t, ω)

F h
y1

(t, ω)

)
, (A.6)

where

F h
yn(t, ω) = Ane

−iφnF h
x (t, ω) (A.7)

F th
yn(t, ω) = Ane

−iφnF th
x (t, ω) (A.8)

F dh/dt
yn (t, ω) = Ane

−iφnF dh/dt
x (t, ω). (A.9)

In Brynolfsson and Sandsten [7] explicit expressions of the STFT are derived. Assum-
ing x is given by an oscillating Gaussian transient such that

x(t) = gk(t) = e
− (t−tk)

2

2σ2
k e−jωkt, (A.10)
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and the window function in the STFT is set to h(t) = e−t
2/2λ2 1

π−1/4
√
λ
, the STFT are

given by

F h
x (t, ω) =

√
2λσ2

k

√
π

λ2 + σ2
k

e
− 1

2

(
1

λ2+σ2
k

(t−tk)2+
λ2σ2k
λ2+σ2

k

(ω−ωk)2
)
e
−i (ω−ωk)(σ

2
kt+λ

2tk)

λ2+σ2
k (A.11)

F th
x (t, ω) = − λ2

λ2 + σ2
k

(t− tk + iσ2
k(ω − ωk))F h

x (t, ω) (A.12)

F dh/dt
x (t, ω) = − 1

λ2
F th
x (t, ω). (A.13)

Inserted into Equation A.5 and A.6, the reassignment vectors can be simplified to

t̂(t, ω) = t− ct
A2

1 + A2
2

A1A2

λ2

λ2 + σ2
k

cos (φ2 − φ1)(t− tk) = t− ctK(t− tk) (A.14)

ω̂(t, ω) = ω − cω
A2

1 + A2
2

A1A2

σ2
k

λ2 + σ2
k

cos (φ2 − φ1)(ω − ωk) = ω − cωL(ω − ωk). (A.15)

When ∆φ = (φ2−φ1) = 0, ct = A1A2

A2
1+A2

2

λ2+σ2
k

λ2
and cω = A1A2

A2
1+A2

2

λ2+σ2
k

σ2
k

optimal reassignment

is achieved. This is simply a combination of the reassignment vectors derived in
Sandsten et al. [5] and Brynolfsson and Sandsten [7].

The idea was to estimate the signal scaling parameters and relative phase from a grid
of candidates (σk, i, ki). For each candidate scaling parameter, the STFT would be cal-
culated. Then, the reassigned cross-spectrogram using the new reassignment-vectors
would be calculated for each candidate lag ki and evaluated using some concentration
measurement.

Calculating the RE of the MPR variant

To simplify calculations, the constants in the reassignment vectors were collected in
K and L in Equation A.14 and A.15. All the following expressions are mostly variants
of the calculations in Brynolfsson and Sandsten [7].

Inserting the STFT expression in A.7 into the absolute value of the cross-spectrogram
in A.3, it is simplified to

|Shy1,y2(t, ω)| = |F h
y1

(t, ω)(F h
y2

(t, ω))∗| = A1A2|ei(φ2−φ1)F h
x (t, ω)(F h

x (t, ω))∗| = A1A2S
h
x(t, ω)

Inserting this, and the reassignment vectors in Equation A.14 and A.15 into Equation
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A.4, the reassigned cross-spectrogram can be further expressed as

RShy1,y2(t, ω) = A1A2

∫ ∫
Shx(τ, ξ)δ(t− τ + ctK(τ − tk))δ(ω − ξ + cωL(ξ − ωk))dτdξ

= A1A2

∫ ∫
Shx(τ, ξ)

δ(τ − t−ctKtk
1−ctK )

|1− ctK|
δ(ξ − ω+cωLωk

1−cωL )

|1− cωL|
dτdξ

= A1A2

Shx( t−ctKtk
1−ctK , ω+cωLωk

1−cωL )

|1− ctK||1− cωL|

=
A1A2σkλ

√
π

(λ2 + σ2
k)|1− ctK||1− cωL|

e
−
(

1

λ2+σ2
k

(
t−ctKtk
1−ctK

−tk)2+
λ2σ2k
λ2+σ2

k

(
ω+cωLωk
1−cωL

−ωk)2
)

=
A1A2σkλ

√
π

(λ2 + σ2
k)|1− ctK||1− cωL|

e
−
(

(t−tk)
2

(λ2+σ2
k
)(1−ctK)2

+
λ2σ2k(ω−ωk)

2

(λ2+σ2
k
)(1−cωL)2

)
.

The aim was then to insert this into the Rényi entropy given by

RE =
1

1− α
log2

∫ ∫ (
S(t, ω)∫ ∫
S(t, ω)dtdω

)α
dtdω, (A.16)

where α = 3. Starting with the integral we get

∫ ∫ (
RShy1,y2(t, ω)∫ ∫
RShy1,y2(t, ω)dtdω

)3

dtdω =

=

∫ ∫  e
−
(

(t−tk)
2

(λ2+σ2
k
)(1−ctK)2

+
λ2σ2k(ω−ωk)

2

(λ2+σ2
k
)(1−cωL)2

)

∫ ∫
e
−
(

(t−tk)2

(λ2+σ2
k
)(1−ctK)2

+
λ2σ2

k
(ω−ωk)2

(λ2+σ2
k
)(1−cωL)2

)
dtdω


3

dtdω.

Denoting the constants in the exponentials as At = 1/((λ2 + σ2
k)(1 − ctK)2) and

Aω = λ2σ2
k/((λ

2 + σ2
k)(1− cωL)2), the nominator is simply calculated to∫ ∫

e−At(t−tk)2−Aω(ω−ωk)2dtdω =

∫
e−At(t−tk)2dt

∫
e−Aω(ω−ωk)2dω

=

√
π

At

√
π

Aω

=
π(λ2 + σ2

k)|1− ctK||1− cωL|
λσk

.

This is constant and can be moved outside the integrals. Similarly∫ ∫ (
e−At(t−tk)2−Aω(ω−ωk)2

)3

dtdω =

∫
e−3At(t−tk)2dt

∫
e−3Aω(ω−ωk)2dω

=

√
π

3At

√
π

3Aω

=
π(λ2 + σ2

k)|1− ctK||1− cωL|
3λσk

.

47



Then,∫ ∫ (
RShy1,y2(t, ω)∫ ∫
RShy1,y2(t, ω)dtdω

)3

dtdω =

=
λ3σ3

k

π3(λ2 + σ2
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)
,

where L and K was expressed fully.
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A.2 Estimation of time-lag k with no added noise

In Section 4.3, the MPR was used to estimate time-lag. When the matched window
assumption was violated, the number of exactly correct estimations decreased. This
can be seen also when no noise is added.
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(c) σ̂ = 60

Figure A.1: Resulting concentration measurements of MPR with different applied
time-lags k. The true phase-difference is zero, and thus the true time-lag is
k0 = 0, which is marked with a red dashed line. In (a), (b) and (c), different
window functions σ̂ in the STFT in the MPR are used.

I Figure A.1a to A.1c, the considered concentration measurements are evaluated over
MPR for different time-lags k. The signals were simulated as in Section 4.3, with
σ = 50 but with no added noise and the relative phase was set to zero, which cor-
responds to zero time-lag. When the window is matched as in (a), λ = σ̂ = σ, all
concentration measurements find the correct time-lag. However, when the matched
window assumption is violated, as in (b) and (c), λ = σ̂ 6= σ, a small peak or valley
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appears for the correct time-lag.

In Figure A.2, two MPR are plotted with window scaling parameters σ̂ = 60, but with
different time-shifts k. In (b), the MPR is made when one signal has been shifted
k = 0 samples, which is the true phase-lag that we aim to estimate. In (a) however,
the MPR is made with time-shift k̂, which is the lag that minimised the RE. Through
visual assessment of the MPRs, we see that the RE made a reasonable estimation as
the MPR with k = 1 looks more concentrated. Thus the estimation errors are not the
fault of the concentration measurements, but the fault of the reassignment when the
matched window assumption isn’t fulfilled.

Figure A.2: MPR with σ̂ = 60 (True scaling parameter is σ = 50) but different
time-shifts k.
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A.3 Amplitude estimation

When testing the ScRe-Spec and MPR through simulations, the amplitudes were both
one and assumed to be known. In this simulation, the entire and final two-step al-
gorithm was used to estimate the time-lag k between two signals with different amp-
litudes. The amplitudes were set to A1 = 1 and A2 = 0.5. Phase and relative phase
were generated as φ1 ∼ U(−π, π) and ∆φ ∼ U(−7π/8, 7π/8).

In Figure A.3, the estimation results using white noise can be seen. The same plots
but using EEG noise in the simulations are seen in Figure A.4. From the white noise
plot, we see that the algorithm which estimates amplitude from the spectrogram show
superior performance. From the EEG simulations, the amplitude estimations from the
spectrogram and time-series perform equal.

As the amplitude estimates from the spectrogram were better or as good as the estim-
ations from the time representation, it was chosen as the estimation method of choice
in the two-step algorithm.
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Figure A.3: Estimation of time-lag k using 2-step algorithm with the RE. The signals
were simulated using white noise, and A1 = 1 and A2 = 0.5. In the algorithm
the signals are estimated as ones, as the maximum amplitude in time or as
the square root of the maximum amplitude in the spectrogram.

51



-5 0 5 10 15 20

SNR [dB]

0

20

40

60

80

100

C
o

rr
e

c
t 

e
s
ti
m

a
ti
o

n
s
 o

f 
la

g
 k

 [
%

]

(a)

-5 0 5 10 15 20

SNR [dB]

0

5

10

15

20

25

30

M
S

E
(b)

ones

time

spectr

Figure A.4: Estimation of time-lag k using 2-step algorithm with the RE. The signals
were simulated using EEG noise, and A1 = 1 and A2 = 0.5. In the algorithm
the signals are estimated as ones, as the maximum amplitude in time or as
the square root of the maximum amplitude in the spectrogram.
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