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Abstract

Intrinsically disordered proteins (IDPs) are widely believed to play a key role in the for-
mation of intracellular biomolecular condensates through liquid-liquid phase separation
(LLPS). Furthermore, it has been shown in vitro that several IDPs are able to phase sepa-
rate on their own. Computational modeling offers unique opportunities to investigate the
driving forces and sequence-dependence of IDP LLPS. Prior computational studies have
mainly focused on one-component systems. In this thesis, using a coarse-grained model,
we investigate the aggregation behavior of systems composed of two hydrophobic/polar
sequences, called A and B. On their own, sequence A forms droplets of a dense bulk phase,
whereas sequence B forms micellar aggregates. Using Monte Carlo simulations, we in-
vestigate the competition between these two aggregation mechanisms in mixed systems
containing both sequences. Keeping the total number of chains fixed, we monitor the
transition from sequence A-dominated droplet formation to sequence B-dominated micel-
lization as the fraction of sequence B chains is increased. The transition entails major
changes in both internal organization and size of the observed aggregates, and we find that
a variety of intermediate species exist.



Popular science description

The interior of cells, the basic structural and functional unit of living things, contains
various subunits called organelles. Classical organelles, such as chloroplasts and mitochon-
dria, are separated from their surroundings by a membrane. Recent experimental advances
have shown that, in addition, there exist organelles that lack a surrounding membrane and
rather behave as liquid droplets, as was first demonstrated about a decade ago. These
membraneless bodies harbour high concentrations of proteins and nucleic acids, and serve
as an important complement to classical organelles in the internal organization of cells.
Their formation amounts to a phase separation, with the droplet and its background rep-
resenting two distinct liquid phases, like a droplet of oil in water. Over the past decade,
the character and function of membraneless organelles have become subjects of intense
interest.

Currently, it is widely believed that intrinsically disordered proteins (IDPs) play an im-
portant role in biomolecular phase separation. Despite their lack of a well-defined 3D
structure, IDPs are able to perform a variety of biological functions. Moreover, they fre-
quently occur in membraneless organelles, and several such IDPs have been shown capable
of generating droplets on their own. However, the ability of IDPs to phase separate has
been shown to depend not only on their amino acid composition but also on the ordering
of the amino acids along the protein sequence. Understanding this sequence-dependence is
an important, largely unsolved problem. Some of the so far most extensively studied IDPs
are linked to neurodegenerative diseases. The misfolding and aggregation of these IDPs
may have a causative role in diseases such as Alzheimer’s and Parkinson’s. A potential
phase separation could influence the aggregation properties of these disease-linked IDPs.

Exploring the mechanisms of biomolecular phase separation in realistic cellular environ-
ments is a challenge. To be able to investigate the basics of biomolecular phase separation,
many experimental and computational studies have therefore focused on idealized systems
with a single component, typically an IDP. Such studies have, in particular, provided in-
sight into how the ability to phase separate depends on the amino acid sequence. However,
droplets inside cells are more complicated, as they contain several different proteins as well
as nucleic acids. In this thesis, we explore the phase behavior of a two-component system
composed of two IDPs, using a simple coarse-grained model. By computer simulations for
a fixed total number of molecules, we in particular investigate how the behavior of this
system varies with the relative amount of the two components. We show that both the
size and character of the clusters formed in these systems depend strongly on the relative
amount of the two sequences.
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1 Introduction

In addition to classical membrane-bound organelles, eukaryotic cells contain a variety of
membrane-less compartments or organelles, also known as biomolecular condensates [1].
Examples of such condensates include nucleoli [23] and Cajal bodies [25] in the cell nucleus,
as well as cytoplasmic bodies such as P granules [2]. In 2009, a seminal study demonstrated
that P granules form by a liquid-liquid phase separation (LLPS) process [2], which gener-
ates a high-density droplet of proteins and nucleic acids. Today, it is believed that LLPS is
a frequent and significant regulating principle for biomolecular condensates, and therefore
for the compartmentalization of cells. Furthermore, other membrane-less structures such
as signalling complexes [12], centrosomes [32], membrane receptor clusters [26]share sim-
ilar mechanisms. A functionally important consequence of the liquid-like nature of these
structures is that they can exchange matter with the surrounding medium. LLPS has also
been suggested to play a role in pathological protein aggregation related to neurodegen-
erative diseases, such as amyotrophic lateral sclerosis (ALS) [11, 13], Alzheimer’s disease
and Parkinson’s disease. Therefore, it is of great importance to understand the underlying
biophysical mechanisms of LLPS.

There is mounting evidence that intrinsically disordered proteins (IDPs) play a vital role in
driving phase separation in vitro [19, 16, 3] and in vivo. To elucidate the mechanisms of IDP
LLPS, various theoretical and computational approaches have been employed. Two widely
used analytical approaches are Flory-Huggins theory [9, 8], which describes the demixing
of homopolymers in aqueous solution, and its extension by Voorn and Overbeek [20] to
systems composed of two oppositely charged polymers. However, both these methods are
based on mean-field theory, and insensitive to the ordering of amino acids along the chains.
Another avenue is provided by the random phase approximation [30]. Lin et al. applied this
method to explore how the distribution of charge along polyampholyte chains influences
their phase behaviour [14]. A more general but computationally costlier approach to the
study of IDP LLPS and its sequence-dependence is by biomolecular simulations based on
coarse-grained models with explicit chains. Recent years have seen an increasing number
of such studies, most of which have focused on one-component systems where all chains
share the same sequence.

Nevertheless, a living cell is a multi-component entity, and our exploration of LLPS should
not be limited to one-component systems. In this thesis, we used Monte Carlo methods
to explore the aggregation behaviour of two-component systems in a coarse-grained hy-
drophobic/polar (H/P) model. In the systems considered, both components are 10-bead
HP chains, and share the same composition. Specifically, we consider the alternating se-
quence (HP)5 and the block sequence H5P5, called A and B, respectively. For a fixed
total number of chains, we studied how the aggregation behaviour depends on the relative
amount of A and B chains. One-component systems of either A or B chains have previously
been studied using the same biophysical model [17, 18]. By finite-size scaling analysis of
simulation data obtained for different system sizes, it was demonstrated that sequence A
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phase separates, while sequence B does not do so [17, 18]. Qualitatively similar results were
obtained in another study of one-component systems of HP chains, in which 37 different
20-bead HP sequences were considered [24]. A previous study of two-component systems
was performed by Chan and coworkers [21], who focused on electrostatic forces rather than
hydrophobicity.

The pure sequence A and pure sequence B systems are known from before to show very
different aggregation behaviours. The pure sequence A system forms a single dominant
droplet of a dense bulk phase, whereas the pure sequence B system forms several smaller
aggregates with a micellar structure. In this thesis, we investigated the transition between
these two types of behaviour, by numerical simulations for different A to B ratios, for a
fixed total number of chains.

2 Methods

2.1 IDPs

Intrinsically disordered proteins (IDPs) are known to be a major driver of intracellular
phase separation, and to be enriched in membraneless organelles [29]. They may be fully
unstructured or contain large unstructured regions. In contrast to folded proteins with
a well-defined 3D structure, IDPs are characterized by low-complexity, often repetitive,
amino acid sequences.

Besides their role in phase separation, IDPs can perform several essential biological func-
tions as a complement to folded proteins under physiological conditions [28]. It has been
found that intrinsically disordered regions of eukaryotic proteomes are enriched in so-called
short linear motifs (SLiMs) comprising approximately 3–10 amino acids, which act as bind-
ing sites and play important roles in cellular signaling [6, 5]. For example, the Axin scaffold
protein recruits other proteins by their binding to a long intrinsically disordered region [31].

Statistically, IDPs tend to have a relatively high fraction of charged residues, which holds
true for phase separating IDPs as well. Indeed, it has been shown that electrostatic inter-
actions can be crucial in driving IDP LLPS [14]. However, there are also other interactions
that can serve as the main driver of IDP LLPS, an example being interactions between aro-
matic amino acids. In this thesis, we consider a simple hydrophobic/polar protein model.
Hydrophobicity is known to be a key factor in protein folding [15], and the set of hydropho-
bic amino acids include the ones usually classified as aromatic (phenylalanine, tryptophan
and tyrosine).
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2.2 Biophysical model

The lattice-based HP model has been widely used for elucidating basics of protein fold-
ing [7]. Here, the protein is represented by a self-avoiding chain of hydrophobic (H) or
polar (P) beads on a lattice. In this thesis, we study the aggregation behavior of hy-
drophobic/polar chains in a simple off-lattice model. As in the lattice HP model, each
amino acid is represented by a single bead, which reduces the size of the configuration
space and makes it possible to study systems with a relatively large number of chains.

Using this model, we investigate mixed two-component systems, containing two different
HP sequences. One is the alternating sequence (HP)5, called A, and the other is the block
sequence H5P5, called B. The length of the bonds between adjacent beads in the chain,
called b, is kept fixed. All beads are hard spheres with a diameter rd = 0.75b. If a bead
pair is at a distance rij < rd, the potential becomes infinite. In addition to the hard-
core repulsion, HH pairs have an attractive interaction. The range of this interaction is
rh = 2b. HP and PP pairs interact only through the hard-core repulsion. Therefore, the
pair potential of the simulated system, Eij, and total energy, E, can be formulated as

Eij =


∞, if rij < rd,
uij, if rd < rij < rh,
0, if rij > rh,

(2.1)

E =
∑
i<j

Eij (2.2)

Here, uij = −ε for HH pairs (ε > 0), while uij = 0 for HP and PP pairs. Throughout the
paper, we express energies and lengths in units of ε and b, respectively.

2.3 Simulation techniques

We performed explicit-chain Monte Carlo (MC) simulations of this model in the canonical
ensemble (fixed NV T ), to explore the thermodynamic behavior of mixtures of sequence A
and B chains. For each choice of N , V and T , we performed a simulation run comprising
between 1–3 MSW, where MSW stands for million sweeps. In all cases, the analysis is
based on averaging over the last 0.8 MSW, discarding the initial part of the runs for
thermalization. Each sweep consists of a fixed number of attempted elementary moves,
which is set equal to the total number of beads.

The move set consists of seven elementary updates. Three of these, called one-bead, two-
bead and pivot-type moves, alter the internal structure of individual chains. The one-bead
move updates the position of a randomly selected bead, excluding the end beads of a chain.
This move is around the axis formed by its nearest neighbours. Likewise, the two-bead
move updates the location of two consecutive beads along the chain. Finally, the pivot
update rotates one part of the chain relative to the rest. The remaining four updates
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are rigid-body translations or rotations of whole chains or a cluster of chains. In the
cluster updates, the cluster construction is stochastic, following a Swendsen-Wang-type
procedure [10, 27]. The resulting cluster is subject to a rigid-body rotation or translation,
which is accepted whenever this attempted move does not cause any steric clashes. Note
that the choice of weights in the probabilistic cluster construction is such that detailed
balance is automatically fulfilled, without having to use any Metropolis accept/reject test.
All our other elementary moves use a Metropolis test to ensure that detailed balance is
fulfilled.

2.4 Data analysis

To analyse the aggregation properties, the simulated multi-chain configurations were di-
vided into clusters of interacting chains. All analyses were carried out using MATLAB (v.
R2020a).

2.4.1 Periodic boundary conditions

All simulations were carried out assuming periodic boundary conditions in all three di-
mensions. The boundary conditions must be taken into account in computing the distance
between a pair of beads. Consider a cubic box, 0 < x, y, z < L, and let (x1, y1, z1) and
(x2, y2, z2) be two points in that box. The distance between the two points is then computed
as d =

√
d2x + d2y + d2z, with dx = min(|x1 − x2|, L − |x1 − x2|) and analogous expressions

for dy and dz.

Keeping track of the periodic boundary conditions is important when analyzing the distri-
bution of beads within clusters (see below). For this analysis, for convenience, we translated
each observed cluster of interest so that its centre of mass is at the centre of the simulation
box, by a two-step procedure. The purpose of the first step is to put the cluster sufficiently
close to the box centre that periodic copies of the systems can be ignored in the subse-
quent calculations. To this end, we constructed 1D histograms of the beads belonging to
the given cluster in all three dimensions. In each dimension (x, y or z), the beads are
then shifted, taking periodicity into account, so as to have the bin with most beads at the
centre of the box. After this approximate centring, in the second step, the centre of mass
can be computed without keeping track of periodicity. A final rigid-body translation of
the cluster brings its centre of mass to the centre of the box.

2.4.2 Cluster mass distributions

We divided the chains into clusters based on chain-chain contacts. Any pair of chains
deemed in contact must end up in the same cluster. To decide whether two chains are
in contact, we counted the number of HH bead contacts between the two chains. Two
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H beads are said to be in contact if they have a non-zero pair energy Eij, which holds if
rij < rh (see Eq. 2.1). Finally, we say that the two chains are in contact if there are nHH

or more HH bead contacts between them.

The division of a given configuration into clusters is done iteratively. When a cluster has
been identified, some chain among those not yet assigned to a cluster is picked as a seed
for the next cluster. All chains in contact with that chain are added to the new cluster.
This step is repeated until there is no chain-chain contact between the new cluster and
other chains.

In this thesis, we set the threshold for chain-chain contacts to nHH = 1 bead contacts. We
also tested using other values such as 10 and 20. The use of a larger nHH may prevent
clusters in “accidental” contact from being identified as a single cluster, but we found that
it may also lead to a failure to identify proper clusters, especially for sequence B-abundant
systems. For simplicity, we decided to stick to the choice nHH = 1.

Having identified the clusters, we determined the number of chains, or mass, of each cluster,
and constructed a cluster mass distribution, P (m). Here, P (m) is proportional to m times
the number of observed clusters with mass m. Therefore, P (m) is the probability of finding
a random chain in a cluster with size m. In presenting computed P (m) distributions below,
for clarity, we used bins of size ∆m = 5. Spikes in P (m) indicate typical cluster sizes.

2.4.3 Cluster structure — bead density distributions

It turns out that the cluster mass distributions are dominated by 2–5 distinct peaks,
depending on the A/B composition (see Sec. 3.2.3). Each peak defines a class of clusters.
Visual inspection showed that clusters in the same class typically shared not only a similar
mass but also a similar overall shape. To quantitatively elucidate the structural properties
of a given cluster class, we analyzed the distribution of beads within the clusters. For a
given class, we first computed a bead density distribution for each cluster in the class, and
then averaged over all clusters in the class.

For a cluster class consisting of approximately spherical clusters, it would be natural to
compute the radial distribution of beads around the center of mass, P (r). However, for
many of our cluster classes, the typical shape is ellipsoidal rather than spherical. Therefore,
we computed a two-dimensional bead density distribution, P (r, z), where r and z are
cylindrical coordinates. This description is relevant for most of our cluster classes, but
exceptions exist. In particular, cylindrical coordinates are of limited use when dealing
with the large and curved clusters present in the R240/60 system (see Sec. 3.2.2). In our
bead density analysis, we therefore omitted the R240/60 system.

To compute the distribution P (r, z) for a cluster class, we conducted the following calcu-
lations for each cluster in the class:

1. Perform a rigid-body translation of the cluster to bring its center of mass to the
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center of the simulation box. This step effectively eliminates the risk that the cluster
crosses the periodic boundaries.

2. Let Nb be the number of beads in the cluster, and let rα = (xα, yα, zα) be the bead
positions (α = 1, . . . , Nb). With x1 = x, x2 = y and x3 = z, compute the covariance
matrix Cij, defined by

Cij =
1

Nb − 1

Nb∑
α=1

(xi,α − xi)(xj,α − xj), xi =
1

Nb

Nb∑
α=1

xi,α .

Find the eigenvalues λ1 ≥ λ2 ≥ λ3 of the 3 × 3-matrix Cij, and the corresponding
eigenvectors vi. The eigenvector with the largest eigenvalue, v1, is the direction in
which the spread of the beads is largest.

3. Perform a rigid-body rotation of the cluster such that v1 points in the z direction after
the rotation. With the cluster oriented in this way, find the cylindrical coordinates z
and r, where r is the distance to the z axis, for each bead in the cluster. Count the
number of beads α with r < rα < r + dr and z < zα < z + dz. Divide this number
by the volume of this (ring-like) region, V = (2πrdr + πdr2)dz, to obtain the bead
density at (r, z).

Finally, the bead density of the cluster class was computed by averaging over all individual
clusters.

Figure 1 illustrates the distributions of covariance matrix eigenvalues for large clusters
in the R300/0 and R270/30 systems. In the R300/0 system, the clusters are approximately
spherical, and the eigenvalues are not clearly separated. By contrast, in the R270/30 system,
the largest eigenvalue is markedly larger than the other two, reflecting that the clusters
are ellipsoidal rather than spherical in this system.

For the pure A and pure B systems, we also performed simulations in an elongated geom-
etry. For these systems, in which large clusters are slab-like, we use one-dimensional bead
density profiles, calculated as functions of the position in the elongated direction. These
one-dimensional bead density distributions are easier to compute, as steps 2 and 3 in the
above procedure are not needed.
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Figure 1: Covariance matrix eigenvalues for large clusters in (left) the R300/0 system and
(right) the R270/30 system.

2.5 Simulation details

The MC simulations were conducted using the C code of Ref. [17], modified to enable the
study of two-component systems. Before tackling the two-component systems, we studied
the pure A and pure B systems and compared the results with those of Ref. [17]. For all
systems, we performed simulations with 300 chains in a cubic box, at a density ρ = 0.025b3.
The pure A system, which undergoes phase separation, was also studied using an elongated
simulation box, to facilitate estimation of the phase diagram. The number of chains and
the density were the same as in the cubic simulations. Basic parameters of the simulated
systems can be found in Table 1.

Table 1: Physical parameters of the simulated systems. The elongated geometry was only
used for the pure sequence A system.

Geometry Number of chains Size (b3) ρ (b−3) T (ε/kB)

Cubic 300 49.323 0.025 2.6
Elongated 300 142 × 204 0.025 2.6–3.1

When simulating the two-component systems, we found that the time required for ther-
malisation increased when increasing the fraction of sequence B chains (see Fig. 3 below).
Therefore, we increased the total simulation time for systems with many sequence B chains.
For all systems, the analysis was based on the final 0.8 MSW of the runs. The lengths of
the different simulation runs can be found in Table 2.
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Table 2: The total MC time, the MC time discarded for thermalisation, and the analyzed
part of the runs for all the simulated systems, in units of MSW (106 sweeps).

Ratio A/B (RA/B) MC time Thermalisation Analysis range

300/0 1 0.2 0.2–1
270/30 1 0.2 0.2–1
240/60 1 0.2 0.2–1
180/120 1.5 0.7 0.7–1.5
150/150 3 2.2 2.2–3
120/180 2 1.2 1.2–2
60/240 3 2.2 2.2–3
40/260 2 1.2 1.2–2
30/270 3 2.2 2.2–3
20/280 3 2.2 2.2–3
10/290 2 1.2 1.2–2
0/300 2 1.2 1.2–2

3 Results

Using the model and methods described in Sec. 2, we performed thermodynamic simula-
tions of various systems composed of 300 HP chains. This section presents the results of
our simulations. We first discuss the phase diagram of a one-component system, where all
the 300 chains share the same sequence, namely the alternating sequence A, (HP)5. We
then turn to the main aim of this thesis, which is to explore the condensation behavior in
systems where sequence A is mixed with the block sequence B, (H5P5).

3.1 Warm-up exercise: phase behaviour of one-component sys-
tems

Previous work has shown that sequence A undergoes phase separation, through a finite-
size scaling analysis of simulation results for different system sizes [17]. In the mixed
two-phase regime, a dense and a dilute phase were observed to coexist, with densities ρh
and ρ`, respectively. For this system, phase separation is observed if T is below a critical
temperature, T < Tc, and the total density ρ lies between the two pure-phase densities,
ρ`(T ) < ρ < ρh(T ). If ρ is larger but not much larger than ρ` and the system is cubic, an
approximately spherical droplet of the dense phase is formed, in a dilute background. The
phase behavior of this sequence was further studied in Ref. [18], where, in particular, it
was demonstrated that using an elongated rather than a cubic system leads to markedly
reduced finite-size effects. This has to do with the fact that the droplets are slab-like rather
than spherical in an elongated geometry, and therefore can grow without increasing their
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Figure 2: (a) Bead density profile of a one-component system with 300 chains of sequence
A (ρ = 0.025 b−3) simulated in an elongated geometry, at T = 2.6 ε/kB. (b) Temperature-
density phase diagram of the system, based on data for seven temperatures. The left and
right branches correspond to ρ`(T ) and ρh(T ), respectively, as estimated from bead density
profiles like the one in (a).

surface area [18].

Following Ref. [18], we simulated 300 chains of sequence A using an elongated box. The
box dimensions were 142× 204 b3, yielding a total bead density ρ = 0.025 b−3. Simulations
were performed for seven different temperatures T < Tc. For each T , we computed a bead
density profile ρ(z), where z denotes the coordinate in the elongated direction. Here, before
averaging, each analyzed snapshot was shifted so as to have the droplet at the center of
the box. Figure 2a shows the computed average profile at T = 2.6 ε/kB. From this figure,
one can estimate ρh (0.9550 b−3) from the plateau at the center of the droplet and ρ`
(0.0033 b−3) from the much lower background density. These two values, ρh and ρ`, yield
two points on the coexistence curve that defines the mixed two-phase region (Fig. 2b).
A similar analysis was presented in Ref. [18], but for a slightly different total density ρ.
Qualitatively, our results are in good agreement with these prior findings.

We also simulated a cubic system with 300 chains of sequence B, using ρ = 0.025 b−3 and
T = 2.6 ε/kB. Unlike the alternating sequence A, the block sequence B is known not to
undergo phase separation [17]. In line with prior work, we found the sequence B system to
form several similar-size assemblies, rather than one dominant droplet(see Fig. 4 below).
The assemblies had a micellar structure, with the hydrophobic part of the chains in the core
and the polar part pointing outwards. A similar behavior was observed at T = 5.2 ε/kB,
but with fewer micelles.
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3.2 Two-component systems

Having obtained results in line with expectations for the pure sequence A and pure sequence
B systems, we proceeded to investigate mixed two-component systems with various A and
B ratios. All systems consisted of 300 chains in a cubic box and were studied using
T = 2.6 ε/kB and a total bead density ρ = 0.025 b−3. In what follows, we will often refer to
the systems studied as RA/B, where A and B are the numbers of chains with the sequences
A and B. In total, we conducted Monte Carlo simulations for 12 different systems RA/B,
including the two one-component systems R300/0 and R0/300 (see Table 2). Below, we
discuss the results from these simulations. We first examine the run-time evolution of the
energy in the simulations, mainly to check for convergence. We then discuss representative
snapshots from the different simulations. Finally, we present and discuss cluster mass
distributions and bead density distributions inside large clusters for the different systems.

Prior studies have shown that the phase behavior of one-component systems of HP chains
depends on the distribution of hydrophobicity along the sequence. In this thesis, we study
two-component A/B systems and vary the A to B ratio, rather than the hydrophobicity
distribution along a single chain.

3.2.1 Monte Carlo evolution of the energy

All our simulations were started from random initial configurations. The temperature T
and density ρ are such that all the systems studied spontaneously form large clusters (with
& 20 chains), whose properties we wish to investigate. How long it will take for represen-
tative clusters to form is system dependent. To decide how large a part of the generated
trajectories to discard for thermalization, we examined the Monte Carlo evolution of the
energy E.

Figure 3 shows the run-time evolution of E in 10 of the 12 systems (two systems were
omitted to make the figure readable). In the sequence A-dominated systems, the thermal-
ization was fast, with no notable drift in E after 0.2 MSW. In systems with 60 or more
chains of sequence B, the thermalization proceeded considerably slower. For example, in
the R60/240 system, a steady drift in E occurred out to about 2.0 MSW. Because of the
system dependence of the time required for thermalization, the total simulation time was
chosen to vary between 1.0 MSW and 3.0 MSW (Table 2). Despite this adjustment, we
cannot rule out that the results obtained for the most slowly converging systems are slightly
affected by incomplete thermalization, but we believe that these effects are small. All the
analyses discussed below are based on data from the final 0.8 MSW of the simulations.

In Fig. 3, it is also interesting to compare the equilibrium values of the potential energy
E among the different systems. Despite that the sequences A and B share the same
composition (5 H + 5 P), it can be seen that the potential energy depends strongly on the
A to B ratio. The energy is highest for the pure sequence A system, and decreases steadily
as the number of sequence B chains is increased, until a minimum is reached around 270–
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Figure 3: MC evolution of the energy density E/N for some of the 300-chain systems with
different A to B ratios, at T = 2.6 ε/kB and ρ = 0.025 b−3. The total simulation time was
chosen to be system dependent, because the speed of the thermalisation process varies.

280 sequence B chains. The most sequence B-dominated systems, R10/290 and R0/300, have
slightly higher energies than the R30/300 and R20/300 systems. Overall, the energy difference
between the sequence A- and sequence B-dominated systems indicate that sequence B is
more interaction-prone and potentially forms denser clusters.

The cluster properties at equilibrium depend on the balance between energy and entropy,
which is such that the free energy is minimized. When a free chain joins an existing cluster,
there is a cost in entropy that must be balanced by reduced energy. One may compare it
to the folding process that brings a globular protein to its native state [22]. Upon folding,
entropy is lost, which is compensated for by a decrease in energy. Note that clusters are not
static at equilibrium, but exchange chains with their dilute surroundings. Next, we take
a more detailed look at the size and character of the equilibrium clusters in the different
systems.

3.2.2 Snapshots from the simulations

Figure 4 shows representative snapshots from some of our simulations of two-component
A/B systems, to give an idea of how the size and character of the aggregates vary with the A
to B ratio. The two extreme cases of pure A and pure B systems have been studied before
using the same model [17]. The pure A system forms a large, approximately spherical
cluster in a dilute background, while the pure B system forms several similar-size micellar
structures (Fig. 4). As indicated by Fig. 4, one key difference between the two systems is
that the large clusters formed by the pure A system are homogeneous, with H and P beads
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fully mixed, whereas H beads are concentrated in the interior of the aggregates formed by
the pure B system, with P beads facing outwards.

R300/0 R240/60

R150/150 R0/300

Figure 4: Representative snapshots from simulations with 300 HP chains for four different
A to B ratios (R300/0, R240/60, R150/150, and R0/300), at T = 2.6 ε/kB and ρ = 0.025 b−3. The
blue dots represent hydrophobic beads and the orange dots indicate polar beads. Snapshots
were produced using MATLAB.

In a recent study, Brangwynne and coworkers investigated the aggregation of HP chains
using a different coarse-grained model [24]. They focused on one-component systems. In
particular, they demonstrated that the degree of “blockiness” of the sequence strongly
influences the shape of the aggregates. A simple estimate of blockiness is provided by the
average length of hydrophobic segments in a given sequence. A slightly more advanced
measure of blockiness is the pattern parameter κ introduced by Das and Pappu [4], which
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has been widely used in protein studies. For sequences with low blockiness, large spherical
liquid-like droplets were observed in a dilute background, in agreement with the results of
Ref. [24] and the snapshot shown in Fig. 4 for our alternating sequence A. As the degree of
blockiness was increased, a variety of aggregates, differing in both size and character, were
observed, which were termed structured liquid, strings, membranes, worm-like micelles and
finally micelles [24]. The observation of micelles for high degrees of blockiness matches well
with the results of Ref. 18 and the snapshot in Fig. 4 for the B system. The worm-like,
rather than spherical, micelles were characterized by a thin string-like hydrophobic core
surrounded by a polar surface.

We investigated two-component A/B systems by simulations for several different A to B
ratios. Changing the A to B ratio of the system effectively leads to an altered overall
degree of blockiness. We found that the A/B system exhibits a single dominant droplet
as long as the amount of B sequence chains stays sufficiently low. However, when adding
B sequence chains, the spherical shape seen in the pure A system gets distorted. In the
R240/60 system, we still observed a single large droplet, but the droplet had an irregular,
far from spherical shape (Fig. 4). We also simulated a 400-chain system with the same A
to B ratio, R320/80, and observed similar but longer aggregates. The aggregates observed
for this A to B ratio are reminiscent of the fibre-like structures observed by Brangwynne
and coworkers in 400-chain one-component simulations for the 20-bead sequence (H3P2)4.

When further decreasing the A to B ratio, we found that the large aggregate breaks up
into several smaller ones. The smaller aggregates often had an approximately spherical,
micellar structure, as in the pure B system. However, other shapes were also observed,
as is illustrated by the snapshot from the R150/150 simulation shown in Fig. 4. In this
simulation, a structurally diverse set of aggregates occurred, including both spherical and
elongated micellar structures, with one to three hydrophobic cores.

In systems with a small fraction of sequence B chains, as in the pure A system, we observe
one large droplet (Fig. A1). The pure A system is known to undergo phase separation [17,
18]. However, in the systems with a non-zero fraction of sequence B chains, the large
droplet does not necessarily represent a dense bulk phase.

3.2.3 Cluster mass distributions

We now turn to a quantitative analysis of the clusters that occurred in our simulations of
the different two-component A/B systems. To this end, we first decomposed each snapshot
from the simulations into clusters, following the procedure outlined in Sec. 2.4.2. In this
section, we study the size of the simulated clusters. By counting cluster sizes in individual
snapshots and then averaging over snapshots, we obtained cluster mass distributions, which
give the probability of finding a randomly selected chain in a cluster of a given size. The
resulting cluster mass distributions all exhibit two or more spikes (Figs. 5 and A2). Each
spike signifies a statistically preferred cluster size. The spikes have a non-zero width, since
the clusters do not have a well-defined 3D structure and may exchange chains with the
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surroundings.
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Figure 5: Cluster mass distribution in 300-chain systems with different A to B ratios
(R300/0, R240/60, R150/150, R0/300). The mass of a cluster is defined as the number of chains
it contains. Each system was simulated at T = 2.6 ε/kB and fixed total bead-density
ρ = 0.025 b−3. The total probability of a given mass was partitioned into contributions
from sequence A (blue) and sequence B (orange), respectively. In each system, there are
two or more typical cluster sizes, corresponding to distinct spikes in the distribution.

Figure 5 shows cluster mass distributions for the same four systems studied in Fig. 4 (cluster
mass distributions for all the simulated systems can be found in Fig. A2). Consistent with
Fig. 4, the calculated cluster mass distributions for the R300/0 and R240/60 systems show two
pronounced peaks, one corresponding to a large droplet and the other to free molecules
and tiny aggregates. The high-mass peak is centered slightly below 250 chains. Worth
noting is that the low-mass peak is dominated by sequence A. Essentially all sequence B
chains end up in the large cluster, reflecting their high interaction propensity.

By contrast, in the R0/300 system, only mid-size clusters were observed, with 20–50 chains.
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The absence of low-mass clusters is not unexpected given the strong dominance of sequence
A chains in the low-mass clusters of the R240/60 system. While the clusters in the R0/300

have a relatively uniform size, the cluster mass distribution still has two distinct peaks,
separated by a narrow but deep gap. This gap indicates that there may exist two main
cluster types with some fundamental structural difference. However, beyond size, we have
not been able to identify any structural property that discriminates the two cluster types.

Finally, for the 50-50 system R150/150, we find as many as five distinct peaks in the cluster
mass distribution. A peak corresponding to low-mass clusters is present in this system, and
these clusters are, again, dominated by sequence A chains. The next two peaks, centered
at ∼40 and ∼60, both correspond to approximately spherical clusters. The fraction of
sequence B chains is somewhat higher for the clusters with ∼60 chains than for those with
∼40 chains, which suggests that the ∼60 clusters may be denser. The remaining two peaks,
centered at ∼80 and ∼110, correspond to worm-like rather than spherical micelles, with
two and three hydrophobic cores, respectively.

Figure 6a shows how the size of the largest cluster varies with the A/B composition of the
system. The largest cluster size was computed by averaging over the center of the highest-
mass peak in the cluster mass distribution. The averaging was restricted to bins with
probability >0.05. Figure 6a clearly shows that the size of the largest cluster increases
substantially as the fraction of sequence A chains is increased from 0.6 to 0.8. In this
region, the system changes in character. The system contains a single dominant cluster
if the fraction of sequence A chains is 0.8 or higher, whereas several smaller clusters are
present if this fraction is 0.6 or lower. Overall, there is a tendency for the size of the largest
cluster to increase as the fraction of sequence A chains is increased. However, for systems
with 5—10% sequence A chains, a small peak can be seen, which we believe is statistically
significant. Figures 6c and 6d show two examples of what the largest cluster may look like
in these systems. In both cases, the cluster is somewhat elongated rather than spherical,
with sequence A chains forming a string-like structure on the surface, which may support
the formation of a slightly larger cluster.

We also studied the bead density of the largest clusters. As discussed in Sec. 3.2.4 below,
we computed the average bead density as a function of the cylindrical coordinates r and
z. Figure 6b shows the maximum average bead density, as a function of the fraction of
sequence A chains. There is a tendency for the bead density to decrease when increasing
fraction of sequence A chains. The sequence B-dominated systems have maximum bead
densities roughly a factor 2 higher than that of sequence A-dominated systems.
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Figure 6: Cluster properties in 300-chain two-component A/B systems at T = 2.6 ε/kB
and ρ = 0.025 b−3. (a) Average mass of the the largest cluster against the fraction of
sequence A chains. (b) The average maximum bead density, as obtained using a grid with
dr = dz = b, against the fraction of sequence A chains. (c, d) Snapshots of the largest type
of cluster in the R30/270 and R20/280 systems, with sequence A chains in blue and sequence
B chains in yellow.

3.2.4 Bead density distributions

In addition to cluster mass, we also studied the distribution of beads within different types
of clusters. Following the procedure outlined in Sec. 2.4.3, we computed bead density
distributions around the center of mass as functions of cylindrical coordinates, ρ(r, z). This
two-dimensional distribution was found more informative than a simple one-dimensional
radial distribution, ρ(r), because many of the observed cluster types have an ellipsoidal
rather than a spherical shape. We display the computed density distributions as heat maps.
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Figure 7: Heat maps showing bead density distributions ρ(r, z), calculated as functions
of cylindrical coordinates r and z, for clusters formed by the pure sequence A and pure
sequence B systems in 300-chain simulations at T = 2.6 ε/kB and ρ = 0.025 b−3. Left panel:
total bead density, mid panel: H bead density, right panel: P bead density.

In addition to the total bead density, we also show the respective contributions from H and
P beads in separate figures. Figures 7 and 8 show the results obtained for a few selected
systems. Additional bead density distributions can be found in Fig. A3. Figure 7 shows
bead density distributions for the large clusters present in the one-component systems
R300/0 and R0/300. In both cases, the clusters are approximately spherical. However, the
clusters extend over a larger volume in the pure A system than in the pure B system. This
is not surprising given that the pure A clusters have a markedly higher mass. In addition,
it turns out that the beads are less densely packed in pure A than in pure B clusters. In
fact, the bead density in the core is approximately a factor two higher in pure B clusters
than in pure A clusters (2.12b−3 versus 1.04b−3). Another important difference between
the two systems is in the distributions of H and P beads. In the pure A system, H and P
beads are well mixed, with similar density distributions. By contrast, the pure B clusters
have a core dominated by H beads, and a corona dominated by P beads. The shapes of
the H and P distributions illustrate the micellar character of the pure B clusters.
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Figure 8: Heat maps showing bead density distributions ρ(r, z), calculated as functions of
cylindrical coordinates r and z, for clusters formed by the R270/30 and R150/150 systems in
300-chain simulations at T = 2.6 ε/kB and ρ = 0.025 b−3. The R150/150 data are for two
cluster types, corresponding to the third (top row) and fourth (bottom row) peaks in the
cluster mass distribution. Left panel: total bead density, mid panel: H bead density, right
panel: P bead density.

Figure 8 shows bead density distributions for clusters in the two-component systems R270/30

and R150/150. The R270/30 clusters have a mass similar to that of pure A clusters. The bead
density distributions reveal, however, some differences between the R270/30 and pure A
clusters. One difference is in the overall shape, which is ellipsoidal rather than spherical
for the R270/30 clusters. Another difference is that H and P are slightly less well mixed in
the R270/30 clusters. Additionally, the highest H bead density is not found in the core of
the R270/30 clusters.This behaviour probably reflects that the B chains tend to reside on
the surface of the otherwise sequence A-dominated clusters, with their hydrophobic half
pointing inwards, as found by visual inspection. The cluster mass distribution indicates
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that R150/150 system contains four cluster types. The bead density distributions suggest
that all four cluster types have a demixed micellar structure, with an H core and a P corona
(Figs. 8 and A3). However, the shape of the hydrophobic core varies. The two cluster
types with lowest masses both have a single, approximately spherical H core. The third
peak in mass corresponds to clusters with an elongated hydrophobic core, which exhibits
of two distinct, approximately spherical H-rich regions (Fig. 8). The bead density profiles
of the fourth and final cluster type have a similar structure (Fig. A3). However, visual
inspection of snapshots from the simulations suggests have the core of these clusters have
three spherical H-rich regions, two of which sometimes are in contact. This structure is
lost when averaging over all snapshots.

4 Discussion & Summary

In this thesis, we have extended prior work on the phase behavior of two HP sequences [17,
18], called A and B, by investigating the aggregation behavior of mixed two-component
systems containing both these sequences. To this end, we conducted MC simulations for
12 different A to B ratios, at a fixed total number of chains, set to 300. Depending on the
relative amount of sequence A and B chains, we found that a variety of aggregates can be
observed, which differ in size, shape and internal organization.

Generally, sequence A-dominated systems are characterized by the presence of a single
dominant cluster with relatively homogeneous distributions of H and P beads, whereas se-
quence B-dominated systems form several similar-size micellar clusters with a hydrophobic
core and a polar surface. The latter clusters are denser than the sequence A-droplets, as
reflected in lower potential energy. The behavior of general mixed A/B systems can in
part be understood in terms of a competition between these two aggregation mechanisms,
sequence A-driven phase separation and sequence B-driven micellization.

The outcome of this competition depends, of course, on the A to B ratio, and we identified
three major regimes. First, if the fraction of sequence B chains is small, then a large
sequence A-dominated droplet is present, comprising a total of almost 250 chains (Fig. 6a).
A small minority of these are sequence B chains, typically located near the surface of the
droplet. While the droplet size changes only marginally when adding small amounts of
sequence B chains, the shape of the droplet soon turns ellipsoidal rather than spherical.
A cluster characteristic of the second regime can be found in the snapshot for the R240/60

system in Fig. 4. This cluster is also large, but its structure is different. It contains several
sequence B-dominated micellar structures, which are connected into a single large cluster
by a surrounding network of mainly sequence A-chains. Moreover, the micellar structures
do not fall on a straight line, leading to a curved rather than ellipsoidal overall shape.
In the third and final regime, the propensity of sequence B to form micellar structures is
the dominant driving force, and the large cluster is split into several micellar structures,
with sequence A-chains on their surfaces. Larger clusters with two or more micellar cores
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occur as well, if a sufficient amount of “glue” is available, in the form of sequence A
chains. Examples of such multi-micelle clusters can be found, for instance, in the R180/120

and R150/150 simulations (Figs. 4 and A1). Another type of cluster larger than a typical
micelle was observed in the R20/280 and R30/270 simulations (Fig. A1). These clusters have a
single but extended (non-spherical) core. We speculate that they appear when the amount
of sequence A chains is sufficiently high to permit the formation energetically favorable
sequence A-layers around micelles, but insufficient to cover full set of typical spherical
micelles.

We note that in pure sequence A systems, at the temperature and volume studied in
this paper, droplet formation sets in when the number of chains reaches a value of ≈
40 (corresponding to ρ`(T ), see Fig. 2b). Therefore, the formation of pure sequence A
droplets is possible down to approximately this number of sequence A chains. However,
the results presented suggest that sequence A-dominated clusters are observed only if
the number of sequence A chains is &270. This observation implies that sequence A
chains interact strongly with sequence B chains. Sequence A chains tend to form layers
surrounding sequence B-dominated micelles rather than pure sequence A droplets. The
strong interaction between the two sequences leads to new types of aggregates, not present
in the one-component systems.

Simulating the aggregation behavior of systems with many chains is a challenge. In this
thesis, for computational reasons, we limited ourselves to systems with 300 chains. We be-
lieve that this number of chains is sufficient to get a good overall picture of the character of
the aggregates, and how this depends on the A to B ratio. However, for precise statements
about asymptotic properties in the large-system limit, the size dependence of the results
would have to be assessed. For given values of the temperature, the total density ρ, and
the A to B ratio, one would then investigate how the results vary with, say, the volume,
while keeping both ρ and the A to B ratio fixed. This type of analysis would in particular
be needed in order to conclude whether or not separation into two bulk phases takes place
in systems with a small but non-zero B to A ratio. It is also worth noting that the systems
studied here are computationally challenging. While we feel confident that our simulations
are sufficiently long to provide a reliable overall description of the systems studied, it is
possible that, for example, details of the cluster mass distributions, still suffer from some
statistical uncertainties.

When decreasing the A to B ratio, we effectively increase the overall degree of blockiness
in our system. The finding that a rich variety of aggregates can be observed on the path
between the two pure systems that exhibit phase separation and micellization, respectively,
matches well with previous results on one-component HP systems with a varying degree
of blockiness [24].
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A Appendix

(a) R300/0 (b) R270/30 (c) R240/60

(d) R180/120 (e) R150/150 (f) R120/180

(g) R60/240 (h) R40/260 (i) R30/270

(j) R20/280 (k) R10/290 (l) R0/300

Figure A1: Representative snapshots from all simulations with 300 HP chains for different
A to B ratios at T = 2.6 ε/kB and ρ = 0.025 b−3. The blue dots represent hydrophobic
beads and the orange dots indicate polar beads. Snapshots were produced using MATLAB.
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Figure A2: Cluster mass distribution in all simulated systems with different A to B ra-
tios.The mass of a cluster is defined as the number of chain it contains. Each system was
simulated at T = 2.6 ε/kB and fixed total bead-density ρ = 0.025 b−3. The total probability
of a given mass was partitioned into contributions from sequence A (blue) and sequence B
(orange), respectively. In each system, there are two or more typical cluster sizes, corre-
spomding to distinct spikes in the distribution.
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Figure A3: Heat maps showing bead density distributions ρ(r, z), calculated as functions
of cylindrical coordinates r and z, for clusters formed by all A/B systems in 300-chain
simulations at T = 2.6 ε/kB and ρ = 0.025 b−3. Left panel: total bead density, mid panel:
H bead density, right panel: P bead density.
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