A practical framework
for the electric vehicle routing problem

Johan Hellmark

UNIVERSITY

Department of Automatic Control

MSc Thesis
TFRT-6155
ISSN 0280-5316

Department of Automatic Control
Lund University

Box 118

SE-221 00 LUND

Sweden

© 2022 Johan Hellmark. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2022

Abstract

The routing of a delivery fleet is a classical optimization problem, known as the
vehicle routing problem (VRP), which can heavily impact the quality of a logistic
distribution process. Historically, the VRP formulation has mainly included internal
combustion engine vehicles (ICEVs). However, due to their reduced environmen-
tal impact, the inclusion of electric vehicles (EVs) has become more popular. The
inclusion requires accounting for a shorter driving range and limited infrastructure
support. This thesis presents a framework for solving several practical extensions of
the electric vehicle routing problem (E-VRP). Previously presented solvers usually
target specific problem variants, optimize based on predetermined objectives, and
display a general lack of discussion on their practical applicability. To counteract
these shortcomings, the implemented framework allows for customizable objec-
tive functions, is capable of solving a wide range of practically relevant extensions,
and provides an interface for investigating the properties of the proposed solutions.
Examples of subjects treated are partial recharging, time-dependent variables, and
dynamic settings. Solutions to real-world settings, modeled using the API of Iternio
Planning AB, are demonstrated and the implemented solver shows promising results
on a wide range of tested problem instances.

Acknowledgements

First and foremost, I would like to express my appreciation to Iternio Planning AB
for allowing me to perform my thesis in collaboration with them. I am particularly
grateful for the engagement shown by Bo Lincoln who has guided me through the
process as my supervisor at the company. From the Department of Automatic Con-
trol, I would like to acknowledge the help provided by my supervisor Giacomo
Como and his valuable feedback.

Lastly, I would like to extend a general thanks to everyone how has shown in-
terest and participated in discussions regarding my thesis.

Contents

Outlined report structure
Purpose & research questions
Why is the problem hard?

Vehicle routing problems (VRP)

problems (E-VRP)

s capacitated E-VRP with time windows .

General-purpose solution approaches

Introduction to algorithms

constraintsandcosts

Dealing with uncertainties

artial recharging

Dealing with time-dependence

Dealing with large datasets
Constructing an initial solution for the E-VRP

Motivation for the implemented algorithm
Improving the performance

1. Introduction
1.1 Background
1.2
1.3
1.4
1.5 Work processes . . .
2. Theory
2.1
2.2 Electric vehicle routing
2.3 VRPextensions . . .
2.4 Fixed size homogeneou
2.5 NP-hardness
2.6
2.7 Penalty functions . .
2.8
2.9 Algorithms in depth .
3. Outlined approach
3.1 The objective function,
3.2
3.3 Charging stations and p
34
3.5 Problem instances . .
3.6
3.7
4. The framework
4.1 Overview
4.2 Implemented algorithm
4.3
4.4
4.5 Examples applications

10
11
11
12

14
14
15
17
20
23
23
24
24
26

31
31
32
34
35
35
36
37

38
38
40
43
44
46

Contents

4.6 Evaluating the quality of asolution

5. Computational results
5.1 Parameter tuning . .
5.2 Benchmarks
5.3 Generated datasets .
5.4 Real-world instances

6. Conclusion

Operators
A.1 Intra route operators
A.2 Inter route operators

B. Inputs and parameters

B.1 Cost functions and penalty functions

B.2 Parameters settings
Bibliography

47

49
49
52
54
61

66

68
68
70

71
71
73

75

1

Introduction

Imagine yourself being the manager of a small courier service. To contribute to
a more sustainable society, all vehicles included in your fleet are electrical. The
business has been going exceptionally well, and the size of your fleet was recently
enlarged, from two to ten. With the increase in capacity, the firm is now ready to
serve more customers and today’s orders require visiting a total of 100 customers. It
is your responsibility to decide on the sequence of customer visits and the routes to
be taken. You have set aside a quarter of an hour and sit down with a printed map,
a pen, and paper. However, you quickly realize that the problem is more complex
than you thought at first. To produce a good solution, you must approximate the
fuel consumption and account for overtime costs, load capacity, time windows, and
unforeseeable traffic congestions.

Indeed, the problem you are facing is a well-known combinatorial optimization
problem, known as the vehicle routing problem (VRP). The VRP deals with the
question "What is the optimal set of routes for a fleet of vehicles to traverse in order
to deliver to a given set of customers?". One extension to the VRP is the inclusion of
electric vehicles (EVs), for which shorter driving ranges and more restricted infras-
tructure support must be considered. This thesis, performed in collaboration with
Iternio Planning AB, presents a framework for generating and analyzing solutions
to multiple extensions of the electric vehicle route problem (E-VRP).

1.1 Background

The logistic sector in Sweden was responsible for 16.63 million ton carbon dioxide
equivalents during 2019, which was one-third of the country’s total greenhouse gas
emission (Environmental Protection Agency, Sweden, 2020). The Swedish govern-
ment is attempting to reduce these emissions whereby one of the Swedish national
climate goals is to reduce the emission from domestic transports by 70% from 2010
to 2030 (Ministry of the Environment, Sweden, 2021). In the statistics presented by
the Swedish Environmental Protection Agency (2020), there is a decreasing trend

9

Chapter 1. Introduction

in emissions from domestic transports, in large due to alternative fuels and more
efficient vehicles.

However, to accomplish the goal, the decrease must be intensified. The agency
argues that more transports should be performed by the marine or railway. When
this is impractical, increasing the usage of alternative fuels can contribute to a re-
duction of emissions. Currently, light trucks are in almost 90% of the cases fueled
with diesel and are thus an area where alternative fuel can have a big impact (En-
vironmental Protection Agency, Sweden, 2020). To enable the progress towards the
usage of renewable fuels, the agency underlines the importance of effective vehicles
and general improvements through different transport solutions.

Electricity is an example of an alternative fuel. Major logistic firms such as
FedEx are transitioning to deliveries using EVs. FedEx has set the explicit goal that,
by the year 2025, 50% of the pickup delivery vehicle purchased shall be electric,
rising to 100% by 2030 (Fedex Corporation, 2021). While EVs can be advantageous
to include in a fleet, they are in some aspects more restricted than the standard
internal combustion engine vehicles (ICEVs). These restrictions must be overcome
to enable actors within the logistic sector to include EVs within their fleets.

1.2 Outlined report structure

The second chapter of the report presents the theory and previous literature related
to this thesis. It gives an introduction to the VRP, E-VRP, and other extensions.
Further, the VRP is proven to be NP-hard, literature on general purpose-solver is
reviewed, and penalty functions are introduced. Lastly, an introduction to the most
commonly applied algorithms is provided.

The third chapter presents the outlined approach. It begins with a discussion
on how the objective function affects the performance of a solver. It continues dis-
cussing the inherent uncertainty present in the problem, followed by a section on
the handling of charging stations and charging function. Implications of allowing
for time-dependent variables and how these can be handled are then covered. The
following section deals with that for some problem extensions investigated in this
thesis, no publicly available datasets were available, and therefore custom datasets
needed to be generated. Lastly, compromises performed to handle large datasets and
aspects to consider when constructing an initial solution to the E-VRP are discussed.

The fourth chapter presents and motivates decisions for the implemented frame-
work. Further, it discusses how to improve the performance of the algorithm and
how it can be applied to a few selected extensions. Lastly, how the framework can
be used to assess the quality of a solution is covered.

The fifth chapter presents the computational results. It evaluates the perfor-
mance of the implemented algorithm on existing benchmarks. Results on custom-
generated datasets are presented. Finally, the solver is applied to real-world settings
using the API of Iternio Planning AB.

10

1.3 Purpose & research questions

The final chapter of the thesis serves as a conclusion which summarizes the
work and provides guidelines for feature research.

1.3 Purpose & research questions

The purpose of this master’s thesis is to develop a framework for the E-VRP which
can be used in practice by Iternio Planning AB. This thesis will therefore answer
the following research questions:

RQ 1: What aspects are to be considered and which components should be included
in a practically useful framework for solving the E-VRP?

RQ 2: How can an algorithm for solving a wide variety of E-VRP extensions be
constructed?

RQ 3: What determines the quality of a solution to the E-VRP?

1.4 Why is the problem hard?

There are multiple challenges in solving and studying the E-VRP. The origin of the
difficulty is that the problem is NP-hard, meaning that no known method of solv-
ing it in polynomial time exists. The simpler version of the problem, the traveling
salesman problem (TSP), has (n— 1)! number of possible solutions where n is the
number of customers to visit. This number increases for the E-VRP, whereby brute-
force approaches are unlikely to be successful. Since the E-VRP is a combinatorial
optimization and integer programming problem, the search space will be discrete.
Further, for some instances, large parts of the search space will be unfeasible due to
constraints. These properties must be taken into account when formulating the op-
timization method. Exploiting the structure of the problem is not trivial, especially
not when extending the problem with several attributes. Further, since the number of
available states in a partial solution grows upon adding more attributes, it becomes
difficult to evaluate the quality of a certain action and compare partial solutions.

The algorithm must be constructed to allow for the support of multiple prob-
lem extensions. Firstly, the algorithm should allow for including and excluding
attributes dynamically. Secondly, the algorithm is not allowed to use extension-
specific knowledge for improving the performance, unless it is adequate for the
problem formulation. This drastically decreases the speed at which one can eval-
uate a solution. As the most effective methods for solving the E-VRP use guided
searches to explore the search space, the increased evaluation time hinders their
performance.

The quality of a solution depends on how the objective function is defined, and
the objective function may vary depending on the problem formulation. As a result,

11

Chapter 1. Introduction

the performance of an algorithm depends on the problem formulation and should
be evaluated on each variation of the problem separately. The performance of an
algorithm also depends on how it is measured, for example, speed of convergence,
the best solution obtained, or the most diverse set of solutions. In summary, there is
no straightforward method for comparing two algorithms whereby it is difficult to
conclude that an algorithm outperforms another.

1.5 Work processes

The project was split into four main phases: planning phase, seed product develop-
ment, feature implementation, and ending phase. The planning and ending phases
deal with practicalities related to the thesis while the main parts of the development
were performed during the seed product development and feature implementation
phases. The methodology used is feature-driven and inspired by the agile develop-
ment methodologies.

The planning phase

The purpose of the planning phase was to specify the subject and scope of the thesis.
Further, a target document and a project plan were developed.

The seed product development

The purpose of the seed product development was to develop a product that could be
extended throughout the feature implementation phase. The developed solver was
limited in functionality but could find solutions to the standard VRP.

The feature implementation

During the feature implementation phase, features were added to the seed product.
The methodology used was inspired by agile practices and contained short sprints.
Each sprint consisted of iterations following the plan-do-study-act cycle (PDSA-
cycle).

During the feature implementation phase the seed product was extended through
the implementation of additional features. This phase was the most important and
constituted the largest part of the project. The methodology used was inspired by
the agile methodologies and short sprints were used. Each sprint consisted of one
or many iterations following the plan-do-study-act cycle (PDSA-cycle). The ad-
vantage of this approach is that it is flexible and includes the stakeholders in the
development process. The cycles started with the planning phase in which possible
features to implement were proposed. In consensus with the supervisors, the highest
prioritized feature was selected for further investigation. The do phase started with a
literature review. A wide search was conducted to identify multiple sources and top-
ics of relevance. The most relevant references were identified and studied in-depth.
After the literature review, the problem model and implementation were updated to

12

1.5 Work processes

include the new feature. In the study phase, the implementation of the feature was
evaluated. The stakeholders were provided with information about the outcome of
the iteration. Lastly, a short evaluation was written on the most important lessons
learned during the iteration and if any major adjustments should be made in the
work process. The stakeholders received this in the form of the weekly update.

The ending phase

In the ending phase, a popular scientific report was written, and a project presenta-
tion and opposition were performed.

13

2
Theory

The purpose of this chapter is to introduce subjects relevant to the thesis and review
previous literature. The chapter starts with a more formal introduction of the VRP,
E-VRP, and its extensions through the framework of graph theory. Then, proof of
NP-hardness is presented. Finally, previous general-purpose solvers are discussed,
penalty functions are described, and commonly applied algorithms are introduced.

2.1 Vehicle routing problems (VRP)

The problem of how to optimally route a set of vehicles in order to visit a given set
of customers is known as the VRP and was introduced in 1959 in a paper focusing
on gasoline delivery trucks (Dantzig and Ramser, 1959). In the basic version of the
VREP, a set of K identical vehicles are located at a central depot. The objective is to
visit a set of customers while minimizing the total cost. The problem can be modeled
using a graph G = (V,A), assumed to be strongly connected, where V =0,...,n is
the vertex set and A is the arc set. Vj is defined to correspond to the depot, while
V1....n corresponds to the customers. Let D denote the set of depots and / the set of
customers. In the current settings / =V \ {0}. A non-negative cost ¢;; is associated
to each arc (i, j) € A,i # j. Without loss of generality, G can be made complete by
connecting all unconnected nodes using arcs with a cost of ¢ = +o. Additionally, to
avoid self-loops c;; = 40 except for the depot where the cost of a self-loop is zero,
coo = 0.

If G is directed the cost matrix can be asymmetric, whereas if it is undirected
the cost matrix is always symmetric, since ¢;; = cj;. The cost matrix is always ex-
pected to satisfy the triangle inequality c;; +cjx > cix which implies that it is never
beneficial to deviate from a direct link between two vertices.

The VRP consist of finding a set of K or less simple circuits which minimizes
the cost function, defined as the sum of the cost of arcs traversed, such that

* each circuit visits the depot vertex,

* each customer vertex is visited by exactly one circuit.

14

2.2 Electric vehicle routing problems (E-VRP)

A solution to the VRP will be denoted with S, where every S consists of a set
of routes, S = {R;}. A route R; is defined by a vehicle and an ordered set of
vertices{Vp._ o} C V, which starts and ends in the depot.

Problem formulation

The VRP can be modeled using a mixed-integer linear programming (MILP) for-
mulation. The formulation presented in this and the following section is of low
practical usefulness and should be viewed as an introduction to how MILP is used
for the VRP. The formulation for the basic version of the problem is presented be-
low. In the equations c;; denotes the cost of traveling from i to j. x;; is a binary
variable that has value 1 if the arc from i to j is a part of the solution and otherwise
0, K is the number of available vehicles. Further, recall that the set V contains all
vertices, the set D contains all depots, and the set / contains all customers.

(VRP) min)" Y cijx; 2.1
i€V jev
subject to
Y xj=1, viel (2.2)
JEVi#]
Y xo; <K (2.3)
jev
Y xi— Y x;=0, VieV (2.4
JEV,i#] JEV,ij
x;; € {0,1}, Vi,jeVv (2.5)

The objective function 2.1 is to minimize the total cost of traversed arcs. Con-
straint 2.2 imposes that a customer is visited exactly once. Constraint 2.3 imposes
that the number of vehicles leaving the depot is less or equal to the number of vehi-
cles available. Constraint 2.4 imposes flow conservation.

2.2 Electric vehicle routing problems (E-VRP)

The electric vehicle problem is an extension of the VRP where a limited battery
capacity and charging stations are taken into account. The problem is modeled as a
graph G = (V,A) with n+ m number of vertices. Vj corresponds to the depot, V;

correspond to the customers and V,,11 .+, correspond to the chargers. Let the set
of charging stations (CSs) be denoted as F. Since a CS is allowed to be visited
more than once, a dummy set, F’, is created where an arbitrary (possibly infinite)
number of copies for each CS is included. Hence, when looking at the E-VRP we
have V = DUIUF’. All vehicles are assigned a battery capacity, Q, and each arc is

15

Chapter 2. Theory

assigned a fuel cost, e;;. The current battery level will be referred to as the state of

charge (SoC) which is defined as Wm. Further, partial recharging will
be allowed and all chargers are assigned a charging function which represents the
time it takes for a vehicle to recharge. The objective is the same as in the VRP but

with the additional requirement of
¢ the SoC shall never be 0 unless the vehicle is at a charger or a depot.

The inclusion of EVs in the VRP is a relatively new topic and one of the earliest
publications dates back to 2011 (Gongalves et al., 2011). Fuel consumption is a
central aspect of the E-VRP and is often assumed to be relative to the distance
traveled. There are however examples of when the fuel consumption is dependent
on more parameters, such as the vehicle load (Goeke and Schneider, 2015), (Lin
et al., 2016). The E-VRP can be viewed as an extension that allows intermediate
refueling stops. Therefore assumptions must be made about the charging policy
and the charging function approximation. The former defines how much a battery
should be charged and can be classified into full or partial charging policies. The
latter decide how long it takes to recharge a battery to a certain level. The charging
function can be either linear or non-linear. For the non-linear case, a piece-wise
linear approximation can be used to obtain the approximated function. For a more
in-depth description on the topic of charging functions, the reader is referred to
Montoya et al. (2017).

As EVs are more heavily affected by the environment and have a shorter driving
range they are susceptible to uncertainties in the environment. Uncertainty can be
derived from limited availability and waiting times at chargers, difficulties in pre-
dicting fuel consumption, and other external factors such as congestion and traffic
accidents. Further, some aspects of the E-VRP are time-dependent. Both waiting
times at chargers (Keskin et al., 2019) and aspects of traveling between two loca-
tions can be expected to be time-dependent. The charging speed can decrease when
multiple vehicles are using the same CS simultaneously. Therefore, the charging
times can be expected to be longer during peak hours.

Problem formulation

The E-VRP will add additional constraints to the MILP formulation of the basic
VRP. To formulate the problem, a few notations will be introduced. e;; represents
the energy consumption of traversing the arc between i and j, E,,; the minimum
SoC, and E,,4, the maximum SoC. c; denotes the cost of visiting node i. The vari-
ables &; tracks the SoC upon arrival and & the SoC upon departure from the vertex
j € V. 0; is the recharged quantity, where 0; = 0, i ¢ F’. The E-VRP can now be
formulated as

(E-VRP) min)" Y (c;+cij)xi (2.6)
i€V jev

16

2.3 VRP extensions

subject to
Y xi=1, Viel 2.7
JEV,i#]
Y xi<t1, VieF 2.8)
JEVi#]
Y xo; <K 2.9)
jev
Y xi—) x;=0, Viev (2.10)
JEVi#] JEVIi#]
Enin < & < & < Epax VieVv (2.11)
& < (& +0j—eij)xij+ (1 —xi}) Emax Vi, jeV,i#j (2.12)
& =¢+0; VieV (2.13)
;=0 Vig F' (2.14)
x;j € {0,1}, Vi,jevV (2.15)

The objective function 2.6 remains unchanged from the VRP formulation. The con-
straint 2.7 - 2.10 remains unchanged except for the addition of 2.8. Constraints
2.11-2.14 track the SoC, ensure that it never is negative or less than the previous
SoC, and limit the charging.

2.3 VRP extensions

The purpose of this section is to introduce extensions to the E-VRP. As it is in-
tended to work as an overview, there will not be any MILP formulation or more
technical details presented in this section. In practical use cases, several VRP at-
tributes can be considered jointly, which yields the multi-attribute vehicle routing
problems (MAVRP). In a survey by Vidal et al. (2013) on MAVRP, three main
classes of attributes were presented, namely: Assignment of customers and routes
to resources (ASSIGN), sequence choices (SEQ) and Evaluation of fixed sequences
(EVAL). The list of extensions presented below is not exhaustive as only the most
important extensions for this thesis have been selected.

ASSIGN-extensions

The first category, ASSIGN, contains attributes that impact the assignment of lim-
ited resources, e.g. vehicles, vehicle types, and depots.

Multi-depot vehicle routing problems (MD-VRP) deal with the cases where mul-
tiple depots are available. Contrary to the single depot case, vehicles are allowed to
start and end in multiple depots. It is also possible to add more restrictions, such as
allowing only certain combinations of start and end nodes.

17

Chapter 2. Theory

Heterogeneous fleet vehicle routing problems (HF-VRP) deal with a set of ve-
hicles with different properties. The HF-VRP can either be formulated with a fixed
fleet size or with an unknown fleet size.

SEQ-extensions

The second category, SEQ, influences the structure of the routes and in which order
the customers should be traversed.

The vehicle routing problems with backhauls (VRP-B) divide the customers into
two groups: delivery customers (linehaul customers) and pick-up customers (back-
haul customers) where all delivery customers must be served before the first pick-up
customer.

The pickup and delivery vehicle routing problems (PD-VRP) divide the cus-
tomers into pickup and delivery pairs. Both customers within a pair must be served
by the same vehicle and the customer assigned pickup must be visited first.

EVAL-extensions

The last category, EVAL, contains attributes that must be checked once the routes
are constructed.

Capacitated vehicle routing problems (C-VRP) assign each vertex with a de-
mand, d;, where d; = 0, i ¢ I. We define the total demand of a set, V/, as d(V') =
Yicyrdi, V! C V. Given a homogeneous fleet, all vehicle are assigned the capacity C,
which is assumed to satisfy d; < C foralli = 1,...,n. Let r(V’) denote the minimum
number of vehicles needed to construct a feasible solution. The minimum number
of vehicles needed to serve all customers is defined as K,;;, and can be expressed
as (V) = Kpyin. Deciding the value of r(V) is known as the bin-packing problem
which is proven to be NP-hard and therefore it can be advantageous to replace it by
a lower bound K,,,;,; = d(S)/C which is easily computed. Hence, the C-VRP extends
the VRP by requiring all circuits to satisfy that

* the sum of the demands of the vertices visited by a circuit does not exceed
the vehicle capacity, C.

Vehicle routing problems with time windows (VRP-TW) is an extension to the
VRP in which each customer is assigned a time window, [a;, b;] for i € I. Addition-
ally, each customer is assigned a service time s;. The service of a customer should
start within the given time window. In the case of early arrival, the vehicle must wait
until the start of the time window before beginning the service. Hence all circuits
are required to satisfy that

* for each customer i, the service starts within the time window, [a;, b;], and the
vehicle stops for s; time instants.

18

2.3 VRP extensions

Miscellaneous-extensions

Certain extensions might not fit in the previously presented categories and are there-
fore presented separately.

Time-dependent vehicle routing problems (TD-VRP) allow parameters to be
time-dependent. Time-dependent travel times were first discussed by Cooke and
Halsey (1966) and the TD-VRP was first presented almost 30 years ago by Ma-
landraki and Daskin (1992). Allowing parameters to be time-dependent is a more
realistic model as factors such as fuel consumption and travel time are dependent
on weather- and traffic conditions which in turn are time-dependent. Further, as pre-
viously discussed, for the E-VRP waiting times and other properties of the CSs are
affected by the time at which one arrives.

Stochastic vehicle routing problems (S-VRP) & Dynamic vehicle routing prob-
lems (D-VRP). The S-VRP deals with uncertainties through the usage of stochas-
tic parameters. It can thus be categorized as a probabilistic combinatorial optimiza-
tion problem. In the D-VRP, problem data changes during the execution of a plan. In
practice, this can either be due to unexpected events, e.g. a traffic jam or a new cus-
tomer request, or faulty assumptions, e.g. how much fuel it takes to travel between
two destinations. The adjustments to the planned solution can be either event-based
or time-driven (Ritzinger et al., 2016).

Pillac et al. (2013) performed a survey on the dynamic and stochastic VRP in
which the following categorization was presented:

* Deterministic and static - all input are known exactly beforehand and does
not change during the execution.

* Deterministic and stochastic - some of the input is only partially known as
random variables but they do not change during the execution. Common
stochastic input variables are customer demand and travel time.

* Dynamic and static - parts or all of the input is unknown beforehand and
revealed during the execution.

* Dynamic and stochastic - similar to the dynamic and static case except that it
is possible to exploit some stochastic knowledge on the dynamically revealed
information.

Vehicle routing problems with uncertainty can be viewed as a superclass to the
S-VRP. For the S-VRP random variables are assumed to be drawn from a speci-
fied probability distribution. In practical applications, the probability distribution is
often unknown whereby other approaches must be used. An alternative problem for-
mulation is the Robust VRP which takes the approach used in robust optimization
and uses an uncertainty set (Bertsimas et al., 2011).

19

Chapter 2. Theory

2.4 Fixed size homogeneous capacitated E-VRP with
time windows

In this section, an incomplete MILP formulation to a multi attribute extension of the
E-VRP is presented. The incompleteness is due to simplifications done to improve
the readability. This trade-off is motivated as the formulation will not be used by the
solver and the purpose of the section is to give the reader a deeper understanding
of how different constraints and costs are handled. A list of notations is presented,
followed by an explanation of how some of the variables are defined.

V' set of all nodes my, total number of vehicle of the same
type as k

D set of depots P

ry maximum route time allowed for ve-

I set of customers .
u hicle k

F’ set of chargers))
Oy load capacity of vehicle k
M set of vehicles)))
gij quantity carried by a vehicle at de-
¢; cost incurred on an vertex from the parture from node i to j
visit to node i
d; demand of customer i
¢;j costincurred on arc from node i to j
] E,in x min SoC of vehicle k
P, start cost of vehicle k -

. . . E,.., maximum SoC of vehicle k
t; arrival time at node i -

. . . ii incurred on arc from node i to j
t;j travel time between node i and j ¢ij SoC incurred on arc from node i to j

w; wait time at node i & SoC upon arrival to node i

s; service time at visit to node i & SoC upon departure from node i
a; earliest arrival time at node i o; amount charged at node i
b; latest arrival time at node i P, start cost for using vehicle k

The service time s; can be viewed as either time serving a customer if i € [or
as time charging if i € F’. In the latter case, a function g : #;, &, A, k — t which maps
the arrival time, the arrival SoC, the amount needed to charge, and vehicle type
to a time must be defined. A detailed presentation of how the charging function is
constructed lies outside the scope of the thesis and will therefore be assumed to be
provided in the dataset.

To allow for soft constraints the set 25, = {{z;, €;}|i € n} will be used to denote
all soft constraints. z; € R™ represents the degree of violation and €; is positive
non-decreasing function for which €; : z; — ¢, where ¢ € R™ denotes the cost of the

20

2.4 Fixed size homogeneous capacitated E-VRP with time windows

violation. This notation will be used to add penalties to violations of soft constraints.
The notation ¢;; is used to represent the cost of traversing an arc and ¢; to represent
the cost of visiting a node. These constants can be viewed as the result of a function
that takes an arbitrary number of route properties and maps them to a common cost
value.

In the following equations the notation k£ will be used to denote a vehicle type.

To clarify, the only time xf?j = 1 is when the a vehicle of type k travels between node

i and j. The notation e{-‘j is used when the value depends on the vehicle type.

21

Chapter 2. Theory

Minimize), P) xo;+) 3, 3 (clj+c);+), i)

keM jev kEMIEV jeV

subject to
k
Y Y w=1
keM jeV,i#j

Y i<t
keMicV,i#j

k
Y xo; < mi
jev
Y xi— Y =0,
JEV.i#] JEV,i#]

qu'i—zqzjzdj

iev iev
dixij < gij < (Qk —dj)xij
0<qi; <O

Z Z xij(tij+si+wi) =z <y
i€V jeViit]

xij(ti i+ si+wi) <t

a;i < (ti+wi) =z < by

Epin k < & < & < Epax &

& < (&+0j—efj)xij+ (1 = %)) Emar k
&=¢&+o0;

xij €{0,1},

0, >0

;=0

7 =>0

)

&5 €2

Viel
VjeF
VkeM
VieV
VjeV

Vi,jeV,i# jVkeM
Vi,jeVkeM
VkeM

Vi,jeEV,i#j

Viel

VieV,keM
Vi,jeV,i#j keM
VieV

Vi,jeV

VieF'

Vie V\F'

Vn

(2.16)

(2.17)
(2.18)
(2.19)
(2.20)

2.21)

(2.22)
(2.23)
(2.24)

(2.25)
(2.26)
2.27)
(2.28)
(2.29)
(2.30)
2.31)
(2.32)
(2.33)

The objective function is to minimize the total cost which includes a sum de-
scribing the initial cost for each vehicle, a sum for the cost of traversing the vertices
and arcs, and a sum asserting a penalty for the exceedance of a soft constraint. Con-
straint 2.17 imposes that a customer is visited exactly once. Constraint 2.18 imposes
that a charger is visited at most once. Constraint 2.19 imposes that the number of
vehicles leaving the depot is less or equal to the number of vehicles available. Con-
straint 2.20 imposes flow conservation. Constraints 2.21 to 2.23 ensure the correct
capacity change, ensure that the route is always feasible, and restrict the starting
capacity to be within allowed limits. Constraint 2.24 ensures that an exceedance of
the max time is penalized. Constraint 2.25 imposes limitations on the arrival times

22

2.5 NP-hardness

and 2.26 ensures that a time window is either met or penalized. Constraints 2.27 to
2.29 ensure fuel feasibility and tracks the SoC changes.

2.5 NP-hardness

The TSP can be shown to be an NP-hard problem by reducing it to a well-known
NP-complete problem, namely the Hamiltonian cycle problem. A Hamiltonian cy-
cle is a path in a graph that visits all vertices exactly once. The Hamilton cycle
problem is the problem of determining if such a path exists or not. To prove that
the TSP can be reduced to the Hamiltonian cycle problem use a graph G = (V,E)
where |V| =n and c(e) = 1 for all e € E. Then add E’ to G in order to make the
graph complete and let c(e) = 2 for e € E’. These actions can be performed in poly-
nomial time. Determining if there exists a solution that has the cost n is the TSP
decision problem, and since it is shown to be reducible to the Hamilton cycle prob-
lem it is NP-complete. Therefore, the problem of minimizing the cost of the TSP is
NP-hard as there is no way in polynomial time to verify that the obtained solution
is optimal. Further, since the VRP is a generalization of the TSP, the VRP is also
NP-hard.

2.6 General-purpose solution approaches

Multiple general-purpose solvers have been presented in the literature. Vidal et al.
(2014) presents three main approaches for achieving generality: rich solvers, mod-
elling and solution frameworks, and component-based frameworks. Rich solvers
are solvers that are designed to address a MAVRP formulation through generalizing
several variants associated with subsets of attributes. Well received example of rich
solvers are a solver using tabu search presented by Cordeau et al. (1997), a solver
using adaptive large neighborhood search presented by Ropke and Pisinger (2006),
and a solver using iterative local search presented by Hashimoto et al. (2008). Mod-
elling and solution frameworks transform the general properties of the attributes
and transform them into machine-readable components. For example, Desaulniers
et al. (1998) presented a solver in which attributes are formulated as resources that
are extended to successive customer visits through resource extension functions.
Component-based frameworks can be used to increase the flexibility of the solver.
Components can incorporate specific problem attributes and modify the applied al-
gorithm based on the problem formulation. For more information and examples on
component based framework the reader is referred to Vidal et al. (2014).

23

Chapter 2. Theory

2.7 Penalty functions

Since some versions of the VRP are highly constrained it can be beneficial to visit
unfeasible regions as this can facilitate the exploration. This can be allowed through
modifying the original cost function f(x) according to f,(x) = f(x) + p(d(x,F))
where d(x, F) is a distance metric from the infeasible point, x, to the feasible region
F. The penalty function p is a monotonically increasing function that is zero for
any value within the feasible region. This allows for constraints to be removed and
instead accounted for in the cost function.

Smith et al. (1997) classifies penalty functions as either constant, static, dy-
namic or adaptive. In the constant case a constant penalty is added upon ex-
ceeding a constraint. In the static case the cost function can be expressed as
fr(x) = f(x) + X, Cidf where k is a constant to be chosen, commonly either
1 or 2. The distance metric used in this report will be on the form d; = §;ct;gi(x)
where §; is 1 if the constraint is exceeded, otherwise 0, ¢; is a scaling constant and
gi(x) is the exceedance. In the dynamic case the cost function can be expressed as
fp(x,t) = f(x)+ X%, si(t)df where s;(t) commonly is a monotonically increasing
function. As s(¢) increases in value infeasible solutions are more heavily penal-
ized, whereby the solutions will gradually move towards the feasible region. Lastly,
adaptive penalty functions uses information from previous search results to adapt
the penalty function.

2.8 Introduction to algorithms

The VRP has received much attention during the last 60 years and multiple dif-
ferent approaches to solving the problem have been presented. A classification of
available algorithms for solving the VRP is summarized in Figure 2.1. Naturally,
this classification can be performed in multiple ways, but the one presented is based
on a survey by Lin et al. (2014).

Exact algorithms can be divided into three broad categories: direct tree search
methods, dynamic programming, or integer linear programming. While guarantee-
ing to find the best possible solution these methods are often infeasible due to com-
puting time on larger instances. They will not be discussed further as they often are
inapplicable to the problem presented.

Approximate algorithms are most commonly used in practice and try to find a
near-optimal solution within an acceptable computation time. The remaining parts
of this section discuss the approximate algorithms in more detail.

Classical heuristics

According to Toth and Vigo 2002, classical VRP heuristics can be divided into three
categories.

24

2.8 Introduction to algorithms

Dynamic programming
Saving algorithms
Exactalgorithms |~ Integer linear programming | |
Algorithms. J) Sweep algorithms J Ts
Approximate algorithms | Classical heuristics .
Lin's A-opt mechanism | - SA

" Metaheuristics algorithms | - Local search | VNS

Population search - ACO

Figure 2.1: A classification of available algorithms for solving the VRP.

The first category is called constructive methods and it aims to construct initial
routes. This can be done either through merging existing routes or by gradually
assigning customers to paths through insertion. Clark and Wright saving algorithm
is an example of an algorithm that aims to merge routes based on the notion of
savings.

The second category is two-phase methods, which can be further categorized
into cluster-first, route-second methods and route-first, cluster-second methods. In
cluster-first, route-second vertices are organized into feasible clusters from which
routes then are created. Within this category algorithms such as the sweep algorithm
and the truncated branch-and-bound algorithm can be found. In route-first, cluster-
second methods a tour including all vertices are first constructed and later organized
into feasible clusters.

The last category of classical heuristics is improvement methods in which a con-
structed solution is improved. An improvement method can either treat each route
separately, single-route improvements, or several routes simultaneously, multi-route
improvements. Most of the single-route improvements methods can be described by
Lin’s A-opt mechanism (Lin and Kernighan, 1973). Within the multi-route improve-
ments vertices or arcs are exchanged between routes. In the implemented algorithm
improvement methods are important and a description of the implemented methods
can be found in Appendix A.

Metaheuristics

Metaheuristics are general algorithmic frameworks, designed to solve complex op-
timization problems. They offer general procedures that explore the solution spaces
in a structured manner. Metaheuristics are non-deterministic and commonly use
search experience to guide the search. It is in practice common to combine the
metaheuristic algorithm with a problem-specific improvement heuristic to enhance
the performance. A short overview of metaheuristic algorithms, used in combina-
torial optimization, will be presented based on an article by Blum and Roli (2003).

25

Chapter 2. Theory

Metaheuristics can be categorized as

* nature-inspired vs. non-nature inspired,

» population-based vs. single point search,

¢ one vs. various neighborhood structures,

* memory usage vs. memory-less methods,
* multi-start vs perturbation,

e constructive vs. improving methods.

Nature-inspired vs. non-nature inspired classifies the algorithm based on the
origin. Population-based vs. single point search classifies the algorithm based on
if the algorithm works on a population of solutions or a single solution. The single
point search can also be referred to as trajectory methods. The only algorithm using
various neighborhood structures presented will be Variable Neighborhood Search
(VNS). Memory-less methods perform a Markov process where the next action is
solely based on the previous state. There are different ways of making use of mem-
ory, for example through tracking recently visited solutions or accumulating the pre-
vious results into parameters affecting the search. A further distinction can be made
between multi-start and perturbation algorithms. They have the same purpose; to
increase the search space through operators that do not easily allow the algorithm
to fall back into the same local minimum. Multi-start is characterized by that at
the start of each iteration a new initial solution is created from scratch. Algorithms
using perturbations will instead modify an existing solution and use the modified
solution as a starting point. Both procedures must result in a new solution that is not
too similar to the previous solutions, as this limits the search space. Still, the algo-
rithm should use information gained from previous iterations as it otherwise would
be a random restart. Lastly, metaheuristics can, similarly to the classical heuristics,
be divided into constructive and improving methods. The former can generate a new
solution while the latter must be supplied with an initial solution.

2.9 Algorithms in depth

In this section, a few algorithms commonly applied to the VRP are presented. The
algorithms are divided into either constructive algorithms or improvement algo-
rithms depending on if they can be used to construct an initial solution or not.

Constructive algorithms

There are multiple algorithms that can be used to construct an initial solution. A
selected sample is presented below.

26

2.9 Algorithms in depth

Nearest neighbor algorithm The nearest neighbor algorithm is a straightforward
algorithm in which the next traversed arc is the one that has the lowest cost. While
simple to implement and quick in execution, the routes produced can be of relatively
low quality, especially those created in the later stages. As the solutions can be
of low quality, the solution generated can be infeasible even if feasible solutions
exist. Further, to generate diverse solutions one would also need to introduce some
randomness.

Clarke and Wright savings algorithm The Clarke and Wright savings algorithm
is conceptually easy to grasp and extensively used (Clarke and Wright, 1964). The
algorithm is described in the single depot setting where Vj is the depot and n is the
number of customers:

1. Create n routes as Vo — V; — Vy where i € .

2. Calculate the savings for merging delivery i and j according to s;; = co; +
Cjo — Cij for all i,jel.

3. Sort the savings in descending order.

4. Starting from the top, merge two routes with the largest remaining savings
provided that:

* The customers are not already in the same route.
* Both customers are directly connected to a depot.

* Combining the routes results in a feasible route.
5. Repeat step 3 until no additional savings can be achieved.

Sweep algorithms Sweep algorithms create a sorted list according to the angle
between the customer location and the depot. Routes are then constructed using the
sorted list. The sweep algorithm can be applied in multiple ways. A simple applica-
tion to the C-VRP is to cluster nodes using the sweep algorithm (Suthikarnnarunai,
2008). A new cluster is initialized when the addition of the next node would violate
the capacity constraint. It can however be difficult to generalize this procedure to
a wider range of problem extensions and the effectiveness can be questioned. Still,
it is possible to extend the sweep algorithm and combine it with other heuristics to
improve its effectiveness (Na et al., 2011).

Ant colony optimization Ant colony optimization (ACO) is a population-based
metaheuristic that can be applied to combinatorial optimization problems (Dorigo
etal., 2006). ACO uses swarm intelligence (SI) which relies on the collective behav-
ior of a decentralized system, consisting of simple agents. SI algorithms are often
inspired by nature, and ACO is inspired by the foraging behavior of an ant colony.
An ant who has found a source of food communicates the location of the source
using stigmergy, more precisely through laying down pheromones on the way back

27

Chapter 2. Theory

to the nest. The pheromone stimulates the other ants, and it is more likely for an
ant to follow a trail with a high degree of pheromones. Hence, with the help of a
chemical substance, the ants have created a decentralized system for coordinating
their foraging. There are multiple versions presented in literature but in this report
MAX — MIN Ant System (MMAS) will be used (Stiitzle and Hoos, 2000). The gen-
eral algorithm for ACO is presented in Algorithm 1.

Algorithm 1 ACO

1: Set parameters, initialize pheromone trails
2: while termination conditions not met do
3: ConstructSolution

4: ApplyLocalSearch % optional

5: UpdateTrails

6: end while

ACO uses either consecutive or simultaneous construction of routes to construct
a solution. The next vertex to be visited is a probabilistic decision, in which an un-
visited customer or charger is chosen. The probabilistic choice is biased by the
pheromone trail 7;; and by a locally available heuristic information 1);;. The proba-
bility of choosing an already visited customer is zero and the probability of the next
vertex being j, given the current vertex i for the ant & is

(7] [P

T T e e vk
Lent[Tal® [nu]B

;=
where @ and 3 are two parameters that determine the relative importance of the
pheromone trail and the local heuristic information. N¥ is the feasible neighbor-
hood of ant k, i.e. un-visited customers and nodes which does not exceed the stop
condition. The construction can be performed either one route at a time or n routes
simultaneously. In the simultaneous case, which route to be updated is chosen in
either a sequential or a heuristic manner.

The pheromone trail updating on MMAS is done according to

Tj(t+1) = pij(r) + AT

where p (0 < p < 1) is the speed of evaporation, Arf’j”’ =C/c(S8P*"), Cis a constant
and ¢(SP*") is the solution cost of either the iteration-best, S, or the global-best,
S¢b. Through being able to vary between the usage of iteration-best and global-
best one can control how the history of the search is exploited. Using the global-
best pheromone in the update will increase the speed of convergence but reduce
the exploration. A natural way of handling the balance between iteration-best and
global-best is to begin with mainly applying the S and then dynamically increase
the frequency of using S during the search. In MMAS a pheromone limit is set

28

2.9 Algorithms in depth

to ensure that search stagnation will not occur. Stagnation can happen if one choice
trail is significantly higher for one choice compared to the other. Therefore, 7, <
T;j < Tiax 18 defined and if any of the limits are exceeded that trail is set to the value
of the limit.

Improvement algorithms

In contrast to the constructive algorithms, the improvement algorithms must be sup-
plied with an initial solution, which is to be improved. As a result, constructive and
improvement algorithms can be combined.

Iterated local search Iterative local search contains four components: initial solu-
tion, perturbation, local search, and acceptance criterion (Lourenco et al., 2003) .
The initial solution is constructed using a constructive algorithm which has already
been extensively covered in a previous section. The acceptance criterion decides
the requirements for accepting a new solution. The local search component will ap-
ply operators on an existing solution to improve it. The perturbation is applied to
escape local minima and should generate a new solution from which it is difficult
for the local search to reach the previous minimum.

Variable neighborhood search Variable neighborhood search (VNS) is a meta-
heuristic method for solving combinatorial optimization problems (Mladenovi¢ and
Hansen, 1997). VNS systematically changes the neighborhood of a solution com-
bined with a local search. It relies upon the following observations:

1. A local minimum with respect to one neighborhood structure is not necessar-
ily a local minimum for another neighborhood structure.

2. A global minimum is a local minimum with respect to all possible neighbor-
hood structures.

3. For many problems local minima with respect to one or several neighbor-
hoods are relatively close to each other.

A neighborhood N(x), is defined in relation to the initial solution x. Thereafter,
a descent direction within the neighborhood N(x) is chosen and used in the next
iteration. In this report, a first improvement heuristic will be practiced, whereby a
move is made as soon as a direction of descent is found. To handle large instances,
as the evaluation of a solution is costly and hence also a local search operation a
reduced variable neighborhood search (RVNS) will be used. This extension gener-
ates a point X’ at random where x’ € N. It then evaluates if the generated point is an
improvement. If so is the case, the generated point is used for the next iteration. If
no improvement was found, it either repeats the procedure until a stop condition is
met or changes the neighborhood. The two most important steps in the VNS can be
summarized as follows:

» Shaking - Generates a new solution from a given neighbourhood.

29

Chapter 2. Theory

* Local Search - Improves a supplied solution.

30

3

Outlined approach

The purpose of this chapter is to give an intuition of the main ideas behind the
implemented solution. The first section describes the objective function. The fol-
lowing sections describe how uncertainty, charging stations, and time dependence
are handled. Thereafter, the next three sections describe how problem instances are
handled, how large datasets can be managed, and considerations regarding the con-
structions of an initial solution.

3.1 The objective function, constraints and costs

The objective function decides the quality of a solution and will thus impact the
properties of the generated solutions. In previous MILP formulations, the objective
function was formulated as the sum of the cost of all traversed vertices and arcs,
and the cost of constraints exceedances. In this section, we will extend this defini-
tion, make the formulation more detailed, and discuss how the construction of the
objective function can facilitate finding a high-quality solution.

The objective function can be optimized on one parameter or multiple parame-
ters. Examples of parameters to optimize are total distance, total travel time, or fuel
consumption. The optimization using multiple parameters can either be performed
by combining parameters to a common cost unit or through using multi-objective
optimization. In some cases, attributes can intuitively be converted to the same cost
unit. For example, fuel consumption, total travel time, and overtime can be con-
verted using fuel cost, hourly wages, and overtime wages. For other instances, the
conversion might be hard to perform or for other reasons unwanted, whereby multi-
objective optimization can be used. Examples of aspects difficult to convert are
customer satisfaction, the risk of running out of fuel, the total number of vehicles
used, emissions, and route balance. An example of a multi-objective solution is
presented by Baifios et al. (2013) in which the VRP was solved using three objec-
tive functions that minimized: the total cost, the carbon-dioxide emission, and the
emission of air pollutants. Another example is Miranda et al. (2018) who presents a
solver for the multi-objective VRP with time windows, stochastic travel times and

31

Chapter 3. Outlined approach

stochastic service times. In most cases, an optimal solution that dominates all other
solutions (is better for all objective functions) does not exist. A solution that is not
dominated by another solution is called Pareto optimal. For more information on
the multi-objective VRP, the reader is referred to Jozefowiez et al. (2008).

Penalty functions are a method for including the exceeding of a constraint as a
penalty in the form of an added cost in the objective function, described more in-
depth in section 2.7. Penalty functions are motivated by the fact that the search space
for the E-VRP, and its extensions, is heavily constrained. Therefore, feasible solu-
tions constitute only a small fragment of all possible solutions and the constrained
objective function is non-convex. Another property of penalty functions is that they
provide a natural framework for relaxing the constraints, which is beneficial for two
reasons. Firstly, it can be challenging to create an initial feasible solution without
the ability to relax the problem. Secondly, through relaxation permutations can be
performed to escape local minimums.

When formulating an optimization problem constraints can be either soft or
hard. Soft constraints are allowed to be exceeded at a penalty cost while the ex-
ceedance of hard constraints is forbidden. Typical examples of hard constraints for
the E-VRP is vehicle load capacity and fuel limitations. Hard constraints should
heavily penalize, at least when not relaxed, even a small exceedance. If the ex-
ceedance of a constraint is forbidden, a jump discontinuity can be used. The diffi-
culty of approximating certain properties, such as fuel consumption, makes it natu-
ral to model them using penalty functions and safety margins instead of strict limits.
Some constraints have a practical interpretation, such as maximum allowed travel
time after which overtime wage is paid. The magnitude of these costs can be sup-
plied by the decision-maker. Penalty functions and the relaxation schema will have
a large impact on the performance of the algorithm and the properties of the solu-
tions generated. However, as these are problem-specific and it is difficult to draw
any general conclusions. More detailed information about how these concepts are
implemented can be found in conjunction with the presentation of the proposed
algorithm in chapter 4.

In the implemented framework it is possible to use separate costs during the al-
gorithm execution and evaluation of final solutions. This decoupling can counteract
unwanted behavior and improve the performance of the algorithm. One example
is the overtime wage for exceeding the maximum travel time limit. This attribute
is natural to declare as a linear cost proportional to the overtime. However, in the
algorithm an exponential penalty should be used, to prevent assigning all overtime
to the same vehicle.

3.2 Dealing with uncertainties

Uncertainties are unavoidable when planning a set of routes for EVs. Uncertainties
can be derived from factors such as traffic conditions, waiting times, changes in

32

3.2 Dealing with uncertainties

customer demands, and weather conditions. One of the parameters that have an
inherent uncertainty is the fuel consumption of an EV. According to Li et al. (2016)
the fuel consumption is influenced by multiple factors which can be divided into six
categories:

* technology and vehicle factors,
e artificial environment factors,

¢ natural environment factors,

¢ driver factors,

* travel type factors,

¢ measurement factors.

Each of these categories contains multiple aspects which impact the driving range
of an EV. While it is possible to create a reasonable model of fuel consumption there
will always be some uncertainty in the model, both due to the number of influential
factors and the fact that some factors must be predicted.

In practice, there are two methods for handling these uncertainties. The first
method will be referred to as a priori optimization in which the routes are not
changed or updated after the algorithm execution. The randomness is instead ac-
counted for when planning the routes prior to the plan realization. One common ap-
proach within the category is stochastic programming. The second option, referred
to as a re-optimization strategy, allows the plans to be updated during the execution.
The update can either be done based on pre-calculation for different outcomes or by
optimizing based on the new state at run time.

In most use cases, the distribution of the stochastic parameters is difficult to
estimate. Hence, we should assume that our knowledge about the underlying prob-
ability distribution is sparse or inexact. As a result, the framework of stochastic
programming will be difficult to apply since it requires known probability density
functions. Thus, if we are to perform a priori optimization we must find a method
that does not depend on the exact distribution of the probability density function.
The most straightforward approach would be to use a safety margin when construct-
ing the routes, e.g. the SoC is not allowed to go below 10%. The advantages of this
method are that it is easy to both understand and implement. The drawback is that
the cost of solutions obtained might be increased, in some instances drastically. A
more nuanced method would be to apply a cost reduction for unused resources. The
marginal gain in safety margin is more important close to exceeding a constraint.
As a result, the cost reduction should be a concave non-decreasing function. The
last proposed approach would be to use tools from the field of robust optimization.
In robust optimization no distributional assumptions are made, instead, parameters
are assumed to belong to a deterministic uncertainty set.

33

Chapter 3. Outlined approach

All of the mentioned approaches could be combined with online optimization,
which re-optimizes the routes during execution. In practice, this would mean taking
a snap-shot of a certain point in time and optimizing based on the new problem
state. This would result in a multi-depot E-VRP with a fixed-size heterogeneous
fleet.

3.3 Charging stations and partial recharging

Each CS is associated with a charging function which maps an arrival time, a start
SoC, an end SoC, and a vehicle, to a departure time. The marginal charge time
with respect to the SoC is monotonically increasing whereby the charging function
will be concave. In practice, this implies that the battery charges faster with a low
SoC. In addition to the influence of SoC, different vehicles can have different charg-
ing functions. To decrease the computational efforts all charging functions will be
discretized. Creating realistic charging functions for different types of vehicles and
chargers is deemed to lie outside the scope of this thesis. Therefore, when the charg-
ing functions are not provided in the dataset, the same charging functions will be
used for all types of vehicles. The charging functions are obtained from Montoya
et al. (2017) and includes three types of chargers. The used values are presented
in Table 3.1, where it is shown how long time it would take to charge to a specific
SoC from 0%. The charging function is assumed to be linear between the displayed
values and the time is presented in hours. Lastly, it should be stated that partial
recharging will be allowed as this increases the quality of solutions.

Table 3.1: The charging time (hours) used in this report based on the charger type
and SoC.

85% | 95% | 100%
Fast 0.31 | 039 | 0.71

Normal | 0.62 | 0.77 | 1.01
Slow 1.26 | 1.54 | 2.04

34

3.4 Dealing with time-dependence

3.4 Dealing with time-dependence

Parameters will be allowed to be time-dependent. In this work, we will limit the
time dependence to attributes related to congestion, namely; fuel consumption and
travel time. The choice of these parameters is due to that they have an obvious
time dependence in reality. While more aspects, such as waiting time at charging
stations and charging speed are time-dependent, they are not implemented. The rea-
son for not implementing them is that the congestion already shows that the solver
can handle time-dependent attributes. Once the solver can handle time dependence,
implementing additional time-dependencies within the attributes should be simple.

When allowing for partial recharging and time dependence intricate relationship
between the optimal amount to charge, fuel consumption, and travel time arises.
Without time dependence, it was possible to optimize the charging at all CSs given
that one knows the whole route. This could be done by first charging the required
amount to reach the next CS, then continuing charging if, and only if, the current
cost of charging is less than the cost of charging at the next CS. This decision will
depend on the type of charger and the current SoC. Hence, the cost of a route, with
respect to the amount charged at a CS, will be convex. Introducing time-dependence
makes the problem of deciding how much to charge at a CS more difficult. The cost
of a route as a function of the amount charged at a CS is no longer convex. As a
result, a local minimum point can not be assumed to be the global minimum, and
finding the optimal amount to charge is difficult. The reason is that the fuel needed
depends on at what time a vehicle traverses the coming arcs, and the time at which
a vehicle traverses the coming arcs depends on how much it is charged.

Computational complexity

Some constraints can be checked in O(1) time, for example, load capacity. Further,
battery penalties and time windows without time-dependence can be computed in
O(1) if only one node is inserted between two partial routes (Schiffer and Walther,
2018). While efficient ways of evaluating a change exist, most of these are not
applicable due to the allowance of time dependence. Hence, to evaluate the cost of
a modification, the affected routes are reconstructed from the insertion point. The
cost is then evaluated by traversing all nodes within the routes and summing their
costs.

3.5 Problem instances

All information needed to define a problem instance is defined as a dataset. A dataset
contains information about the depots, customers, chargers, and vehicles to be used.
In this thesis, multiple sources are used to find the datasets. Some of the used in-
stances are publicly available and related to specific articles. In other cases, the
dataset is generated for this thesis or created from a real-world problem setting. For

35

Chapter 3. Outlined approach

all real-world instances, the API of Iternio Planning AB will be used to estimate
the fuel consumption and travel times. In all other cases, these parameters will be
assumed to be provided in the dataset. More information about a dataset will be
presented in conjunction with the results obtained through solving the dataset, see
chapter 5.

Time-dependent parameters will be modeled using naive models since develop-
ing realistic models falls outside the scope of this work. The exact distribution of
these variables will be described in detail when a specific dataset is presented. In
general, they will be constructed through the discretization of a well-known proba-
bility distribution. The properties of the arc will solely be based on the time of the
departure. This simplification is performed to reduce the computational complexity
and ease of implementation.

3.6 Dealing with large datasets

In this section, we will use the number of vertices present in the dataset to define
its size. Naturally, this is not the only possible measurement of the size of a dataset
but it will serve its purpose in the following discussion. When the size of a dataset
increases the two main difficulties arising are:

1. The number of arcs increases and thus also the number of attributes that must
be approximated.

2. The execution time of the algorithm will increase as the number of possible
routes and the number of routes within a solution increases.

The first difficulty originates from that the number of arcs in a complete, directed
graph, with n number of vertices, is calculated by the formula n*> — n. Therefore,
the growth in the number of arcs is quadratic in respect to the growth in the num-
ber of vertices. For a dataset of 200 vertices, the number of arcs would thus be
39800. The number of vertices is problematic partly due to the number of API calls
needed and partly due to the computational complexity in modeling randomness
and time dependence for all arcs. There are two possible solutions to this problem.
The first would be to reduce the number of calculations performed and not calculate
all parameters related to each arc individually. This could be accomplished using
an algorithm that estimates the parameters of an arc intelligently and therefore lim-
its the number of lookups required. How to implement a reliable algorithm for this
purpose would be a challenging task and is deemed to lie outside the scope of this
work. The second solution would be to not include all arcs in the graph and set the
cost of traversing the excluded arcs to infinity. This would require a method for de-
ciding which arcs to include. A naive approach would be to only include the arcs
which are connected to the closest vertices. As an example, allowing only visits to
the 20 closest vertexes would decrease the number of arc look-ups from 39800 to
4000 or, in a more general notation, from n% — n to min[n — 1,20] x n.

36

3.7 Constructing an initial solution for the E-VRP

In regards to the second difficulty, the solution of limiting the number of look-
ups makes the problem easier to solve as there are not as many available routes. Of
course, this comes at the cost of possibly missing optimal routes that include travel-
ing between two vertexes located far from each other. A more detailed explanation
of possible methods for limiting the number of look-ups is presented in chapter 4.4.

3.7 Constructing an initial solution for the E-VRP

The initial solution acts as a starting point for the improvement algorithms. There-
fore, it must produce feasible and diverse solutions rather than solutions with high
quality, as this can be improved later. A common method for constructing a feasi-
ble solution is to use a constructive heuristic method, such as the Clark and Wright
algorithm, or metaheuristics, for example, ACO. Another method is to construct an
initial TSP solution and then use a splitting procedure to generate VRP solutions.
For the E-VRP, charging stations must be included when constructing an initial so-
lution.

We make the delimitation that a vehicle is assigned a single, specific start depot,
while multiple end depots are allowed. Further, we assume that all fleets are of fixed
size. This can be done without loss of generality as it is possible to assign any arbi-
trary number of vehicles to a depot, thus a fleet without fixed size can be replicated.
The routes of the initial solution can be constructed successively (one at a time) or
simultaneously (all at once). If the routes are created successively, a stop condition
must be declared to ensure that the first vehicle does not visit all customers. If the
number of vehicles to include in the solution is known, simultaneous construction
can be advantageous. The reasoning is that it is difficult to control the number of
vehicles included in a successively created solution.

The inclusion of chargers complicates the construction of an initial solution and
can either be performed simultaneously as the insertion of customers or afterward
in a fixed route of customers. In the former case, it is difficult to approximate the
amount to charge and which charger to be visited as both these decisions are highly
dependent on the subsequent sequence of nodes in the route, which at the time
is unknown. In the latter case, it is difficult to construct a good sequence of cus-
tomers without knowledge about the chargers as these will influence the quality of
the chosen sequence. The problem of selecting which CS to insert and how much
to charge at each CS in a fixed route is called the fixed-route vehicle charging prob-
lem (FRVCP). The objective of the FRVCP is to minimize the cost and ensure the
feasibility of a fixed route of customers through the insertion of CSs. Hence, this
operation is not allowed to alter the order of the customers. The FRVCP is a gener-
alization of the fixed-route vehicle refueling problem (FRVRP). Since the FRVRP is
proven to be NP-hard, the FRVCP is also NP-hard (Montoya et al., 2017). Another
difficulty with the inclusion of chargers is that it might affect stop conditions such
as maximum allowed travel time.

37

4

The framework

The purpose of the chapter is to describe the developed framework. The chapter
starts with an overview of the implemented framework, followed by discussions
on the implemented algorithm. Thereafter, how to improve the performance of the
algorithm and application examples are presented. Lastly, a discussion on evaluating
the quality of a solution is conducted.

4.1 Overview

The framework implemented to solve the E-VRP consists of a set of modular com-
ponents, written in Python. The structure of the framework can be viewed in Figure
4.1. The main advantage of the structure is that the result obtained can be analyzed
post algorithm execution which makes the framework flexible.

The data component contains the datasets with information about the vertices,
arcs, vehicles, constraints, and costs. The engine reads data from the data compo-
nent and parses it into Python data structures. Its main purpose is to take a sequence
of vertices in combination with a vehicle and return information about the corre-
sponding route. The algorithm component creates solutions to a specified dataset. It
uses the engine to evaluate the quality of the routes. Upon completing the execution
of an algorithm the results are saved into a database. The analyze component fetches
data from the database and creates an engine with the data used in the algorithm.
It then analyzes the solutions created to obtain additional information. The display
component displays information about the solutions obtained from an algorithm.

The algorithm, the parameters, the cost function, and the penalty functions are
all read into the framework as configuration files. This is helpful as users will have
different use cases and costs. Further, it facilitates the evaluation of the performance
based on different configurations and costs. EVAL-extension attributes are added to
the engine as features. The features are dynamically added based on the input files
and thus only relevant features for the instance are included in the engine. A feature
is, in simple terms, responsible for everything needed to be able to calculate the cost
related to the attribute.

38

4.1 Overview

0000

Data Engine Algorithm Database

(a) The flow of the generating solutions

0°%e60o

Database Analyze Display

(b) The flow of parsing results

Figure 4.1: An outline of the flow of the implemented solution.

Algorithm flowchart

The algorithm component of the framework is constructed in a manner which makes
the algorithms applied easy to substitute. The flow of the algorithm component is
shown in Figure 4.2. The first step is to construct an initial solution. If previous
solutions have been constructed, it is possible to include knowledge about the prob-
lem, learned in previous iterations. Once an initial solution has been constructed, an
improvement algorithm is applied. On termination of the improvement algorithm,
the final solution is saved, and the problem knowledge is updated. If more itera-
tions are to be performed, either a permutation is applied to a previous solution or
a new initial solution is constructed. Note that it is possible to substitute the algo-
rithms applied at each step. As a result, the framework is compatible with multiple
combinations of algorithms.

39

Chapter 4. The framework

(Start algorithm)

Y
(Construct initital solution)

A i

b(Improve solution)

h J

(Final solution)

h
(Problem knowledge)

Yes

h J

(Multi-start)

Ng

(Permulation)

Figure 4.2: A flowchart of the general procedure for the algorithm component.

4.2 Implemented algorithm

This section describes the implemented algorithm in detail. A flowchart of the pro-
cedure is presented in Figure 4.3. At the beginning of each iteration, the size of the
fleet is decided. If a previous solution including the selected number of vehicles
exists, the best solution found is used as a starting point. When running multiple
processes in parallel the best solution of all processes is used. If no previous so-
lution exists, a new initial solution is generated. Local search is then applied to
the existing solution. It begins with a permutation phase in which the penalties ap-
plied to constraint violations are lessened and deteriorating solutions are excepted.
This is performed for a set number of iterations. When the permutation is com-
pleted, a local search phase is performed in which only improvements are accepted.
The penalties applied to constraint violations gradually increase during this phase.
When the improvement phase is completed, either a new permutation is performed
or a new iteration is started.

Fleet size

It is difficult to construct a general algorithm for optimizing the fleet size as the op-
timal search pattern is heavily dependent on the problem formulation. Thus, a very

40

4.2 Implemented algorithm

(Start iteration)

¥

(Decide fleet size)

]
Yes (Previous solution exists?)

Na

L] L
(Use previous best) (Construct new solution) No

Yy

(Permutations)

(Impravements)VES

(Restart local search?)

Figure 4.3: A flowchart outlining the implemented algorithm.

intuitive and simplistic algorithm was constructed which can easily be modified to
improve the performance on specific problem instances. First, a lower bound for
the number of vehicles used is established. The lower bound can be found through,
for example, calculating the total capacity needed (if all vehicles have a max ca-
pacity) or by summing the time it takes to travel to the second closest node (if all
vehicles have a max time). An upper bound is defined as the total number of vehi-
cles available. The algorithm consists of two phases, the initial search, and the main
search.

For the first solution created during the initial search, the number of vehicles
used is set to equal the lower bound. Then, for each following iteration, the number
of vehicles included is incremented by one. This is continued until x solutions worse
than the previous best have been found. The initial search is then completed, and
the main search phase is started.

In the main search phase the number of vehicles to be used in the iteration is
chosen according to:

1. Select n;p;; € N at random with the probability

min
G\
min
Cbest
min
C

Zn’eN (#unt)e
[y

P(ninit) =

where C"" is the minimum cost found using n vehicles, Cj" is the lowest
cost found for all values of n, N is the total set of the number of vehicles

examined and 6 is a constant.

41

Chapter 4. The framework

2. Obtain the actual number of vehicles to use from the function 7 e = m(Rinir)
where m : N — N.

The parameters can be modified to improve the performance. k decides how
fast the initial search should be stopped, 0 decides the weight of the previous re-
sults, and m is a function that can modify the number of vehicles used. m can be
viewed as a method for investigating the regions around the best-found solutions.
The reasoning behind including such a function is that, for some instances, a lower
number of vehicles is expected to be preferred. It might, however, be difficult to find
a good solution for the lower number of vehicles as a large portion of the solutions
is infeasible.

Generation of initial solution

The generation of the initial solution is performed only when no previous solution
for the selected number of vehicles exists. The first step of generating the initial
solution is to decide upon the fleet composition. All vehicles can differ either in
their properties or set of allowed depots. Hence, two vehicles will be handled as
equal if they have the same properties and depots. As a result, the first step is to
classify the vehicles accordingly. The construction of the initial solution follows a
naive approach where the fleet composition (the type of the vehicles) is chosen at
random. Thereafter, a random node is selected and inserted into a route according
to the cheapest insertion principle. If the insertion results in the exceedance of the
fuel limit, all chargers are removed and reinserted. The reinsertion is done by in-
serting a charger right before the node for which the fuel limitation was exceeded.
If the insertion of a charger is possible, the cheapest allowed charger is inserted. If
no charger is possible to insert, the same procedure is repeated for the previously
visited node. This is done until either a charger is inserted or the previous charger
or depot is reached. If no charger was found the best available charger is inserted
before the node which exceeded the fuel limitation.

Local search

The local search phase is composed of two sub-phases, denoted the permutation
phase and the improvement phase. Permutations are always applied at the beginning
of the iteration phase and are followed by the improvement phase. This cycle, of first
applying permutations and then improvement operators, can be repeated multiple
times within a local search phase. The same operators are performed within both
sub-phases. The inter route operators are applied stochastically, with each operator
assigned a probability to be selected. During the permutation phase, the penalty
of exceeding a constraint is decreased and a deteriorating solution can be accepted.
During the improvement phase, only solutions improving the final cost are accepted.
The intra route operators are applied to a route that has been modified by an inter
route operator. A more detailed description of how the operators are applied can be
found in Appendix A.

42

4.3 Motivation for the implemented algorithm

Optimizing the amount charged

When optimizing the charging routes with chargers included will be assumed to be
supplied. The optimal amount to charge is estimated by first charging the amount
required to reach the next charger or depot with the required SoC. Then continue
charging while the current charging speed is faster than the charging speed of the
next charger, keeping in mind the SoC at each charger. For the time-dependent case,
the task of optimizing the amount to charge becomes more difficult. However, in this
thesis, the same procedure as in the time-independent case will be used. The prob-
lematic aspects of this approach are described in section 3.4. The reasoning behind
not developing a more sophisticated method is partly due to the limited time of the
project and partly due to that it is unclear if the inclusions of such a method would
improve the performance noticeably. The fact that the allowed computational time
for the optimization is restricted limits the possibility of using numerical methods.

4.3 Motivation for the implemented algorithm

The implemented algorithm is motivated by its flexibility and the fact that it works
on a wide range of problem extensions. The operators included can easily be ex-
tended, modified, or substituted to adapt and improve the algorithm to a new prob-
lem setting. The number of vehicles to include in the solution can be known in
advance or unknown. In order to handle both these cases, the decision regarding
the fleet size is handled in a separate phase. It should be noted, that in the current
implementation, a vehicle can be included in a solution without being assigned a
customer. When no customers are assigned to a vehicle, and it has the same start
and end depot, it is excluded from the cost of the solution. As a result, the number
of vehicles gradually decreases. Note that since the number of vehicles to include in
an iteration is stochastically chosen, the reduction of vehicles will result in a larger
probability of selecting a reasonable number of vehicles. Thus, the solutions using
the same number of vehicles, while initially being assigned a different number of
vehicles can be viewed as a method for diverging the search within that fleet size.

The algorithm is conceptually easy to understand and the different phases have
a clear purpose. While there are many parameters to be set, how these influence
the solution is easy to comprehend. Penalty functions are used to make the search
space easier to traverse through. In many cases, it would otherwise be difficult to
modify a solution without making the new solution unfeasible. The magnitude of
the penalties can be modified. This allows for the usage of the same operators within
the permutation and the improvement phase. Further, the algorithm is parallelizable,
which allows it to run on multiple CPU cores simultaneously.

A lot of effort was put into modifying an existing solution and a new solution
is only constructed when no previous solution is available. Thus, the approach for
constructing new solutions is simple and does not produce initial solutions of high
quality. However, it is very flexible and easy to adapt to most extensions. This com-

43

Chapter 4. The framework

promise was deemed appropriate since the quality of the initial solution quickly
becomes unimportant.

An implementation of ACO was performed, to enable evaluating the pros and
cons of the implemented algorithm. One of the drawbacks of ACO was the difficulty
of finding feasible or close to feasible initial solutions. Therefore, it was costly to
generate enough feasible solutions for the pheromone trails to become effective.
Further, if the routes are constructed sequentially, a stopping condition is required.
In some instances, there are no apparent stopping conditions. For others, the amount
charged might make it more complex to handle. The optimal next vertex to visit
depends on the current state of the solution. As a result, given the inclusion of
multiple attributes, a single pheromone trail becomes inadequate for transferring the
problem knowledge. One method for counteracting this could be to create several
pheromone trails which are weighted based on the state at a node visit. But, in this
method, the weighting and updating of the pheromone trails would be challenging
to design.

4.4 Improving the performance

In this section, multiple methods for improving the performance of the algorithm
are presented.

Parameter tuning

The performance of the algorithm is heavily dependent on the chosen parameter
settings. In the following paragraphs, the settable parameters of the algorithm are
presented. No guidelines for the parameter values are given here, as this is discussed
in section 5.1.

Local search parameters In the local search phase, the parameters to be set can be
divided into different categories. The first category is parameters that are related to
altering the cost functions and acceptance rate during the local search phase. This in-
cludes the number of local search iterations during the permutation phase, the num-
ber of permutation phases, the acceptance rate during the permutation phase, the
relaxation of penalty functions during the permutation phase, the relaxation schema
during the improvement phase, and the number of iterations within an improvement
phase. Further, when to apply intra route operators and stop conditions must also
be set. The second category of parameters is those related to the operators used.
Parameters to be set within the category are the probability for applying an operator
and parameters specific to the different operators, such as deciding which routes
and nodes to include.

Other parameters There are a couple of parameters to be set, in addition to those
in the local search phase. Firstly, the total number of iterations must be specified.

44

4.4 Improving the performance

Alternatively, this could be defined as allowed execution time or a number of it-
erations without improvement. Secondly, parameters related to fleet construction,
the constructive method, and the limiting of look-ups for larger instances must be
decided.

Improving the robustness

In order to improve the robustness of a solution , which was discussed in section 3.2,
a negative cost was implemented. The negative cost is optional to include and in the
presented computational results it is only included in section 5.3. The negative cost
was implemented according to the formula:

X
c(x,B) = aB"'x’ 0<a,pB,x
where « is a scalar, 3 is a shape parameter and x is the amount left of the resource.
Note that c(x,8) = = is a function that takes on a value between 0 and 1 where
¢(0,B) =0 and c¢(e, B) = 1, for all B < . Further, the property of the shape pa-
rameter 3 can be viewed as ¢(x,) = 0.5 given 8 = x. In other words, the function
is non-decreasing, concave and yields a result between 0 and 1. By using nega-
tive functions cheap routes could potentially have a negative cost or a cost close to
zero. Thus, the function actually implemented in the algorithm was on the following

form:
X

B+x

Limiting the number of look-ups and selecting how to apply
operators

This section covers the implementational aspects of the topic of handling large in-
stances, discussed in section 3.6. In summary, two problems arise when working
with large datasets. Firstly, the number of attributes that must be approximated
quickly grows, and secondly, the execution time will increase as the solution space
increases. The two problems are in some aspects related but will be treated sepa-
rately as they are handled differently within the implementation.

The first problem is related to the modeling of the problem and is treated when
the dataset is constructed. In essence, the implemented solution to the problem is to
reduce the number of arcs included in the model and set all arcs excluded to have an
infinite cost. Using this approach the difficulty lies in designing an effective method
for choosing how many and which arcs to include. The approach taken in this report
is to sort the other nodes based on distance and only model those nodes that are the
closest.

The second problem is a bit more intricate. The first thing to notice is that, as
explained in section 3.4, the computational complexity of evaluating a solution is
relatively high. It can however for some instances be improved, which is discussed
in the section improving the evaluation time. Given the high computational cost

c(x,B)=a(l—

)7 OS aaﬁax‘

45

Chapter 4. The framework

of evaluating a solution, the solutions to be evaluated must be chosen with care.
Therefore, all operators are equipped with methods for deciding which routes and
nodes to apply them to. Still, designing effective operators is challenging. For all
implemented operators, the choice of which routes and nodes to apply it to is done
probabilistically. For some operators, the probability of including targeting a node
is relative to the cost of the node. As the performance of the solver is heavily de-
pendent on the problem instance, it is difficult to conclude that this improves the
performance. However, intuitively it should at least lead to an initially faster cost
decline as the most expensive nodes have the highest impact on the cost. With re-
gards to which routes to apply the operators on, this is for most operator chosen at
random, except for the insert operators which have a higher probability of remov-
ing a node from a costly route. The exact value for the operators’ parameters can be
found in Appendix B.2

Improving the evaluation time

Evaluating a solution is costly in the implemented framework, see section 3.4. There
are multiple methods and constraints which could be used to decrease the compu-
tational complexity of evaluating a solution. The motivation for not implementing
these by default is that the solver should be as flexible as possible, at the cost of
execution time. It is however possible, through small modifications, to allow for
quicker evaluation. This can, for example, be achieved with an initial filter using
constraints which never are allowed to be exceeded. For example, it is possible to
perform an initial check to assure that the load capacity is never exceeded, the in-
crease in distance or time is never too large, or that the SoC for the new route never
is below zero. While the computation complexity is decreased, the ability to al-
low for unfeasible solutions becomes limited, which might affect the performance
negatively.

Adaptive parameters

Adaptive parameters can be adapted dynamically to the problem settings before the
execution based on the properties of the problem, for example depending on the
number or density of the customers. Alternatively, the parameters can adapt during
the execution based on the performance of the solver. In this report, no adaptive
behavior will be investigated further but it is presented as a possible method of
improving the performance.

4.5 Examples applications

In this section, the application of the algorithm to a few selected VRP extensions is
discussed. These extensions are not exclusive and should be viewed as examples of
how the algorithm handles or can be modified to handle different variations.

46

4.6 Evaluating the quality of a solution

Pick-up delivery E-VRP with time windows

For the pick-up delivery E-VRP with time windows customers are divided into pairs
where the same vehicles must visit both nodes and the customer labeled pick-up
must be visited first. During the construction of the initial solution, the next node
to be inserted is only chosen from the set of customers labeled as pick-ups. After
inserting the pick-up customer, the delivery customer is inserted in the same route,
at the position after the pick-up customer which minimizes the cost. During the
local search phase, only operators moving the nodes as a pair while retaining their
order are allowed.

Fixed size heterogeneous fleet multi-depot E-VRP

The fixed size heterogeneous fleet multi-depot E-VRP is important to consider as
this extension arises when a solution is partially resolved. In practice, there are not
too many differences between solving the regular E-VRP. The solver can handle
different vehicle types with different start positions. An operator which selects the
best endpoint is added to optimize the selection of end depot. If a vehicle is unused
or has already finished its route the cost while waiting for an assignment is in all
presented solutions set to zero. It should be noted that resolving a partial solution is
easier to solve as the vehicle composition is already decided on and fewer customers
are left to visit.

Time-dependent vehicle routing problem

The time-dependent vehicle routing problem is solved without major alterations in
the algorithm. The only time dependence accounted for is in travel time and fuel
consumption, but it is possible to implement additional time dependencies such as
waiting time at charging stations. A difficulty when dealing with time dependence
is to decide on the optimal charge amount. It is difficult to optimize the amount
to charge as there is a co-dependence between the charge amount, the travel time,
and the fuel consumption. While numerical methods could be used, the frequency
of calculations is high whereby a low computational complexity is required. There-
fore, the same method as in the non-time-dependent case is used. Given a relatively
modest difference in departure time, the fuel consumption and travel time are ex-
pected to be relatively constant. Therefore, the time-independent case is justified to
be a reasonable approximation.

4.6 Evaluating the quality of a solution

A central aspect of solving the E-VRP for practical applications is to evaluate the
solutions obtained reliably. In this report we do not concern ourselves with checking
for feasibility as exceedances of constraints will be treated using penalty functions.
Thus, an infeasible solution is expected to be costly.

47

Chapter 4. The framework

A web-based dashboard was developed to facilitate the assessment of obtained
solutions. In the dashboard, different problem parameters can be modified. The main
purpose of the dashboard is to get additional information about each solution, for
example through displaying the solutions as a graph, showing how much each at-
tribute contributes to the cost, and plotting the behavior of the attributes in the so-
lution. Further, it is possible to simulate a solution with modification to the arcs to
investigate the robustness of the solution. The modified arcs can further be used to
generate new datasets and to change the safety margin used. Another functionality
in the dashboard is to turn on and off congestion to see how a solution is affected
by the inclusion or absence of the includes of congestion.

As previously discussed a generated solution for the E-VRP is seldom domi-
nating all other solutions. The Pareto optimally can often be motivated in multiple
ways, but one way to reason about it is that the solution that optimizes the objective
function seldom is the most robust. In this section, we will not concern ourselves
with how a set of proposed solutions was found but will instead discuss how one
can analyze the solutions.

Assessing the robustness There is no single definition for the robustness of a so-
lution and therefore several methods will be used to investigate the robustness. The
first method is to apply a safety margin. A safety margin could be applied to the fuel
limit as a minimum allowed SoC. As discussed previously, a safety margin could be
applied when constructing the solutions, but it can also be used to assess the quality
of an already constructed solution by keeping the same solution but increasing the
minimum allowed SoC. A solution that performs well given an increase in required
SoC can be argued to be more flexible as one has the option to increase the amount
charged if the weather conditions are worse than predicted or the fuel consumption
is higher than expected for other reasons.

As estimating the required time and fuel consumption needed to travel between
two locations is a difficult task, it is of interest to investigate what happens if the
estimated travel time or fuel consumption is slightly off. The more advanced method
would be to construct models for each arc which includes a probability density
function for different values of all attributes. As these probability density functions
are seldom available a more naive approach is used. The naive approach uses a well-
known probability distribution and multiplies the attributes of a route with a random
value drawn from the probability function. For instance, a normal distribution with
the mean value of one and a low standard deviation could be used to model slight
variations in the arc attributes. Of course, it is possible to use any distribution and
only apply the modifications to a selected number of arcs.

Assessing solutions with a different objective function 1t can be of interest to ap-
ply different objective functions to the solution. As discussed in section 2.1 there can
be multiple objective functions that are conflicting and thus multiple Pareto optimal
solutions are produced. The properties of a produced solution can be investigated
using other different cost functions.

48

D

Computational results

In this chapter computational results from the framework are presented. Each sec-
tion will be concerned with a specific problem extension. All sections, except the
first, will follow the same structure where first an introduction to the problem is
given, followed by a description of the parameter settings and algorithms used.
Lastly, the results of executing the algorithm will be presented. The cost functions
and solver parameters are presented in Appendix B. For the case of simplicity, the
same cost and penalty functions will be used for all instances. Any modifications
will be discussed explicitly.

For most graphs presented, the path from the start and end depot will be ex-
cluded, since the graph otherwise becomes cluttered. In all presented graphs red
markers are depots, blue markers are customers and the green markers are chargers.

5.1 Parameter tuning

In this section computational results on the topic of parameter settings are presented.
Note that the computations are only performed on a limited set of problems and it
is thus unclear to what degree the results can be generalized. The instances used
in this section are taken from Montoya et al. (2017). The investigated settings are
presented in Table 5.1 and the results are presented in Table 5.2. The computational
experiment is only performed on a selected set of parameters as the number of
combinations otherwise would be unmanageable. The parameters to be investigated
were selected based on the expected impact on the performance and the values used
for the remaining parameters can be found in Appendix B.

As previously mentioned, one should be careful with drawing conclusions from
the limited sample size. The result does however indicate some behaviors that intu-
itively make sense. Since the area for all datasets is equal no matter the number of
customers included the density of customers will be higher for datasets with more
customers. As a result, it can be expected that the permutation steps do not have to
be as strong since it should in general be easier to escape a local minimum, which

49

Chapter 5. Computational results

Table 5.1: The settings used in the parameter tuning.

Name 1 2 3

Restart iterations 10 3 3
Restart softness 0.5 0.2 0.2
Restart acceptance 08 | 09 | 09
Permutation iterations 10 5 20
Permutation softness 04 | 04 0.1
Permutation acceptance 0.9 | 095 | 0.95

Start softness local search | 0.4 0 0

End softness local search | -0.6 0 0

Table 5.2: The cost obtained from running the algorithm with different settings. The
name indicates how many customers were present in the dataset.

Dataset | Settings | Cost
c20; 1 4678
c20; 2 4674
c20; 3 4674
c20, 1 4860
c20, 2 4860
c20, 3 4860
c40, 1 9818
c40, 2 9818
c40, 3 9810
c40, 1 8832
c40, 2 8967
c40, 3 8832
¢80 1 14276
c80; 2 14226
c80; 3 14189
¢80, 1 15511
¢80, 2 15553
c80, 3 15550
c160; 1 28335
c160; 2 28199
c160; 3 28181
c160, 1 26273
c160, 2 26143
c160, 3 26039

50

5.1 Parameter tuning

the result also indicates. Although the results are ambiguous, the third setting seems
to perform the best and will therefore be used in the remainder of this chapter.

51

Chapter 5. Computational results

5.2 Benchmarks

In this section, the performance of the algorithm on two benchmarks is presented.

E-VRP - Monotoya

In Table 5.3 a comparison with the dataset and result presented by Montoya et al.
(2017) is performed. The objective of the dataset is to minimize the total traveling
time for the standard E-VRP with a maximum allowed travel time. It should be
noted that the solver presented in this thesis works best with soft constraints which
are not used by Montoya et al. The result presented is therefore not strictly com-
parable. The algorithm was therefore executed a second time, with cost functions
that penalize exceedances more strongly. As a result, none of the best solutions
found will exceed any of the constraints. The result is presented in Table 5.3 where
the column named soft constraints uses the cost functions presented in Appendix
B and the column named hard constraints uses cost functions which never allows
exceedances.

The execution time is deliberately left out as it is heavily dependent on the cho-
sen settings and can be changed drastically through small modifications. Neverthe-
less, as execution time is important in evaluating the performance of the algorithm
the following approximations are presented:

* 10 customers takes approximately 60 seconds.

* 20 customers takes approximately 100 seconds.

* 40 customers takes approximately 250 seconds.

* 80 customers takes approximately 900 seconds.

* 160 customers takes approximately 3000 seconds.

52

5.2 Benchmarks

Table 5.3: The shortest total travel time found by the presented algorithm compared
to the solutions presented in the dataset source.

Dataset Soft constraints | Hard constraints | Montoya et al.
tclc10s2ct2 9.37 10.87 10.70
tclc10s2cf2 7.42 9.03 9.03
tclc10s2cf3 14.12 16.37 16.37
tclc10s2cf4 15.51 16.10 16.10
tc1c10s3ctl 10.8 10.8 10.8
tclc10s3cf2 7.42 9.03 9.03
tclc10s3cf3 14.12 16.37 16.37
tclc10s3cf4 14.13 14.90 14.90
tc0c20s3ct2 17.08 17.08 17.08
tc0c20s3cf2 23.26 27.58 27.60
tcOc20s4ct2 16.99 16.99 16.99
tc1c20s4ct3 12.73 14.43 14.43
tc1c20s4ctd 13.34 17.00 17.00
tc0c20s4cf2 23.26 27.58 27.48
tc0c40s5¢ct0 27.44 29.23 28.72
tc0c40s8ct0 26.22 26.33 26.41
tc0c40s8cf4 27.67 28.29 29.32
tc0c80s8ct0 39.23 41.86 41.90
tc0c80s8ctl 43.46 45.28 45.27
tc0c80s8cf0 38.34 39.39 39.43
tc0c80s8cf1 44.41 45.55 45.23

tc0c160s16¢t2 57.89 58.83 60.13
tcOc160s16¢ct4 75.01 79.41 82.37
tcOc160s16cf4 71.91 78.87 82.92
tc0c160s24cf2 56.55 58.48 59.27
tclc160s16ct3 65.53 68.16 73.29
tclc160s24ct3 64.23 66.97 68.72
tc1c160s24cf3 63.66 67.53 68.56

For all instances, the algorithm with soft constraints is equal in performance or
outperforms the two others. This is to be expected as the problem formulation is
less restrictive. The fact that it manages to find better solutions shows the useful-
ness of allowing soft constraints as it can be beneficial to exceed a constraint. The
implemented algorithm with hard constraints is relatively close to the benchmark
algorithm. For most instances of smaller size, the same or slightly worse results
were obtained. For instances of larger size, the implemented algorithm seems to
generally outperform the benchmark algorithm. It should be stated that the execu-
tion time of the benchmark algorithm is much faster and that for some instances the

53

Chapter 5. Computational results

presented algorithm was unable to find a feasible solution. The implemented algo-
rithm is however more flexible as the benchmark algorithm would be inapplicable
to most of the other extensions presented in this chapter.

VRP-TW - Solomon

The dataset from Solomon (1987) is one of the most commonly used benchmarks
for the VRP-TW. The objective is to minimize the distance traveled and the result
of running the solver on the dataset is presented in Table 5.4. For this benchmark,
the cost for traveling time is excluded and instead a cost for the traveled distance is
included.

Table 5.4: The shortest distance found by the implemented solver compared to the
best known solutions.

Dataset Best found distance | Best known solution
RC201_025 361.2 360.2
RC201_050 686.3 684.8
RC201_100 1312.7 1261.8
RC202_025 338.8 338.0
RC202_050 621.5 613.6
RC202_100 11354 1092.3

The result shows that the solver does not find the optimal routes for any of the
datasets. It does however propose solutions that are reasonably close to the best
known values and manages to find feasible solutions for all investigated datasets.
No constraints were exceeded in the presented solutions.

5.3 Generated datasets

As the E-VRP is a fairly new extension the number of publicly available datasets
is limited. Therefore, custom datasets were generated to enable the investigation
of more aspects and possibilities of the algorithm. For all instances presented all
chargers are of similar type.

Time-dependent E-VRP

Time dependence was included through varying travel times and fuel consumption
depending on at what time the arc was traversed. This time dependence will be
denoted as congestion. For simplicity, the start time was always chosen based on
the departure time. For this instance, the travel times and fuel consumption were in
half of the instances unmodified, in one-fourth of the instances increased using a
discretized normal distribution, and in one-fourth of the instances increased using

54

5.3 Generated datasets

a distribution which has the highest value in the tails and lowest in the center. This
can be viewed in Figure 5.1. Note that the congestion is only affecting the solution
negatively. This can be argued to be unrealistic in practice as a higher value would
be selected for the static case. Still, this is ignored as the purpose is to show that
the solver can account for time-dependent variables, and not to reasonably model
congestion.

In Table 5.5 the result of including or excluding congestion or not in the algo-
rithm execution is presented. The algorithm execution is separated from the calcu-
lation of the final result which enables running the algorithm without accounting
for congestion. This enables investigating how the proposed solution would per-
form if congestion was present. Two types of costs are presented, static cost and
time-dependent (TD) cost. The static cost is the cost without congestion and the TD
cost is the cost with congestion included. All datasets presented are containing one
depot, fifty customers, and eight chargers.

Path driving time

Figure 5.1: Time dependent driving times based on how many hours from the start
time of the delivery the arc is traversed (timestamp). Each index represents an arc
between two nodes and only the first five arcs are displayed. The time unit on the
y-axis is seconds.

55

Chapter 5. Computational results

Table 5.5: Results obtained from two algorithm execution. The columns indicate if
congestion was accounted for in the algorithm execution (TD-alg), the cost without
congestion (static cost) and the cost with congestion (TD cost). The column optimal
indicates whether the solution was optimal for the static or TD case.

Dataset | Optimal | TD-alg | Static cost | TD cost
1 static No 6654 18348
1 TD No 6837 8007
1 static Yes 6973 7734
1 TD Yes 6973 7734
2 static No 6071 16024
2 TD No 6421 8144
2 static Yes 6614 7653
2 TD Yes 6767 7505

The results indicate that the solutions obtained are better for the time-dependent
case when it is included in the algorithm and the static case when excluded. This
should be the expected behavior. Further, it is clear that when applying time-
dependent variables to the optimal static solution the cost is significantly increased.
This behavior can be expected as the optimal solution often has a trade-off in ro-
bustness.

Dynamic E-VRP

To handle dynamic settings, a snapshot of a partly solved dataset can be generated.
The new instance is unaware of the previous solution. An example of a resolved
problem is presented in Figure 5.2. For this instance, the state at the next node
visited after three hours was saved and used to generate the new problem instance.
All vehicles in the new dataset will have different starting positions and different
starting times. As nothing more in the data was changed one can expect the new
solution to be similar to the previous, which is also the case as the two produced
solutions are identical.

56

5.3 Generated datasets

(a) Original solution (b) Re-solved from snapshot.

Figure 5.2: A snapshot was taken part-way through the solution and the new prob-
lem was solved without any knowledge about the previous solution. Note that in the
original solution all vehicles start and finished in the same depot. However, the first
and last route has been removed as the graph would be cluttered around the depot.

The partial solution can be used to handle changes in the input data. To inves-
tigate how the solver handles changes in the input data the ability to modify an
existing dataset was implemented. The modified dataset increases the travel time of
five random arcs, included in the obtained solution, with a factor of five. The qual-
ity of the original solution is decreased, with the total cost changing from 14330 to
16664 (16% increase). The best found solution for online-optimization on the mod-
ified instance problem has a total cost of 14573 and the routes chosen are presented
in Figure 5.3. In the same figure, the maximum travel time for the original solution
on the modified dataset is also presented together with the maximum travel time for
the online calculated solution on the modified dataset.

57

Chapter 5. Computational results

o 20 40 60 80 100 120 0 20 40 60 80 100

(a) Re-solved, original dataset. (b) Re-solved, modified dataset

I -
2 3

(c) Maximum travel time original solution

Time type

Time

Route number

Time

Figure 5.3: Results comparing the original solution and the modified solution ap-

plied on the modified dataset. Note that in, (c) and (d), the number of the route does
not coincide between the two datasets.

Route number

(d) Maximum travel time modified solution

Robust E-VRP

To generate more robust solutions, the way of handling of maximum travel time was
modified according to section 4.4. The dataset presented was randomly chosen from
the benchmarks presented by Montoya et al. (2017). For the maximum travel time
o = 600 and B = 2%3600. The maximum time of a regular solution and a robust
solution is presented in Figure 5.4 and shows that there are larger safety margins for
the robust solution.

58

Time

Route number

5.3 Generated datasets

(a) Total travel time - Regular

Time

3

Route number

(b) Total travel time - Robust

Time type
used_ti

Time type
W used_time
nused_ti

Figure 5.4: Total travel time for the vehicles in a regular and robust solution. For
this instance, ten hours is the maximum time.

In Table 5.6 computational result for the regular and robust solutions are pre-
sented. It presents the average cost of 10 000 simulations where the travel time of
all arcs are multiplied with random variables independently drawn from a normal
distribution. The mean and standard deviation of the normal distribution is pre-
sented in the table. The results indicate that the robust solution performs best when
the variables are drawn from a normal distribution with a high mean.

Table 5.6: The average cost of the regular or robust solution when multiplying the
travel time of the arcs with variables randomly drawn from a normal distribution.

Mean | Std | Regular | Robust
1.00 0 8880 9131
1.05 | 0.05 9137 9319
1.10 | 0.05 9602 9647
1.15 | 0.05 | 10117 | 10022
1.25 | 0.05 | 11150 | 10854

59

Chapter 5. Computational results

Pickup and delivery E-VRP with time windows

In Figure 5.5 a solution obtained to the pickup and delivery E-VRP with time win-
dows is displayed. The pickup customers are blue and the delivery customers are
orange. Each pickup customer is assigned a delivery customer, which the same ve-
hicle must visit. Although not clear from the figure, this constraint is fulfilled and
no time windows are violated. It is difficult to evaluate the quality of the solution
presented but the performance could be improved through constructing operators
specifically for this extension.

80

" L]
70 e .\
” » AN {\
. s N/
60 3 ~. %
l\,t TR __q‘/" . W
N\ ~ ——
L e £
50 . \ A
" \ p \
. s \
] — 1
40 * * L — \ »
. » N ® . * e\
30 b s e .
. o o *‘ [g e [
20 .‘__,__.-u-—/";"‘" ‘ . a . »
-\‘ * %
A = \ K
/ 1 _ "
10 9 2 * \‘“ P e N
/ . e \ .
L]
0
0 10 20 30 40 50 60 70

Figure 5.5: A solution obtained to the Pickup and Delivery E-VRP with time win-
dow.

Multi-depot heterogeneous fleet E-VRP

In Figure 5.6 a solution to the MD-HF-E-VRP is presented. In the generated dataset
twenty vehicles of three different types were included, which can be seen in the plot
of the vehicle capacity. Each vehicle was randomly assigned one start depot and two
end depots. Th quality of the solution is hard to evaluate, but it seems resonable.

60

5.4 Real-world instances

100 /" . R
. . S ,_—dl——_,_.\ .
o
. -
.t/ \ bl L &% - T
50 s » / " -
a —_
« % e
. . i ,J/ @z z
” : e . z
»° L | i
0 L= e — z .
L L ® e "".._h z T3
e “ ‘ﬁ & L

. o . Ty

-50 ‘ » ®

] ol

‘ . —_— |

=100
-100 =50 0 50 100

Route number

——0

Capacity left

Node index

(b) The capacity left for each vehicle in the presented solution.

Figure 5.6: A solution to the Multi-Depot Heterogeneous fleet E-VRP.

5.4 Real-world instances

This section presents real-world examples of applying the framework in combina-
tion with the API of Iternio Planning AB. The solutions proposed contain com-
plete driving instructions. All instances were computed using a Nissan E-NV200
(40kWh). In comparison with the previous examples, the instances presented are
relatively small in size and easy to solve as the main purpose is to show that it is
possible to use the application in real-world settings. No information is provided
regarding the settings used in the computation as the purpose is not to evaluate the
performance of the solver. The chargers are located using the API of Iternio Plan-

61

Chapter 5. Computational results

ning AB and all chargers are set to be of an equal type, namely fast chargers. Note
that the colors between the map plots and attribute plots are unrelated and do not
coincide.

Landmarks in Scania

A set of landmarks located in Scania (Skane) were selected as the locations to visit.
For this problem two solutions will be presented. One with the initial SoC is 50%
and one with the initial SoC is 90%. The only attribute assigned to the locations
visited is a service time drawn from max[1, N(5,2)] minutes. Only one vehicle type
is used with a maximum travel time of eight hours. The total number of locations
to visit is 34, there are 20 chargers and only one depot. In Figure 5.7 the routes
presented by the solver are displayed and in Figure 5.8 the fuel level and maximum
travel time can be viewed. As the problem is relatively simple there is not too much
to discuss regarding the quality of the solution more than that they look reasonable.
With 50% initial SoC, three vehicles are used where only one of the vehicles visited
a charging station (in Kristianstad). With an initial SoC of 90% only two vehicles
were needed and no charging stops were required.

(a) 50% initial SoC (b) 90% initial SoC

Figure 5.7: The routes provided by the solver, plotted on a map of Scania.

62

5.4 Real-world instances

50 Route number

——

Fuel level

o s 10 15 20
Visiting order

Time

Route number

(a) 50% initial SoC

. Route number
80 =

——3
70

Fuel level

o s 10 15 20
Visiting order

Time

15

Route number

(b) 90% initial SoC

Figure 5.8: The status of the fuel level (SoC) and the total travel time of each vehicle
in the Scania problem setting.

Coffee-shops in Stockholm

For this problem, a set of coffee shops located in Stockholm was chosen as the
locations to visit. Each coffee shop was assigned a service time randomly drawn
from max[1,N(5,2)] minutes. Only one type of vehicle was used with a maximum
time of six hours and an initial SoC of 90%. The total number of customers to visit

63

Chapter 5. Computational results

is eighty-five, there are twenty chargers and only one depot. The result is shown in
Figure 5.9.

64

5.4 Real-world instances

\ - enia) ALY)
1 A Elapark 3 sunnge
\ X Edsherg | Foscskosen A% A8 1008 =

Hzggwk Skarpang R

bl

£ o ,i/mu/au,.

N
Lo ‘] 3
J)x : ey S
e\ \ S LT sl

R % ey
ol g

rajabobsbers 'y
! g, e ME \.. . sokebyskcgen

~.

asala Nera: Kol

sty

Bogesundsiandet .

Y \"%\J\, Djursholm
elby Vilastad “\""5“‘ Nya‘\vlkmi\ U A sicinge
arnomen %3 oo
N Naser 80
Vit | isinge Bormbo < X
Hisseoy G5) Torsvik st vinge M Hlstega
Balista Lidingd

Hasselby sirand i
AT,

£ G

Herserud

5 3
— oy o O, Yoo
Sy b 3.

Bdmmatra oA)
.

& A \ 8 A A it
Norra Angly S 1 Ulisundalndustrlomrade R 9
 § Vastra sKoge 2 sty Aoy W
Riksby . & EE g
. v\ Rensatra Tk
s /
1 pe 3 Abrahamsberc K B (ung shamn
~ 2 gt X G ey L) = ! T el -
Loven TR SR b e 1 il Bgrkas 2
3 <[3

A
Backebo!

2 2
Hagerser e Lilingen

- ingshatian 7 A5
2 Midsommarksansén) A o
8 e PN S acel Ry, o B
PR ;]
¢ o

Bers T g

1] s g I /_

parksidan

somitan 1 (i
Virberg

\
lagsatra)

igocaen Gubtingen D) P
oo ? P \mm\ A Lm.aggm | Csconea
Hallunda 142 9 N
p) jodal Lo s
L) a8 o 5 ke Hugdinge =
o Flemingsbel] s s awnq(m) g £ ~
o Jagpient N 2 L el
(a) The routes provided by the solver, plotted on a map
) Route number
i
* K‘ =
:
« N\ N\ =
. T —
I ——
3w
” 7"‘_‘"—4—\\
”» ™~
W used_time

W unused_time

Time

1

(b) The status of the fuel level (SoC) and the total travel time of each vehicle

Figure 5.9: Applying the algorithm to a real-world setting in Stockholm. g5

6

Conclusion

In this thesis, a framework for solving the E-VRP has been developed. It is intended
to be included in the services provided by Iternio Planning AB. To allow for solv-
ing a wide range of customer requests, much effort has been devoted to making
the framework flexible. Further, as the framework should be practical to real-world
problems aspects such as uncertainty and time dependence have been discussed.
The developed framework is component-based and can dynamically include and
exclude components depending on the provided problem instance. The objective
function is situation based whereby configurable costs functions are used. This al-
lows each user to customize the objective function according to their requirements.
The algorithm component follows a pre-established flow but the algorithms used in
all sub-components are interchangeable. Thus, it is possible to customize the algo-
rithm component depending on the requirements of the user. When a set of solutions
has been generated, the best solution is to be selected. For this purpose, a user in-
terface was developed in which the user can analyze the proposed solutions. While
the choice of solution could be as easy as picking the solution with the minimum
value for the objective function, other aspects such as robustness can be accounted
for with the help of the interface.

There are multiple methods for constructing an algorithm that can solve a
wide variety of E-VRP extensions. One method is to utilize common properties
of specific extensions and generalize the extensions. Another approach is to use a
component-based framework for which components can be dynamically included
and excluded. The algorithm can not be specifically tailored to certain extensions
unless this is done in an excludable component. Although the solver has been de-
veloped as general and extendable as possible some extensions might still be cum-
bersome to include. Therefore, it is important to specify which extensions are most
important, to assure that these can be supported. In this thesis, a flexible algorithm
is proposed which is capable of solving a wide range of E-VRP extensions. The
computational results show that the proposed algorithm performs well compared
to other algorithms, constructed specifically for certain extensions. The compared
datasets use different objective functions which easily could be adapted too. Fur-

66

Chapter 6. Conclusion

ther, solutions to multiple custom-generated datasets were presented to display the
flexibility of the algorithm.

There is no general method for determining the quality of a solution to the E-
VRP, as the quality depends on the requirements and costs supplied by the user.
Even when user-supplied costs are used, the best solution does not have to coincide
with the solution that has the lowest objective function value. It could be that a
solution of higher cost is more robust and thus preferable. It can be helpful for the
decision-maker to be able to view different aspects of the solution and the attributes
to get a better understanding of the property of a solution. Further, simulations can
be helpful to investigate the behavior of changes or errors in the input data.

Future research

Possible areas for future research could be to investigate the performance of op-
erator combinations in regards to specific problem instances. Further, new opera-
tors could be developed to target specific extensions using problem-specific knowl-
edge. Another topic of investigation is how the performance on different problem
instances is affected by the parameter settings. As of now, improvements could also
be made to the method for deciding the size of the fleet. The lower bound for the
number of vehicles to include is unable to account for some extensions, such as time
windows. Additionally, the initial search can sometimes, for larger instances, termi-
nate prematurely whereby too few vehicles are investigated. Using larger steps, a
different interval scheme or other parameters for the stage could be a solution.

The performance of the algorithm is highly dependent on the speed of evaluating
the cost of a route. As a result, two possible methods for improving the performance
are to use problem-specific knowledge to improve the evaluation speed and imple-
ment the solver in a faster language. As of current, when the framework is assigned
multiple CPU cores, all processes shares the best solutions found and use the glob-
ally best solution as a starting point for the next iteration. It would be interesting to
allow for using a wider range of solutions as the initial starting point for an iteration
as this might increase the exploration and help to escape local minimums. Lastly, it
would be interesting to test the proposed route in a real-world setting to ensure that
they are reasonable.

On a final note, the E-VRP is still a relatively new problem, but its importance
should not be understated. To fully exploit the advantages of electric vehicles in
delivery fleets, more work needs to be done. Benchmarks for a wider set of problem
formulations must be constructed and the gap between theory and practice must be
bridged.

67

A

Operators

In this appendix, the operators used within the algorithm are described. Which oper-
ators to include in an algorithm execution is specified in a configuration file. Further,
note that as evaluating the cost of a route is expensive, comprehensive searches are
avoided. A greedy approach is therefore applied for all operators, in which the mod-
ification is accepted as soon as an improvement is found. Certain extensions might
limit the number of applicable operators or require modifications to those presented,
for example, the ordering of some nodes might need to be accounted for.

A.1 Intra route operators

Intra route operators alter the order of the vertices visited within a route. In this
section the implemented intra-route operators are presented.

Sequence operators

In Figure A.1 a few commonly used intra route operators are presented. The figure
in combination with the operator name should be self-explanatory. The operators
presented have the common properties that they are simple. One reason for only
using simple operators is that execution speed is highly prioritized and thus the
number of evaluations is kept as low as possible. Further, as intra and inter route
operators are used in sequence the marginal gain of improving a route containing
a fixed set of nodes is limited as the nodes included in the route will vary. The
reverse operator can improve a sequence of nodes if it contains chargers and the
charging function is non-linear. The 2-Opt operator will commonly be applied in a
greedy version, which will be denoted as greedy 2-Opt. In greedy 2-opt the first arc
is selected as starting point. The 2-Opt operation is then attempted at each following
arc and upon improvement, the modified sequence is saved. If an improvement was
found the same new arc at the previously selected index is used as a starting point.
If no solution is found, the index of the starting arc is incremented. In summary,
the greedy procedure will increase the starting index by one if no improvement was

68

A.l Intra route operators

found, always apply an improvement, and never try to apply the modification to arcs
located earlier in the sequence.

b 4
h 4

X
—
A

(a) 2-Opt

'
Y

b

(b) Reverse

b4

e

®
ojo«—é

(c) Insert node

4

(d) Swap nodes

Figure A.1: Intra-route operators.

Swap chargers

The swap charger operator tries to improve the choice of the charger. It is applied
to each charger in the sequence and tries to either remove, move or substitute the
charger. It uses the current index of the charger as a starting point for the current and
other chargers. It then tries to move the charger one step either forward or backward
in the sequence. If the move results in an improvement, the new solution is kept and
the operator tries to move one step further in the same direction. This is repeated
until the new sequence is worse than the previous. It then selects the solution with
the lowest cost.

Appendix A. Operators

Swap vehicle

The swap vehicle operator attempts to change the vehicle used for the route. All
available vehicles are assessed as a candidate. If a vehicle has multiple end depots,
the cheapest end depot is always chosen.

Swap end depot

The operator tries to change the end depot to minimize the cost of the route.

A.2 Inter route operators

Inter route operators are applied to a pair of routes and modify the set of nodes
included in each route. It is important to note that some extensions can prohibit the
usage of certain operators. For example, if two routes have different end depots the
regular 2-Opt operator is prohibited and must be modified as it alters the end depot.
The insert operator can specifically target certain nodes, for example, costly nodes.
It can also be targeted at nodes at certain indexes, for example, the last customer.

P —@ l 4.._|—>.—>0—l

(a) 2-Opt

— e o e @0
— O ——__ .¢ @~
(b) Modified 2-opt

——0 7 o 0 o e Le—o
——— Lo—:::::- ° o

(c) Insert node

@ *— .o — o & o
— 0 e g 0

(d) Swap nodes

Figure A.2: Inter-route operators.

70

B

Inputs and parameters

In this appendix, the default input and parameter setting used in the framework is
presented.

B.1 Cost functions and penalty functions

The cost functions for calculating the cost were set according to the values presented
in Table B.1. The unit for measuring time is seconds and the unit for measuring the
battery level is SoC.

When running the algorithm, some of the cost functions were modified to better
fit as penalty functions. Further, for some functions, a relaxation coefficient, r, was
introduced which takes on a value between 0 and 1. The penalty functions used are
presented in Table B.2. If no penalty function is presented the original cost function
was used. The only difference for the battery limit is an additional relaxation term.
While the functions for the max travel time and for the time window might look dif-
ferent, they are fairly similar to the original cost functions with the exception that
they have been converted into hourly costs, instead of seconds, and that an exponen-
tial term has been added. The exponential base in the max travel time increases by
one each hour and the exponential base of the time window increases by one every

Table B.1: The cost functions used for the algorithm. Note that distances is only
included for the Solomon benchmark.

Attribute Threshold | Cost function | Parameters
Time No c(x) = kx k=0.05
Battery Yes c(x) = (kx)? | k=1200
Max Travel Time Yes c(x) = kx k=10.055
Quantity Yes c(x) = kx k=300
Time Window Yes c(x) = kx k=0.167
*Distance No c(x) = kx k=1

71

Appendix B. Inputs and parameters

Table B.2: The penalty functions used for the algorithm.

Attribute Threshold Cost function Parameters
Battery Yes c(x) = (1—0.9r)%(kx)? k = 1200
Max Travel Time Yes c(x) = (1-0.9r)k(2)!2 | k=200,a = 35

Time Window Yes c(x) = (1-0.9rk(2)* | k=300, =

half hour. The reason for the added exponential term is to prevent all overtime to be
added to the same vehicle.

72

B.2 Parameters settings

B.2 Parameters settings

In Table B.3 the parameters used for the computational results are presented.

The restart and permutation attributes are used for the same purpose, namely
changing the neighborhood of a provided solution. The difference is that restart is
used for the initial change of neighborhood, i.e. the first time a permutation is ap-
plied. The permutation operator is used for all of the following restarts during the
iteration. The number of permutations declares how many times the permutation
phase should be applied. The relaxation parameter is the value of the coefficient r
in the penalty functions and the acceptance is the factor that the cost of a new route
is multiplied by (and if the cost after the multiplication is less than the previous cost
the route is accepted). The construction relaxation is the relaxation factor used dur-
ing the construction of the initial solution. The local search start and end relaxation
are the initial respectively the last value of the relaxation coefficient. The value of
the coefficient is during the local search phase linearly decreasing uniformly with
the number of applied operators. The relaxation coefficient is not allowed to be neg-
ative and thus is set to zero if assigned a negative value. The parameter local search
improvement counter is a boolean, when set to false it performs a fixed number of
operators, while when set to true it counts operators applied without improvement.
The local search operators decide how many fixed, or operators without improve-
ments, that is performed before the next permutation. The neighborhood reduction
function decides on what nodes to be considered as the next possible location. In this
thesis, the function indicates that only the f(N) closest customers will be allowed
to be chosen as the next nodes. The variable k., the function m and the variable 0
are related to the vehicle fleet size and are described in section 4.2.

The inter route operators used per default were: swap nodes, 2-Opt, insert costly
node and insert endpoint. Insert costly is an insert mechanism that prioritizes trying
to move costly nodes while insert endpoints only try to allocate the first or last
customer node in a sequence. In some cases operators were swapped to modified
versions, for example the 2-opt operator for the multi-depot case and the swap and
insert operators for the pick-up delivery extension. In Table B.4 the settings used
are presented. The number of routes and nodes selected to apply the operator on is
defined. In other words, if the number of routes is four and the number of nodes
is three then three nodes are selected from four different routes and the operator is
performed for each node. For a selected node the operator is attempted to be applied
on all nodes present in the neighborhood of the node. If a probability in the Table is
constant then all routes/nodes are assigned the same probability. If the probability
is denoted with cost they are assigned a probability proportional to their cost.

For the intra route operators 2-opt, reverse, swap chargers, swap vehicles, and
swap end depots were included by default. These were applied once at the start of
each local search phase and upon a route being modified by an inter route operator.

73

Appendix B. Inputs and parameters

Table B.3: The parameters used in the computational results for the implemented
algorithm.

Parameter Value
Number of permutations 2
Restart operators 3
Restart relaxation 0.2
Restart acceptance 0.9
Permutation operators 20
Permutation relaxation 0.1
Permutation acceptance 0.95
Construction relaxation 0.1
Local search start relaxation 0
Local search end relaxation 0
Local search operators 30
Local search improvement counter True
N, if N <20
8, ifN<S50
Neighborhood reduction f(N) = % if N <100
¥, ifN<160
% otherwise
K 1
m m(X) =X
0 4

Table B.4: The parameters used for the inter route operators.

Operator #routes | #nodes | Route probability | Node probability
Swap nodes 5 5 cost constant
2-opt 3 5 cost constant
Insert costly 4 4 cost cost
Insert endpoints all all constant constant

74

Bibliography

Baiios, R., J. Ortega, C. Gil, A. L. Mérquez, and F. De Toro (2013). “A hybrid meta-
heuristic for multi-objective vehicle routing problems with time windows”.
Computers & industrial engineering 65:2, pp. 286-296.

Bertsimas, D., D. B. Brown, and C. Caramanis (2011). “Theory and applications of
robust optimization”. SIAM review 53:3, pp. 464-501.

Blum, C. and A. Roli (2003). “Metaheuristics in combinatorial optimization:
overview and conceptual comparison”. ACM computing surveys (CSUR) 35:3,
pp- 268-308.

Clarke, G. and J. W. Wright (1964). “Scheduling of vehicles from a central depot to
a number of delivery points”. Operations research 12:4, pp. 568-581.

Cooke, K. L. and E. Halsey (1966). “The shortest route through a network with
time-dependent internodal transit times”. Journal of mathematical analysis and
applications 14:3, pp. 493-498.

Cordeau, J.-F., M. Gendreau, and G. Laporte (1997). “A tabu search heuristic for
periodic and multi-depot vehicle routing problems”. Networks: An International
Journal 30:2, pp. 105-119.

Dantzig, G. B. and J. H. Ramser (1959). “The truck dispatching problem”. Man-
agement science 6:1, pp. 80-91.

Desaulniers, G., J. Desrosiers, M. M. Solomon, F. Soumis, D. Villeneuve, et al.
(1998). ““A unified framework for deterministic time constrained vehicle routing
and crew scheduling problems”. In: Fleet management and logistics. Springer,
pp. 57-93.

Dorigo, M., M. Birattari, and T. Stutzle (2006). “Ant colony optimization”. IEEE
computational intelligence magazine 1:4, pp. 28-39.

Environmental Protection Agency, Sweden (2020). Inrikes transporter, utslipp av
vixthusgaser. [Online; accessed 11-October-2021]. URL: https : / / www .
naturvardsverket.se/data-och-statistik/klimat/vaxthusgaser-
utslapp-fran-inrikes-transporter.

75

https://www.naturvardsverket.se/data-och-statistik/klimat/vaxthusgaser-utslapp-fran-inrikes-transporter
https://www.naturvardsverket.se/data-och-statistik/klimat/vaxthusgaser-utslapp-fran-inrikes-transporter
https://www.naturvardsverket.se/data-och-statistik/klimat/vaxthusgaser-utslapp-fran-inrikes-transporter

Bibliography

Fedex Corporation (2021). Fedex fleet electrification. [Online; accessed 18-
October-2021]. URL: https://www.fedex.com/en-us/sustainability/
electric-vehicles.html.

Goeke, D. and M. Schneider (2015). “Routing a mixed fleet of electric and con-
ventional vehicles”. European Journal of Operational Research 245:1, pp. 81—
99.

Gongalves, F., S. R. Cardoso, S. Relvas, and A. Barbosa-Pévoa (2011). “Opti-
mization of a distribution network using electric vehicles: a vrp problem”. In:
Proceedings of the 102011-15 Congresso da associa¢do Portuguesa de Investi-
gagdo Operacional, Coimbra, Portugal, pp. 18-20.

Hashimoto, H., M. Yagiura, and T. Ibaraki (2008). “An iterated local search al-
gorithm for the time-dependent vehicle routing problem with time windows”.
Discrete Optimization 5:2, pp. 434-456.

Jozefowiez, N., F. Semet, and E.-G. Talbi (2008). “Multi-objective vehicle routing
problems”. European journal of operational research 189:2, pp. 293-309.

Keskin, M., G. Laporte, and B. Catay (2019). “Electric vehicle routing problem with
time-dependent waiting times at recharging stations”. Computers & Operations
Research 107, pp. 77-94.

Li, W., P. Stanula, P. Egede, S. Kara, and C. Herrmann (2016). “Determining the
main factors influencing the energy consumption of electric vehicles in the us-
age phase”. Procedia Cirp 48, pp. 352-357.

Lin, C., K. L. Choy, G. T. Ho, S. H. Chung, and H. Lam (2014). “Survey of green
vehicle routing problem: past and future trends”. Expert systems with applica-
tions 41:4, pp. 1118-1138.

Lin, J., W. Zhou, and O. Wolfson (2016). “Electric vehicle routing problem”. Trans-
portation research procedia 12, pp. 508-521.

Lin, S. and B. W. Kernighan (1973). “An effective heuristic algorithm for the
traveling-salesman problem”. Operations research 21:2, pp. 498-516.

Lourengo, H. R., O. C. Martin, and T. Stiitzle (2003). “Iterated local search”. In:
Handbook of metaheuristics. Springer, pp. 320-353.

Malandraki, C. and M. S. Daskin (1992). “Time dependent vehicle routing prob-
lems: formulations, properties and heuristic algorithms”. Transportation science
26:3, pp. 185-200.

Ministry of the Environment, Sweden (2021). Sweden’s climate policy framework.
[Online; accessed 11-October-2021]. URL: https://www.government . se/
articles/2021/03/swedens-climate-policy-framework/.

Miranda, D. M., J. Branke, and S. V. Concei¢do (2018). “Algorithms for the multi-
objective vehicle routing problem with hard time windows and stochastic travel
time and service time”. Applied Soft Computing 70, pp. 66-79.

76

https://www.fedex.com/en-us/sustainability/electric-vehicles.html
https://www.fedex.com/en-us/sustainability/electric-vehicles.html
https://www.government.se/articles/2021/03/swedens-climate-policy-framework/
https://www.government.se/articles/2021/03/swedens-climate-policy-framework/

Bibliography

Mladenovi¢, N. and P. Hansen (1997). “Variable neighborhood search”. Computers
& operations research 24:11, pp. 1097-1100.

Montoya, A., C. Guéret, J. E. Mendoza, and J. G. Villegas (2017). “The electric
vehicle routing problem with nonlinear charging function”. Transportation Re-
search Part B: Methodological 103, pp. 87-110.

Na, B., Y. Jun, and B.-I. Kim (2011). “Some extensions to the sweep algo-
rithm”. The International Journal of Advanced Manufacturing Technology 56:9,
pp. 1057-1067.

Pillac, V., M. Gendreau, C. Guéret, and A. L. Medaglia (2013). “A review of dy-
namic vehicle routing problems”. European Journal of Operational Research
225:1, pp. 1-11.

Ritzinger, U., J. Puchinger, and R. F. Hartl (2016). “A survey on dynamic and
stochastic vehicle routing problems”. International Journal of Production Re-
search 54:1, pp. 215-231.

Ropke, S. and D. Pisinger (2006). “An adaptive large neighborhood search heuris-
tic for the pickup and delivery problem with time windows”. Transportation
science 40:4, pp. 455-472.

Schiffer, M. and G. Walther (2018). “An adaptive large neighborhood search for
the location-routing problem with intra-route facilities”. Transportation Science
52:2, pp. 331-352.

Smith, A. E., D. W. Coit, T. Baeck, D. Fogel, and Z. Michalewicz (1997). “Penalty
functions”. Handbook of evolutionary computation 97:1, p. CS.

Solomon, M. M. (1987). “Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints”. Operations research 35:2, pp. 254-265.

Stiitzle, T. and H. H. Hoos (2000). “Max—min ant system”. Future generation com-
puter systems 16:8, pp. 889-914.

Suthikarnnarunai, N. (2008). “A sweep algorithm for the mix fleet vehicle routing
problem”. In: Proceedings of the International MultiConference of Engineers
and Computer Scientists. Vol. 2. Citeseer, pp. 19-21.

Toth, P. and D. Vigo (2002). The vehicle routing problem. STAM.
Vidal, T., T. G. Crainic, M. Gendreau, and C. Prins (2013). “Heuristics for multi-

attribute vehicle routing problems: a survey and synthesis”. European Journal
of Operational Research 231:1, pp. 1-21.

Vidal, T., T. G. Crainic, M. Gendreau, and C. Prins (2014). “A unified solution
framework for multi-attribute vehicle routing problems”. European Journal of
Operational Research 234:3, pp. 658—673.

77

Lund University
Department of Automatic Control
Box 118

Document name

MASTER’S THESIS

Date of issue

January 2022
SE-221 00 Lund Sweden Document Number
TFRT-6155
Author(s) Supervisor
Johan Hellmark Bo Lincoln, Iternio Planning AB, Sweden

Giacomo Como, Dept. of Automatic Control, Lund
University, Sweden

Bo Bernhardsson, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

A practical framework for the electric vehicle routing problem

Abstract

The routing of a delivery fleet is a classical optimization problem, known as the vehicle routing
problem (VRP), which can heavily impact the quality of a logistic distribution process. Historically,
the VRP formulation has mainly included internal combustion engine vehicles (ICEVs). However,
due to their reduced environmental impact, the inclusion of electric vehicles (EVs) has become more
popular. The inclusion requires accounting for a shorter driving range and limited infrastructure
support. This thesis presents a framework for solving several practical extensions of the electric
vehicle routing problem (E-VRP). Previously presented solvers usually target specific problem
variants, optimize based on predetermined objectives, and display a general lack of discussion on
their practical applicability. To counteract these shortcomings, the implemented framework allows for
customizable objective functions, is capable of solving a wide range of practically relevant
extensions, and provides an interface for investigating the properties of the proposed solutions.
Examples of subjects treated are partial recharging, time-dependent variables, and dynamic settings.
Solutions to real-world settings, modeled using the API of Iternio Planning AB, are demonstrated and
the implemented solver shows promising results on a wide range of tested problem instances.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 1-77

Security classification

http://www.control.lth.se/publications/

	Introduction
	Background
	Outlined report structure
	Purpose & research questions
	Why is the problem hard?
	Work processes

	Theory
	Vehicle routing problems (VRP)
	Electric vehicle routing problems (E-VRP)
	VRP extensions
	Fixed size homogeneous capacitated E-VRP with time windows
	NP-hardness
	General-purpose solution approaches
	Penalty functions
	Introduction to algorithms
	Algorithms in depth

	Outlined approach
	The objective function, constraints and costs
	Dealing with uncertainties
	Charging stations and partial recharging
	Dealing with time-dependence
	Problem instances
	Dealing with large datasets
	Constructing an initial solution for the E-VRP

	The framework
	Overview
	Implemented algorithm
	Motivation for the implemented algorithm
	Improving the performance
	Examples applications
	Evaluating the quality of a solution

	Computational results
	Parameter tuning
	Benchmarks
	Generated datasets
	Real-world instances

	Conclusion
	Operators
	Intra route operators
	Inter route operators

	Inputs and parameters
	Cost functions and penalty functions
	Parameters settings

	Bibliography
	Blank Page
	Blank Page

