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Abstract

The many-body problem is one of the most challenging problems in physics due to the
complexity emerging from the interactions of many quantum particles. Since the advent
of computers with increasing power, computational methods have been very successful in
providing insight and precise solutions to this problem. We give an introduction to two
canonically used methods, density functional theory and configuration interaction, providing
the example of a valence space nuclear shell model calculation. In this work, we developed
a program that applies the full configuration interaction method to a general 1-D quantum
system with success, providing insight into the dynamics of a many-body system in different
conditions of potential, interaction and number of particles.

Popular Abstract

One of the hardest problems in physics is figuring out what happens when you put a bunch
of interacting sub-atomic particles together, this is called the many-body problem. This is
important since many natural phenomena, everything from batteries to the burning of our sun,
is caused by bundles of sub-atomic particles, usually in the form of atoms or atomic nuclei. The
difficulty of the many-body problem comes from the fact that each particle’s motion is affected
by that of every other particle, making the equations that describe them very complicated
and in most cases, impossible to solve by hand. This is where the relatively recent advent of
computers has found use in tackling this problem numerically, using computational methods that
have been developed specifically to take advantage of the ever increasing power of computers
to find approximated and brute-force solutions for many types of these bundles, and with great
success. In this manuscript, we give an introduction to some of these methods and demonstrate
a computer program that applies them to a small collection of particles, such as a small nucleus.
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1 Introduction

The many-body problem is one of the most challenging and computationally intensive problem
in physics. This is due to interacting particles coupling their equations of motion. This requires
them to be solved simultaneously rather than be built up from independant solutions for each
particle, which exponentially increases the complexity of the solution and resists analytical ap-
proach. The study of many-particle quantum systems is important for understanding many
structures and processes in chemistry, solid-state physics, nuclear physics and by extension its
application in astrophysical phenomena. In nuclear astrophysics, environments usually involve
conditions that are not accessible experimentally, so describing different nuclear processes that
occur in events like supernovae requires theoretical and computational means [1].

A significant example of this is the description of the nucleosynthesis of Carbon-12, the pri-
mary component of life and a crucial bottleneck in the synthesis of other elements. An excited
Carbon-12 nuclei is formed inside stars by the fusion of 3 alpha particles into what is called
the Hoyle state. Experimentally, the Hoyle state has been investigated only qualitatively but
in a recent paper [2], the low energy states of Carbon-12 was calculated using computational
ab initio methods based on first principles calculations. The development of high computing
power has led to significant progress in the application of many of these methods in calculating
properties of quantum systems which would otherwise be infeasible to measure. Many of these
methods have the virtue of being general in their application, the basic theory holds equally
for electronic structure calculations as much as it does for nuclear structure ones. However
the complexity of these calculations increase exponentially even for small systems so they are
mostly limited to systems with a small number of particles such as light-medium nuclei.

Here we give an introduction to canonical methods used in computational many-body
physics. We first cover the basic framework of density functional theory (DFT) and config-
uration interaction (CI) theory. Both have been applied with great success in many fields of
computational physics and chemistry and extensive literature is available. CI is used as an ap-
proach to the nuclear many-body problem in what is known as the nuclear shell model, which
forms the basic framework for nuclear structure calculations. Shell model calculations can re-
produce many experimental results making them reliable for predicting nuclei in conditions that
are not experimentally feasible. We show an example by demonstrating a shell model calcula-
tion of an Oxygen nucleus.

We then introduce a Full CI program to compute the eigen-states, energies and wave func-
tions of a general 1-D fermion system. Although rather limited in describing any real 3-D system
such as a nucleus, it illustrates important theoretical concepts and implementation problems
one might face when building more advanced programs. We test the validity of the program by
analyzing the results and comparing them to analytical results when possible. We comment on
the physics of the results and focus on the different effects of changing the parameters of the
system such as the number of particles and range of interaction on the convergence rate of the
program, the precision as well as note any emerging phenomena. We conclude with a discussion
on improvements that could be made to the program and its limitations as well as its extended
use in generating training data for a neural network to perform the same task.
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2 Theory

We start by defining our general nuclear Hamiltonian for a N-particle system in an external
potential with 2-body interaction,

Ĥ = −
N∑
i=1

1
2∇

2
i −

N∑
i=1

v(ri) +
N∑
i<j

U(ri, rj). (2.1)

The first term is the kinetic 1-body operator, v(ri) is the 1-body potential and U(ri, rj) is the
interaction between particles i and j, which is given (usually Coulomb interaction). We may
write Eq.(2.1) compactly in terms of their respective operators as,

Ĥ = T̂ + V̂ + Û . (2.2)

2.1 Variational Principle

Given that the Hamiltonian Ĥ is Hermitian, its eigen-functions |Ψn〉 form a complete basis set.
So we can write any trial wave function ˜|Ψ〉 as a linear combination of |Ψn〉,

Ψ̃ = c0Ψ0 + c1Ψ1 + c2Ψ2 + . . . . (2.3)

Note that ˜|Ψ〉 has to be normalized. Eq. (2.3) shows that ˜|Ψ〉 can contain contributions from
eigen-states with higher energies than the ground state |Ψ0〉. Therefore, One can then show
that the trial energy E[Ψ̃] corresponding to the trial wave function, is always higher than the
ground state energy E0 [6],

〈Ψ|Ĥ|Ψ〉 > 〈Ψ0|Ĥ|Ψ0〉 , ∀Ψ, E[Ψ] > E0, ∀Ψ. (2.4)

This is the variational principle. The minimization of the energy functional is equivalent to
solving the time-independent Schrödinger equation. However, this gives a more practical form
since minimization of the basis components reduces to a diagonalization problem. Due to its
flexibility of using approximate wave functions as upper bounds to the true energy, it is one of
the methods of choice for most modern many-body structure calculations and is the one used
in both density functional theory and configuration interaction.

2.2 Basic Density Functional Theory

One of the most powerful modern computational method available for calculating electronic
structure is called density functional theory. The idea has its origins in the early 1920’s Thomas-
Fermi model. There electrons are treated using statistical mechanics, allowing the calculation
of the electron density, from which the ground state energy can be found [3]. Although the
model was an important first step in developing a many-body theory of electronic structure,
it had very limited accuracy and only gave qualitative results. DFT involves reformulating
the many-body problem by uniquely describing the wave function in terms of the ground state
density, instead of the external potential. This was first done in the 1960s in the framework of
the two Hohenberg-Kohn theorems [4].

2.2.1 The Hohenberg–Kohn Theorems

For a N-body system described with the Hamiltonian Eq.(2.1) with a given 2-body interac-
tion, the choice of external potential v(r) completely determines the Hamiltonian. The first
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Hohenberg-Kohn theorem states that v(r) is completely determined, within a constant, by the
ground state density,

ρ(r) = N

∫
|Ψ(r, r2 . . . rN)|2dr2 . . . drN, (2.5)

normalized to the number of electrons in the system,∫
ρ(r)dr = N. (2.6)

It then follows that ρ(r) also uniquely determines the ground state energy E0. Given this
dependence, we can now rewrite the ground state energy as a functional of the density instead
as,

E[ρ] = T [ρ] + V [ρ] + U [ρ] (2.7)

= F [ρ] +

∫
ρ(r)v(r)dr (2.8)

where,

F [ρ] = T [ρ] + U [ρ] V [ρ] =

∫
ρ(r)v(r)dr. (2.9)

Here we introduce F [ρ], which is independent of the external potential v(r) and is exact for a
given ground-state density, it is called the universal functional of ρ(r). Any system that has
the same form for U [ρ] will also have the same F [ρ]. However, F [ρ] is highly non-trivial and
difficult to derive. This problem will be approached indirectly later using the Kohn-Sham (KS)
method.

The second theorem provides an analogous variational principle Eq.(2.4) for the energy
functional of a trial density ρ̃(r), under the constraint Eq.(2.6) [3],

E[ρ̃] > E0. (2.10)

Or expressed in Lagrange multiplier form,

δ{E[ρ]− µ[

∫
ρ(r)dr−N ]} = 0 (2.11)

which gives the Euler-Lagrange equation,

µ =
δE[ρ]

δρ(r)
= v(r) +

δF [ρ]

δρ(r)
, (2.12)

where the multiplier µ is the chemical potential. The above expression is the main working
equation of DFT. To find an expression for the universal functional we turn to the Kohn and
Sham formulation.

2.2.2 Kohn-Sham Method

The Kohn-Sham method deals with the universal functional by introducing a non-interacting
reference system with the exact same ground state density ρ as our interacting system [5]. The
Hamiltonian then consists of only 1-body operators without the 2-body interaction term,

Ĥs = −
N∑
i

1
2∇

2 +

N∑
i

vs(r) =

N∑
i

hi, (2.13)
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where the first term represents the kinetic energy Ts[ρ] of our non-interacting system. This
system has an exact solution in the form of a single Slater determinant wave function and it is
a much easier problem to solve. It involves solving a set of N uncoupled eigen-equations,

ĥsφi = [−1
2∇

2 + vs]φi = εiφi (2.14)

where φi are the N lowest eigen-states of the single-electron Hamiltonian ĥs. We can use Ts[ρ]
to approximate T by introducing it in the universal functional,

F [ρ] = Ts[ρ] + Exc[ρ]. (2.15)

Here we define the exchange-correlation energy Exc,

Exc[ρ] = T [ρ]− Ts[ρ] + U [ρ] (2.16)

It is the only unknown in the method and can be approximated [3]. Inserting our new expression
for the universal functional into (2.12) gives,

µ = veff(r) +
δTs[ρ]

δρ(r)
, (2.17)

where the KS effective potential is defined as,

veff(r) = v(r) +
δExc[ρ]

δρ(r)
. (2.18)

Eq.(2.17)-(2.18) are the Kohn-Sham equations. Notice that Eq.(2.17) has the form of Eq.(2.12)
for a non-interacting system in an external potential veff(r). We can thus solve the uncoupled
N-particle equations Eq.(2.14) with vs = veff to obtain the orbitals needed to find the density
of our original system

ρ(r) =
N∑
i

|φi(r)|2. (2.19)

2.3 Configuration Interaction

The simplest approximation to a N-electron ground state function is an anti-symmetric product
of N occupied single-particles orbitals {χi}, known as a Slater determinant or SD [6],

Ψ(x1,x2 . . . ,xN ) =
1√
N !

Det[χaχb . . . χk] = |ab . . . k〉 (2.20)

where the orbital χi is denoted by i. The constant is for normalization, since the determinant
produces N ! terms. The anti-symmetric requirement comes from the fact that the particles we
will be considering are fermions. Thus, the wave function flips sign on exchange of 2 particles,
which is a property of the determinant.

Given a set of K orbitals, picking the lowest N orbitals to occupy gives the ground state
determinant,

|Ψ0〉 = |12 . . . ab . . . N〉 . (2.21)

This is the starting point of the Hartree-Fock approximation, which is the best single-determinant
approximation of the wave function [6]. We note here that a basis set of orbitals needs to be
infinite to be complete. Since this is infeasible, we truncate the set to K orbitals. However as
we will see soon, even a finite set can rapidly become infeasible for computational purposes.
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The ground state determinant |Ψ0〉 isn’t the only possible determinant. Given a choice from
the set of K orbitals, we can pick out any N orbitals to put our particles in. So in total we have(
K
N

)
possible determinants. All these determinants along with the ground determinant |Ψ0〉 can

be used in linear combination to produce a more accurate approximation of the ground state
wave function [6]. To make things easier, we can group these determinants based on how many
particles are excited into a higher orbital relative to the ground determinant. For example, a
doubly excited determinant is one in which two particles have been excited from χa and χb to
χr and χs, with respect to the ground state determinant |Ψ0〉,

|Ψrs
ab〉 = |12...r...s...N〉 . (2.22)

This can similarly be done for all N-tuply excited determinants. These determinants can also
be labelled based on how many particles are excited and how many ”holes” are produced, for
example 2p-2h for the above determinants. We can write down the exact wave function as a
linear combination of all these possible determinants,

|Ψ〉 = c0 |Ψ0〉+
∑
ra

cra |Ψr
a〉+

∑
a<b
r<s

crsab |Ψrs
ab〉+

∑
a<b<c
r<s<t

crstabc

∣∣Ψrst
abc

〉
+ . . . (2.23)

It can be shown that this set of determinants {Ψi} also form a complete basis set for any N-
electron wave function. This stems from the fact that the determinants themselves are made
of the complete set of orbitals {χi}. We can now rewrite our Hamiltonian in terms of this
basis. We evaluate the matrix elements by splitting the Hamiltonian into 1-body and 2-body
operators,

〈Ψi| Ĥ |Ψj〉 = 〈Ψi| ĥ |Ψj〉+ 〈Ψi| Û |Ψj〉 . (2.24)

The matrix elements are calculated using second quantization (Appendix A),

〈Ψn| ĥ |Ψm〉 =
∑
ij

〈i|h |j〉 〈Ψn| a†iaj |Ψm〉 (2.25)

〈Ψn| Û |Ψm〉 =
∑
ijkl

〈ij|U |kl〉 〈Ψn| a†l a
†
iakaj |Ψm〉 , (2.26)

where the 2-body integral term is,

〈ij|U |kl〉 =

∫
χi(x1)χj(x2)U(x1, x2)χk(x1)χl(x2)dx1dx2. (2.27)

As discussed in Appendix A, the majority of these groupings get cancelled out in the Hamil-
tonian, making it a sparse matrix. Diagonalizing the Hamiltonian gives us the approximate
ground-state eigen-energy E0. This method is known as Configuration-Interaction [6]. If all pos-
sible SDs in a finite orbital basis are used in the calculation then it is called Full Configuration-
Interaction or Full CI, which is the best possible approximation to the true wave function given
a finite single-particle orbital set. However practically, it becomes very computationally in-
tensive even for a few particle system due to the combinatorial growth of the number of SDs
required. In practice, not all determinants are calculated since only a few determinants have
any meaningful contribution to the final diagonalization of the Hamiltonian.
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3 Nuclear Shell Model Example

CI is used as an approach to the nuclear many-body problem in what is known as the shell
model. In traditional shell model, the many body system is approximated to independent
particles stacked in shells in the presence of a central potential [7]. An important of application
of CI is the valence space nuclear shell model [1]. The nuclear shell model is used to describe a
variety of properties of nuclei. In this model, it is often assumed that the presence of an inert
core. In addition to this, N nucleons are added and are allowed to interact within a limited
space with an effective Hamiltonian. This limited space is called the valence space and the
neutrons added on the core are called valence neutrons. In this work, full CI was done on
an inert Oxygen-16 nucleus core, in addition of which N valence neutrons were added in the
valence space 1d5/2-2s (shown in Figure 1) comprising 12 orbitals.

Figure 1: Energy levels of the first 12 valence orbitals of O16

The basis used for the orbitals in this example are the 3-D harmonic oscillator basis functions.
The matrix elements of the effective Hamiltonian were taken from USDB Hamiltonian data [9].
All possible determinants were generated by simple combinatorics, with the restriction that the
orbitals in each determinant couple in the subspace with a given angular momentum M . The
constructed Hamiltonian was then diagonalized to obtain the eigen-functions and energies. Fig.
2 shows an example calculation of the ground state.

Figure 2: Distribution of ground-state weights for each determinant with 4 particles and 2M
= 4, where M is the sum of the angular momentum of the particles. Here, the SDs are sorted
in increasing order of each SD’s summed single-particle orbital energies and are grouped based
on their excitation (Blue is the ground determinant, Green are the 2p-2h determinants, Orange
are 3p-3h, etc.).
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Note that in this case, there is no contribution from 1p-1h determinants because excit-
ing just one particle from a determinant with angular momentum M cannot produce another
determinant with the same angular momentum.
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4 Full 1-D Configuration Interaction

Here we demonstrate a Full CI program to model a 1-D quantum system. This was done in
Python from scratch, with the previous 3-D code used as example.

4.1 Code

The manipulation and storage of SDs was done in bit representation [10], where the occupation
of a single-particle state is denoted by either a 1 or 0. For example, for a set of 5 orbitals,
the SD |13〉 is represented by 10100 (or 20 in decimal representation). This forms a convenient
framework for creation and destruction operators which can also be represented in binary form,.
For example, a3 and a†3 can be represented as 00100. Note that whether the binary operator is
destructive or constructive depends on the whether that state is occupied in the SD it acts on.
The actual operation is done by taking the XOR between the operator and the SD. The XOR
of 2 bits gives 1 only when one of the bits is 1 (or only when both bits are different). As an
example, the destruction operator a3 acting on the above SD can be found by taking the XOR
of their respective bit representations.

a3 |13〉 = |3〉 ⊕ |13〉 = (00100)⊕ (10100) = (10000) = |1〉 . (4.28)

If the above was interpreted as a creation operator instead, it would produce an invalid
result. It is important in implementation to guarantee that the correct operator is chosen based
on the state occupation of the SD. Bit representation also allows for more efficient manipulation
of SDs since each SD and operators can now be stored like an integer.

For the single-particle basis, the Hermite functions of the 1-D harmonic oscillator were used
with ~ = ω = 1. All possible SDs are generated and sorted by the sum of occupied single-particle
state energies of each SD. We used 4 potentials. 2 harmonic potentials,

VH(x) =
1

2
mx2 (4.29)

with m = 1 and m = 2, the latter being narrower. A Woods-Saxon potential, which is a mean
field radial potential used to model the total mean interaction of all the nucleons in a nucleus.
It is used in the nuclear shell model and is of great importance in nuclear structure theory which
is the main field of focus for this code. We use this potential to test the generalization of the
code but also to use something similar in shape to the harmonic potential to better understand
the gradual change in the convergence rate of the program. It takes the form,

VWS(x) = − V0

1 + exp
(
x−R
a

) (4.30)

where the chosen parameters for the tests were V0 = 10, a = 0.2 and R = 3.4. These were chosen
so the potential looks similar to a harmonic potential. We also use a corrugated Woods-Saxon,
which just includes a superimposed sine wave,

VWSC(x) = VWS(x) + sinx. (4.31)

For the generation of the matrix elements, a Gaussian 2-body interaction was used,

U(x1, x2) =
1√
aπ

exp

(
−(x2 − x1)2

a

)
(4.32)
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of different widths a. The interaction is normalized to keep it’s strength constant while changing
the range (i.e the width). This is important when it comes to the integration of the 2-body ma-
trix elements. A Gaussian was used since it is flexible and has been used in physical interactions
and makes integration of the elements easier [11].

For the integrals, suitable bounds and tolerance were chosen for a balance between acceptable
precision and generation time and only calculated if the integrand was of even parity, since
symmetric integration of an odd function vanishes. The calculation of the matrix elements took
a substantial amount of time with increase in the number of basis states used, so the elements
were stored when generated and read off when needed.

4.2 Testing and Results

To verify the code’s validity, we run some test cases. As measure for convergency, we will use
the error between the produced eigen-energies from diagonalizing the Hamiltonian for different
number of basis states and true values for the eigen-energies, which is taken as the eigen-energies
for the highest number of basis states, or analytical values if possible. The error will be plotted
for the ground-state and the first 4 excited states. We also plot the coefficient of each SD in
the final diagonalization for the ground until 3rd excited state, we call this the ”Slater profile”.
The SDs are sorted in increasing order of their sum of single-particle basis energy sum.

For most of the tests with 2-body interaction, due to limitations in computational power,
only elements from up to ≈ 12 basis states were calculated. This produced ≈ 1569 non-zero
2-body elements. There was no real computational limitations on the 1-body part where ≈ 130
basis states were used, totalling 4160 non-zero 1-body elements.

4.2.1 Only 1-body elements

We first test the code with only 1 particle in different 1-body potentials. Thus, only 1-body
elements are used.

Figure 3: Error plot of the ground and excited states against number of states used (left)
expressed in log10 of the percentage. Slater profile of the calculation for the different excitations
as in Fig. 2 (right) for 1 particle in a harmonic potential with m = 2. Error was calculated
relative to the analytical eigenvalues for the harmonic oscillator: (n+ 1

2)hω

In Fig. 3, we compare the calculations of the system with Harmonic potential in Eq.(4.29)
with m = 2. The calculation was done using basis states from Harmonic Oscillator eigen-state
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calculated with m = 1. The energy is compared to the analytical eigen-energies to obtain the
results. The calculated energies converge as more basis states are used to generate the matrix
elements, with more excited states requiring more basis states than lower ones. Note the step-
like pattern. Since the ground eigen-state is of even parity, only even basis state contribute to
improving the approximation of the energy as seen in the step-like dips. The 1-excited eigen-
state is odd, so the error dips on the odd states instead and so forth. The noise after around
25 states is due to the double precision limit reached by the code.

Figure 4: Error plot of the ground and excited states against number of states used (left)
expressed in log10 of the percentage. Slater profile of the calculation for the different excitations
as in Fig. 2 (right) for 1 particle in a Woods-Saxon potential. Error was calculated relative to
the eigen-energies produced with 140 states

In Fig. 4, we calculate the 1-particle system with Woods-Saxon potential using the same basis
states as previously. The error was calculated compared to eigenvalues calculated using 140
basis states. There is much slower convergence for the Woods-Saxon potential compared to
that of the harmonic potential with m = 2 since the latter is closer in shape to that of the basis
potential, so it requires less basis states to approximate its own eigenfunctions. The Woods-
Saxon potential eigen-states contain contributions from both even and odd basis states. This
is also why the Slater profile is not as concentrated.

4.2.2 1-body + 2-body elements

We now introduce a second particle as well as 2-body Gaussian interaction as in Eq. (4.32).
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Figure 5: Error plot of the ground and excited states against number of states used (left)
expressed in log10 of the percentage. Slater profile of the calculation for the different excitations
as in Fig. 2 (right) for 2 particles in a harmonic potential with m = 2. A Gaussian with a = 1
was used for the 2-body interaction. Error was calculated relative to eigen-energies produced
with 13 basis states.

Figure 6: Error plot of the ground and excited states against number of states used for 2
particles in harmonic potential with m = 2. A Gaussian with a = 0.5 (left) and a = 10 (right)
was used for the 2-body interaction. Error was calculated relative to eigen-energies produced
with 15 states

In Fig. 5 and Fig. 6, we calculate a system of 2 particles in a harmonic potential Eq.(4.20)
and Gaussian interaction Eq.(4.31) with different widths. The error was calculated with respect
to the calculation with N states. A wider Gaussian interaction gives a faster and more uniform
convergence. The effect of changing the width of the interaction on the convergence rate can be
investigated using Heisenberg’s uncertainty principle. For a narrow Gaussian interaction, taking
the Fourier transform into momentum space gives a wide Gaussian. This means particles with
a greater range of momenta, energies, are allowed to interact, which produces bigger coupling
of states, giving a slower convergence. For a wide Gaussian interaction instead, the transformed
Gaussian will cover a narrow range of momenta. Particles then only interact with other particles
of similar energies, which gives a faster convergence. In the case of an infinitely wide Gaussian
interaction, which is just a constant, the transform is a Dirac delta function and the particles
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only interact with other particles of the exact same energy. This effectively gives no 2-body
interaction terms. This can also be seen in first quantization where the 2-body integral terms
(2.27) for a constant interaction are

〈ij|V |kl〉 = V

∫
χi(x1)χj(x2)χk(x1)χl(x2)dx1dx2 = V δikδjl (4.33)

where V is a constant. These terms are non-zero only on the diagonal and are the same value.
The effect can also be seen in the Slater profiles.

Figure 7: Slater Profile of a 2-body Corrugated Woods-Saxon potential calculation with Gaus-
sian interaction width a = 1 for ground and 1st excited state for different strength interactions
x1 (left), x10 (center) and x20 (right).

If we instead keep our Gaussian interaction width constant and change the interaction
strength, the same effect is seen in Fig. 7. The Slater profile of a 2-body Corrugated Woods-
Saxon becomes more concentrated at the ground SD with increased interaction strength. The
reasoning is similar to that above in that the particles cluster due to the stronger force, reducing
the spread of the Slater profile and thus increasing the convergence rate. Similar results are
seen when we increase the number of particles.

Figure 8: Slater Profile of a N-body harmonic potential with m = 2 calculation with N = 3
(left), N = 6 (center) and N = 11 (right).

The Profiles become more spread out when there are more particles initially, but the same
behaviour occurs when we change the interaction strength and width.
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4.2.3 1-particle Wave function

Figure 9: Ground, 1st and 2nd excited eigen-state wave functions of a harmonic potential with
m = 2 produced from the calculation (Blue) compared to the analytical form (Orange).

We also check the validity of the produced 1-particle wave functions in Fig. 8 by comparing
them to the analytical functions in the case of a harmonic potential. The precision of the results
may be due the fact that the Slater profile is not as spread out, as the potential is similar to the
basis potential, but the m = 2 potential is localizing more with respect to m = 1 basis with a
poor representation of tails. The tail of the harmonic oscillator wave functions are exponentially
decaying with a rate depended on the width of the potential. Therefore, one needs an infinite
number of components to reproduce the tail with a basis of a different width. The precision
could drop further if this was done for a Woods-Saxon potential instead. Note that relatively,
the calculated eigen-energies are more precise than the calculated wave-functions relative to
their respective references, so more states are needed to get a better approximation to the
wave-functions. This is an example of the fact that in a full CI calculation, not all observables
will converge at the same rate.

4.2.4 2-particle Density function

Figure 10: Density plots of ground, 1st, 2nd and 3rd excited state for a Woods-Saxon potential
(left to right respectively).

In the case of 2 particles in Fig. 9, we plot the density instead defined as,

ρ(x1, x2) = |Ψ(x1, x2)|2.

The effect of interaction strength can also be seen in the densities in Fig. 10. Note once
again the increasing concentration of the state, all forms of the data presented so far point to
condensation phenomena for high enough interaction strength.

15



Figure 11: Density plots of ground state for a Woods-Saxon potential with different strength
interactions x1 (left), x10 (center) and x100 (right).

Once the elements were calculated, the time taken for the actual construction and diag-
onalization of the Hamiltonian was negligible in comparison to the computation time of the
elements. The numerical work was not done in coordinate space, so there were no boundary
conditions and the density plots approach zero fast enough to easily define plot limits.
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5 Conclusion

In this thesis work, we introduced DFT and CI formalism and used the latter to develop a gen-
eral 1-D full CI program, which produced reasonable results when tested with a few potentials
and provided insight into the physics of such a system as well as on how to approach developing
more advanced programs to overcome limitations encountered here.

The main bottleneck in the generation of matrix elements were the 2-body integrals. This
was because a general double integration algorithm was used, which is not efficient for a large
number of integrations. Because of this, very few basis states were used in testing the 2-body
component of the program. The integrands involved are orthogonal polynomials for which there
exists more efficient integration algorithms. In our case, analytical solutions could have been
used for evaluating integrals of Hermite functions and Gaussians. Such an implementation
would improve the program and increase the capabilities of the possible calculations, particu-
larly for the 2-body calculations.

The purpose of creating a functioning Full CI program was to produce data that would
have been used in an attempt to train a neural network to perform the same task, but more
efficiently. The data would have consisted of input-output pairs of a generated potential and its
respective unique density, which is guaranteed by the Hohenberg-Kohn theorems. This unique
correspondence is what could allow a trained network to generalize to any given potential.
Although the 1-D quantum system modelled here is very limited in describing real-world cases,
the proof of concept holds for 3-D systems when the theory and implementation is extended
to include angular momentum. Therefore, Full CI is an interesting method to study many-
body systems and the code developed here, rewritten perhaps in a faster language like C++
or Fortran, can be an insightful tool in study of ideal systems and methods. However the
computational complexity of the calculation increases exponentially which limits this method
to small systems.
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A Second Quantization Formalism

Due to the indistinguishable nature of identical particles like fermions and bosons, it is useful to
reformulate our mathematical model of quantum mechanics in terms of purely occupational rep-
resentations of our wave functions, rather than permutation based manipulation. This approach
is know as second quantization [6].

We define the annihilation operator and derive its adjoint creation operator which remove
and add a particle from an orbital respectively,

ai |ij . . . l〉 = |jk . . . l〉 , a†i |jk . . . l〉 = |ij . . . l〉 , (a†i )
† = ai. (A.34)

If we attempt to create a particle in an orbital which is already occupied, or to remove a particle
in an otherwise empty orbital, we quench the state and get 0. We also include the anti-symmetry
principle on exchange of particles,

|. . . ij . . .〉 = − |. . . ji . . .〉 . (A.35)

We can also derive the following anti-commutation relations,

{ai, aj} = {a†i , a
†
j} = 0, {a†i , aj} = δij . (A.36)

Note that these relations incorporate the Pauli exclusion principle and avoid the explicit use of
SDs. This also greatly simplifies varying the number of particles in the system. We define the
vacuum state,

ai |0〉 = 0, ∀i, (A.37)

where we construct anti-symmetric states by application of creation operators,

|12 . . . N〉 = a†1 . . . a
†
N |0〉 . (A.38)

The expressions for one-body and two-body operators Ô1 and Ô2 are,

Ô1 =
∑
ij

Oija
†
iaj , Ô2 =

∑
ijkl

Oijkla
†
ia
†
jalak. (A.39)

Here, Oij and Oijkl are just numbers representing the value of the matrix element. These can
be used to easily compute matrix elements of an operator. For example, applying the 1-body
operator to calculate the ground state determinant gives,

〈Ψ0| Ô |Ψ0〉 =
∑
ij

Oij 〈Ψ0| a†iaj |Ψ0〉 . (A.40)

For the element to be non-zero, then by (A.34), {i, j} must be in |Ψ0〉. If i 6= j, then
the element is an inner product of two different (and hence orthogonal) determinants, which
is 0. The only solution is when i = j where the inner product gives 1 by normalization. This
simplifies the whole sum,

〈Ψ0| Ô |Ψ0〉 =
∑
i

Oii. (A.41)

The same reasoning of simplification to determinants with only certain orbitals and orthonor-
mality of the determinant set can be also be applied to the 2-body operator and generalized to
any 2 determinants used in the inner product. In fact, for any 2 determinants differing by 2 or
more orbitals, the 1-body element will always be 0. If they differ by 4 or more orbitals instead,
the 2-body element will always be zero [6]. Hence for a Hamiltonian in a determinant basis
(for example the one used in CI) will form a sparse matrix with non-zero elements concentrated
near the diagonal.
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