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Abstract

As the world moves more and more towards automation of repetitive and dangerous
tasks there are still many tasks that primarily involve interaction with an object
that are still carried out by humans. This is in many ways due to difficulties in
programming the robot to achieve similar performance. The most natural way of
transferring these skills to the robot is by demonstration. This can be achieved by
the use of haptic feedback to allow the operator to feel the robotic system during
the demonstration.

This master thesis seeks to implement and improve master-slave coordination
using virtual constraints for a redundant dual-arm haptic interface. This is done
by implementing a general-purpose algorithm compatible with different types of 6
degrees of freedom robots in Python. For this project a URSe robot was used as
well as a second virtual clone of the URS5e robot to serve as master and slave arm
respectively.

The virtual second URSe robot was simulated using both Maplesim and inverse
dynamics. The inclusion of force-torque (F/T) sensors was implemented and tested.

Free-space motion where position and orientation offsets are retained as well as
collision with a soft surface resulting in a feeling of force upon interaction with a
soft object were achieved. The singularity-free operation produced consistent and
intuitive results, with the inclusion of a teaching handle to improve adjustments.
However, low sampling frequency of the implemented algorithm resulted in delays
that negatively impacted the translational and rotational error between the end ef-
fectors of these robots, as well as not reaching a realistic and intuitive feeling of
force upon interaction with a soft object. These problems were not solved due to
lack of time.

The impact of the implemented F/T sensor was investigated, but due to the lim-
ited time left was this not enough to reach a definitive conclusion.

The implemented algorithm functions well during slower movements, with
room for improvements in the optimization of calculation times and further investi-
gation of the impact of the implemented F/T sensor.
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1

Introduction

The use of robots has increased and expanded drastically from the industrial robots
since early 1970 [“History of Industrial Robots” 2012]. With the increased use of
autonomous robots, there is still an increased need for interactive feedback. For
instance, one of the remaining difficulties in programming has been to program
robots to perform certain tasks that involve force interaction. One of the solutions
to this is to have the operator demonstrate the task.

Another thing that can help further is the introduction of a haptic interface.
This will ease the programming difficulties of tasks that involve force interaction by
providing the operator with a way to act and sense through the robot [Sang Hyoung
etal., 2015].

Another example of areas where a haptic interface will improve the interaction
with robots is in the field of teleoperation. Here an haptic interface opens up easier
and more intuitive ways to perform teleoperated tasks such as micromanipulation
and microassembly. These teleoperation systems are today widely used within these
fields where an assembly is controlled through a joystick [Bargiel et al., 2010], but
is something that makes the process less intuitive.

There are still hurdles that have to be addressed. These include uncertainty of
friction forces and other parameters, communication delays, nonlinearities which
result in challenges for stability and robustness of the haptic system. Furthermore
is the improvement of safety a concern, as the robots share their workspace with
humans.

This thesis seeks to implement an algorithm resulting in a safe and functional
haptic interface between two robot arms in Python.



Chapter 1. Introduction

1.1 Goals of thesis

The overarching goal of this project is the implementation and improvement of a
dual-arm haptic system in Python. The haptic system used for this thesis will be
implemented on two URS5e robot arms.

The URSe is a medium sized robot designed by Universal Robots. It has 6 joints,
a payload capacity of 5 kg and a reach of 850 mm [UR5e Information 2020]. The
robot arm used can be seen in Figure 1.1.

The second robot arm was implemented as a virtual robot, visualisation of this
robot next to a visualisation of the real robot can be seen in Figure 1.2. The improve-
ments include the inclusion of an F/T sensor and a handle for ease of adjustment.
The two main objectives are

* Creation of a reliable haptic interface
* Enhancing the user experience

The expected outcome of this thesis project is to create a haptic interface with a
designed teaching handle. This haptic interface will perform to the following spec-
ifications

¢ Performance

— Singularity-free operation.
— Free-space motion where position and orientation offsets are retained.

— Consistent and intuitive results of input signals.
¢ User experience

— Ability by the user to use the interface to set position and orientation
offsets without extensive programming.
— A realistic and intuitive feeling of force upon interaction with an object.

— Workable teaching handle to improve adjustments of the remotely con-
trolled (slave) arm.

Demarcation

Due to the limited time of this thesis the following demarcation is necessary.
» The impact of the implemented F/T sensor was not investigated in great detail.

* The ability of the implemented algorithm to react to the external torque ap-
plied to the joints of the robots was not implemented.
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1.2 Outline of thesis

Real Virtual

Figure 1.1 The URSe
robot arm that was used
for the implementation of

the dual-arm haptic system. Figure 1.2 Visualisation of both robots used for the
The F/T sensor and handle implementation of the dual-arm haptic system. The
is included. This robot URSe robot with a green head is a visualisation of the
arm was the baseline for real robot and the robot with a red head is a visualisation
the second virtual robot of the virtual robot. Both have been included for com-
marked in red head in parison. The virtual robot is placed 0.75 m from the real
Figure 1.2. robot in the YO-direction.

1.2 Outline of thesis

Chapter 2 contains the background for the project and its connection to previous
work. In Chapter 3 are the theories and mathematical formulas that are used and
implemented into the algorithm presented. Chapter 4 explains the modelling and
simulation of a robot arm for use as a second virtual robot. The experimental setup is
covered in Chapter 5. The tests used to evaluate the implementation of the algorithm
are described in Chapter 6. The results of the evaluation of the implementation and
the discussion of these results can be found in Chapter 7. Chapter 8 discusses the
conclusions of the project and its continued work.

The dimensions for use in the creation of the simulated robot arm, more detailed
information on the construction of the simulated robot, the sensitivity report for the
F/T sensor as well as the coordinate system used for calculating the homogeneous
transformation matrices can all be found in the Appendix.

11



Chapter 1. Introduction

1.3 Company which offed the thesis work

The thesis work has been conducted at Cognibotics. Cognibotics is a direct spin-
off from the RobotLab at the Faculty of Engineering (LTH) at Lund University and
was founded in 2013. The company has since then broaden its work in several EU-
funded projects as well as national scientific projects relating to automatic control,
mechatronics and software technology.

Supported by Lund University Innovation System (LU Innovation), Vinnova
and Lund University Holding company (LU Holding) Cognibotics has developed a
range of commercial products and services. The team at Cognibotics shares an ex-
tensive network of contacts with robot experts in both academia and the automation
industry, in Sweden and abroad. The company specializes in calibration and precise
robot control.

1.4 Clarification regarding the terminology

The algorithm is designed in a symmetric manner to have both robot arms acting as
the master with the other one following as the slave. However, the implementation
of the second robot as a virtual robot limits it from being used as a master. As the
real robot was the only one that could easily be interacted with, thus it became the
master arm for the implementation and testing.

With this in mind, the master robot is thus named the real robot and the slave
robot is named the virtual robot for clarification and consistency for the reader.

12



2

Background

The implementation of haptic feedback between a master and slave device can be
made using different approaches. One approach is the use of passive control laws
to enforce coordination between the two robot arms [Lee and Li, 2005]. Another
approach is point-to-point kinematic mapping [Chen et al., 2007].

The work in this thesis is largely based on the previous work by Mahdi Ghazaei
Ardakani, Martin Karlsson, Klas Nilsson, Anders Robertsson and Rolf Johansson in
the article “Master-Slave Coordination Using Virtual Constraints for a Redundant
Dual-Arm Haptic Interface” [Ghazaei Ardakani et al., 2018]. It uses a constraint-
based approach to couple two nonlinear serial arms in task space on a dynamic level
and will be described later in Chapter 3. The implementation in the article was done
without the inclusion of an F/T sensor. This thesis seeks to expand upon the result
in this article by including an F/T sensor.

13



3
Theory

3.1 Overview and clarification

This chapter will explain the different parts of the haptic control algorithm and how
they are used. However before this there is one thing that must be clarified.

This work is largely based on the algorithm described in the article “Master-
Slave Coordination Using Virtual Constraints for a Redundant Dual-Arm Haptic
Interface” [Ghazaei Ardakani et al., 2018].

Therefore the theory that is explained in this chapter is the work of the al-
ready mentioned developers of the algorithm. It is simply expanded upon with some
deeper explanation of concepts for the benefit of the readers of this work.

With the clarification of creation out of the way are the algorithms constructed
using a flexible constraint-based approach to map between master and slave manip-
ulators. It is based on coupling between two nonlinear serial arms in task space on
a dynamical level.

The control principle is a generic approach to the mapping between a master
and a slave manipulator while respecting existing multi-body dynamics. This is
done by designing a regulator that derives the forces that are required to enforce
the desired virtual kinematic constraints on robots that themselves are compensated
for the gravitational forces.

How the virtual constraints are created are explained in Chapter 3.2. Chapter
3.3 will explain how the dynamics for the system are derived and integrated with
the virtual constraints to create the control law. The calculation of the error is ex-
plained in Chapter 3.4. The proof of stability can be found in Chapter 3.5. Chapter
3.6 concerns poorly conditioned I" matrices. The implementation of the regulator
that makes the system invariant for all constant offsets can be found in Chapter 3.7.
Chapter 3.8 explains the creation and implementation of the homogeneous transfor-
mation matrix, as well as the transformation of a geometric Jacobian into a body
Jacobian.

14



3.1 Overview and clarification

Overarching plan

The dynamics of the manipulators can be represented by the following nonlinear
system.

X = f(x) +g(x)ulx)
y=h(x) (3.1

where x denotes the state vector, u denotes the control signal and y denotes the
system output. In this approach y is defined as the deviation of the translation and
orientation of the fixed frame on the virtual robot arm from the fixed frame on
the real robot arm plus the fixed desired offset. These frames can without loss of
generality be located at the outer end of the robot, hereby referred to as the end-
effector.

The goal of the regulator is to find u(x) that results in y becoming identically
equal to zero and to find the zero dynamics for the system. This is called zeroing
the output by imposing a virtual constraint and will make sure that the end-effectors
maintain the desired fixed offset.

Some concepts of robotics

Degrees of freedom (dof) Degrees of freedom (dof) is the smallest number of
real-valued coordinates needed to represent the configuration of the robot. If the
first arm of the two robots in this algorithm have n; dof and the second arm has n;
dof then the total robotic system has n = n| + ny dof.

Configuration Configuration is the robot’s position and it is a specification of all
the points of the robot. As a robot is made up of rigid links of a known shape, only
a few numbers are required and these numbers will be referred to as generalized co-
ordinates. The generalized coordinates for the total robotic system in this algorithm
are the joint angles in both arms.

Denoting the generalized coordinates for the first arm by g; € R™ and the sec-
ond arm by g, € R™ allows us to denote the generalized coordinates for both arms
by g € R" as g = [q] ,43]".

Rotation representation During this thesis rotation will be represented in three

forms

* Euler angles: The Euler angles will be expressed in XYZ intrinsic angles.
This will be used for visualization of the rotation error, as it is the most intu-
itive representation.

* Rotation matrix: R € SO(3) This will be used as the representation of rota-
tion from real and virtual robots, as it is easy to work with.

¢ Quaternions: Quaternions are a way of representing rotation that only uses
4 numbers; a position axis (€) and a rotation 1] around this axis. They will be
used by the algorithm as they are more compact than the rotation matrix.

15



Chapter 3. Theory

3.2 Virtual constraints

The virtual constraints used to create the control law can be divided into two parts,
geometric and kinematic constraints. A geometric constraint is a relationship be-
tween parts of a geometric figure. A kinematic constraint is a constraint between
rigid bodies that as a result decreases the degrees of freedom of the rigid body sys-
tem. It is the kinematic constraint that will be implemented into the regulator, and it
is derived from the geometric constraint.

The geometric constraint for this algorithm will be the difference in position and
orientation between the two end-effectors of the robot arms. Denoting the position
of the end-effector by p; € R for the real robot arm and p, € R for the virtual robot
arm expressed in a common coordinate system as well as the orientation R € SO(3)
and R, € SO(3) for the respective arms allow us to express the geometric constraints
between the two end-effectors.

p2—p1=Ap (3.2a)

RIR, = AR (3.2b)
where Ap denotes the positional offset and AR denotes the rotational offset. The
kinematic constraint can be determined by differentiating the geometric constraints.
Multiplying Equation (3.2b) by R; from the left and using the orthogonality con-
dition (RlT = Rl_l) [Lynch and Park, 2019a] results in R; = R;AR. Differentiating
both sides with regard to time results in

S(@)RzZS((Dl)RlAR—‘rO:S((D])Rg<:>S((D2—(D1)R2=O 3.3)

where S(w) is the skew-symmetric matrix corresponding to the vector product by
the angular velocity, S(w; — ®1)Ry = (@, — @;) X R;. Fixed relative positions and
orientations imply that R, # 0 resulting in the kinematic constraints
va—v; =0 (3.4a)
w—w =0 (3.4b)

where v; = % for robot i. The kinematic constraints have to be expressed in the

generalized coordinates before they can be used in the algorithm. This is done by
using v =J,(¢)q and @ = J,(q)q were J,(q) and J,(g) are the translational and ro-
tational geometric Jacobians with respect to the end-effector, ¢ is the joint velocities
for each robot. These Jacobians are unique to their specific arm, resulting in

J2p(q2)G2 = J1p(q1)G1 =0
N20(q2)G2 = J10(q1)g1 =0 (3.5)

Rewriting Equation (3.5) with

_ _J]p(‘Z]) sz(qz))_ B o
¢= <J1()(41) Jz()(qz) - [ J17J2] eR (3.6)

16



3.3 Dynamic Coupling

results in the Kinematic constraints

Gq

Il
o

(3.7)

3.3 Dynamic Coupling

We need to calculate the equation of motion to derive the dynamics for the system.
This will be done by the use of the Lagrangian formulation, with the Lagrangian
function .Z(q,q) [Lynch and Park, 2019b]. The Lagrangian function is calculated
as the kinetic energy .# (¢, q) minus the potential energy Z(,q).

Z(¢:9) =K (4:9) = Z(,9) (3.8)

The equation of motion is then calculated from the Lagrangian function according

to
dé¥ 6%

T=——F————
dt 6q dq
However, the goal of the regulator is not to compensate for the gravitational forces

as stated in the overview resulting in that from the regulator’s perspective there is
no potential energy to be included in the Lagrangian function. This results in

(3.9)

Z(q,9) = 7 (4,9) (3.10)

The kinetic energy of the rigid body can be expressed as the sum of its linear and
rotational velocity components according to

H = 1mvTv+1a>Tm (3.11)
2 2

where m is the mass of the rigid body, v and @ is the linear and rotational velocity

for the rigid body with I is the inertia matrix for the rigid body. Equation (3.11)

expanded for all i links in the robot arm and expressed in the generalized coordinates

results in the following expression for the total kinetic energy of the robot arm.

1 INT i 1 ; ;
H =5 Y mid" () Tpa+ 5 34" (o) RuliRl Tod (3.12)
i i

In Equation (3.12) m; and I; is the mass and inertia matrix for the link i. JI’; and
Ji denote the partial and rotational Jacobians for the link i and Ry, is the rotational
matrix of link i expressed in the base coordinate system.

The result of the equation of motion calculated from Equation (3.9) is often
restructured in the following way by gathering terms with similar makeup into sep-
arate parts.

T=M(q)j+C(4,q) (3.13)

17



Chapter 3. Theory

In Equation (3.13) M(q) is the symmetric positive-definite mass matrix, C(q,q)
is the vector containing the Coriolis and centripetal torques and ¢ is the joint ac-
celerations. In addition there will also be losses due to friction, modelled using
—UWyq under the assumption that there is only viscous friction with coefficient L.
There will also be a torque from generalized external forces Q¢ and the torque from
generalized forces due to the kinematic constraints are denoted by QX¢. The La-
grange—d’ Alembert theorem states that

"The sum of the differences between the forces acting on a system of massive
particles and the time derivatives of the momenta of the system itself projected
onto any virtual displacement consistent with the constraints of the system is zero."
[Bloch, 2003].

This included in the complete equation of motion results in

M(@)i+C(¢,q)q = O + 0" — Q° = t+Jl K
Gg+go=0 ok =G"a (3.14)

In Equation (3.14) the generalized external forces Q¢ have two components, the
external torque applied at the joints 7 and the torque that results from the forces
and torques on the end effector #° multiplied with the body Jacobian J,. The gen-
eralized forces due to the kinematic constraints Q*° are calculated as the Lagrange
multipliers A (¢, 4, ¢) € R® multiplied with G.

Equation (3.14) has terms that depend on information from one arm and terms
that depend on information from both arm. Splitting up Equation (3.14) by the use
of subscripts 1 and 2 for the parameters and variables, we find that

M(q) := blkdiag(B(q1),B2(q2))

J(q) := blkdiag(J1(q1),J2(q2))

Jp(q) = blkdiag(Jp1(q1),Jp2(q2))
C(q,q) := blkdiag(Ci(41,91),C2(42,92))

AN Q’fc)(—lf(ql)l>
"= (h) = (Q’EC =\ @2 (3.1

resulting in the following equation of motion for each individual arm
Bi(qi)éi + Ci(dir q1)di = T + T (a0 + O — g (3.16)

Equation (3.15 and 3.16) B;(g;) is the mass matrix of the arm i, C;(g;,q;) is the
Coriolis and centripetal matrix, J;(g;) is the geometric Jacobian and Jp;(g;) is the
body Jacobian for arm i.

The last thing to calculate is the Lagrange multipliers A(z, ¢, g) that will be the
control signal u. By introducing x” = (¢7,4") the complete equation of motion in

18



3.3 Dynamic Coupling

Equation (3.14) can be rewritten as.

. q
xX= _ Ny . =: f(x)+g(x)u 3.17a
(10 Cla.a g e o7(gpy) =0+ s @m0
y=G(q)q (3.17b)
where M~!(q) = blkdiag(By " (q1),B5 " (¢2)).
Equation (3.14) defines a dlfferential-algebraic equation system, which can be
solved numerically. This solution is the zero dynamics of the system in Equation
(3.17a) fulfilling the control principle set up in the overview sections.

By defining I":= GM~'G” the control law u*(x) that makes the system invariant
for all constant offsets becomes

w' =T (GM N (Cq—1— T h + 1.q4) — Gg) (3.18)
where

i (sqk ) 1) (3.19)

The complete calculations of u* in (3.18) can be found in [Ghazaei Ardakani et al.,
2018]. The zero dynamics for Equation (3.17a) are given by

M(q)§+W(C(q,4)q— O+ wd) +G'T7'G4=0 (3.20)

where W = I,x, —Pand P=G'T-'GM~!.
Under the assumption that the block-diagonal matrices K, = blkdiag(K:p,Kop)
and K; = blkdiag(K,4,K,q) are positive definite. The state variable feedback

A=u=u" —T"YK;y+Kpe) (3.21)

results in the asymptotic stability of Equation (3.17a) where e is the translational
and rotational error between the end-effectors of the robots. K), is the proportional
constant and K is the derivative constant that is subdivided dependent if they act
on the transitional or orientation part. This results in

* K, is the transitional proportional constant
* K, is the orientation proportional constant
¢ K4 is the transitional derivative constant
¢ K, is the orientation derivative constant

The proof of stability will be expanded upon in Chapter 3.5.

The state variable feedback created in Equation (3.21) can be seen as a virtual
force that affects the robots and this force is transformed to the torque that is to be
applied on the individual joints as

Tjoim = 0" =G u (3.22)

19



Chapter 3. Theory

3.4 Calculation of error

The calculation of the error can be distinctly divided into two parts; translational

(ep) and rotational (e,) error.
ép
e= <€o> (3.23)

The translational error is calculated as the difference between the positions of the
two end-effectors with the chosen positional offset Ap.

ep=p2—(p1+Ap) (3.24)

The rotational error is calculated as the difference between the rotation of the two
end-effectors with the chosen rotational offset AR.

R, = Ry(R{AR)T (3.25)

The algorithm needs to express the rotational error (R,) as an R3 vector. This is done
by expressing the rotational error (e,) as the position axis (€) of the quaternion,
with the rotation 7 used to scale the error when used by the orientation proportional
constant (K,).

The transformation from rotation matrix to quaternion is done through [Lynch
and Park, 2019c¢]

o2 T3
Re=|r1 r2 13
r3; r3 I3

1
n= 5\/1+r11+722+r33

r3p —r
1 32 23

E=—|riz3—ri (3.26)
4n 1 —ri2
resulting in
— A
o= (e,,) _ (”2 ) (p1+ ”)> (3.27)
€o sin(n/2)

20



3.5 Proof of stability

3.5 Proof of stability

Inserting Equation (3.21) into Equation (3.17a) results in
V+Kiy+Kpe=0 (3.28)
Expanding Equation (3.20) with the definition of K}, and K results in

ép+Kigép+Kipe, =0 (3.292)
O+ Kpg @+ Kopeo =0 (3.29b)

where @ = wy — w;. The translational part in Equation (3.29a) is a linear system
and exponential stable as K;; and K;, are positive definite.

Proving that the rotational part in Equation (3.29b) is stable can be done by
LaSalle’s theorem.

Let V(x) be a Lyapunov function for x = f(x) in the set x € Q such that V < 0 for
x € Q. Let E be a set of all points in Q where V (x) = 0 and set M to be the largest
invariant set in E. Then every solution starting in Q approaches M as t — oo.
[Johansson, 2019]

The first step in using LaSalle’s theorem is the creation of a Lyapunov candidate
function.

| R
V= EwTKaplw+(n2_nl)2+(£2_gl)T(SZ_El) (3.30)

where 1); is the angle and g is the unit vector of the unit quaternion for arm i. Taking
the time derivative along the system trajectory of Equation (3.30) results in

V=-0"K, Ku®<0 (3.31)

concluding that ¢, = 0 and @ = 0 is globally asymptotically stable. As K; and K|, are
positive definite the solution of Equation (3.28) converges asymptotically to zero.

3.6 lll-conditioned I" and the damped pseudo-inverse

In a few configurations G becomes rank deficient resulting in I" becoming ill-
conditioned. This problem, though rare, as this would require that the rank of G
falls below 6 can be solved by replacing I'"! in Equation (3.21) with its damped
pseudo-inverse [Burdick, 2020].

Lt =17(rr" +p2n"! (3.32)
where p << 1 is the dampening factor.
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Chapter 3. Theory

3.7 Implementation of «*

The implementation of the algorithm was slightly changed from its implementa-
tion in the previous work [Ghazaei Ardakani et al., 2018] and the change is in the
implementation of «*(x) in Equation (3.18).

w' =T (GM N (Cq—1— T h + 1.q4) — Gg)

where 7 is the torque applied directly to the joints of the robot from outside sources.
Including this information will help predict the movements of the robotic arm when
the robot is moved with other means than interaction with the handle. This feature,
however, is not implemented as a result of limited time. This change results in the
following equation for the calculation of the control signal u*(x) that makes the
system invariant for all constant offsets

w =T Y GM N (Cq—IThe + w,q) — Gg) (3.33)

Equation (3.33) was then expanded using Equation (3.15) into

R B/' 0 Gt 0\ [(a\ (L O\ (K
w="r << ‘ Jz)(o By ( 0 &) \a 0 J.)\ns
~(an) - ()

1 (_ 7 p-1 iy ((Crar) _ [(Ib] RS g\ o i)
r (( J1B, 1B, )(<C26]2 Jbghg + 2> ) ( Jl¢]1+J25]2))*
T (=BT (Crdr = Iy HS + padn) + 12 (Cadz — Jih + kad)

— (=har +5ad2))

=T '(—A1 +Ay), where A; = J;B; ' (Cigi — JLHE + widi) — Jigi
(3.34)

u*(x) in Equation (3.34) was implemented into Python in three parts. These three
parts are "1, A| and A,.

« I'! that requires information of the joint angles from both robots.

* A that requires information from the real robot in the form of joint angles ¢,
joint angular velocities ¢; and the forces and torques that are applied to the
end effector 4§. y; is the viscous friction constants for the real robot.

* A, that requires information from the virtual robot in joint angles g, joint
angular velocities ¢> and the forces and torques that are applied to the end
effector h§. Ly is the viscous friction constants for the virtual robot.
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3.8 Homogeneous transformation matrices and the types of Jacobians

This change was implemented for two reasons
 To divide the algorithm into clear parts dependent on each robot.

* Provide departmentalization for ease of troubleshooting.

3.8 Homogeneous transformation matrices and the
types of Jacobians

Homogeneous transformation matrices

The homogeneous transformation matrix is one way of representing the combined
orientation and position of a rigid body. It is made up of a rotational matrix R €
SO(3) to represent the orientation of the body-frame {b} in the fixed base frame
{s} and a vector p € R? that represents the origin of {b} in {s}. They are combined
according to Equation (3.35) [Lynch and Park, 2019d].

_(R p
T(O 1) (3.35)

This makes it easy to go from one frame to another. To give structure to the different
frames, the fixed base frame is referred to as {0} and each following frame is given
a rising number reaching the frame of the flange of the robot’s end-effector {7}. An
overview of the frames can be seen in Figure D.1 in Appendix D.

To go from the fixed base frame {0} to the frame of the flange of the robot’s
end-effector {7} is done by

To7 =To1 -T2 123 - T34 - Ts - Tse - Ter (3.36)

The homogeneous transformation matrices used in the calculation of the transfor-
mation matrix from the fixed space frame to the body frame at the end of the end
effector flange can be seen in Equations (3.37-3.43) and are based on the frames
seen in Figure D.1 in Appendix D.

1 0 0 O
01 0 O
=10y 0 1 o1 (3.37)
0 0 0 1
cos(qi) 0 sin(q)) 0.069 - sin(q)
| sin(g1) 0 —cos(q1) —0.069-cos(q1)
T2 o 1 0 0.063 (3.38)
0 0 0 1
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Chapter 3. Theory

cos(qz)  —sin(g2) 0 —0.425-cos(qo)
Ty — sin(qa) CUS(S‘ZZ) (1) —0.4256?111(612) (3.39)

0 0 1

cos(qz) —sin(qz) 0 —0.392-cos(g3)
sin(gz)  cos(qz) 0 —0.392-sin(g3)

T34 = 0 0 1 (3.40)
0 0 0 1
cos(qs) 0  sin(qs) 0.05 - sin(qa4)
| sin(qs) 0 —cos(qsa) —0.05-cos(qas)
s=1"09" 1 o 0.065 (341)
0 0 0 1
cos(qgs) 0 —sin(gs)  0.051-sin(gs)
sin(gs) 0 cos(qgs) —0.051-cos(gs)
Ge=1"0" -1 0 0.05 (342)
0 0 0 1
cos(qs) —sin(gs) 0 O
| sin(gs) cos(gs) O O
To=1"9 0 1 0.049 (343)
0 0 0 1

Geometric and body Jacobian

The Jacobian J(6) € R®" is a matrix that relates the impact of forces, torques and
velocities on the end effector to torque and joint angular velocities. The Jacobian is
dependent on the n joint angles 0 of the robot.

Jacobians are differentiated based on in what frame of reference the forces,
torques and velocities that affect the end effector are expressed in. The two types
that will be important for this thesis are

* The geometric Jacobian: J;(8) € R*" relates the joint velocity vector 6 €
R" to the end effector linear and angular velocity V; that is expressed in the
base frame {s} via V; = J;(0)6.

+ The body Jacobian: J,(8) € RO*" relates the joint velocity vector § € R" to
the end effector linear and angular velocity V}, that is expressed in the body
frame {b} via V}, = J;,(0)6.

The base frame {s} and body frame {b} are graphically presented in Figure 3.1.
There is a third type that needs to be mentioned and that is the tool Jacobian.

* The tool Jacobian: J,(6) € R®*" relates the joint rate vector § € R" to the
end effector linear and angular velocity V; that is expressed in the tool frame

{t} viaV, = J,(0)6.
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3.8 Homogeneous transformation matrices and the types of Jacobians

Figure 3.1 The coordinate axis of the base frame {s} and the coordinate axis for
the body frame {b}.

The difference between the tool and body Jacobian is that the tool Jacobian takes
the relative transformation between of the F/T sensor attached to the end effec-
tor into account. The difference between tool and body Jacobian in this particular
implementation was so small that the body Jacobian was used to minimizing the
calculation time.

The transformation between the geometric and body Jacobian is done by rotat-
ing the old frame to the new frame using a rotation matrix [Siciliano et al., 2009].
Transform from {s} to {b} is done through

_(Rys O
Jp = ( 0 Rbs) Js (3.44)
resulting in
R7o=Ry'=RY. T
J= (R0 O, KRy =Ko (Ko (; Jo (3.45)
0 Ry 0 Ry

where RY is the transpose of the rotational part of the homogeneous transformation
matrix Tp7 in Equation (3.36).
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Transferring forces and torques between frames

Forces and torques are transferred between frames similarly to the transformation
between different Jacobians with the lever interaction taken into account by the use
of adjoint representation.

Definition Given T = (R, p) € SE(3) as a homogeneous transformation matrix,
then the adjoint representation [Adr] [Lynch and Park, 2019¢] is

R 0 D1 0 -p3 p
[Adﬂé( )GRM p=|p| —pl= s 0 —pi| (346
7] D3 -p2 Pl 0

This definition is, however, not entirely applicable as it is defined for the following
definition of a twist. A twist (%) is a combination of the three-dimensional quanti-
ties angular (@) and a linear (v) velocity, it is used to describe a motion in a compact
single six-dimensional vector.
()
v

This definition is for changing the frame of reference for the spiral twists according

to
()= (e 5 () 647

As we in this thesis use the notation with the linear velocity v, on top of the angular
velocity @, we will be rewriting it as

(Z)) - (1; [[;}?R) (;’2) — lAdr]= (Ig [%R) ER™C (348)

3.9 Summary

The dynamics of the system were calculated, introducing x” = (¢”,¢") resulted in
the following equation of motion shown in Equation (3.17)

. q _.
= (@l s 07(gpa) =00
y=Glq)q
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3.9 Summary

where

M~'(q) := bikdiag(B; " (q1), B, (92))
Jp(q) := blkdiag(Jp1(q1),Jm2(q2))
C(q,q) := blkdiag(Ci(41,91),C2(42,92))

he
)
()
T
Additionally, B; ' (q:), Jyi(q:), Ci(di» i), ¢ and 7; are the inverted mass matrix, body
Jacobean, Coriolis, external forces and torque applied to the end effector matrices
and the external torque applied to the joints for arm i.
From the equation of motion the control principle is constructed, resulting in the

control signal u*(x) that makes the system invariant for all constant offsets seen in
Equation (3.18)

w =T GM Y (Cj—1—JTh + 1,§) — G§)

where I := GM~'G" and G = [J),J5]. The state variable feedback calculated in
Equation (3.21) then becomes

A=u=u"—T"YK;y+Kpe)
and is used to achieve asymptotic stability with the assumption that the block-
diagonal matrices K, = blkdiag(K;,,K,p) and K; = blkdiag(K,4,K,q) are positive

definite. e is the translational and rotational error.
The implementation of the control signal is then modified to better fit as

w' =T (A +A2), where A; = JiB; ' (Cigi — JLh¢ + 1iGi) — Jidi
resulting in the control signal becoming
u=u" —T N (Kpy+Kpe) =T (—A; +4;) — T (K9 +Kpe)
The control signal is implemented as virtual forces that affect the robot’s. The final
step is then to transform these virtual forces into torques that are applied on the

individual joints. This is calculated as

T
Tjoint = G u
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4

Modelling

The robot used in the project is the URS5e robot arm. It is a medium sized robot
designed by Universal Robots. It has 6 dof, a payload capacity of 5 kg and a reach
of 850 mm.

At first was a model of a URSe robot was made in the simulation software
Maplesim [Maplesim 2020]. This was so that models of the robots and the controller
could be tested in a simulated environment with the purpose of getting acquainted
with the algorithm. The second reason for implementation into Maplesim was that
the simulation of the robot would serve as as the slave robot by running the created
simulation of the virtual robot in parallel with the real robot.

These reasons would gradually become irrelevant as the project progressed and
the limitations of the simulation software were made apparent. These reasons will
be discussed further in Chapter 4.2.

With the limitations of the simulation software preventing a full implementa-
tion of the algorithm into Maplesim, was the focus shifted to creating the model
for the robot in Maplesim and then implement its model into Python with the rest
of the controller. However, further limitations would reduce the usefulness of the
Maplesim model to the point that it was replaced with a simpler model implemented
in Python code.

4.1 Creation of the UR5e model in Maplesim

The model of the URSe robot arm was made in Maplesim 2020 using Denavit-
Hartenberg parameters from the drawing of the URS5e robot publicly available from
the website shown in Appendix A, Figure A.1. This was done as this robot was
envisioned to have its mass, Coriolis and Jacobian matrix calculated by the Cogni-
botics matrix calculation code in cdyn library. This required that the robot has the
same kinematics as the model inside the company’s matrix calculation code. These
changes amounted to rounding of the Denavit-Hartenberg parameters provided by
Universal robots [Denavit—Hartenberg parameters 2020]. The difference between
these two sets of kinematic dimensions can be seen in Table 4.1. There were no
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4.1 Creation of the UR5e model in Maplesim

H Joint ‘ a[m] UR ‘ a[m] CB ‘ d [m] UR ‘ d [m] CB ‘ afrad] UR ‘ ofrad] CB H

1

2
3
4
5
6

0
-0.425
-0.3922
0
0
0

0
-0.425
-0.392

0

0

0

0.1625
0
0
0.1333
0.0997
0.0996

0.163
0
0
0.131
0.1
0.1

/2
0
0
/2
—r/2
0

/2
0
0
/2
—7/2
0

Table 4.1 Difference in Denavit-Hartenberg parameters between the one provided
by Universal robot’s parameters (UR) and the one used by the Cognibotics matrix
calculation code (CB).

dynamic parameters given for the older version of the kinematics, so the dynamic
parameters provided by Universal robots [Denavit—Hartenberg parameters 2020]
were used. As the difference between them in kinematic parameters was only a
rounding into millimetres the dynamic parameters were considered close enough to
be used.

Each joint were created as a subsystem and then connected. A crude CAD draw-
ing was divided into seven parts and connected to each joint including the base for
a better visual representation.

The robot was then divided into three parts, represented as three subsystems.

* Environment part: The environment part contains an FT sensor connected
to a spring that in turn is connected to the ground, which is done to simulate
impact with the environment. This part can be seen in Appendix B, Figure

B.2.

Drive part: This is where the input signal to the robot is used as torque for
the joints. Joint angle and joint velocity are also placed here. This part can be
seen in Appendix B, Figure B.3.

Mechanical part: This is where the six Denavit-Hartenberg subsystems are
connected. This part is connected to the drive part using the axis and to the
environment part by its end effector. This part can be seen in Appendix B,

Figure B.4.

Drawings of the different parts, as well as the connected system can be seen in

Appendix B Figures B.1 - B.4.

Finally, the three parts were all included into one subsystem for ease of convert-

ing into a format that Python could interpret.
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Chapter 4. Modelling

4.2 Implementation of the algorithm in Maplesim

The idea of implementing the algorithm into Maplesim using two simulated UR5e
robots as inputs and outputs proved complicated as Maplesim did not have a block
dedicated to matrix creation or matrix multiplication.

The result was that the implementation of the algorithm became a large block
without any clear overview. This compiled with difficulty to calibrate the control
parameters resulted in an abandonment of the attempt to simulate the algorithm
with the regulator.

The exercises, however, provided insights into the complexity of the algorithm
as well as its dependence on a time-efficient way of calculating the mass, Coriolis
and Jacobian matrix for both robots.

4.3 Creation of the virtual robot from Maplesim model

The next step after creating a model for the virtual robot created in Maplesim is
to implement this model into the Python. There are a few concepts that have to
explained before describing the implementation of the Maplesim model as a virtual
robot in Python.

* Functional Mock-up Unit (FMU): An FMU is a file that contains a simu-
lation of a model adherent to the widely used Functional Mock-up Interface.
This allows one to save a simulation in a way that is usable by most simu-
lation and code programs. There are two different versions of FMU and al-
though both are dynamical systems represented by differential equations are
the way the solvers implemented is different. The equations are the same but
how they are solved differ between the two versions [FMU 2020].

— Model Exchange Functional Mock-Up Units (ME FMU): The nu-
merical solver in a ME FMU is supplied by the importing tool. This
means that the equations are solved using the algorithm that the im-
porter provides.

— Co Simulation Functional Mock-Up Units (CS FMU): The numerical
solver in a CS FMU is supplied by the exporting tool. This means that
the equations as well as the algorithm used to solve them are provided
by the exporter.

e PyFMI: PyFMI is a package for loading and interacting with FMUs in
Python [PyFMI 2020].

The Maplesim model was used for the creation of the virtual robot by exporting it as
an ME FMU. ME was chosen primarily for ease of use, CS would provide a better
simulation as CS allows the use of Maplesim’s more capable numerical solver.
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4.4 Creation of the virtual robot from inverse dynamics

There were serious, to this day, unresolved problems with the CS FMU not
being correctly interpreted by PyFMI. Lengthy correspondence with the company
that created Maplesim, Modelon were not able to solve the problem. For this reason
the ME FMU option was chosen over the CS FMU option.

This, however, was not the largest problem threatening the use of ME FMU
as the core of the virtual robot. In order to use the ME FMU model as the virtual
robot the mass and dynamic parameters needed to be identified. This is to allow
Cognibotics matrix calculation code to construct its mass, Coriolis and Jacobian
matrices.

The identification software was meant to be use on real robots and required
robot’s joint angles and motor currents to identify the robot’s parameters. The cur-
rent was simulated by taking the joint torque and using it to calculate the motor
current. Despite this workaround it was hard to identify the mass and dynamic pa-
rameters for the Maplesim model.

4.4 Creation of the virtual robot from inverse dynamics

Another simpler way of simulating the virtual robot was used as a response to the
problems with the FMU implementation into Python. This simpler model required
the input of joint torque and the outputs of joint angles and joint velocities.

This is done in two steps, first the joint acceleration is calculated using the ex-
pression for the inverse dynamics

T=M(0)0+C(6,0)+g(0)—ub—J (6)h, —

6=M(0) "' (1 C(6.0) —g(6) + 16 +J] (B)h,) 1AL

6=M06) ' (t—H(0,0)+ub+JI(6)h,) (4.1)

were M(0), C(6,8), are the mass, Coriolis matrices and g(6) is the gravity vector
for the virtual robot respectively, u is the viscus friction for the virtual robot and 6,
6 and 0 are joint angles, velocities and accelerations, A, is the forces and torques
that act on the robot’s end-effector.

Second, given the joint acceleration from Equation (4.1) the joint angle and
velocity were calculated using zero-order hold double integration. There the next
joint angle (6 ) and joint velocity (6, ) is calculated from the current ]01nt angle
(6), joint velocity (6¢) and joint acceleration (6) as seen in Equation (4.2) [Astrom
and Wittenmark, 2011].

Or1) (1 h\ (6 B
(o) =(o 1) (6)+(5)e 42

This implementation solved one of the more time-consuming identification aspects
of the virtual robot, the identification of the mass and dynamic parameter of the
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Chapter 4. Modelling

virtual robot. By using the mass and dynamic parameter identified for the real robot
and then creating the mass and Coriolis matrices for the virtual robot with Cogni-
botics code, the mass and Coriolis matrices for the virtual robot in Equation (4.1) the
same as the ones used in Equation (3.34). This removes the need for identification
of the mass and dynamic parameter of the virtual robot.

The mass and dynamic parameters used for the virtual were chosen to be the
same as the identified mass and dynamic parameters for the real URS5e robot.

Creation of a virtual wall

A virtual wall was implemented to test the haptic response when the virtual robot
collides with an object. This was implemented as a simple spring force designed
to provide a repulsive force out of the virtual wall when the end effector from the
virtual robot moved through it, according to Hooke’s law:

F = —k§, 4.3)

The force F was calculated with the spring constant k = 6000 N /m and 5, being the
distance travelled into the wall. The magnitude of the spring constant was chosen
as it resulted in an acceptable distance that the virtual robot was allowed into the
virtual wall of 1-2 mm at maximum force applied to the real robots end effector.
There is a limitation for large spring constants as a high stiffens of the virtual plane
can result in instability if the sampling frequency is not high enough to handle the
rapid increase in the repulsive force. This instability was however not experienced.

The wall was set up at x = 0.45 m with the normal vector of the wall pointing
in the negative x-direction in the base coordinate frame. This force was then trans-
formed from the base frame to the sensor frame using the adjoint representation in
Equation (3.48).
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4.5 Summary

4.5 Summary

The algorithm and a virtual duplicate of an URSe robot were implemented in the
simulation software Maplesim for testing and educational purposes. The simulation
of the algorithm was abandoned due to the limitations in Maplesim referenced in
chapter 4.2.

The Maplesim model of the URS5e was implemented as the virtual robot arm
when the algorithm was implemented into Python code. However, problems with
identification, bad integration, less than ideal solver and shortage of time limited its
use.

The model for the virtual robot was simplified and instead based on inverse
dynamics for the calculation of the joint acceleration and double integration for the
approximation of joint angle and joint velocity.

A virtual wall was implemented to test the haptic response when the virtual
robot collide with an object as a spring force at x = 0.45 m with the normal vector
of the wall pointing in the negative x-direction in the base coordinate frame.
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Experimental Setup

5.1

General overview

The experimental setup consists of four parts. The URSe robot, the handle, the F/T
sensor and a computer on which the regulator and the virtual robot together with
other processes run. As the regulator requires real time information from the other
processes are different processes divided into different threads to allow for simula-
tions calculation on one computer. There are five threads in total that handle differ-
ent areas of the regulator. The system architecture for the regulator can be seen in
Figure 5.1 and contains the following

1.

34

Regulator thread: The regulator thread contains the main regulator algo-
rithm that provides the real and virtual robots with their control signals in the
form of joint torques U1 respective U2. The algorithm inside the regulator
thread requires information from both robots in the form of joint angles Q1
and Q2, joint velocities DQ1 and DQ?2 as well as the forces and torques that
affect the robot’s end-effectors HE1 and HE?2.

Visualization thread: The visualization thread visualizes the virtual robot
using a simple stick model depicting its links. This requires the joint angles
for the virtual robot Q2.

Communication thread: The communication thread transfers the control
signal from the Regulator thread to the ur-rtde communication script
as well as reading the joint angle actual_q and joint angular velocity
actual_dq from the real robot before providing them to the Regulator
thread.

Virtual robot simulation thread: Inside the virtual robot simulation thread
is the virtual robot arm is modelled. The joint torques U?2 are supplied to the
thread from the Regulator thread and drive the model that procures 02, DQ?2
and HE? for the Regulator thread and Visualization thread.



5.1 General overview
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Figure 5.1 System architecture of the setup and what information is passed be-
tween the different parts of the setup. The setup consist of two parts, a computer that
runs the virtual robot arm as well as the regulator and a URS5e robot arm where the
Optoforce HEX-E v1 force-torque sensor is connected before the handle.

. URSe robot: The UR5e robot is the real robot arm of the algorithm providing
the Communication thread with its joint angle actual_q and joint angular
velocity actual_dq while having the value of its joint torque provided by
the Communication thread u1. The Optoforce HEX-E v1 F/T sensor is
mounted on the flange of the URSe’s end-effector.

. ur-rtde communication script: The ur-rtde communication script is a script
that is uploaded to the URS5e robot that instructs the URSe robot how to inter-
pret and use the torque U1 provided to it by the Communication thread.

. Optoforce communication thread: The Optoforce HEX-E v1 F/T sensor
produces data frames that need to be interpreted in the Optoforce communi-
cation thread before they can be used by the Regulator thread. The internal
components of the F/T sensor are affected by gravity and these effects are
cancelled out here which requires information about the rotation of the sen-
sor in the form of joint angles from the URSe robot to cancel out the gravity
dependency.

. Handle: The handle is a simple 3D printed construction allowing an operator
to interact with the end effector of the URSe robot.
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Chapter 5. Experimental Setup

9. Optoforce HEX-E v1 F/T sensor: The Optoforce HEX-E v1 F/T sensor is
connected between the flange of the UR5e’s end-effector and the handle. This
allows it to measure the torques and forces that are applied to the end effec-
tor through the handle and transmit them to the Optoforce communication
thread using data frames.

5.2 URbe robot

The URSe robot is a six dof robot with a max payload of 5 kg and a reach of 850
mm [UR5e Information 2020]. It is connected to the computer using an Ethernet
cable with package rate of 500 Hz.

5.3 Virtual robot

The virtual robot was implemented according to the inverse dynamics and zero-
order hold double integration of Chapter 4.4. The step size was set to & = 0.001
s and the mass parameters from the identification turned down to 25% of the real
robot’s values. The change of the mass parameters was implemented as a response to
the low regulator frequency. This problem resulted in unintuitive forces and torques
on the real robot as the regulator thread were unable to keep up with movements
in shifting directions. In order to mitigate this problem was the mass of the virtual
robot reduced, reducing the virtual forces on the real robot from the inertia of the
virtual robot and therefore the unintuitive forces and torques on the real robot. This
was done during the identification process of the real robot to decouple the measured
parameters and then reduce the mass elements to 25% of their original value. This
change does not completely correspond to a simple change in mass as many of these
parameters are identified together. The small impact on the model was considered
to be acceptable.

5.4 FT sensor

The URS5e robot does have an integrated F/T sensor, however, there are some prac-
tical problems with it. The result of these shortcomings was that an external Opto-
force HEX-E v1 F/T sensor was installed on the flange of the URSe’s end-effector
and the handle. The F/T sensor and the handle can be seen in Figure 5.2 and the
mounting can be seen in Figure 5.3.
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5.4 FT sensor

Figure 5.2 Optoforce HEX-E v1 F/T sensor and handle used.

URb5e integrated FT sensor

The raw sensor data from the integrated F/T sensor in the URSe robot can not be ac-
cessed and then compensated for the given weight of the attached tool. The included
compensation leaves a lot to be desired as it has trouble with shifting orientations.
This results in inconsistent body frames and forces in directions that are not correct.

An external F/T sensor was chosen as the internal F/T sensor is not capable to
perform its task.

Optoforce HEX-E v1 force torque sensor

The Optoforce HEX-E v1 F/T sensor is a 6-axis F/T sensor with a default sampling
rate of 100 Hz. The nominal capacity and deformation of the F/T sensor can be
found in Table 5.1. The force and torque values from the Optoforce F/T sensor are

H Nominal Capacity Deformation H

Force x, y-directions +200 N +1.7 mm
Force z-direction +200 N 40.3 mm

Torque x, y-directions +10 Nm +2.5°
Torque z-direction +6.5 Nm +5°

Table 5.1 Normal capacity and deformation for the Optoforce HEX-E v1 F/T sen-
sor [optoforce, 2017]

given in the dimensionless counts and converted to N and Nm using the sensitivity
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Figure 5.3 Mounting of the external Optoforce HEX-E v1 F/T sensor on the flange
of the URSe’s end-effector with the handle installed on the F/T sensor

(counts at normal capacity, countsN.C) and the nominal capacity (N.C) using the
expression in [OptoForce General DAQ - protocol description 1.4 - USB, CAN,

UART 2015].

As an example for F,

The sensitivity and nominal capacity values used can be seen in Table 5.2.

Fy[N| = F[Counts]/(countsN.C) - (N.C)

| Nominal Capacity | Counts at Normal Capacity ||

Fi[N]

F[N]

F[N]
T:[Nm]
T,[Nm]
I:[Nm]

200
200
200
10
10
6.5

2000
2000
2000
10000
10000
6500

Table 5.2 Normal capacity and counts at normal capacity used for transforming
the dimensionless count from the Optoforce HEX-E v1 F/T into N and Nm. These
values are based on the sensitivity report in Appendix D. To transform the torque
into Nm, the nominal capacity was divided by 1000.
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5.5 Tuning the regulator

However, the values calculated by Equation (5.1) using the values in Table 5.2
were subject to three main problems.

* Inherent offsets and drift of these offsets for the different axes.
¢ Influence of gravity on the internal components of the F/T sensor.
¢ Influence of gravity on the handle attached to the F/T sensor.

The inherent offsets and drift of these offsets for the different axes were compen-
sated by first isolating the influence of gravity on the internal components of the
F/T sensor. With influence of gravity on the internal components of the F/T sensor
compensated for the F/T sensor was placed with the force of gravity pointing in
the negative z-direction in the F/T sensor’s frame of reference [optoforce, 2017].
The remaining offsets were considered the inherent offsets for the different axis.
However, the drift of the F/T sensor offsets results in any calibration only working
well for roughly 4 hours. This was solved by using the first 100 values from the
F/T sensor for approximating the drift and compensating for it. The only thing left
was to compensate for the influence of gravity on the handle attached to the F/T
sensor. As the influence of gravity on the internal components of the F/T sensor
already were calculated the influence of the internal components in the F/T sensor
and the influence on the handle attached to the F/T sensor were compensated for
separately. These influences were compensated for by the rotation of the F/T sensor
in relationship with the space frame using the adjoint representation in Equation
(3.48).

5.5 Tuning the regulator

The tuning of the implemented algorithm is done by four matrices implemented
into the state variable feedback in Equation (3.21). Each of the four constants K,
Kop, Kiq and K,; are made of a 3 x 3 diagonal matrix where the diagonal elements
is connected to one direction in the base frame of reference. This allows tailoring
of the implemented algorithm based on the specific direction in the base frame of
reference as well as to specify the response to transitional and orientation errors
separately.

The state variable feedback results in a second-order system using ILM Mod-
elling [ILM for Basic Modeling and Identification 2020] was visualized and can be
seen in Figure 5.4.
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ILM: Physical Modeling
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Figure 5.4 Visualization of the state variable feedback second order system using
ILM for Basic Modelling and Identification. A settling time of 0.5 seconds was cho-
sen, and the model transfer function was then used to derive the constants for the
calibration of the implemented algorithm.

Testing different settling times resulted in a settling time of 0.5 seconds re-
sulting in the best combination of small error and user-friendliness resulting in a
proportional constant k; = 110.87 and the derivative constant k, = 16.85. These
were implemented for all directions in the base frame of reference with the same

response to transitional and orientation errors as
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110.87 0 0 0 0 0
0 110.87 0 0 0 0
K. — 0 0 110.87 0 0 0
[ 0 0 0 110.87 0 0
0 0 0 0 110.87 0
0 0 0 0 0 110.87
16.85 0 0 0 0 0
0 16.85 0 0 0 0
K, — 0 0 16.85 0 0 0
0 0 0 16.85 0 0
0 0 0 0 16.85 0
0 0 0 0 0 16.85

(5.2)



5.6

5.6 Summary

Summary

The experimental setup consists of a URSe robot connected to a laptop with an Eth-
ernet cable communicating at 500 Hz. On the flange of the URSe robot, an Opto-
force HEX-E v1 force-torque sensor was connected and on the flange of the F/T
sensor the teaching handle was connected. There five threads active on the laptop
that handle different parts of the regulator. These are

A regulator thread that contains the algorithm.

A communications thread that handles the communication between the URS5e
robot and the regulator thread.

An Optoforce communications thread that interprets the signals from the F/T
sensor and transforms them into forces and torques which the regulator thread
can use.

A virtual robot simulation thread that simulates the virtual robot for the regu-
lator thread.

A visualization thread that visualizes the virtual robot with a simple stick
model.

The information about forces and torques measured by the F/T sensor is interpreted
by the Optoforce communications thread, the values are compensated for the inher-
ent offset and drift of the sensor as well as the influence of gravity on it and the
handle attached.
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6

Test description

Five main tests were conducted to test the implementation of the algorithm. These

were

42

Free space tracking: During this test the end effector was placed in different
positions and the tracking of the virtual robot investigated as well as the vir-
tual forces of the regulator were investigated. One of these positions placed
the virtual and real robot in a singular configuration to test its reaction to the
singularity.

Virtual Forces: During this test the end effector was placed in different posi-
tions and the virtual forces of the regulator were investigated in context with
the movement of the end effectors.

Surface collision: During this test a virtual wall was implemented and the
haptic response of the real robot was investigated when the virtual robot col-
lides with the virtual wall.

Physical limitation: During this test the virtual robot was placed in a config-
uration close to its physical limitation and the real robot were then moved in
an attempt to extend the virtual robot beyond its physical limitations.

Influence of F/T sensor: During this test both robots were placed in the same
start configuration and the end effector then moved to different positions. The
same movements was then emulated without the F/T sensor contributing to
the algorithm. The error, position and forces were then compiled to investi-
gate the influence of the F/T sensor on the algorithm.



6.1 Free-space tracking

6.1 Free-space tracking

The free-space tracking test was based on nine movements. The first three were
small rotations of the outer joints followed by movements in the x, y and z directions
of the base frame. The start configuration can be seen in Figure 6.1. The movements
were the following

* 90° rotation for joint 5

* 90° rotation for joint 4

* 90° rotation for joint 6 (no translation)
* Movement in the negative y-direction
* Movement in the positive y-direction
* Movement in the positive z-direction
* Movement in the negative z-direction
* Movement in the negative x-direction
* Movement in the positive x-direction

The movement in positive z-direction results in a singularity configuration as the
arm is fully extended. This was chosen as a test for singularity-free motion. Here
the TCP (Tool Center Point), the error and the forces and torques recorded by the
F/T sensor investigated.

6.2 Virtual forces

The free-space tracking test was based on six movements in the X, y and z directions
in the base frame. The start configuration can be seen in Figure 6.1. The movements
were as follows

* Movement in the negative x-direction
* Movement in the positive x-direction
* Movement in the positive z-direction
* Movement in the negative z-direction
* Movement in the positive y-direction
* Movement in the negative y-direction

Here the TCP and the virtual forces were investigated.
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6.3 Surface collision

The surface collision test was based around movement from the start configuration
seen in Figure 6.2 into the virtual wall seen in cyan. The forces and torques on the
F/T sensor, the error as well as the TCP of both robots did then show the haptic
response from the wall. For reference the repulsive forces from the virtual wall on
the end effector for the virtual robot will also be investigated. For clarity a shaded
area was be included in the graphs where the virtual robot was inside the virtual
wall.

6.4 Physical limitation

The physical limitation test was based on extending the end effector of the virtual
robot from the start configuration that can be seen in Figure 6.3 into its maximum
reach. Then the movement in positive y-direction continued, trying to extend the
virtual robot arm beyond its physical limitation. This was investigated by the forces
and torques on the F/T sensor, the error as well as the TCP of both robots. A picture
was included as an example of the maximum extension. For clarity was a shaded
area included in the graphs where the virtual robot was extended to its maximum
length.

6.5 Influence of F/T sensor

The influence of F/T sensor test were based on six movements in the x, y and z di-
rections of the base frame. The start configuration differs as the handle were rotated
for maximum control of the end effector. The movements were the following

* Movement in the positive z-direction
* Movement in the negative z-direction
* Movement in the negative x-direction
* Movement in the positive x-direction
* Movement in the positive y-direction
* Movement in the negative y-direction

The start configuration of movements in the z-direction can be seen in Figure 6.4.
The start configuration of movements in the x-direction can be seen in Figure 6.5.
The start configuration of movements in the y-direction can be seen in Figure 6.6.

Here the TCP, the error, the forces and torques recorded by the F/T sensor were
investigated.
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Figure 6.1 Start configuration used by
free-space tracking and Virtual forces
tests. The real robot is marked with a
green coloured head while the virtual
robot is marked with a red coloured head.
The virtual robot is placed 0.75 m from
the real robot in the y-direction. The base
frame is marked as {0} frame. The body
frame has been included at the end effec-
tor of both robots as its orientation is hard
to visualize.

6.5 Influence of F/T sensor

Figure 6.2 Start configuration used by
the surface collision test. The real robot
is marked with a green coloured head
while the virtual robot is marked with a
red coloured head. The virtual robot is
placed 0.75 m from the real robot in the
y-direction. The start configuration is the
same as in the free space tracking test
with the virtual wall included in cyan at
x=0.45. The base frame is marked as {0}
frame. The body frame has been included
at the end effector of both robots as its ori-
entation is hard to visualize.
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z0

Figure 6.3 Start configuration used by
the physical limitation test. The real robot
is marked with a green coloured head
while the virtual robot is marked with a
red coloured head. The virtual robot is
placed 0.75 m from the real robot in the
y-direction. The base frame is marked as
{0} frame. The body frame has been in-
cluded at the end effector of both robots
as its orientation is hard to visualize.

Figure 6.5 Start configuration used by
the second x-direction movements in the
influence of F/T test. The real robot is
marked with a green coloured head while
the virtual robot is marked with a red
coloured head. The virtual robot is placed
0.75 m from the real robot in the y-
direction. The base frame is marked as
{0} frame. The body frame has been in-
cluded at the end effector of both robots
as its orientation is hard to visualize.
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Figure 6.4 Start configuration used by
the first z-direction movements in the in-
fluence of F/T test. The real robot is
marked with a green coloured head while
the virtual robot is marked with a red
coloured head. The virtual robot is placed
0.75 m from the real robot in the y-
direction. The base frame is marked as
{0} frame. The body frame has been in-
cluded at the end effector of both robots
as its orientation is hard to visualize.

Figure 6.6 Start configuration used by
the final y-direction movements in the
influence of F/T test. The real robot is
marked with a green coloured head while
the virtual robot is marked with a red
coloured head. The virtual robot is placed
0.75 m from the real robot in the y-
direction. The base frame is marked as
{0} frame. The body frame has been in-
cluded at the end effector of both robots
as its orientation is hard to visualize.



7

Result and discussion

7.1 Free space tracking

Figure 7.1 shows that the motion tracking in free space was archived with only a
slight overshot for larger motions. The only thing of real note is the reaction of the
virtual robot on the third motion at 30 seconds that is a rotation 90° around joint
6. This rotation does not result in a change of position for the real robot’s TCP but
results in a small change of position for the virtual robot’s TCP.

TCP position for both robots
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Figure 7.1 The TCP of both the real and the virtual robot during the free space
tracking test. The x, y and z values are on the base coordinates seen from the origin
in the base of the real robot. The distance between the real and virtual robots has
been removed to better illustrate the tracking of the virtual robot arm. The singular
configuration is reached at the time 70 seconds.
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This is probably due to the model of both robots are not perfect. In theory,
given a perfect model the rotational and translational parts are completely detached.
However, the model identified for the real robot is not perfect. The virtual robot
might not be perfect either as the implemented model for the virtual robot is based
on an identification of a real robot and then modified so that the mass elements
were reduced to 25% of real robots values. The impact of reducing the mass of the
virtual robot might be larger than expected. The combined errors in both models
might result in the rotational and translational having a small connection, resulting
the small change of position for the virtual robot’s TCP.

Another possible reason for this unexpected movement could be inaccuracies in
the calibration of the F/T sensor. This might result in joint torques large enough to
slightly move the lighter virtual robot but not large enough that the haptic response
were felt or had any effect on the heavier real robot.
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Figure 7.2 The error between the end effector of the real and the virtual robot
during the free space tracking test. The rotational error has been transformed into
XYZ intrinsic Euler angles for ease of understanding. The singular configuration is
reached at the time 70 seconds.

The error between the real and virtual robot end effector can be seen in Figure
7.2. Here the rotational error can be seen for the first three movements and put in
context with the residual rotational errors that happen when simple translational
movements are attempted.

One way of reducing these errors is to increase the aggressiveness of the imple-
mented algorithm by increasing the tuning constants in Equation (5.2). This how-
ever has to be weighed against the less intuitive and user-friendly experience that
results in. The configuration of the real robot depends more on the configuration of
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7.1 Free space tracking

the virtual robot just as the other way around when the implemented algorithm is
made more aggressive. The result is that the real robot actively fights back during
standard motions in free space when one attempts to move it in a direction that the
virtual robot is not already travelling in. This is in turn mainly due to the delay be-
tween the real and virtual robots, resulting in times where the virtual robot dictates
the movements of the real robot.

So if the low frequency of the regulator thread can be solved and the delay
between the real and virtual robot can be lessened then a more aggressive regulator
can be implemented without the need to trade off with the user experience. More on
this problem can be found in the Chapter 7.6.

FT sensor output for the real robot
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Figure 7.3 The F/T sensor output the end effector of the real robot expressed in the
base frame situated in the base of the real robot during the free space tracking test.
The singular configuration is reached at the time 70 seconds.

In Figure 7.3 the inputs are from the F/T sensor shown. As the force necessary
for moving the end effector of the real robot depends on the configuration so the
needed force to move the end effector in different directions are of different ampli-
tude. The one standing out as a prime example of this is the increased force in the
negative z-direction need to move the robot in negative y-direction at 42 seconds.
Other than that the movements in the y-direction, a clear connection between the
direction of the force and the movement of the TCP can be established.

At 70 seconds in the test were both robots were placed in a singular configura-
tion to test singularity-free operation, this configuration can be seen in Figure 7.4.
The configuration was reached and moved away from without problems.
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/

Figure 7.4 Picture taken from the Maplesim visualization of both the real and vir-
tual robot during the free space tracking test. The real robot is marked with a green
coloured head while the virtual robot is marked with a red coloured head. The vir-
tual robot is placed 0.75 m from the real robot in the y-direction. The base frame is
marked as {0} frame. The body frame has been included at the end effector of both
robots as its orientation is hard to visualize. This picture is taken at 72 seconds and
depicts the configuration after both robots moved in the positive z-direction. This
configuration was chosen as it is a singularity.

Based on the error in Figure 7.2 and the motions of the TCP for both robots in
Figure 7.1 singularity free motion tracking in free-space has been archived.

7.2 Virtual forces

The virtual forces applied to the end effectors of the real and virtual robots can be
seen in Figure 7.5 and Figure 7.6 respectively. The virtual forces are placed above
the TCP of its motion for ease in seeing the connection between the two. As the
real robot end-effector moves in the positive z-direction at 24 seconds in Figure 7.5
there is a virtual force pulling the real robot’s end-effector back towards the virtual
arm’s end-effector. Reversely as the real robot’s end-effector moves in the positive
z-direction at 24 seconds in Figure 7.6 there is a virtual force pushing the virtual
robot arms end-effector towards the real arms end-effector.
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Virtual forces for the real robot
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Figure 7.5 Virtual forces on the real robot expressed in the base frame situated in
the base of the real robot. These are placed together with the TCP of both the real
and the virtual robot during free space tracking tests for greater context of how the
virtual forces result in the motion of the virtual robot. The X, y and z values are on
the base coordinates seen from the origin in the base of the real robot. The distance
between the real and virtual robots has been removed to better illustrate the tracking
of the virtual robot arm.

When the real arm at 25 seconds in Figure 7.6 starts to slow down as it ap-
proaches its position, the virtual force affecting the virtual robot arm’s end-effector
reverses, forcing it to slow down and to approach the same position as the real
robot’s end effector. The opposite happens for the virtual forces of the real robot
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arms at 25 seconds in Figure 7.5.

Virtual forces for the virtual robot
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Figure 7.6 Virtual forces on the virtual robot expressed in the base frame situated
in the base of the real robot. These are placed together with the TCP of both the
real and the virtual robot during free space tracking tests for greater context of how
the virtual forces result in the motion of the real robot. The x, y and z values are on
the base coordinates seen from the origin in the base of the real robot. The distance
between the real and virtual robots has been removed to better illustrate the tracking
of the virtual robot arm.

Based on the correct directions of virtual forces in Figures 7.6 and Figures 7.5,
have the correct response been achieved.
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7.3 Surface collision

7.3 Surface collision

As seen in Figure 7.7 the TCP of the virtual robot is almost immediately stopped in
the x-direction from reaching further into the virtual wall but with extensive force
exerted on the real robot’s end-effector it is still possible to reach deeper into the
wall. There is movement in the y-direction as there are no forces counteracting
movements in any other direction than x-direction as seen in Figure 7.8. This is
expected as the wall is not solid but approximated with a spring force resulting in
continuous motion into the virtual wall with an increasing repulsive force until the
point where the handle risked breaking.

TCP position for both robots during surface collision
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Figure 7.7 The TCP of both the real and the virtual robot during the surface colli-
sion test. The x, y and z values are on the base coordinates seen from the origin in
the base of the real robot. The distance between the real and virtual robots has been
removed to better illustrate the tracking of the virtual robot arm. The virtual surface
that the virtual arm collides with is marked as the virtual wall in yellow at x = 0.45.
The grey area indicates when the virtual robot is inside the virtual wall.

The distance that the virtual robot can enter into the virtual wall can be reduced
by increasing the spring constant. During this experiment the spring constant was
set to k = 6000 N /m but it can be increased further. The distance that the real robot
can enter into the virtual wall is dependent on several factors, the aggressiveness
of the implemented algorithm, the maximum deformation of the F/T sensor and the
max counterforce that the URSe robot is capable of producing. An increase in the
aggressiveness of the implemented algorithm will reduce the error seen in Figure
7.9 but as stated in the discussions about free-space tracking with result in a less
intuitive and user-friendly experience. There is also a maximum deformation of the
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The repulsive forces from the virtual wall
on the end effector for the virtual robot
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Figure 7.8 The repulsive forces on the end effector of the virtual robot are ex-
pressed in the base frame situated in the base of the real robot during the surface
collision test. The grey area indicates when the virtual robot is inside the virtual
wall.

F/T sensor to take into account when forcing the end effector of the real robot fur-
ther into the virtual wall. A way of detecting when maximum deformation based
upon saturation of the output signal were not implemented. Due to this were the no
indicators on when this maximum deformation of the F/T sensor is reached, making
it hard to theorize how far one could go before this becomes a limiting factor. This
is a question tied to the max counterforce that the UR5e robot is capable of produc-
ing. It was proven during the testing of the physical limitations that it is possible to
pulling with a greater force than the UR5e robot was capable of countering. This
means that it is possible to extend the real robot further into the virtual wall than a
stronger robot would allow. However, under the assumption that one does not try to
force the real robot further into the virtual wall than the UR5e is capable of counter-
act in its current configuration, the main determining factors are the aggressiveness
of the implemented algorithm, the maximum deformation of the F/T sensor and the
durability of the handle. During several of the tests there were indications that the
3D printed handle might not be able to handle the tug of war between the counter
forces from the algorithm and the external forces applied to the handle.

The error between the real and virtual robot end-effector during the time when
the virtual arm was inside the virtual wall can be best seen in Figure 7.9 with a
dominating translational error in the x-direction with an expected smaller compo-
nent of translational error in the y-direction. These errors were then reversed as the
handle was released and the counter forces ejected both the real and virtual robot
from the virtual wall. This is due to the spring force that simulated an elastic sur-
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Translation error during surface collision
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Figure 7.9 The error between the end effector of the real and the virtual robot
during the surface collision test. The rotational error has been transformed into XYZ
intrinsic Euler angles for ease of understanding. The grey area indicates when the
virtual robot is inside the virtual wall.

face, for a solid surface there will be no ejection. One can also see an error in the
z-direction in Figure 7.9 and the resulting movement in Figure 7.7. These are due to
the joint configuration of the real robot that when given a force in mostly negative
x-direction in the base frame as seen in Figure 7.10 gives way to a slight rotation
around joints 4 and 5 while the majority of the rotation is confined to the shoulder
joint 1. The graph over the forces seen in Figure 7.10 shows that a general move-
ment in the x-direction of the base frame takes roughly 26 N of force in the robot’s
current configuration as the end effector of the real robot is set in motion. When the
haptic forces from the algorithm started applying, the force required for continues
movement into the virtual wall increased sharply until at 75.5 N I could not move
the handle further without risking the durability of the handle.

Based on the forces in Figure 7.10 showing the haptic response from the imple-
mented algorithm and the TCP of both robots in Figure 7.7 intuitive haptic responses
have been achieved.
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F'!;Osensor output during surface collision for the real robot
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Figure 7.10 The F/T sensor output the end effector of the real robot expressed in
the base frame situated in the base of the real robot during the surface collision test.
The grey area indicates when the virtual robot is inside the virtual wall.

7.4 Physical limitation

In Figure 7.11 the TCP of the real and virtual robot are compared when the virtual
robot arm reaching its physical limitation. The virtual robot was set out to reach
its maximum parallel to the y-axis of the base frame, placing its end effector at
0.917 m in the y-direction. As the virtual robot reached its physical limitation and
the real robot continued the algorithm attempted to twist the TCP so that to reach
further in the y-direction, however this twist resulted in a rotation error as well
as a translational error in the z-direction as seen in Figure 7.12. This forced the
virtual arm back from its physical limitation, resulting in the retraction from the
physical limitation seen between the three grey marked area. The virtual arm still
moves slightly even when fully extended in response to the movements of the real
arm as one attempts to pass beyond the restrictions from the virtual arm’s physical
limitations. These small movements of joints 1 and 2 are responsible for the internal
deviations inside the grey marked areas. In the meantime the real arm resisted the
attempts to move it further in the y-direction. During the attempts to move the real
arm beyond the physical limitations of the virtual robot the real arm slid slightly in
negative z-direction resulting in the slight change in y and z-position for the real
robot’s TCP.

The difference between the real and virtual robot’s TCP as seen in Figure 7.12
can be made smaller with a more aggressive regulator. In this configuration it is
possible to pull with a greater force than the URS5e is capable of producing, result-
ing in the possibility of pulling it past the point where a stronger robot would not
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TCP position for both robots when the virtual robot
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Figure 7.11 The TCP of both the real and the virtual robot during the physical
limitation test. The x, y and z values are on the base coordinates seen from the origin
in the base of the real robot. The distance between the real and virtual robots has
been removed to remain consistent for all tests. The grey area indicates when the
virtual robot is extended to its maximum length.
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Figure 7.12 The error between the end effector of the real and the virtual robot
during the physical limitation test. The rotational error has been transformed into
XYZ intrinsic Euler angles for ease of understanding. The grey area indicates when
the virtual robot is extended to its maximum length.
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Figure 7.13 Picture taken from the Maplesim visualization of both the real and
virtual robot during the physical limitation test. The real robot is marked with a
green coloured head while the virtual robot is marked with a red coloured head. The
virtual robot is placed 0.75 m from the real robot in the y-direction. The base frame
is marked as {0} frame. The body frame has been included at the end effector of both
robots as its orientation is hard to visualize. This picture is taken at 17.272 seconds
placing it approximately in the middle of the last grey belt in Figure 7.11 - 7.14.

have allowed it. The forces applied on the end effector of the real robot can be seen
in Figure 7.14 where the attempts to pull the real robot beyond the physical limita-
tions can be seen. As with the surface collision test the durability of the handle was
a concern since the maximum repulsive force was generated by the UR5e. There
are forces apparent in the x and z- directions of the base frame as the virtual arm
attempted to remain relatively parallel to the y-axis in the base frame.

Based on the forces in Figure 7.14 showing the counterforce from the algorithm
resulted from the physical limitation of the virtual robot and the TCP position seen
in Figure 7.11 have the interaction forces when the virtual arm reached its physical
limitations have been proven.

58



7.5 Influence of F/T sensor

FT sensor output when the virtual robot
reaches it physical limitation
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Figure 7.14 The F/T sensor output the end effector of the real robot expressed in
the base frame situated in the base of the real robot during the physical limitation test.
The grey area indicates when the virtual robot is extended to its maximum length.

7.5 Influence of F/T sensor

The TCP positions of both the real and virtual robots, with or without the imple-
mented algorithm using the F/T sensor can be seen in Figure 7.15. As it is made
up of six different subtests in an attempt to reproduce the same forces there are five
discontinuations. Due to these tests not taking the same time the start of motions
were different, but the end position after the motion was generally reproduced be-
tween the tests with and without the implemented algorithm using the F/T sensor.
The two most clear differences in end-effector position are that the first movement
was a movement in the positive z-direction at 10 seconds where the test without the
implemented algorithm using the F/T sensor did not reach the target position and
the fifth movement was a movement in positive y-direction at 50 seconds where the
test without the implemented algorithm using the F/T sensor did not reach the target
position. These errors show the fundamental flaw in this comparison. Although the
position of the TCP can with reasonable accuracy be reproduced it is much harder
to reproduce the same force and torque on the end effector. This makes comparing
the response of the implemented algorithm with or without the implemented algo-
rithm using the F/T problematic as the inputs between the two tests are not identical.
This fundamental flaw is the most probable reason why the error in Figure 7.16 and
output from the F/T sensor in Figure 7.17 is so similar with no clear conclusion to
be drawn.
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Comparison between TCP for the real robot with
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Figure 7.15 The TCP of both the real and the virtual robot during the influence
of F/T sensor test. The X, y and z values are on the base coordinates seen from the
origin in the base of the real robot. The distance between the real and virtual robots
has been removed to better illustrate the tracking of the virtual robot arm. As the test
was subdivided into single motions in an attempt to create a similar force with and
without the influence of the F/T sensor are their jumps were one recorded motion
transition into the next.
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Figure 7.16 The error between the end effector of the real and the virtual robot
during the influence of F/T sensor test. The rotational error has been transformed
into XYZ intrinsic Euler angles for ease of understanding. The difference in syn-
chronization between the different graphs is due to a small difference in the motions
between the run with and without the F/T sensor.
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Figure 7.17 The F/T sensor output on the end effector of the real robot is expressed
in the base frame situated in the base of the real robot during the influence of F/T
Sensor test.
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7.5 Influence of F/T sensor

Other possibilities are that the low mean frequency of 46.82 Hz for the regulator
thread with the algorithm using the F/T sensor and 48.10 Hz for the regulator thread
without the F/T sensor combined with the delays of the setup were severe enough
to overshadow the influence of the F/T sensor. The difference between the mean
frequency of the six movements with and without the implemented algorithm using
the F/T sensor was within the range of difference that happens between different
iterations, as seen in Table 7.1 and 7.2, this does not suggest that there is a slight
improvement in the threads with the implemented algorithm using the F/T sensor.
The parts that take computation time as the matrix calculation of the body Jacobian
and its multiplication with the output of the F/T sensors were done in both cases.

H Thread \ FST \ VF \ SC \ PL \ With F/T | Without F/T H
Regulator 47.14 | 4693 | 46.41 | 47.73 46.82 48.10
Communication | 119.19 | 119.31 | 121.09 | 118.24 | 119.31 120.21
Optoforce 86.02 | 87.63 | 87.42 | 87.38 85.63 84.96
Simulation 157.37 | 156.00 | 159.09 | 158.43 | 158.67 156.76
Visualization 1.20 1.31 1.01 0.92 0.96 1.07

Table 7.1 The mean frequencies of the different threads during the different tests
in hertz (Hz). These tests were repeated 5 times, the variance of the five iterations can
be found in Table 7.2. Note that the mean frequency for the influence of F/T sensor
tests is based on the mean values of the six different movements inside each iteration.
The abbreviations are as follows. Free space tracking test (FST), Virtual forces (VF),
Surface collision test (SC), Physical limitation test (PL), Influence of F/T sensor with
the implemented algorithm using the F/T sensor (With F/T), Influence of F/T sensor
without the implemented algorithm using the F/T sensor (Without F/T)

H Thread \ FST \ VF \ SC \ PL ‘With F/T | Without F/T H
Regulator 091 [ 0.83 [ 0.92 [ 0.90 0.76 0.81
Communication | 0.62 | 0.62 | 0.71 | 0.81 0.90 0.92
Optoforce 1.02 | 0.67 | 1.24 | 0.84 0.95 1.07
Simulation 1.30 | 0.84 | 0.93 | 1.02 0.80 1.06
Visualization | 0.10 | 0.11 | 0.10 | 0.09 0.12 0.13

Table 7.2 The variance of the different threads during the different tests in hertz
(Hz). These tests were repeated 5 times, the mean of the five iterations can be found
in Table 7.1. Note that the variance for the influence of F/T sensor tests is the mean
values of the six different movements. The abbreviations are as follows. Free space
tracking test (FST), Virtual forces (VF), Surface collision test (SC), Physical limita-
tion test (PL), Influence of F/T sensor with the implemented algorithm using the F/T
sensor (With F/T), Influence of F/T sensor without the implemented algorithm using
the F/T sensor (Without F/T)
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The main idea to mitigate the fundamental problem is to reverse the master,
slave relationship of the real and virtual robots. Currently the real robot is the master
robot and the virtual robot is the slave robot. However if that is reversed, the force
inputs on the end effector of the virtual robot will be the catalyst for the movements.
Using a separate regulator it would be possible to apply the same force to the end
effector at the same time, creating an identical input signal with the only deviating
factor being if the implemented algorithm is using the F/T sensor or not.

Based on the discussed flaws of the test and the information given by Figures
7.15,7.16 and 7.17 it is not possible to demonstrate an improvement in the haptic
experience with or without the implemented algorithm using the F/T sensor.

7.6 Error sources

Frequency

The first and most likely error source that affects all the above tests is the low fre-
quency of the regulator thread. A table with the frequency for the different tests
can be found in Table 7.1. This is most likely a code optimization problem with the
largest known contributor being code created by Cognibotics. This code is gener-
alized to work for a number of different robots and not specifically tailored for the
URS5e robot. As an example, during the optimization done on the regulator thread,
the homogeneous transformation matrix and the transformation from geometric to
body Jacobian were implemented in the mathematical framework behind Maplesim,
Maple [Maple 2020] and then transferred into Python code as a replacement for the
code created by Cognibotics. These implementations did result in a reduction of the
individual calculation time by a factor larger than ten. Continued tailoring of other
code created by Cognibotics for instance, the creation of the geometric Jacobean,
mass, Coriolis and centripetal matrices would improve the frequency even further
but were not done in this work due to time constraints.

The communication thread uses Real-Time Data Exchange (RTDE) to commu-
nicate with the URSe robot. RTDE generally generates output messages at 125 Hz.
However, the real-time loop in the regulator has a higher priority than the RTDE
interface. Therefore, if the regulator lacks computational resources it will skip a
number of output packages [RTDE 2020]. This gives the communication thread a
maximum frequency of 125 Hz for new information. There is not a clear path of
optimization inside the communication thread as the runtime work is to transfer in-
formation from the URSe into a format that the rest of the implementation can use.
It might even be so that increasing the frequency might not improve performance as
the ur-rtde communication script uses a UR-provided unofficial way of directly con-
trolling the torques. As this is not one of the standard commands used by RTDE it is
possible that the real-time loop inside the URS5e regulator needs more computational
resources, resulting in a lower output frequency of messages. As the communication
thread already is operating close to the maximum frequency of RTDE it is possible
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7.6  Error sources

that a faster communication tread might not improve the data frequency from the
URSe.

The Optoforce communication thread has the possibility for increased optimiza-
tion of the calculation time connected to the transformation of ticks into forces and
torques. However, as the runtime work is relatively computationally light was the
time placed on optimization focused on other threads.

The simulation thread contains many of the same functions created by Cogni-
botics as were used in the regulator thread, these include the calculation of the mass
matrix, geometric Jacobian, Coriolis and centripetal matrix as well as the inverse
dynamics calculation. As these are only done for one robot and without the main
regulator are threads frequency higher than the other and though it can be improved
by the continued tailoring of the code for specific URS5e robots it is not seen as the
bottleneck for the overall delay of the implemented algorithm.

The low frequency of the visualization thread is due to its rudimentary nature
and thou lacking does not affect the frequency of other threads.

Tests with removing different threads do not show a substantial increase in the
frequency of the remaining threads making the exclusion of one or the absorption
of its function into other threads not worth it. The last thing to address regarding the
frequency of the implemented algorithm is the processors of the laptop used, the use
of a computer with faster processors or more cores might improve the frequency for
all threads.

The influence of the F/T sensor

The implementation of the F/T would in theory provide the virtual robot with a
indication the motion of the real robot resulting in the algorithm not simply reacting
on the error but the ability to be proactive. This theoretical improvement was not
observed under the influence of the F/T sensor test, and it is most likely due to the
fundamental flaw in the comparison.

Another possible source of error is the use of body-Jacobian instead of the tool-
Jacobian. The change between the two was a translation of 0.05 m in the z-direction
and 0.03 m in the negative y-direction in the body frame placing the point of attack
for the end effector forces at the top of the handle closest to its ring.

The decision to use the slightly less time-consuming transformation of the geo-
metric Jacobian into the body Jacobian instead of the tool Jacobian did not result in
any discernible changes in the forces and torques recorded by the F/T sensor. This
way of investigating the influence of the Jacobian does have the same fundamental
flaw as the comparison between with and without F/T sensor. However, the change
between two theoretical force and torque values multiplied with the body and tool
Jacobians were smaller than the uncertainty in the F/T sensor.

Itis possible that the change from tool-to body Jacobian would have a noticeable
impact if the F/T sensor were better calibrated, but this was not investigated due to
time constraints.
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Chapter 7. Result and discussion

It is most likely that the impact of the use of body Jacobian instead of tool
Jacobian combined with the relatively basic calibration of the F/T sensor has less
impact than the low frequency of the regulation.

The real and the perfect robot

One of the major advantages of this implementation is the virtual robot. Although
a simple zero-order hold used for integration it has many advantages over a real
robot. The identified model and the matrices created from this identified model in
the regulator are the same as the internal matrices used in its simulation, no internal
regulator is turning the torque command into current and there is no unidentified
friction in the joints that can result in errors.

In contrast to the real robot, there are potential error sources in the identification
of its model resulting in potential errors in the mass, Jacobean and Coriolis matrix
created from this model. Moreover, there is a possibility of higher friction than com-
pensated for. There are also errors in the implementation to be taken into account.
The identification program used by Cognibotics does not estimate the Coulomb
friction, and it was approximated by increasing the torque until the joint started to
move.

Nevertheless based on the tests done on the implemented algorithm and its re-
sponse it is clear that the implementation works and performs its function. These
errors have less an impact than the low frequency of the regulation.
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Conclusion

This project sets out two main objectives, the creation of a reliable haptic interface
and enhancing the user experience.

Starting with performance, singularity free operation was achieved using
damped pseudo-inverse of I' as calculated in Equation (3.32) and tested in the
singular configuration seen in Figure 7.4. Based on the error in Figure 7.2 and the
motions of the TCP for both robots in Figure 7.1 singularity free motion tracking in
free space have been achieved.

Free-space motion where position and orientation offsets are retained was
achieved and investigated during the free space tracking test. The error was larger
than hoped for, but it returned to zero within 5 seconds. Moreover, consistent and in-
tuitive results of input signals were achieved and tested during the surface collision
test. The controller remained stable during both free-space and constraint motion
for all five iterations of tests.

As for the user experience where the ability for the user to set position and
orientation offsets without entering into the code was achieved by having the posi-
tion and rotation offset set automatically between the starting positions of the two
robots. This resulted that the position and rotation offset could be set by the user by
simply moving the two robot arms to the intended configuration before starting the
program without ever having to change any internal code.

This implementation was intended for two real robots resulting in that the virtual
robot’s starting configuration was decided by using the real robot as a handle. For
the test were the real and virtual robots started from different configuration were the
start configuration of the virtual robot given in the code and not inferred from the
configuration of the real robot.

The feeling of force upon interaction with an object was achieved and tested
during free-space tracking, surface collision and physical limitation test under slow
motions, however, it might not reach the goal of a realistic and intuitive feeling of
force.

This is probably due to two factors, the limitations of friction in the joints of the
real robot and the low regulator frequency.
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Chapter 8. Conclusion

The friction of the joint would hamper the expression of smaller forces and
torques experienced by the virtual robot. This was lessened by the inclusion of a
direction based offset on the torque input to the real robots joints in an attempt to
make the real robot more sensitive to the small imputes from the algorithm. This did
not solve the entire problem with the uncompensated factor of friction in the joints
of the real robot only lessened some of its resulting flaws.

The low frequency of the regulator thread resulted in that during fast changes in
direction the virtual arm continued in the previous direction, something that mani-
fested itself for the real robot arm as an unexpected resistance to movement in the
new direction.

This problem was mitigated by lowering the mass of the virtual robot but was
still noticeable at faster movements. However, as these faster movements were in the
upper end of fast movements what was expected for teaching this is not considered
a defining problem.

The last part regarded the implementation of a workable teaching handle to
improve adjustments of the slave arm that was implemented.

The project is considered complete as the objectives of the project were achieved
in regard to the time allotted.

8.1 Future work

Future work with this implementation of the haptic algorithm will continue on the
reduction of calculation time in hope of minimizing the delay in response from the
virtual robot to movement from the real robot. Suggested ways that this might be
done is to continue tailoring the code for calculation of the geometric Jacobian,
mass, Coriolis and centripetal matrices.

A meticulous investigation into the delay between robot and computer would
help in locating the source of the bottlenecks. Further testing would include revers-
ing the master, slave relationship of the real and virtual robot to create identical
input signals for investigation of the influence of the F/T sensor. A more responsive
visualization of the virtual robot would also improve testing.
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Appendix A. Dimensions of URSe robot
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Figure A.1 The dimensions of the URSe robot used for the creation of the
Maplesim virtual robot.
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Appendix B. Maplesim simulation
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Maplesim simulation
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Figure B.1 The overview of the Maplesim model used for the virtual robot. The
input torque is given by u to the drive part where it is transformed into a torque
around flange 1-6, the joint angle g and the joint angular velocity dq are measured on
these flanges. These flanges are connected to each of the six joints in the mechanical
part that simulates the kinematics and dynamics of the robot. Flange 7 is the flange
of the end effector and is connected to the environment and it is its interaction that
results in the forces and torques in the output FT'.
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Figure B.2 The insides of the environment part. It is made up of a dampened spring
connoted to the ground. Between the spring and the end effector of the simulated
robot is the force/torque sensor placed.
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Figure B.3 The insides of the drive part. The input torque is first transposed so
that the first value of six in the torque vector is provided to the first joint using the
Signal redirection block. The torque is then turned from a real signal into torque
using torque drivers, the joint angle and joint velocity are measured on these axes
before exiting the drive part.
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Figure B.4 The insides of the mechanical part. It is made up of six Denavit-
Hartenberg subsystems each handling one of the joints. The base of the robot is
connected to the ground and the end effector of the robot is given its own flange for
connection to the environment part.
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Figure C.1 The sensitivity report of the Optoforce HEX-E v1 F/T sensor (serial
number HEXEA104).
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Appendix D. Assigned coordinate frames

D

Assigned coordinate frames

100
127
XTI Z6j1X6
o Z7W £ Y
S 7
£ X5 A Y4,§g
Ni=—=—
X4
N
O~
o
I
|
M~
o
131
wn
N
<
QL\ ZZj
. X2 1471 v
~0
20, Vo
X0
138

All dimension is in mm
For public use

Figure D.1 The coordinate frames used for calculating the homogeneous transfor- 79
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