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Abstract

We study the problem of reducing polarization (variance) of opinions at stationarity
in a directed weighted graph with node set divided into two groups: stubborn, ini-
tialized with a fixed opinion and regular who repeatedly update their opinion to the
average of their out-neighbors, known as the DeGroot model with stubborn nodes.
We show how the polarization can be minimized for a number of simple constraints,
but that the problem in general is not convex. Theory is developed for the change in
opinions at stationarity and the polarization measure for a rank-1 update of the net-
work (encompassing both addition of a directed and undirected link in the network).
An algorithm for gradient approximation is presented, given directly by the analyt-
ical gradient formulation and method of matrix-vector product estimation. Lastly
variations of the algorithm together with other trivial methods of recommending a
link are compared for a number of random and real networks.
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Contributions

We develop a model of measuring polarization in networks. The problem was shown
to in general be non-convex and belong to the class of invex functions. The corre-
sponding discrete link problem was shown to be NP-hard to minimize. The effect of
a rank-1 update of the edges was characterized (giving rise to the concept of opin-
ion kernels) and an efficient vectorized iterative method for computing the gradient
of the problem was introduced. Finally, estimates of the reduction in polarization
possible under a single link as well as link-cost constraints in a number of synthetic
and real world networks was studied.
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1
Introduction

Opinion Dynamics studies how the opinions of agents in a network changes given
a model of their interaction, and is commonly applied to the case of understanding
the evolution of opinions of individuals in social networks. One interesting metric
to observe in opinion networks is the polarization of opinions and how it varies
between different networks and models. The polarization metric could be assumed
to correlate with levels of unrest and violence in a larger society or how close a
room full of politicians are to finding common ground [Jilani and Smith, 2019]. In
a political context it is well known that polarization when measured in a multitude
of ways is considered increasing (see Figure 1.1), the primary cause being disputed.

Figure 1.1 Increasing Polarization [Pew Research Center, 2014]
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Chapter 1. Introduction

A wide variety of models in opinion dynamics converge under the influence of a
group of individuals with fixed opinions to the same state. The choice to add these
individuals with unchanging opinion is backed by observations of how group polar-
ization arises [Cass, 1999]. Studying how this steady state changes after a network
intervention and finding a way to measure the polarization before and after this
action could give rise to real ways of lowering the level of polarization in media
and society.

Related Work
Studying ways of reducing polarization in networks is not new, most closely related
to this work is Garimella et al. (2017) who explores ways of reducing controversy
by link recommendation in a setting where no opinions are known. Differences are
measured by partitioning of the graph into two subsets and studying the ratio be-
tween the number of random walks that starts on one side and ends in the other and
the number that stays in the same set, a measure by the name RWC (random-walk
controversy). Link recommendation is also done by Amelkin and Singh [Amelkin
and Singh, 2019] in the context of restoring the mean opinion of the network. Mim-
imizing a combined polarization and disagreement measure is studied by Musco et
al. [Musco et al., 2017] in the context of the closely related Friedkin-Johnsen model,
where global graph structure is considered instead of individual links.

Research Question
This work aims to contribute a strategy of single link recommendation for reducing
polarization when only the opinion of key agents are known, the advantage com-
pared to the other models presented being that cases were nodes in different clusters
doesn’t necessarily have differing opinions can be detected, without assuming that
the opinion of all agents are known. Given a network, estimation of the optimal way
to modify the network to reduce polarization can then be done by only surveying
the most influential agents in the network, the so called opinion leaders.

Thesis Outline
In Chapter 2 we present the theory of networks and common terminology. In Chap-
ter 3 we formulate the problem of opinion minimization, present a number of cases
for when the optimal solution can be found directly, show why the problem in gen-
eral is not convex, and present methods of gradient approximation. We use these
approximation methods to construct algorithms in Chapter 5 and explore polariza-
tion reduction of real and random networks computationally in Chapter 6.
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2
Preliminaries

2.1 Networks

Networks/graphs can represent a vast number of systems describing the intercon-
nections (edges) between entities (nodes), a number of representation examples are
presented in Table 2.1 and a simple network is depicted in Figure 2.1.

System Nodes Edges
Transport Destinations Roads
The Brain Neurons Dendrites
Research Publications References
Social Network People Relationships

Table 2.1 Network Examples

A B

C

D
E

F

Figure 2.1 A directed unweighted network

Graphs can be categorized based on their properties. They are said to be

• Undirected if the edges have no inherent order of the nodes belonging to an
edge. Links from one website to another clearly point from one to another,
while friendships are undirected relationships (if x is a friend of y, y is also a
friend of x).
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Chapter 2. Preliminaries

• Weighted if there for each edge is an associated number w. This number
can for example can represent the throughput in the context of roads or the
strength of a friendship in the context of a social network.

Mathematically, any directed weighted network can be described as a collection
G=(V,E ,W ) where V = {1,2 . . . |V |} is the set of nodes in the graph and E ⊂V×V
is the set of edges containing pairs of nodes that are connected. The weights of the
edges in the graph are given by an associated adjacency matrix W ∈R|V |×|V | whose
elements are equal to

Wi, j =

{
0 if (i, j) /∈ E

wi, j if (i, j) ∈ E .

If a graph is undirected, its adjacency matrix is symmetric. If a graph is un-
weighted, all non-zero entries wi, j = 1. We present another list of properties

• The out-degree of a node is the total weight of the links pointing from the
node to other nodes in the network. Equivalently, the in-degree is the total
weight of all links pointing towards the node. If a graph is regular, nodes
in-degree and out-degree are the same. The out-degree of a node is equal to
the row-sum of the nodes corresponding row in the adjacency matrix, and its
in-degree is the column sum.

• A walk on a graph is a sequence of edges (E1,E2 . . .En) where the tail of each
link is equal to the head of the last one. A trail is a walk where all edges in
the sequence are unique and a cycle is a trail that starts and ends in the same
node but otherwise have never visits the same node twice.

• A set of nodes U in a graph G is said to be globally reachable if there for
each node in the network exists a walk that starts in the node and ends in a
node in the set U . In the graph in Figure 2.1, {D} is globally reachable, but
{A,C} is not, since there exists no path from D to A or C.

• A graph is connected if the set of all nodes V is globally reachable.

• A graph is said to be aperiodic if there exists at least one pair cycles in the
network whose lengths are relatively prime, ie. their greatest common divisor
is 1. The graph in Figure 2.1 is aperiodic, since the two cycles (A,C,D,A)
and (A,B,A) have length 3 and 2 respectively.

A adjacency matrix of size n×n uniquely describes the interconnections of a graph
with n nodes. From the adjacency matrix we derive a number of related variables

Diagonal Degree Matrix A diagonal matrix D = diag(W1) whose diagonal en-
tries are the out-degree of the corresponding node. Used in the construction of the
below matrices.
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2.2 DeGroot Model of Opinion Dynamics

Normalized Weight Matrix The matrix P = D−1W is he normalized weight ma-
trix. Often used in the context of Markov chains (then known as the stochastic ma-
trix or probability transition matrix), each entry in P describes the probability of
moving from one node to another during a random walk, if the chance of following
each link from a given node is uniformly distributed. The P matrix has the property
that the sum of out-degree weights are equal to 1, P1= 1. Notably, the probability
of transitioning between two nodes i and j in n steps is given by (Pn)i, j. Perron-
Frobenius theory gives that there exists a non-negative eigenvector π of PT associ-
ated with the eigenvalue 1 [Como and Fagnani, 2021]. The normalized eigenvector
of PT such that 1T π = 1 is called an invariant probability distribution of the
network. π can be interpreted for a connected network as the probability of ending
up in each node when performing a random walk on the graph as time approaches
infinity.

Laplacian Matrix The Laplacian matrix L = D−W has properties itself direcly
related to the graph structure, it also shows up in calculations of distributed aver-
aging dynamics on the graph, as will be seen in sections below. One such property
is that the second smallest eigenvalue is an approximation of the sparsest cut of a
graph. Similarily to the normalized weight matrix, the Laplacian has related prop-
erties (many of them given directly by the fact that L = D−1(I−P)). All row sums
of L are zero (L1 = 0). The diagonal of L is always positive and all off-diagonal
entries are negative.

Now suppose the nodes in a network represent any kind of entity/agent that can
form an opinion on a subject that can be represented as a real number. This could be
a sensor measuring temperature in a room, the amount of opposition or agreement
of a new law being passed or the level of perceived climate change urgency by a
population. One could imagine the opinions of agents change in some way over
time depending on the network structure.

2.2 DeGroot Model of Opinion Dynamics

A common model for the change of opinions in a graph is the DeGroot learning
model [DeGroot, 1974]. It has been shown to be a good predictor of the real opin-
ion formation process empirically in the case of binary opinion formation [Chan-
drasekhar et al., 2015]. The model states that agents update their opinion by a sim-
ple weighted average of the opinion of its out-neighbors (outwardly going directed
links). The next value of node i given the previous is

xi(t +1) =
∑ j∈N(i) wi, jx j(t)

∑ j∈N(i) wi, j

Where wi, j is the element in row i and column j, N(i) the out neighborhood of node i
(set of nodes that can be reached by following a link fron i). Given a fixed network G
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Chapter 2. Preliminaries

with node set V and an initial opinion distribution vector x(0) ∈ R|V | the stationary
opinion distribution in the network is described by the following theorem:

THEOREM 1 ([COMO AND FAGNANI, 2016] DEGROOT MODEL) For any con-
nected aperiodic graph G where every node i has an associated initial opinion xi(0),
and the opinion of each node is updated each step by the weighted average of the
opinion of its out-neighbors according to (2.2). The stationary opinions are equal to

x = π
T x(0)1

where π is the invariant probability distribution of the network.

2.3 The Addition of Stubborn Agents

Now divide the set of nodes V into two parts. One set of regular nodes R and one
set of stubborn nodes S. Let the regular nodes be updated by DeGroot averaging
dynamics and the stubborn agents have a fixed opinions given by the constant vector
xS ∈ R|S|. The following theorem describes the stationary opinions of the system

THEOREM 2 ([COMO AND FAGNANI, 2016] DG MODEL + STUBBORN NODES)
The stationary opinions of a network G with regular nodes R and a globally reach-
able set of stubborn nodes S is

x =
(

xR
xS

)
, xR = L−1

R,RWR,SxS.

where each indexed matrix is the sub-matrix selected by only keeping the rows
associated with the nodes in the first set, and the columns corresponding to the
nodes in the second set of the original matrix associated with the graph G. This
model will be referred to as the DGS model.

Proof The update process for each regular node is as in (2.2) for all regular nodes.
This is compactly described by the system

xR(t +1) = D−1
R,R(WR,RxR(t)+WR,SxS)

The system has a unique stationary solution under the added assumption that the
set S is globally reachable, since if there doesn’t exist a walk from a node i to S
in G, its equilibrium will not depend on the opinion of the stubborn nodes (instead
on the initial opinion of regular nodes). This equilibrium is given by inserting xR =
xR(t +1) = xR(t) and we get

xR = D−1
R,R(WR,RxR +WR,SxS) =⇒

(DR,R−WR,R)xR =WR,SxS =⇒
xR = L−1

R,RWR,SxS 2
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2.4 Relation to Other Problems

This is the opinion distribution analyzed in the context of polarization in the follow-
ing sections.

REMARK The stationary opinion distribution can be equivalently we-written as

L−1
RRWRSxS =

(DR−WRR)
−1WRSxS =

(I−PRR)
−1D−1

R WRSxS =

(I−PRR)
−1PRSxS (2.1)

This last expression is useful in the context of computing the stationary opinions in
the network by a iterative method, using the property that ‖I−PR,R‖2 < 1.

Notably, one could define a unique opinion distribution even in the case when the
set S is not globally reachable (equivalent to LR,R being singular) by combining the
above model of DeGroot averaging for the connected components where S is not
reachable. This increases the set of graphs that have a defined opinion equilibrium,
but also introduces dependence on the initial opinion distribution in the network
and increases the complexity of the problem since the equilibrium now needs to be
handled individually for each graph sink, hence we in this work restrict ourselves to
polarization of networks where this property holds.

S

S

Figure 2.2 A Directed Network Where two nodes have been placed in the stubborn
set, the rest of the nodes being updated by averaging dynamics. The dashed link
doesn’t effect the equilibrium opinions, since stubborn nodes are not updated. All
links from a stubborn node doesn’t effect the equilibrium opinion.

2.4 Relation to Other Problems

The Electrical Network Interpretation
The stubborn agent network model is strongly related to other problems in engi-
neering and science. In the case of a undirected network, one can interpret the link

17



Chapter 2. Preliminaries

Figure 2.3 [Albert, 2011] Reduction of electrical network

weights as electrical conductance in a circuit (and thus 1/wi, j as the electrical resis-
tance). The potential in each (regular) node given a constant voltage in a subset of
nodes (our stubborn nodes) is given by the same equilibrium as described above.

Many concepts of how electrical networks can be transformed can then - at least
in the undirected case - be used in the context of opinion dynamics with stubborn
nodes. One such concept is the simplification/reduction of networks, see Figure 2.3.

If we have a network G where we only care about the effect of the network
when varying a handful of connections. We can then reduce the network drastically
by using the rules of series and parallel resistors. However, during this process,
the opinion distribution described above would change if nodes are removed as is
normally done in circuit reduction.

Heat Conductance
Well known is also that the phenomenon of heat conductance exhibits averaging
properties. Given Dirichlet boundary conditions on a subset of nodes (stubborn),
the temperature at each regular node is the equilibrium solution found above.
Heat conductance problems are widely studied, and many methods have been cre-
ated to efficiently compute stationary temperature distributions in the form of finite
element methods. The defining characteristic of most of these problems is that they
are locally spatially bounded, and such are not guaranteed to work well on networks
where connections can be far reaching (could be compared to a heat tunnels/portals
in the heat problem definition).
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3
Reducing Polarization

3.1 Polarization in Networks

Polarization is defined as “Division into two sharply contrasting groups or sets of
opinions or beliefs” [Lexico, n.d.] This intuitive sense of what polarization is could
in a mathematical context be interpreted in many different ways. In the context of
the DGS opinion dynamics model, the polarization should naturally be dependent of
the stationary opinions x∈R|R|, as well as optionally on the structure of the network
itself. For ease of analysis, we restrict our polarization measure to have a co-domain
of R, where high values represent high polarization and zero none.

Since the concept of polarization is not well defined as a measurement, we can
only hope to find a measurement that exhibits properties that are associated with the
underlying concept, while at the same time behaving nicely from a mathematical
perspective. The most important properties where considered to be:

• The measurement should be continuous function P : R|R|→ R+.

• If all opinions are equal, the polarization should be zero.

• The measurement should take on its largest value when the opinions are dev-
ided into two sharply contrasting groups.

Some examples of opinion distributions are shown in Figure 3.1. A number of pos-
sible polarization measures for which the preferred properties hold in some context
are are presented below.

Polarization Measures
One family of candidates is powers of the `p norms of the mean centered opinions.
Let x̂R = xR− 1

T xR
|V | 1, a group of polarization measures is then ‖x̂R‖n

p for any real
number p > 1,n > 0. We only choose two cases, p = n = 2 and p = ∞,n = 1.
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Chapter 3. Reducing Polarization

Figure 3.1 Different opinion distributions and their level of polarization. Note that
the level of polarization is still minimal (0) when all opinions are centered around an
extreme value.

DEFINITION 1 (VARIANCE, p = 2)

Pavg =V [x] = ‖x̂R‖2
2 where x̂R = xR−m1= xR−

1
T xR

|R|
1

Worthy of note is that this is equivalent to the sum of differences between all opin-
ions in the network up to a constant.

DEFINITION 2 (MAXIMUM DIFFERENCE, p = ∞)

Pmax = max(x)−min(x)

This norm maximizes the impact of a single opinion deviating from a unanimous
opinion of the others.

DEFINITION 3 (DISSAGREEMENT)

D = ∑
i

∑
j

wi, j(xi− x j)
2

The stationary opinions of DGS minimize the disagreement measure.

Choice of Metric
The main polarization metric used throughout will be the variance of the opinions
Pavg. The disagreement measure has value zero when two distinct connected com-
ponents in a network have different unanimous opinions, arguably the most polar-
izing state possible. The maximum difference metric has the flaw that any opinion
state where there exists two nodes maximally divided in opinion, the opinion of the
rest of the nodes does not effect the polarization measure.

3.2 Problem Formulation

In the most general sense, we aim to minimize the polarization of opinions at sta-
tionarity in a network with a fixed set of stubborn (with known opinions) and regular

20



3.3 Invariant Properties

nodes, given constraints on links. We choose to only study the case where the net-
work structure is such that the set of stubborn nodes are globally reachable, as the
equilibrium opinions of the regular nodes then does not depend on the initial opinion
distribution.

min
W

P(W )

subject to constraints on W

where W is the weight matrix of the graph. A number of constraints are considered
in the following sections. First, we present invariant properties of the problem. Then
we show a number of scenarios for when the minimization problem is easy after
which we show why the problem for general constraint choices is hard. Lastly,
we explore approximation methods in the form of rank-1/link updates and analytic
expression for the gradient for use in these harder problems.

3.3 Invariant Properties

Below follows a number of transformations for which the opinion equilibrium or
polarization measure is invariant.

Of the opinion distribution
Multiplication of Rows Multiplying any row of W doesn’t change the opinion
equlibirum, since the opinion of a node is a weighted average of the opinions of its
out-neighbors. This is easily seen in equation (2.1), since P itself is constructed by
normalizing the rows.

Addition of Self Loops Adding a self loop (any constant a to a diagonal entry of
W ) doesn’t change the stationary opinion distribution. This can be motivated both
by the averaging dynamics, but can also be seen by noting that the equilibrium
opinions depend on LR,R, whose diagonal entries does not change when self loops
are added.

Linear Transforms Every link from a node i to j, its weight can be linearly ex-
changed for a change in weight on a connection to another node ĵ. By this process,
any network equilibrium can be expressed by another network where no regular
nodes are connected, ie WRR = 0 and all equilibirum opinions arise from the ele-
ments of WRS. Notably the stationary opinions of the original network need to be
known to do this transformation. This is analogous to the electrical network in-
terpretation. The usefulness of this in the case of reducing polarization is only as
discussed above in the case where we are only locally reducing polarization (given
n links to modify) while the rest of the network is fixed. Then this fixed portion of
the network can be simplified.
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Chapter 3. Reducing Polarization

Of The Polarization Measure
Shift of opinions If all opinions in the network shift, the polarization doesn’t
change. This is equivalent to elements in WRS changing by a matrix ŴRS where
ŴRSxS = a1.

3.4 Characterization of Minima

We explore for a number of constraints what the minimized solution looks like.

Without Constraints
In a complete network with equal weights, the opinion of all regular nodes is the
mean of all the stubborn nodes. This follows from graph symmetry (regular nodes
must have the same value) and that:

xr =
|R|xr +∑i∈S xi

|V |
=⇒ (|V |− |R|)xr = ∑

i∈S
xi =⇒ xr =

∑i∈S xi

|S|

The entire network mean is then m = xr, and the network polarization is

Pavg = ∑
i∈V

(xi−m)2 = 0

If in a graph, the only regular nodes connected to the stubborn nodes are so to all
of them equally, the equilibrium is the exact same one as above. We show a more
general result

PROPOSITION 1 The polarization Pavg of any graph can be minimized by at most
adding |ES| links, the number of links pointing to a stubborn node.

Proof Given a graph G and its interaction matrix between regular and stubborn
nodes WRS, we can for each row with non-zero elements (of which there exist |ES|)
add a weight in a column such that WRSxS = a1 for any constant a in the range of
stubborn values. 2

Given Stubborn-Regular Node Interaction
If the connections between the stubborn and regular nodes are fixed, the following
proposition shows that if the network is not already at a minimum, a solution does
not exist.

PROPOSITION 2 For a directed weighted graph G. If

• There exists at least two regular nodes whose opinion equilibrium if only
connected to stubborn nodes are different.
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3.5 General Problem Properties

• All edges between regular and stubborn nodes are fixed, and no restrictions
apply to the edges between regular nodes.

The problem of minimizing polarization has no solution.

Proof Suppose there exists minimal polarization value for which the average opin-
ion is m. To bring the stationary opinion of a node i to a target value m, we can
only increase the link weight to another regular node. If a regular node exists with
a stationary value on the other side of m, then this node is not the last node whose
opinion we need to bring to m. If this is the last node, there exists no other node we
can choose to connect to to bring the opinion of the node to m. 2

Fixing a Larger Set of Links
The following proposition descibes a special case for which a graph problem with
very specific constraints can be turned into a version of the unconstrained problem.

PROPOSITION 3 Given a network G, for any set Vn ⊂ V such that there exists no
path from nodes in Vn to nodes in V \Vn for which all outgoing links are fixed, the
optimal network structure is found by applying proposition 1 assuming all nodes Vn
stubborn.

Proof If there exists no path from nodes in Vn to nodes in V \Vn, the opinions of
nodes in Vn can not be changed by modifying links in V \Vn, and so we can only
hope to minimize the opinions within that set. This can be done the same way as if
Vn where stubborn nodes. 2

3.5 General Problem Properties

A Useful Relationship
To start with, we prove a useful property between the Pavg metric and the Pzero
metric used in the proofs following.

DEFINITION 4 (DISTANCE TO ZERO)

Pzero = ‖xR‖2
2

In some cases the difference in variance between two opinion distributions can be
approximated by the difference between distance to a fixed average, in the case of
large networks where a small subset of the edges are being altered.

PROPOSITION 4 Given any graph G = (V,E ,W ) and a real positive number ε , set
of stubborn nodes S for which a convex combination of opinions can reach the value
0, and a modification of the edges of this graph giving Ĝ, it is always possible to
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Chapter 3. Reducing Polarization

find a graph H that contains G as a sub-graph such that when performing the same
modification of the edges in the graph as in G (giving Ĥ)∣∣[Pzero(Ĝ)−Pzero(G)

]
−
[
Pavg(Ĥ)−Pavg(H)

]∣∣< ε

Proof Create H from G in the following way: Add a regular node and attach it to
the stubborn nodes in the graph in such a way that its stationary opinion is 0. Then
add a chain of M nodes to this node (see Figure 3.2). As this chain gets longer and
longer, the average of the regular nodes in the graph are less and less effected by
changes of opinions in the original subgraph G.[

∑
i∈VG

x̂2
i − ∑

i∈VG

x2
i

]
−

[
∑

i∈VH

(x̂i− m̂)2− ∑
i∈VH

(xi−m)2

]
2

We can always choose a length M such that m and m̂ is arbitrarily close to zero,
giving the above holds for any ε .

0 1 2 · · · M

Figure 3.2 The network H, transparent section is the original network G

And so without loss of generality, we may consider Pzero instead of Pavg when
showing properties of their differences.

In General Non-Convex
We remember the definition of convexity

DEFINITION 5 A function f : X → R is convex if and only if ∀x1,x2 ∈ X , t ∈ [0,1]

f (tx1 +(1− t)x2)≥ t f (x1)+(1− t) f (x2)

PROPOSITION 5 In a directed or undirected weighted graph, the polarization metric
Pavg is not in general convex as a function of the link weights.
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3.5 General Problem Properties

Proof See Figure 3.3 for choices for x1 and x2 for which this does not hold. Using
the property described in proposition 4 the same result holds for the Pavg metric.2

w1 w2

-1 1

Figure 3.3 Let w1 = t and w2 = 100t. Then Pzero sharply decreases until the right
node passes opinion zero when increasing t. After which it increases again. Eventu-
ally when t = 1 the left node passes the zero opinion point, creating a second local
minimum. Pzero as a function of t is

( 100t−1
100t+1

)2
+
( 1−t

1+t
)2

, containing more than one
local minimum (see Figure 3.4).

Figure 3.4 The polarization measure clearly has two local minima for the chosen
parametrization, and so is not convex.

We continue by showing that this is also in general the case even if we are not
allowed to touch the connections between regular and stubborn nodes.
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Chapter 3. Reducing Polarization

PROPOSITION 6 In a undirected or directed weighted graph where we are only
allowed to modify the links between regular nodes, the polarization metric Pavg is
not in general convex.

Proof See Figure 3.5. Using the property described above the same result holds for
the Pavg metric. 2

w1 w2

s s

-1 1

Figure 3.5 As s→ ∞, the change in polarization as a function of t approaches the
one described in Figure 3.4.

Discrete Link Addition is NP-hard
PROPOSITION 7 Finding m ≤ k discrete edges that minimizes Pavg is in general
NP-hard.

Proof We can construct a network for which the solution solves the well-known
NP-hard subset sum problem, we use the following variation:

LEMMA 1 (SUBSET SUM PROBLEM, SSP[KLEINBERG AND TARDOS, 2006])
Let S be a set of integers. Showing it is possible to choose elements of a subset
E ∈ S such that the sum equals 0 is NP-hard.

Let S be the set of stubborn nodes. Finding the set of edges that minimizes the
polarization to zero metric in the network presented in Figure 3.6 solves the subset
sum problem. 2

Non-Submodular
The discrete equivalent of function convexity is submodularity. Some problems,
even if NP-hard, have properties that give approximation guarantees. Such guaran-
tees can be found for example for the problem of maximizing the sum of opinions
[Hunter and Zaman, 2019]. Submodularity can be defined in many ways, of which
the below definition is most useful to construct a intuitive example.

DEFINITION 6 (SUBMODULAR FUNCTION) The set function f : 2ω → R is sub-
modular iff for every X ⊆Ω,x,y∈Ω\X such that x 6= y. f (X ∪{x})+ f (X ∪{y})≥
f (X ∪{x,y})+ f (X)
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3.5 General Problem Properties

s1 s2 s3 sn· · ·

Figure 3.6 Minimizing the polarization distance to zero metric in the network gives
the set of edges that places the value of the regular node closest to zero. If it could
could find a solution where the opinion is zero, this is clearly the optimal. The subset
sum problem is then reduced to the minimization problem by simply checking if the
minimum value of the regular node is zero or not.

PROPOSITION 8 The polarization measure Pavg is not in general a submodular
function.

Proof See the example in figure 3.7 and the definition of submodularity.

x 1

y

-1 1

-1

Figure 3.7 Let f be our polarization measure in the above definition of sub-
modularity and x, y the elements not in the original set of edges. We have that
Pavg(W ∪{x})+Pavg(W ∪{y})≤Pavg(W ∪{x,y})+Pavg(W ).

Invexity
A class of functions our polarization measure is part of is the class of invex func-
tions, well summarized by Israel and Mond [Ben-Israel and Mond, 1986]. We define
invexity.

DEFINITION 7 A function f from Rn to R is invex if there exist a vector-valued
function η(x,u) from Rn to Rn for which

f (x)− f (u)≥ η(x,u) ·∆ f (u)

We say that f is invex with respect to η(x,u) for any η(x,u) for which the above
holds.

A very useful result is shown by [Ben-Israel and Mond, 1986].
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Chapter 3. Reducing Polarization

THEOREM 3 A function is invex if and only if all its stationary points are global
minima.

This we can directly apply to our polarization measure.

PROPOSITION 9 The unconstrained function Pavg is invex.

Proof Since we for any network configuration where we are not at a minimum (all
opinions equal) can add weight to a link connected to one of the stubborn nodes to
bring us closer to the current mean. And so the only stationary points (and mini-
mums) are ones where all opinions are equal. 2

Invexity gives guarantees that the Karush–Kuhn–Tucker conditions are sufficient
for a global minimum under the condition that the constraints are also invex with
respect to the same invexity function η(x,u) [Hanson, 1999]. What this set of con-
straints would look like could certainly be interesting to know, but is unfortunately
outside the scope of this thesis.

3.6 Approximation Methods

We start by computing the resulting change in polarization from a rank-1 perturba-
tion of the network links (addition of a rank-1 matrix to the adjacency matrix, any
two columns/rows in a rank-1 matrix are linearly dependent). This is useful in the
context of gradient descent methods and single link addition for both the undirected
and directed case, the complete set of derived quantities is found in Table 3.1.

Opinions After Rank-1 Pertubation
REMARK In a graph context, a rank-1 update represents adding links with weight

uiv j from node i to j, ∀(i, j) ∈
(

A
B

)
where A and B are two node sets.

PROPOSITION 10 The new stationary opinions after a weighted rank-1 update
δuvT = δ

[
uR uS

][
vR vS

]T of W where ∑i vi = 0 is given by

xR(W +δuvT ) = xR(W )+
δa

1−δc
dR (3.1)

where c = vT L−1
R,RuR, a = vT x(W ) and dR = L−1

R,RuR
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3.6 Approximation Methods

Proof

xR(W +δuvT ) =

(diag((WR,R +δuRvT
R)1+(WR,S +δuRvT

S )1)−WR,R−uRvT
R)
−1(WR,S +δuRvT

S )xS =

(diag(WR,R1+WR,S1+δuR ∑
i

vi)−WR,R−δuRvT
R)
−1(WR,S +δuRvT

S )xS =

(LR,R−δuRvT
R)
−1(WR,S +δuRvT

S )xS

Using the Sherman–Morrison formula we get that

(LR,R−δuRvT
R)
−1 = L−1

R,R−
L−1

R,R(−δ )uRvT
RL−1

R,R

1+ vT
RL−1

R,R(−δ )uR
=

L−1
R,R +

δ

1−δvT
RL−1

R,RuR
L−1

R,RuRvT
RL−1

R,R

Inserting the expression above yields

L−1
R,RWR,SxS +δL−1

R,RuRvT
S xS +

δ

1−δvT
RL−1

R,RuR
L−1

R,RuRvT
RL−1

R,RWR,SxS

+
δ 2

1−δvT
RL−1

R,RuR
L−1

R,RuRvT
RL−1

R,RuRvT
S xS = L−1

R,RWR,SxS+

δL−1
R,RuRvT

S xS(1−δvT
RL−1

R,RuR)+δ 2L−1
R,RuRvT

RL−1
R,RuRvT

S xS +δL−1
R,RuRvT

RL−1
R,RWR,SxS

1−δvT
RL−1

R,RuR
=

L−1
R,RWR,SxS +

δ

1−δvT
RL−1

R,RuR
L−1

R,RuR(vT
RL−1

R,RWR,SxS + vT
S xS) =

xR +
δ

1−δvT
RL−1

R,RuR
L−1

R,RuRvT x

Now let c = vT
RL−1

R,RuR, a = vT x and dR = L−1
R,RuR and we get

xR +
δa

1−δc
dR 2

COROLLARY 10.1 The new stationary opinion of node k after adding the weight δ

to the directed link from i to j is

x̂k = xk +
δ (x j− xi)

1+δ (lii− l ji)
lki where li j =


(

L−1
R,R

)
i j

if i ∈ R and j ∈ R

0 otherwise
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Chapter 3. Reducing Polarization

Proof Insert u = ei,v = e j− ei 2

COROLLARY 10.2 The new stationary opinion of node k after adding the weight δ

an undirected link between i and j is

x̂k = xk +
δ (x j− xi)

1+δ (lii− l ji− l j j + l ji)
(lki− lk j) (3.2)

Proof Insert u = ei− e j,v = e j− ei 2

COROLLARY 10.3 The change in the stationary opinion of node k of the network
when adding a infinitesimal connection from i to j is for all i,k ∈ R, j ∈V

∂xk

∂Wi j
= lki(x j− xi) (3.3)

Proof Take the derivative and insert δ = 0. 2

REMARK The vector ki = l:i can be interpreted as a opinion kernel for node i, and
is found by computing L−1

R,Rei for the regular nodes and inserting 0 for the stubborn.
This kernel represents the influence of a node on its neighbors (directly interpreted
from the formulas above). Examples of the opinion kernels for a path graph can be
seen in Figure 3.8. The maximum height of the opinion kernel ki is always at node
i, this height is larger for nodes that are further away from stubborn nodes.

COROLLARY 10.4 The change in the stationary opinion of node k of the network
when adding a infinitesimal connection between i and j is for all i,k, j ∈ R

∂xk

∂ (Wi j +Wji)
= (lki− lk j)(x j− xi) (3.4)

Proof Same as above 2

Polarization after Rank-1 Pertubation
PROPOSITION 11 The change in polarization (variance) after a rank-1 pertubation
uvT of a network with magnitude δ is

Pavg(W +uvT )−Pavg(W ) = A(δ )2V (dR)+2A(δ ) · cov(xR,dR)

where dR = L−1
RRuR, a = vT x, A(δ ) = δa

1−δc and c = vT
RdR.

Proof

V (xR +AdR)−V (xR) =

V (xR)+2cov(xR,AdR)+V (AdR)−V (xR) =

A2V (dR)+2Acov(xR,dR) 2
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3.6 Approximation Methods

Figure 3.8 Opinion kernels of a path graph of length 10. The kernel function for a
path graph is derived in the Examples chapter.

COROLLARY 11.1 For any given weighted rank-1 update, the optimal choice of δ

is

δ =


0 if a · cov(xR,dR)> 0
−cov(xR,dR)

aV (dR)−ccov(xR,dR)
if c · cov(xR,dR)< aV (dR)

∞ otherwise

for which the polarization is reduced by
0 if a · cov(xR,dR)> 0
a2·cov(xR,dR)

2

V (dR)
if c · cov(xR,dR)< aV (dR)( a

c

)2 V (dR)+
a
c cov(xR,dR) otherwise

Proof If a ·cov(xR,dR)> 0, the change in polarization will always be positive (since
V (dR) and A(δ ) are always positive), and so we should choose the link weight to be
0. If a · cov(xR,dR)< 0, the minimum polarization change is attained when

A =
−cov(xR,dR)

V (dR)
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Chapter 3. Reducing Polarization

Figure 3.9 A as a function of δ and the difference in polarization as a function of
A

If there exists a positive δ such that A attains this value, this is the optimum link
weight.

δa
1−δc

=
−cov(xR,dR)

V (dR)

δaV (dR) = cov(xR,dR)(δc−1)
δ (V (dR)a− cov(xR,dR)c) =−cov(xR,cR)

δ =
−cov(xR,dR)

V (dR)a− cov(xR,dR)c

This quantity is positive if V (dR)a−cov(xR,dR)c > 0 =⇒ V (dR)a > cov(xR,dR)c.
If such δ does not exist, it is optimal to choose A and therefore δ as large as

possible. The behavior of the quantities referenced above is shown in Figure 3.9. 2

PROPOSITION 12 The derivative of Pavg(W ) with respect to a rank-1 update of
W is 2a · cov(xR,dR) where a = vT x, xR = L−1

RRWRSxS and dR = L−1
RRuR. This can

equivalently be written as
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3.6 Approximation Methods

2
|R|

vT x ·uT
Rr where r = L−T

R,RxC

where xC =
(

I− 11T

|R|

)
xR is the stationary opinions of the regular nodes centered

around their mean.

Proof Using that A′(0) = a and A(0) = 0 gives the first result. Rewriting the co-
variance gives us

cov(xR,dR) = cov(xR,L−1
R,RuR) =(

xT
RL−1

R,RuR

|R|
−

(1T xR)(1
T L−1

R,RuR)

|R|2

)
=(

(L−T
R,RxR)

T uR

|R|
−

(1T xR)((L−T
R,R1)

T uR)

|R|2

)
=

(
(L−T

R,RxR)
T

|R|
−

(1T xR)(L−T
R,R1)

T

|R|2

)
uR =

[
L−T

R,R

|R|

(
xR−

1
T xR

|R|
1

)]T

uR =

1
|R|

[
L−T

R,RxC

]T
uR =

1
|R|

uT
RL−T

R,RxC

2

COROLLARY 12.1
∂Pavg

∂Wi j
= 2xT

C l∗i(x j− xi)

Proof Follows directly 2

All the perturbations analyzed above are presented in summary in Table 3.1.
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Chapter 3. Reducing Polarization

Change in opinions - rank-1 update xR(W +δuvT ) = xR(W )+ δa
1−δc dR

Change in opinions - directed link x̂k = xk +
δ (x j−xi)

1+δ (lii−l ji)
lki

Change in opinions - undirected link x̂k = xk +
δ (x j−xi)

1+δ (lii−l ji−l j j+l ji)
(lki− lk j)

Opinion derivative - directed link ∂xk
∂Wi j

= lki(x j− xi)

Opinion derivative - undirected link ∂xk
∂ (Wi j+W ji)

= (lki− lk j)(x j− xi)

Change in polarization - rank-1 update A(δ )2V (dR)+2A(δ ) · cov(xR,dR)

Optimal choice of link weight δ =


0 if a · cov(xR,dR)> 0

cov(xR,dR)
aV (dR)−ccov(xR,dR)

if c · cov(xR,dR)< aV (dR)

∞ otherwise

Polarization derivative - rank-1 update 2
|R|v

T x ·uT
Rr

Polarization derivative - directed link ∂Pavg
∂Wi j

= 2xT
C l∗i(x j− xi)

Table 3.1 The derived quantities in the following chapter

34



4
Examples

4.1 Path graph

Kernels
The kernel of node i in a undirected unweighted path graph of length |V |where each
node is indexed by 0 to n can be found by solving the following system:

ki =
ki−1 + ki+1 +1

2

km =

{
ki
i m if m≤ i
−ki
n−i + ki if m≥ i

Derived from expanding LR,RkR = ei as described in the kernel remark in section
3.6 and using the fact that averaging dynamics on a path graph where the opinion is
known on each side has a linear solution in between. The solution is

km =

{
(n−i)m

n if m≤ i
(n−m)i

n if m≥ i

Directed Link Addition
The mean of the kernel of node i corresponding to regular nodes can be computed

E[ki] =
1

n−1

(
i−1

∑
m=1

(n− i)m
n

+
n−1

∑
m=i

(n−m)i
n

)
=

i(n− i)
2(n−1)
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Chapter 4. Examples

The mean of the elementwise squared kernel is

E[k2
i ] =

1
n−1

(
i−1

∑
m=1

(
(n− i)m

n

)2

+
n−1

∑
m=i

(
(n−m)i

n

)2
)

=

(i−n)i(2i2−2ni−1)
6n(n−1)

Using this we get that the variance of kernel i is

E[k2
i ]−E[ki]

2 =
i(n− i)(n2i− (i2 +4i−2)n+4i2−2)

12(n−1)2n

To compute the covariance cov(xR,ki), we need the stationary opinions of a path
graph. Using the same linearity property and giving the stubborn nodes on either
side the value −1 and 1, we get that

xm =
2m
n
−1

And finally we can compute the covariance

cov(xR,ki) =

1
n−1

(
i−1

∑
m=1

(
(n− i)m

n
−E[ki]

)(
2m
n
−1
)
+

n−1

∑
m=i

(
(n−m)i

n
−E[ki]

)(
2m
n
−1
))

=

(i−n)i(2i−n)
6n(n−1)

We restrict ourselves to add a link of weight 1 from i to j where j < i without loss
of generality because of line symmetry. This gives

A =
a

1− c
=

2 j
n −

2i
n

1− ( (n−i) j
n − (n−i)i

n )
=

2(i− j)
i2− ( j+n)i+n( j−1)

Combined they give us the total change in polarization A2V (ki)+Acov(xR,ki)
as a function of i, j and n, Sadly not simplifying to that nice of an expression. In
Figure 4.1 we can see the polarization for a handful of values of n. This formula has
been verified with a computational method.

4.2 Barbell Graph

Kernels
The opinion kernels for a barbell graph can be computed by observing that the only
two cases with unique distributions is where the kernel node is in a side-group, or
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4.2 Barbell Graph

Figure 4.1 The polarization in a number of path graphs for different choices of
directed link addition. Red is decreasing polarization and blue is increasing.

the node connecting to the other side (all other cases are given by symmetry). We
first analyze the first case. Let xl be the opinion of the regular nodes on the left side
of the barbell who are not connected to the right, xlr be the opinion of of the node
on the left who is connected to the right, and xrl and xr be the equivalent opinions
on the right side. Finally, choose one node i on the right side for which we compute
the kernel, with stationary opinion xi. This gives rise to the following system of
equations

2xl − xlr = 0
(2−n)xl + nxlr + xrl = 0

− xlr + nxrl + (3−n)xr − xi = 0
− xrl + 3xr − xi = 0
− xrl + (3−n)xr + (n−1)xi = 1

With solutions

xl =
1

n(n+4)
, xlr =

2
n(n+4)

, xrl =
n+2

n(n+4)
xr =

n+3
n(n+4)

xi =
2n+7

n(n+4)

Now slighly modify the system, choosing i to be the node connected to the left side.
We get the system

2xl − xlr = 0
(2−n)xl + nxlr + xi = 0

− xlr + nxi + (4−n)xr = 1
− xi + 4xr = 0

With solutions

xl =
2

n(n+4)
, xlr =

4
n(n+4)

, xi =
2(n+2)
n(n+4)

, xr =
n+2

n(n+4)
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The mean of the first case kernel is

E[kin] =
(n−2)xl + xlr + xrl +(n−3)xr + xi

2(n−1)
=

1
2(n−1)

And the second happens to be equal

E[kout] =
(n−2)xl + xlr + xi +(n−2)xr

2(n−1)
=

1
2(n−1)

The mean of the squares in each respective case, gives us the kernel variance in each
case:

E[k2
in] =

n3 +8n2 +24n+28
2(n−1)n2(n+4)2 =⇒ V [kin] =

n4 +6n3 +16n2 +8n−56
4(n−1)2n2(n+4)2

E[k2
out] =

(n+2)(n2 +4n+8)
2(n−1)n2(n+4)2 =⇒ V [kout] =

n4 +2n3 +4n2−32
4(n−1)2n2(n+4)2

Computing the stationary opinion distribution can either be done with the kernels,
or by solving a new system. We get

xl =−
n+2
(n+4)

, xlr =−
n

(n+4)
, xrl =

n
(n+4)

, xr =
n+2
(n+4)

The expression of covariance in the first and second case is

cov(xR,kin) =
(n2 +4n+2)n

n(n+4)2 ,

cov(xR,kout) =
(n−3)n(n+4)+2n4−3n3−7n2 +20n−12

n(n+4)(n−1)(n+4)

Finally, A can be computed, illustrated below in Table 4.2 for two cases.

l-sr A = a
1−c =

1+(n+2)/(n+4)
1−(0−(2n+7)/(n(n+4))) =

(2n+6)n
n(n+6)+7

l-rl A = a
1−c =

n/(n+4)+(n+2)/(n+4)
1−(1/(n(n+4))−(2n+7)/(n(n+4))) =

2n(n+1)
(n+6)n+6

38



5
Algorithms

In this chapter, we introduce efficient ways to compute the quantities used for choos-
ing an optimal link recommendation.

5.1 Opinions at Stationarity

To compute the stationary opinions of the network, we need to evaluate L−1
RRWRSxS.

The by far most computationally expensive operation is the inversion of L−1
R,R.

Thankfully, we can use a different approach, namely a convenient Taylor series
expansion.

As mentioned in the introducing chapters, another way to express the stationary
opinions is (I−PRR)

−1PRSxS.

5.2 Fast Computation of (I−PRR)
−1v

The series

I−PRR +P2
RR−P3

RR +P4
RR . . .

converges to (I−PRR)
−1 [Guth, 2017]. Iteratively computed as

M0 = I, Mi+1 = I−PRRMi

For large sparse matrices, the inverse of (I−PRR) will inconveniently not converge
to a sparse matrix, and the matrix inverse is therefore unfeasible to both compute
but also store directly (a network with 1000 nodes would already require 1 million
elements). Thankfully, the product of (I−PRR)

−1 with any vector v can be computed
iteratively as follows

m0 = v, mi+1 = v−PRRmi
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Chapter 5. Algorithms

requiring significantly less computational power and memory, with the drawback
that the iteration process needs to take place for every time this product needs to be
computed. If we have a batch of n vectors, we can efficiently vectorize the compu-
tation by simply replacing the vector m with a matrix M of size |R|×n, and perform
the same iteration, achieving a compromise between computing the entire matrix
inverse and the product with a single vector at a time.

5.3 Computing the Maximum Edge Derivative

To find the largest first derivative we can use proposition 18. Notably the optimal
node j to point to can be chosen purely based on the opinion of node i. The differ-
ence (xi− x j) will always need to be either minimized or maximized, depending of
the sign of the factor 2xT

R(I− 11
T

|R| )l∗i. The minimum or maximum is found when j
is the node with either the minimum or maximum opinion in the network. This is
always one of the two stubborn nodes with minimal and maximal opinion respec-
tively (the regular nodes’ opinions are upper and lower bounded by the opinions of
the stubborn nodes). We arrive at the following process:

• Compute node the weight vector p = 2L−T
R,RxC. (The matrix products are ap-

proximated by the technique mentioned in section 5.2 with β iterations)

• For each node, choose either the minimal or maximal stubborn node (based
on the sign of pi), and assemble them into the vector m.

• The largest difference in polarization when perpetuating a link is given by the
largest value in the component wise product of p and m. The index of this
value gives both our optimal i and j.
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6
Simulations

In this chapter, we will compare two of methods of reducing polarization in the
network. First we will compare a number of strategies of single link recommenda-
tion. Then we will for smaller networks perform gradient descent with a number of
different link costs.

6.1 Networks

The list of networks used in the simulations are presented in Table 6.1. Some are
to large to compute the optimal solutions for, but serve as a test for the speed and
scalability of approximation methods. The effect of the choice of stubborn node
placement, or for that matter the number of stubborn nodes was not studied.

6.2 Single Link Addition

We first explore methods for performing single discrete link addition. The following
heuristics will be compared:

PROP choose a regular node based on three metrics- its distance to the average
opinion (how much its opinion should be changed), its out degree (how hard the
opinion is to change) and its in degree (how many opinions it effects). Connect this
node to the node with an opinion the furthest away towards the network average.

ITR-β Iteratively compute the largest first derivative with respect to a link addition
in the network, using β iterations.

OPT Compute the true reduction for each link.
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Name Description Nodes Edges Stubborn
LINE Undirected path graph. 20 19 Ends.
BARB Undirected barbell graph. 20 110 Sides.
POLIT A undirected weighted network

representing the number of
collaborations between Swedish
parties after the 2018 election.
[Nyqvist, 2018]

9 62 Most
left/right
leaning
parties.

KARATE A undirected weighted network
containing the friendships be-
tween people in a karate club
before it split into two different
clubs because of ideological rea-
sons. [Zachary, 1976]

34 78 The two di-
viding lead-
ers, Mr. Hi
and John A.

EMAILS Connections between people
in a large European research
institution, where the connection
strength is approximated by
email frequency. [Leskovec
et al., 2007].

1005 25571 Low out
/high in
degree.

EPIN A undirected weighted network
representing trust between users
on a consumer review site.
[Richardson et al., 2003].

75879 508837 Low out
/high in
degree.

Table 6.1 Network Datasets. The choice of stubborn nodes is not always obvious.

6.3 Gradient Descent

We consider classical methods of gradient descent with added link change costs.
For smaller networks, this is a natural choice for finding an approximation to the
minimum given soft and/or hard constraints. For large networks, it is unfeasible
to consider the entire parameter space of |V |× |V | edge weights. In this case, one
could instead consider optimization with or without cost with where the hard con-
straints are limiting enough to reduce the number of variables considerably.

ABS -α a positive or negative link change δ adds a cost of δα .

SQUARE a positive or negative link change δ adds a cost of δ 2.
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6.4 Results

6.4 Results

Method LINE BARB POLIT KARATE EMAILS EPIN
PROP-α 0.5 -72.2% -16.7% 2.5% 2.3% -34.4% -3.4%
ITR-β -59.8% -16.7% 14.5% -20.6% -34.4% -3.4%
OPT -73.6% -16.7% -22.9% -20.6% - -

Method LINE BARB POLIT KARATE EMAILS EPIN
PROP-α 0.5 0.00523 0.00523 0.00497 0.00505 0.02771 0.94883
ITR-β 0.01008 0.00952 0.00896 0.00911 0.05874 1.26213
OPT 2.06227 2.05199 0.39599 5.88018 - -

Table 6.2 Change in polarization when adding a single link of weight 1 for dif-
ferent networks and methods in the upper table, time of computation in seconds in
lower. A dash signifies a too long computation time.

Method LINE BARB POLIT KARATE
ABS 1 -0.0% 0.0% 0.0% 0.0%
ABS 0.5 -25.5% 0.0% 0.0% 0.0%
ABS 0.1 -84.3% -25.9% 0.0% 0.0%
SQUARE -85.9% -51.5% -1.5% -51.3%

Method LINE BARB POLIT KARATE
ABS 1 0.21070 0.21336 0.19985 0.23065
ABS 0.5 0.14322 0.21352 0.19581 0.22980
ABS 0.1 0.25741 0.15156 0.19254 0.23258
SQUARE 0.11313 0.73286 0.05005 0.09050

Table 6.3 Decrease in polarization achieved and time in seconds for a simple gra-
dient descent method for a number of smaller graphs.
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Chapter 6. Simulations

Figure 6.1 Change in polarization when adding a link using the ITR-β method in
the KARATE network.
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7
Conclusion

We have formalized the problem of reducing polarization in opinion networks in
the context of variance on the stationary opinions of regular nodes on the DeGroot
model with stubborn nodes. The problem was shown to be simple for a number of
cases with basic constraints, but in general non-convex. The problem was shown to
instead belong to the class of invex functions.

An iterative vectorized method to compute the approximate gradient has been
proposed. This method was evaluated for adding a directed link to a network and
shown to perform well for small link additions, but expectedly worse for larger ones,
something further work could address.

There is an endless number of ways one could want to quantify polarization in a
network context. Not only could other opinion models and measures be studied, but
also different contexts altogether, some examples found in the literature mentioned
in the introduction.

Within the bounds of this model, one could explore different constraints (limited
out-degree of nodes, costs, total weight change) and optimization methods (specifi-
cally line search could be interesting, since we’ve characterized the behavior of the
function along any line). A direction for future research would be to make use of
(combinatorial) optimization theory to explore further properties of the problem.

Reducing polarization in a social network setting is furthermore only useful if
the polarization measure itself is strongly positively or negatively correlated with
other properties of the network (such as violence, individual well being and the
spread of fake news). Future work could include exploring how well this and other
polarization measures correlate with other societal phenomenon, giving a more clear
picture of what a reduction of polarization by x percent entails.
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