
MASTER’S THESIS 2022

Designing and implementing a
recommender system for an
E-learning platform
Astrid Ekman

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-02

Designing and implementing a
recommender system for an E-learning

platform

Design och implementering av ett
rekommendationssystem för en E-learning

plattform

Astrid Ekman

Designing and implementing a
recommender system for an E-learning

platform

Astrid Ekman
as4154ek-s@student.lu.se

February 2, 2022

Master’s thesis work carried out at Grade AB.

Supervisor: Rasmus Ros, rasmus.ros@cs.lth.se

Examiner: Elin Anna Topp, elin_anna.topp@cs.lth.se

mailto:as4154ek-s@student.lu.se
mailto:rasmus.ros@cs.lth.se
mailto:elin_anna.topp@cs.lth.se

Abstract

Today many web-based companies rely on recommender systems, as these
systems may enhance the user experience by presenting only relevant products.
In this master thesis, a recommender system is designed and implemented based
on data given by the E-learning company Grade AB. The system combines collab-
orative filtering with demographic filtering by first categorizing the users with
k-means clustering and then running matrix factorization on each cluster. The
data used for training is historical user-course interactions, meaning that there
is a lack of negative feedback. This may a�ect the model, why methods that deal
with this are presented in the report. Furthermore, since there is one unique
model for each of Grade AB’s clients, this master thesis also investigates how
sensitive the client-specific models are for hyperparameters. O�ine evaluation
is performed on the models to show how well they perform, as well as to op-
timize hyperparameters for three of Grade’s clients. The results of this master
thesis show that matrix factorization on demographic clusters performs better
than matrix factorization on a single cluster, consisting of all data available. The
results also show that the models perform better the larger the training data sets
are. However, the metrics recall and NDCG of the models just barely beat the
baseline, always recommending the most popular courses. This is probably due
to the selection of metrics and constraints of o�ine evaluation, which is also
discussed in this master thesis.

Keywords: recommender system, E-learning, collaborative filtering, matrix factoriza-
tion, demographic filtering, o�ine evaluation

2

Acknowledgements

I would like to thank Grade AB for providing the data set that made this master thesis pos-
sible. In particular, I would like to thank my supervisor Rickard Nygren, Vice VD at Grade
AB, and Arvid Pilhall, developer at Grade AB, for giving me helpful comments along the
way. Additionally, a big thank you to my supervisor Rasmus Ros, Doctoral student at Soft-
ware Engineering, for valuable feedback guiding me in the right direction during this project.
Finally, I would like to thank my examiner Elin Anna Topp for important final comments,
resulting in my master thesis being approved.

Astrid Ekman, January 2022

3

4

Contents

1 Introduction 9
1.1 Related Work . 9
1.2 Grade AB . 10

1.2.1 Current recommendations . 10
1.3 Research questions and outline . 11

2 Theory 13
2.1 User feedback . 13
2.2 Collaborative filtering . 14

2.2.1 Memory based CF . 14
2.2.2 Model based CF: Matrix factorization 15
2.2.3 One-class collaborative filtering . 17

2.3 Demographic filtering . 18
2.3.1 Clustering techniques . 18

2.4 Content based filtering . 19
2.5 Non transitive recommender systems . 19
2.6 Hybrids . 20
2.7 Evaluation of the recommender system . 20

2.7.1 Main Evaluations techniques . 21
2.7.2 Metrics . 21
2.7.3 Cross-validation . 22
2.7.4 Hyperparameter optimization . 23

3 Method 25
3.1 Data gathering . 25

3.1.1 Interview with customer . 25
3.1.2 Data set . 26
3.1.3 Train and Test split . 26

3.2 Model selection . 26
3.2.1 Baseline algorithm . 27

5

CONTENTS

3.2.2 Evaluation . 28

4 Results 29
4.1 Matrix Factorization . 29

4.1.1 Customer A . 29
4.1.2 Customer B . 30
4.1.3 Customer C . 30

4.2 Demographic Matrix Factorization . 30
4.2.1 Customer A . 32
4.2.2 Customer B . 34
4.2.3 Customer C . 34
4.2.4 Summary of results . 35

5 Discussion 37
5.1 Hyperparameters . 37
5.2 MF vs. DMF . 38
5.3 Di�erences between customers . 38
5.4 The evaluation technique . 38
5.5 Future work . 39

6 Conclusions 41

References 43

A Additional results, MF 47

B Additional results, DMF 51

6

CONTENTS

Acronyms
• CBF - Content Based Filtering.

• CF - Collaborative Filtering.

• DF - Demographic Filtering.

• DMF - Demographic Matrix Factorization.

• IID - Independent and Identically distributed.

• MF - Matrix Factorization.

• NDCG - Normalized Discounted Cumulative Gain.

• SVD - Singular Value Decomposition.

7

CONTENTS

8

Chapter 1

Introduction

The purpose of recommender systems is to help users filter among items on web pages so that
relevant items do not get lost in the large mass. During the past years, the web has emerged
explosively, and consequently also the range of choices that are presented to customers. The
desire of companies to personalize the content to their customers, in order to improve the
user experience, has driven the development of recommender systems. The main idea is to
analyze data specific to customers and items, and through this make predictions on what
customers might be interested in [24]. This project will focus on recommender systems in
the E-learning context and will be carried out at Grade AB, which will also provide the data
used for training. In the next sections related work will be presented, followed by more
information about Grade AB and details on this master thesis, including research questions.

1.1 Related Work
Recommender systems has been a hot topic during the last decades, because of the rapid
development of web services. Recommender systems are common both in e-commerce and
in online advertisement, where buyers are recommended products that might interest them.
The fact that recommender systems may generate an uplift in revenue, makes it critical for
many companies to develop such a system. Furthermore, recommender systems may enhance
the customers’ experience, leading to the company’s product standing out from competitors
[33]. Netflix is an example of a company having a lot of available items (movies and series) and
is therefore dependent on accurate recommendations for their users, to maintain their status
on the market. In 2006, Netflix released a data set [27], containing 100 million movie ratings
made by di�erent customers, and announced the Netflix Prize Competition. The goal of the
competition was to create a recommender system, reaching a certain accuracy, and the win-
ning team would get $1,000,000. This resulted in advancement in the field of recommender
systems, particularly in Collaborative filtering, which is one of the most common approaches
[4, pp. 75]. Other articles, such as [39], suggest combining collaborative filtering with other

9

1. Introduction

filtering techniques. There are di�erent alternatives of how to combine di�erent filtering
techniques, but [1, 32, 39] suggest categorizing the users into demographic clusters and then
performing collaborative filtering once on each cluster.

There are many studies on recommender systems, but not much research has been done
on recommender systems in the E-learning context. The goal of E-learning companies is to
enhance the competence of the customers, and recommender systems can indeed be used to
make the customers choose courses that help them with this.

1.2 Grade AB
Grade AB is a company that provides a web-based full-scale Learning Management System.
The platform was created in the middle of the 1990s when lecturers at Lund University were
struggling with distributing course material to the growing number of students. The plat-
form was at this time called LUVIT and the main product was to provide students with
learning material. Gradually the product was improved and today Grade has around 40 em-
ployees and 100 companies and organizations as customers and o�ers the following:

• Grade Engage, which measures the engagement of the employees

• Grade Talent, which makes agile human resources processes possible

• Grade Learning, which increases the competencies of the employees through courses,
mainly carried out on the web

• Grade Analytics, which visualizes data from Engage, Talent, and Learning

The main purpose of Grade’s product is to, through these four parts, make employees
in companies and organizations motivated to achieve better results. There is an E-learning
production tool integrated into Grade’s platform, which can be used by the client to create
web courses. These courses may also be produced in close cooperation with Grade’s own E-
learning team, to enhance the course content further. Furthermore, Grade Talent makes it
possible for each user to be assigned to di�erent roles and competencies, which then can be
used by Human Resources, but also by the user itself to increase the motivation. To make it
possible for employees to discover relevant courses, it is important to adapt the content to
each user and its needs. To achieve this, it is necessary to analyze the users’ unique character-
istics and find out what the recommendations should be based on. Possible characteristics
to base the recommendations on is which unit the user belongs to, and which roles, compe-
tencies, and certificates the user has. Each of Grade’s clients o�ers di�erent courses and the
units, roles, competencies, and certificates are more or less unique for each client.

1.2.1 Current recommendations
Grade already has a prototype of a recommender system where the recommendations are
based on employees’ roles and competencies. However, it is not developed enough as it is
implemented today. The current recommendation system is based on the following:

10

1.3 Research questions and outline

• Competence gap. This means the gap between the user’s current score on a certain
competence and the required score. If there is a competence gap, the user will be
recommended courses that are related to the competence.

• Courses related to roles. If a user has a certain role, it can be recommended courses
that are tagged with this specific role.

This recommendation system is naïve and requires much administrative work since com-
petencies and roles manually have to be related to courses. Grade wants to improve the ex-
isting functionality to avoid this and to give the users even more relevant recommendations.

1.3 Research questions and outline
The goal of this Master Thesis is to investigate how well traditional recommendation algo-
rithms, such as matrix factorization and clustering of users, work in the E-learning context.
Further research questions are summarized below:

• How do we deal with implicit feedback and the lack of negative feedback?

• How can a hybrid recommender system consisting of collaborative and demographic
filtering be designed?

• How sensitive for hyperparameters are the client-specific recommender systems, look-
ing at the di�erence between the evaluation scores and the baseline scores?

• What are the limitations of o�ine evaluation systems, and how can we overcome these?

In the next chapter, relevant theory about recommender systems will be presented. This
includes di�erent types of user feedback, filtering techniques and how to combine them,
and finally how to evaluate the performance of a recommender system. In chapter 3, the
method used to implement the recommender system will be explained. This will include
how the data was split into train and test sets, how the users were grouped using k-means
clustering, and how matrix factorization was then performed on each cluster. Chapter 3
will also include information on how the evaluation of the system was done. In chapter 4,
the evaluation results of the di�erent models will be presented and discussed, along with a
section suggesting future work on the topic. Lastly, in chapter 5 the conclusions of this master
thesis will be summarized.

11

1. Introduction

12

Chapter 2

Theory

This chapter will cover theory about user feedback and popular approaches used in rec-
ommender systems, including memory and model-based collaborative filtering (CF), demo-
graphic filtering (DF), and content based filtering (CBF). Di�erent methods of combining
filtering techniques will also be discussed, followed by methods on how to evaluate a recom-
mender system.

2.1 User feedback
Many recommender systems rely on data that connects users with items. These user-item
interactions can contain both explicit and implicit information concerning the users’ pref-
erences. The explicit feedback used in recommender systems is usually ratings and is a quan-
tification of the user’s preferences. This kind of feedback is usually reliable since the user
has expressed his or her opinion explicitly [17]. The feedback can be either scalar, meaning
the rating is for example between 0 and 10, or binary, for instance like or dislike [17]. The
disadvantage of explicit feedback is that it may be di�cult to collect. It requires the user
to give ratings, which may disturb the experience [2]. Implicit feedback, on the other hand,
does not require the user to share opinions explicitly. Implicit feedback is only an approx-
imation of the user’s opinion, and assumptions have been made to some extent. This could
for example be that if a customer clicks a certain item, we may assume that it is interested
in it [17]. A negative aspect of implicit feedback, except that it usually contains redundancy
and is di�cult to summarize, is that it may lack negative feedback. If a customer does not
click a specific item, it does not have to mean that the customer actively did not like the item
[21]. A suggested method that deals with this problem will be presented in section 2.2.3. In
the case of this master thesis, implicit feedback was used, since the rating of courses is only
optional for Grade’s customers.

13

2. Theory

Figure 2.1: An example of a user rating matrix, where the number in
each cell corresponds to the user’s rating on the specific item. The
empty cells correspond to a user not having rated the specific item,
a denotes the active user, and the question mark denotes that user
a’s rating on item i should be predicted [24].

2.2 Collaborative filtering
The term collaborative filtering was coined in the 90s, but it is based on a well-known con-
cept, that is opinion sharing. People tend to base their decisions on input from others, espe-
cially from people that usually have similar opinions. Instead of asking several people about
their opinions, this can be done by a computer taking thousands of people’s opinions into ac-
count [35]. Two users are considered similar if they have given the same items similar ratings.
This means that no information about the users or items themselves is needed, only infor-
mation about the user-item interactions [22]. The user-item interactions can be represented
by a so-called user rating matrix, which describes how users have rated di�erent items, see
figure 2.1. Usually, all unknown values in the matrix are predicted, and then the items with
the highest predicted ratings will be recommended to the user [24]. In the next sections,
two types of collaborative filtering techniques will be explained: memory-based (2.2.1) and
model-based (2.2.2) collaborative filtering. In section 2.2.3, solutions to the problem with
lack of negative feedback will be discussed.

2.2.1 Memory based CF
Memory-based, also known as Neighbourhood-based, collaborative filtering can be either
user-based or item-based. Assume that user i’s rating on item j, ri j , is supposed to be pre-
dicted and that User based collaborative filtering is to be used. Then the similarities between
the target user i and all other users will be calculated. Users are considered similar if they
give the same items similar ratings. When the similarity scores are determined, the weighted
average of the k most similar users will be calculated with the similarities as weights. The re-
sult is the prediction of user i’s rating of item j, see equation 2.1. Furthermore, the similarity

14

2.2 Collaborative filtering

scores can be calculated in di�erent ways. The most common are Pearson Correlation and
Cosine Similarity, see equations 2.2 and 2.3.

ri j =

∑
k Sim(ui, uk)rk j

#ratings
(2.1)

SimPearson(ui, uk) =
∑

j(ri j − ri)(rk j − rk)√∑
j(ri j − ri)2 ∑

j(rk j − rk)2
(2.2)

SimCosine(ui, uk) =
ri · rk

|ri ||rk |
=

∑m
j=1 ri jrk j√∑m

j=1 r2
i j
∑m

j=1 r2
k j

(2.3)

In the item-based collaborative, on the other hand, two items are considered similar if
they get similar ratings from the same user. The predictions are calculated analogously as for
the case with user-based collaborative filtering. The advantage of this method is that it tends
to be more stable than user-based collaborative filtering, since ratings on items will probably
not change significantly over time which the users’ taste might do [22]. A memory-based
recommender system usually becomes more accurate than a model-based (see section 2.2.2),
since it calculates all similarities and bases the recommendation on the extremely similar
entities. However, in memory-based collaborative filtering, there is a significant risk that the
user-item matrix is sparse, resulting in inaccurate predictions. Additionally, this technique
may be computationally heavy, leading to a long response time [36].

2.2.2 Model based CF: Matrix factorization
As mentioned in the previous section, memory based collaborative filtering tends to be very
slow and may su�er from sparse user-item matrices. This is the reason why model based
filtering was used in this master thesis. This kind of model is also based on user-item inter-
actions and assumes that there is a latent model that can describe these interactions. These
latent representations have a mathematical meaning, but they may be di�cult for a human to
interpret. With the use of model based collaborative filtering, all similarities do not have to
be calculated every time [33]. One of the most common model based approaches uses matrix
factorization.

Assume that a user has finished the courses "Global sea level change", "Solar energy" and
"Renewable energy". These are probably not based on three di�erent opinions, but it shows
that the user is interested in the environmental field. Maybe there are more courses in this
field that would be suitable for the user. This environment category is an example of a latent
feature. Matrix factorization makes it possible to extract latent features, even though they
are not usually as concrete as the environment category. Depending on how much a course
fits into a category, combined with how aligned a user is with this set of latent features,
recommendations can be made. Even though two users have finished di�erent courses, the
users can be considered similar if they have similar underlying preferences, latent factors.
This is an advantage of model based CF, that memory based CF does not have [22].

The idea of matrix factorization is to decompose the user-item interaction matrix into
two or more lower dimensional matrices. The goal is to create an item-related vector qi ∈ Rk

15

2. Theory

and a user-related vector pu ∈ Rk , so that the prediction of user u’s rating of item i, r̂ui , can
be described by equation 2.4. Note that k is the number of latent features.

r̂ui = qT
i pu (2.4)

Determining a matrix factorization model may be challenging. Singular Value Decom-
position (SVD) is an established method that decomposes a matrix into lower dimensional
matrices, extracting latent features. The problem is that conventional SVD requires a matrix
where all elements are known, which is not the case in collaborative filtering. The missing
entities have to be computed so that the loss function is minimized. Stochastic gradient de-
scent is a technique that has proven to be e�ective for this [23]. To avoid overfitting, only
relying on the relatively few known values in the user-item interaction matrix, the loss func-
tion should be regularized. Using squared error as loss function, adding a regularization term
with a regularization constant λ gives equation 2.5, which is the minimization problem that
we want to solve. Note that the convexity of equation 2.5 guarantees convergence. Also note
that κ is the set of all (u, i) pairs where rui is known.

min
p,q

∑
(u,i)∈κ

(rui − qT
i pu)2 + λ(||qi ||

2 + ||pu||
2) (2.5)

The idea of the Stochastic Gradient Descent technique is to optimize equation 2.5, by
iteratively updating pu and qi in the opposite direction of the gradient. To do this the deriva-
tives of f (pu, qi) = (rui − qT

i pu)2 + λ(||qi ||
2 + ||pu||

2) have to be calculated. The algorithm
works like this:

1. Initialize pu and qi randomly

2. Until the loss is small enough, for each known user-item pair:

(a) Calculate ∂ f
∂pu

(b) Calculate ∂ f
∂qi

(c) Update pu: pu ← pu − α
∂ f
∂pu

(d) Update qi : qi ← qi − α
∂ f
∂qi

3. Make predictions according to r̂ui = qT
i pu

The prediction error associated to the prediction of item i given by user u can be defined
as eui := rui − qT

i pu. Given this, the algorithm can be written more concisely. Note that γ is
the learning rate [19].

1. Initialize pu and qi randomly

2. Until the loss is small enough, for each known user-item pair:

(a) Update pu: pu ← pu + γ(euiqi − αpu)
(b) Update qi : qi ← qi + γ(eui pu − αqi)

3. Make predictions according to r̂ui = qT
i pu

16

2.2 Collaborative filtering

One of the weaknesses of collaborative filtering is the so-called cold-start problem. This
occurs when there are no ratings yet, which may occur either when there is a new item in-
troduced to the system, or there is a new user with no previous ratings. This results in the
predictions, made by the collaborative filtering recommender system, being unusable. A sim-
ple way to deal with this is to wait until the new user has made some ratings, or the new item
has been given some ratings. The problem is that if an item never gets recommended, or a
user never gets any recommendations, there will not be any new ratings. This problem has
led to the development of hybrid recommender systems, combining collaborative filtering
and some other kind of filtering, such as content based filtering or demographic filtering [6],
which will be described in the next sections.

2.2.3 One-class collaborative filtering
As earlier mentioned, a problem with implicit feedback is that the data set may lack nega-
tive feedback. If a user finishes a course, one may assume that it was positive to the course.
However, if the user does not finish a course, it does not necessarily mean that the user did
not like it. It can also mean that the user simply is not aware of the course’s existence. A
solution to this is to give weights to the error terms in equation 2.5, see equation 2.6. If rui is
known (positive examples), wui should always be one. However, if rui is unknown ("negative"
examples), wui should be smaller since those elements in the user-item matrix are less reliable.
There are a few di�erent ways to set the weights for the implicit negative examples. Either
the missing elements can be assumed to be negative with the same possibility for all users or
all items. This means that the weights for all missing elements will be δ ∈ (0, 1). Another
alternative for the weights is to assume that if a user has many positive examples, the missing
elements are more likely to be negative. The third alternative is to assume that if an item
has few positive examples, it is more likely that the missing elements are negative. The three
alternatives are summarized in table 2.1 [29]. In the case of this master thesis, wui was set to
0.15 for all negative examples, that is uniform weights. The reason for this was the simplicity
of the method. However, other weights should be investigated in the future.

min
p,q

∑
(u,i)∈κ

wui
(
(rui − qT

i pu)2 + λ(||qi ||
2 + ||pu||

2)
)

(2.6)

Table 2.1: Three di�erent approaches to select wui . m denotes the
number of users [29].

Pos examples "Neg" examples

Uniform wui = 1 wui = δ
User-oriented wui = 1 wui ∝

∑
i Rui

Item-oriented wui = 1 wui ∝ m −
∑

u Rui

17

2. Theory

2.3 Demographic filtering
Demographic filtering makes recommendations based on demographic similarities between
users. It assumes that users with similar personal features are likely to have common pref-
erences [37]. Demographic filtering is similar to collaborative filtering since they both form
"people-to-people" correlations. However, ordinary collaborative filtering techniques su�er
from the cold-start problem when there is a new user introduced to the system. This is not
the case in demographic filtering, since a new user can be assigned a category and then be rec-
ommended courses that are popular among the users within that category [34]. Since Grade
has many attributes describing the users and because those attributes are relevant to base
the recommendations on, demographic filtering was part of the algorithm designed in this
master thesis.

The first step in demographic filtering is to create user profiles. To be able to compare
two users to each other and for the computer to be able to handle the input data, it has to be
encoded. To avoid personal features being weighted di�erently, we want to work with binary
encoding [12]. This is done by using one-hot-encoding. If user 1 has role B and C, user 2 has
role A and user 3 has role B and C, this can be represented as user 1: (0, 1, 1), user 2: (1, 0, 0),
and user 3: (0, 1, 1), as shown in figure 2.2. Note that a user can have more than one role.

Table 2.2: Personal features represented by one-hot-encoding.

User Role A Role B Role C

1 0 1 1
2 1 0 0
3 0 1 1

When the user profiles are ready, the users are classified according to their demographic
attributes. Demographic filtering creates a number of categories, and all users assigned to a
specific category will have similar demographic characteristics. When giving recommenda-
tions to a user, the system will first determine which category the user falls in, and then the
recommendations will be based on the preferences of the users within that category [34].

2.3.1 Clustering techniques
In demographic filtering, clustering techniques such as k-means clustering can be used to
categorize the users according to their personal attributes [16]. The idea of clustering is to
divide a set of data points into a number of groups, so that the data points in one group are
similar, while they are dissimilar to the data points in other groups. Clustering is an unsu-
pervised learning technique, which makes it possible to find patterns in a data set, without
knowing the input data’s labels [31]. One of the most common clustering techniques is k-
means. K cluster centroids are initialized by taking k random points from the data set. For
every data point in the full set, the squared distance to each cluster centroid is calculated
and the data point is then assigned to the cluster with closest centroid [11]. New cluster cen-
troids are calculated by taking the average of the data points in each cluster. After this, the

18

2.4 Content based filtering

Figure 2.2: Content based filtering [28].

squared distances to each cluster are calculated once again. This procedure is repeated until
the cluster centroids do not move significantly anymore [11].

2.4 Content based filtering
Content based filtering is another recommendation algorithm that takes similarities between
items into account when recommending an item to a user. If the user has previously shown
interest in a certain item, through a positive rating or action, an item similar to the previous
item will be recommended, see figure 2.2. The first step is to create a feature matrix. The
feature matrix should include all items and their related features such as category, length, cre-
ator, etc. The user should be represented in the same feature space. The user-related features
can be both explicit and implicit. An explicit feature could be that the user has specified that
he or she prefers a specific category in his or her profile, while an implicit feature could be
that the user has only bought items of a certain color in the past. When the feature matrix
is ready, a similarity metric has to be selected. The similarity metric simply describes how
the similarity score should be measured, e.g. using the dot product. The similarity scores are
then calculated based on the user, and each item. The item with the highest score will be
recommended to the user. Content based filtering does not take other users into account, it
only considers other items [13]. Content based filtering was not used in this master thesis,
mainly because of the time limitations. This technique will however be suggested as future
work.

2.5 Non transitive recommender systems
A problem with state-of-the-art recommender systems, such as collaborative filtering, is that
they usually assume that ratings, users, and products are independent and identically dis-
tributed (IID). This may result in weak performance since low-level information is not taken
into account. In other words, this kind of recommender system may simplify the funda-

19

2. Theory

mental driving force of users’ ratings too much. Non-IID systems involve couplings between
user pairs, item pairs, and user-item pairs, leading to heterogeneous recommendations. This
will probably make up the next generation’s recommender systems, but it comes with big
challenges, especially when dealing with large data sets.

Collaborative filtering assumes that both users and items are IID and by combining it
with content based filtering and/or demographic filtering, at least some more low-level in-
formation is taken into account. However, recommender systems that are not IID can be
improved further, which you can read more about in [7]. Grade’s users may have functional
competencies, scored from one to five. One way to look at it is to consider users with the same
functional competencies similar, ignoring the scores, resulting in an IID system. However,
it might not be favorable to give users with high scores on a certain functional competence,
recommendations based on users with low scores on that functional competence. In this case,
it might be better to give recommendations in the opposite direction. This is why it might
be a good idea to consider non-IID systems in the context of this master thesis.

2.6 Hybrids
The previously introduced methods have di�erent advantages and choosing only one of the
described filtering methods, may result in weak recommender systems. It is common to com-
bine di�erent techniques, to achieve better performance and avoid the cold-start problem.
The idea is that the hybrid will benefit from the advantages of each separate method, while
it will overcome the methods’ weaknesses. There are di�erent techniques to combine the
methods, switching and weighted are two common approaches.

The switching approach selects the recommendation source that is most suitable for the
specific situation. For example, if a new item is introduced to the system, content based
filtering can be used, if there is a new user demographic filtering can be used, and in all other
scenarios, collaborative filtering can be used. The weighted approach on the other hand, uses
the formula shown in equation 2.7, where rCF is the recommendation given by collaborative
filtering, rDF the recommendation given by demographic filtering, rCBF the recommendation
given by content based filtering and α, β and γ are the di�erent weights [18]. Some [1, 32, 39]
suggest that the filtering, such as collaborative filtering, can be performed once for each
demographic category. This was the technique used in this master thesis.

r = αrCF + βrDF + γrCBF (2.7)

2.7 Evaluation of the recommender system
Determining whether a recommender system gives more accurate recommendations than
others, might be challenging. The accuracy may di�er depending on which evaluation tech-
nique is used and there are advantages and disadvantages with all of them. In this section,
the three main types of evaluation techniques will be explained. Furthermore, di�erent ways
to measure the performance of a recommender system will be described.

20

2.7 Evaluation of the recommender system

2.7.1 Main Evaluations techniques
According to [3], evaluation methods for recommender systems can be divided into three
groups: Online evaluation, o�ine evaluation, and user studies. In online evaluations, rec-
ommendations are presented to the users, and depending on the users’ actions, the accuracy
can be computed. For example, if a user gets a course recommendation and then finishes the
course, the recommendation can be considered satisfactory. The so-called click-through rate
(CTR) is a common measurement for this. For instance, if a user gets 100 recommendations,
and accepts 20 of them, the CTR is 20%. To compare the performance of two algorithms,
the CTRs of the two algorithms are compared (called A/B test). Note that this evaluation
technique implicitly measures the satisfaction of the user. Also, note that it requires the sys-
tem to have been launched. This was not possible in this master thesis, why o�ine evaluation
was used instead. O�ine evaluation is based on an o�ine data set, with some data being re-
moved. The performance is then based on the system’s ability to recommend the information
that is missing. Furthermore, there are three types of o�ine data sets: true o�ine data sets,
user o�ine data sets, and expert o�ine data sets. The di�erence between true o�ine data
sets and user o�ine data sets, is that true o�ine data sets consist of explicit feedback (e.g.
ratings), while user o�ine data sets consist of implicit feedback (e.g. clicks). In expert o�ine
data sets, on the other hand, items have been classified by humans. In the third evaluation
technique for recommender systems, user studies, users give explicit ratings on how they ex-
perienced the recommendations overall. This means that the participants of the study are
asked to quantify their satisfaction with the recommendations generated. It is important to
remember that this evaluation technique measures satisfaction at the time of the recommen-
dation. At this time, there is no guarantee that the user itself knows if the recommendations
are relevant or not [3].

2.7.2 Metrics
There are many di�erent ways to evaluate a machine learning algorithm when using o�ine
evaluation. One metric can give a high score while another kind of metric can give a very low
score on the exact same machine learning model, using the same test data [25]. Some com-
monly used evaluation metrics are accuracy, precision, recall, and f1 score, where all metrics
are based on the number of true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN):

• TP: Positives, predicted as positives

• TN: Negatives, predicted as negatives

• FP: Negatives, predicted as positives

• FN: Positives, predicted as negatives

The definitions of the metrics based on TP, TN, FP and FN, are shown in equations 2.8,
2.9, 2.10 and 2.11 [15].

Accuracy =
TP + TN

TP + TN + FP + FN
(2.8)

21

2. Theory

Precision =
TP

TP + FP
(2.9)

Recall =
TP

TP + FN
(2.10)

f 1 =
2 · precision · recall
precision + recall

(2.11)

Not all of these metrics are convenient in the recommender system context since the
data sets are usually sparse. [10] suggests two di�erent kinds of metrics when evaluating a
recommender system based on one-class collaborative filtering: recall and NDCG. This is
the reason why those metrics were used to evaluate the recommender system designed in this
master thesis. NDCG stands for Normalized Discounted Cumulative Gain and is a measure
of ranking quality. The definition of DCG is shown in equation 2.12. Low ranking, means a
smaller contribution to DCG, why it is called Discounted Cumulative Gain. The definition of
NDCG is shown in equation 2.13, where DCG is the DCG of the recommended order, while
iDCG is the DCG of the ideal order, that is with the ratings in decreasing order [9].

DCG =
n∑

i=1

relevancei

log2(i + 1)
(2.12)

NDCG =
DCG
iDCG

(2.13)

The metrics described above do not take into account how surprising the recommenda-
tions are. A good recommender system should not only recommend relevant items but also
give recommendations that are surprising since users will find non-surprising recommenda-
tions on their own [8]. This is often referred to as serendipity. In the literature, there is no
consensus on the definition of serendipity in recommender systems. However, [20] gives an
overview of di�erent definitions. The article states that serendipity is a concept that is based
on other concepts such as novelty, relevance, and unexpectedness. [38] suggests novelty to
measure how surprising recommendations are and defines it as how di�erent the recommen-
dations are compared to what has previously been seen, see equation 2.14. Novelty might
be a good complement to metrics such as recall and NDCG, but it does not take into ac-
count how relevant the recommendations are. Definitions on serendipity, which also cover
relevance, can be found in [38].

Noveltyi = 1 −
users recommended i

users
(2.14)

2.7.3 Cross-validation
If the model is only trained and tested once, the evaluation scores might be misleading. This
is due to the risk that the split introduced a skew into the data so that the evaluation scores
get either very high or very low. To minimize this kind of validation error, cross-validation
can be used. A popular method for this is k-fold cross-validation. The full data set is shu�ed
and then split into k folds. k-1 of the folds are used for training the model, while the last fold,
not used in training, is used for evaluation. This is done over k iterations, where the train

22

2.7 Evaluation of the recommender system

Figure 2.3: The green distribution (of the model’s scores) above each
square corresponds to g(x), while the yellow distribution on the left
of each square corresponds to h(y). For grid search, nine combina-
tions of hyperparameters only test g(x) on three di�erent distinct
values, while for random search nine combinations test g(x) on nine
di�erent distinct values [5].

and test sets are changed in each iteration. After all iterations, the average evaluation score
is calculated. Common values of k are 5 and 10 and the folds are usually of equal size [26].

2.7.4 Hyperparameter optimization
In the machine learning field, hyperparameters are configurations that are external to the
model, e.g. learning rate of the SGD algorithm and the regularization term of the function
to be minimized. It is not possible to know exactly which hyperparameters are optimal in
advance. However one can use rules of thumb, values found in similar machine learning prob-
lems, or search for the optimal values by trial and error. Nowadays there are many kinds of
optimization algorithms, but two simple ones are grid search and random search. Let us start
with grid search. Assume that a model has three di�erent hyperparameters to be optimized:
h1, h2 and h3. The first step is to define a range of possible values of each hyperparameter. Af-
ter this, a grid is constructed with all possible combinations of hyperparameters. The model
is trained for each combination and the evaluation score is calculated. The combination of
hyperparameters that gives the highest evaluation score, is considered optimal. Grid search is
very computationally expensive since the model has to be trained for all di�erent combina-
tions of hyperparameters. To deal with this, another optimization technique is introduced:
random search. Instead of providing a discrete set of possible values, a statistical distribution
for each hyperparameter is provided, from where values can be randomly sampled. Hyper-
parameters are usually not equally important, which is something that random search may
catch [30]. Figure 2.3, schematically shows the benefits of random search over grid search.
Despite this, grid search was used in this master thesis. The reason was mainly the method’s
simplicity. However, other search algorithms are suggested as future work.

23

2. Theory

24

Chapter 3

Method

In this chapter, the method of this master thesis will be described. The method will be based
on the previously presented theory, along with input from one of Grade’s customers.

3.1 Data gathering
The first step of the method was to gather data, on which the model was to be trained on.
In the two following sections, input from one of Grade’s customers will be summarized, and
statistics on the data found in the databases of three of Grade’s customers will be presented.

3.1.1 Interview with customer
One of Grade’s customers (customer A) was interviewed to determine what they expect from
a recommender system, and which user data is more relevant to base the algorithm on. Unit
belonging was something they thought would be suitable for recommendations. In their
opinion, the existing units are narrow enough to assume that all members in a unit have sim-
ilar interests when it comes to courses. When di�erent roles were discussed, they mentioned
that many roles are very general, and therefore there is a risk with basing recommendations
on roles. However, competencies that are usually related to roles may give a good hint on
which courses are relevant for a user. Furthermore, it might be a good idea to look at how
a user is graded in each functional competence. Users with the same competence should be
considered similar and furthermore, users with lower grades should receive recommenda-
tions from users with higher grades on that competence. During the interview, the cold-start
problem was also discussed. How should we deal with new courses that no users have dis-
covered yet? Administrators can make courses mandatory for specific groups, but this is not
done to a very great extent as it is today. Customer A thought that it would be convenient
if there was some tool in the platform presenting new and relevant courses. They also sug-

25

3. Method

gested content based filtering as a solution to the cold-start problem, taking advantage of the
keywords that each course has.

3.1.2 Data set
The data used to train the model was found in Grade’s databases. Because of time limitations,
only three customers were chosen. Some statistics on each data set (customer A, B, and C) can
be seen in table 3.1. Note that the data used for training in this master thesis, was collected
only once, but yet the system is integrated into Grade’s platform, the data will be collected
once per training, which will occur regularly.

Table 3.1: Statistics on data for customer A, B, and C.

Category Customer A Customer B Customer C

users 49,123 22,476 108,135
courses 2,426 1,025 671
user-course interactions 226,945 175,089 78,590
units 1,812 1,066 645
roles 20 158 0
competences 189 312 0
certificates 172 21 4

3.1.3 Train and Test split
To get trustworthy evaluation scores, one has to evaluate the model using a separate data set
than the one used during training. For this reason, the full data set was split into a train set
(80 %) and a test set (20 %). Furthermore, when evaluating the system for di�erent choices
of hyperparameter settings, the train set (80 % of the full set) was divided into five folds
and cross-validation was performed, as described in section 2.7.3. The final model was then
evaluated using the test set (20 % of the full set). Note that the splitting was only performed
on the data used for matrix factorization (user-course interactions), not on the data used
for clustering. The reason for this was that the clustering was unsupervised, meaning that
there were no known labels corresponding to the clusters. Evaluation could therefore not be
performed only on the clustering part of the algorithm.

3.2 Model selection
The recommender system of this project was a hybrid between Collaborative filtering, using
matrix factorization, and Demographic filtering, using k-means clustering. The demographic
categories used in this master thesis were the users’ unit, roles, competencies, and certificates.
Note that roles were used, even though customer A suggested not to. The reason for this
was that Grade thought that roles are actually important to use, at least for most of their

26

3.2 Model selection

customers. Demographic filtering was chosen over Content based filtering since there were
more data describing the users than data describing the courses. The fact that Content based
filtering was not used in this project may result in the cold-start problem when new courses
are introduced to the system. This will be discussed later, when considering the weaknesses
of the final model, and adding content based filtering to the hybrid will be suggested as a
possible improvement.

Microsoft’s .NET framework is the framework used in Grade’s existing platform, why the
library ML.NET was used both for matrix factorization and for k-means clustering. Using
.NET instead of for example TensorFlow will probably make it easier for Grade to integrate
and maintain the recommender system, which is of utmost importance from their perspec-
tive.

As earlier mentioned, matrix factorization is a widely used and e�cient method for Col-
laborative filtering, why this was used in this project. The clustering algorithm used was
k-means, since it is a widely used technique, and since it is easy to implement using ML.NET.
Each cluster had to be large enough to give each user in that cluster five recommendations.
This means that the number of unique courses finished by each cluster had to be at least five
more than the number of courses finished by the user who had finished the biggest amount
of courses in that specific cluster. The number of unique courses finished by the cluster also
had to be big enough even when courses that do not have any active sessions, were removed
from the data set. In case one cluster was too small, each user in that cluster was assigned to
the cluster with the second closest centroid. This means that if k (the number of clusters)
was originally set to 25, the size of k might have become lower than 25 during training, due
to too small clusters.

The number of latent factors (approximationRank) used in matrix factorization and the
number of clusters (k) used in demographic filtering was changed over di�erent experiments,
while the remaining hyperparameters were fixed, see table 3.2. Note that LossFunction is the
loss function to be minimized in the stochastic gradient descent algorithm, Alpha is the im-
portance of unobserved elements, C is the value of the unobserved elements, lambda is the
regularization parameter, and NumberOfIterations is the number of iterations where the loss
function is minimized. Furthermore, OptimizationTolerance denotes when the clustering
algorithm should stop, assuming that the number does not exceed MaximumNumberOfIt-
erations. Also note that Alpha was chosen according to the suggestion in [14], see equation
3.1.

Alpha =
of observed entries

of unobserved entries
(3.1)

3.2.1 Baseline algorithm
To get an idea of the performance of the recommender system, the evaluation scores of a base-
line algorithm were calculated, in addition to the evaluation scores of the model. The baseline
used in this project was to always recommend the five courses with the largest number of at-
tendees. The evaluation scores recommending five random courses and the five courses with
the smallest number of attendees were also calculated but will not be included in this report.
An alternative baseline would be to use Grade’s existing prototype of recommender system,
but due to shortage of time, a simpler baseline was used instead.

27

3. Method

Table 3.2: The default values of hyperparameters in matrix factor-
ization and k-means clustering respectively.

Parameter Default value

Matrix factorization approximationRank Varied
LossFunction SquareLossOneClass
Alpha See equation 3.1
C 0.15
Lambda 0.1
NumberOfIterations 100

k-means K Varied
OptimizationTolerance 1e-30
MaximumNumberOfIterations 1000

3.2.2 Evaluation
The metric used to evaluate the model was NDCG and recall, as suggested in [10]. During
training, all user-course pairs got a score: close to zero if the user was unlikely to be interested
in the course, close to one if the user was likely to be interested in the course. To retrieve
the top five recommendations for a user, the courses with the highest scores were selected.
However, for calculation of NDCG, the exact ranking was also of interest. Assume that the
model predicted five courses c1, c2, c3, c4, and c5 for a user, with c1 having the highest score.
To calculate NDCG, the actual scores of c1-c5 found in the test set were checked and those
scores (in order c1-c5) were used to calculate DCG. After this, the list of actual scores was
ordered with the highest score first, that is the ideal order, and DCG was then calculated
(iDCG). NDCG was then calculated by dividing DCG with iDCG, according to equation
2.13. NDCG was used for hyperparameters optimization, but recall was also calculated and
presented in Appendix A and B.

During the evaluation of recall, each user-course pair was labeled 1 if the course was
included in that user’s top five recommendations, otherwise labeled 0. These labels were
stored in a list called predictions, which was then compared to a list called expected. This
list only consisted of ones, since all user-course pairs in the test set were observed elements,
meaning that the user had finished the course.

As a complement to automatic evaluation, a user study was performed (referred to as user
studies in section 2.7.1). One of Grade’s customers (customer A) chose eight of their users and
the recommendations of those eight users, generated by the recommender system, were then
presented to the customer. The customer gave feedback on the generated recommendations
and the system was then revised according to their input. Note that in order to make complete
user studies, more than eight users’ recommendations should be analyzed. However, this was
not possible because of the time limitations of this project.

28

Chapter 4

Results

In this chapter, the results of this master thesis will be presented. The chapter is divided into
three parts: Matrix factorization, Demographic matrix factorization, and a summary of the
results. Each of the sections 4.1 and 4.2 will be divided into three further sections: results
from customer A, B and C. Note that the number of courses recommended was always five
during training and evaluation.

4.1 Matrix Factorization
In this section figures showing how NDCG varies for di�erent values of approximationRank
(the number of latent features) when using MF, will be presented. This will be compared to
a baseline where the users were always recommended the five most popular courses. The
figures presented in this section only include the NDCG scores, but values of recall and
novelty can be found in appendix A. In general, the NDCG scores were similar to the recall
scores, see table A.1, A.2, and A.3.

4.1.1 Customer A
Figure 4.1 shows how NDCG varies over di�erent values of approximationRank, when
training a MF model on customer A’s data. The lowest NDCG retrieved from cross-validation
was NDCG = 0.1881 (approximationRank = 4), while the highest NDCG retrieved
was NDCG = 0.2909 (approximationRank = 38). When training the MF model with
approximationRank = 38 on the training set and evaluating it with the test set, the NDCG
retrieved was NDCG = 0.3375. All scores from the final evaluation, including NDCG,
recall and novelty for the MF model and baseline, can be seen in table 4.4.

29

4. Results

Figure 4.1: NDCG for di�erent values of approximationRank,
model: MF, customer: A. The best result NDCG = 0.2909 was
retrieved when using approximationRank = 38.

4.1.2 Customer B
Figure 4.2 shows how NDCG varies over di�erent values of approximationRank, when
training a MF model on customer B’s data. The lowest NDCG retrieved from cross-validation
was NDCG = 0.1656 (approximationRank = 2), while the highest NDCG retrieved
was NDCG = 0.3254 (approximationRank = 32). When training the MF model with
approximationRank = 32 on the training set and evaluating it with the test set, the NDCG
retrieved was NDCG = 0.3471. All scores from the final evaluation, including NDCG,
recall and novelty for the MF model and baseline, can be seen in table 4.4.

4.1.3 Customer C
Figure 4.3 shows how NDCG varies over di�erent values of approximationRank, when
training a MF model on customer C’s data. The lowest NDCG retrieved from cross-validation
was NDCG = 0.4560 (approximationRank = 60), while the highest NDCG retrieved
was NDCG = 0.6150 (approximationRank = 14). When training the MF model with
approximationRank = 14 on the training set and evaluating it with the test set, the NDCG
retrieved was NDCG = 0.6031. All scores from the final evaluation, including NDCG,
recall and novelty for the MF model and baseline, can be seen in table 4.4.

4.2 Demographic Matrix Factorization
In this section tables showing how NDCG varies for di�erent values of k and
approximationRank when using DMF, will be presented for each of customer A, B, and C.
Additionally, the section with customer A’s results will include a figure showing how NDCG

30

4.2 Demographic Matrix Factorization

Figure 4.2: NDCG for di�erent values of approximationRank,
model: MF, customer: B. The best result NDCG = 0.3254 was re-
trieved when using approximationRank = 32.

Figure 4.3: NDCG for di�erent values of approximationRank,
model: MF, customer: C. The best result NDCG = 0.6031 was
retrieved when using approximationRank = 14.

31

4. Results

varies for di�erent values of approximationRank when keeping k constant, and a figure
showing how NDCG varies for di�erent values of k when keeping approximationRank con-
stant. The results will be compared to a baseline where the users were always recommended
the five most popular courses. The tables and figures presented in this section only include
the NDCG scores, but values of recall and novelty can be found in appendix B. In general,
the NDCG scores were similar to the recall scores, see table B.1, B.2, and B.3.

4.2.1 Customer A

Table 4.1 shows how NDCG varies over di�erent values of k and approximationRank,
when training a DMF model on customer A’s data. The lowest NDCG retrieved from cross-
validation was NDCG = 0.2454 (k = 10, approximationRank = 30), while the highest
NDCG retrieved was NDCG = 0.3215 (k = 30, approximationRank = 5).

Table 4.1: NDCG for di�erent combinations of
approximationRank and k, model: DMF, customer: A. The
highest NDCG written in bold. Remaining hyperparameters set to
default (see table 3.2).

approximationRank
5 10 15 20 25 30

5 0.2666 0.2865 0.2753 0.286 0.2872 0.2648
10 0.2774 0.2459 0.3029 0.3103 0.3096 0.2454

k 15 0.2951 0.2884 0.2876 0.298 0.299 0.2655
20 0.2849 0.3021 0.3127 0.321 0.2778 0.2669
25 0.3083 0.2922 0.2718 0.3056 0.2763 0.2782
30 0.3215 0.2828 0.3053 0.3155 0.2977 0.2934

Figure 4.4 shows how NDCG varies for di�erent values of approximationRank, when
k = 30, using DMF on customer A’s data. The highest NDCG retrieved from cross-validation
was NDCG = 0.3322 (k = 30, approximationRank = 2).

32

4.2 Demographic Matrix Factorization

Figure 4.4: NDCG for di�erent values of approximationRank,
model: DMF, customer: A, k = 30. Maximum in
approximationRank = 2 (NDCG = 0.3322).

Figure 4.5 shows how NDCG varies for di�erent values of k, when approximationRank =
5, using DMF on customer A’s data. The highest NDCG retrieved from cross-validation was
NDCG = 0.3196 (k = 39, approximationRank = 5).

Figure 4.5: NDCG for di�erent values of k, model: DMF, customer:
A, approximationRank = 5. Maximum in k = 39 (NDCG =
0.3196).

When training the DMF model using the optimal hyper parameters k = 30 and
approximationRank = 2 (retreived from figure 4.4) on the training set and evaluating it

33

4. Results

with the test set, the NDCG retrieved was NDCG = 0.3721. All scores, including NDCG,
recall and novelty for the DMF model and baseline, can be seen in table 4.5.

4.2.2 Customer B

Table 4.2 shows how NDCG varies over di�erent values of k and approximationRank,
when training a DMF model on customer B’s data. The lowest NDCG retrieved from cross-
validation was NDCG = 0.2788 (k = 25, approximationRank = 30), while the highest
NDCG retrieved was NDCG = 0.3531 (k = 10, approximationRank = 20). When train-
ing the DMF model with k = 10 and approximationRank = 20 on the training set and
evaluating it with the test set, the NDCG retrieved was NDCG = 0.3816. All scores, in-
cluding NDCG, recall and novelty for the DMF model and baseline, can be seen in table
4.5.

Table 4.2: NDCG for di�erent combinations of
approximationRank and k, model: DMF, customer: B. The
highest NDCG written in bold. Remaining hyperparameters set to
default (see table 3.2).

approximationRank
5 10 15 20 25 30

5 0.3407 0.3295 0.3246 0.3159 0.3365 0.3294
10 0.3521 0.3388 0.3159 0.3531 0.309 0.2919

k 15 0.3339 0.347 0.3495 0.3229 0.312 0.317
20 0.3476 0.3492 0.3349 0.3196 0.3062 0.2915
25 0.3454 0.3176 0.3162 0.3198 0.312 0.2788
30 0.3387 0.3428 0.3116 0.3155 0.3037 0.2831

4.2.3 Customer C

Table 4.3 shows how NDCG varies over di�erent values of k and approximationRank,
when training a DMF model on customer C’s data. The lowest NDCG retrieved from cross-
validation was NDCG = 0.5117 (k = 20, approximationRank = 5), while the highest
NDCG retrieved was NDCG = 0.6614 (k = 30, approximationRank = 20). When train-
ing the DMF model with k = 30 and approximationRank = 20 on the training set and
evaluating it with the test set, the NDCG retrieved was NDCG = 0.6683. All scores, in-
cluding NDCG, recall and novelty for the DMF model and baseline, can be seen in table
4.5.

34

4.2 Demographic Matrix Factorization

Table 4.3: NDCG for di�erent combinations of
approximationRank and k, model: DMF, customer: C. The
highest NDCG written in bold. Remaining hyperparameters set to
default (see table 3.2).

approximationRank
5 10 15 20 25 30

5 0.5526 0.5551 0.5567 0.5555 0.5559 0.555
10 0.5557 0.5554 0.5561 0.5559 0.556 0.5548

k 15 0.5145 0.5153 0.5157 0.5153 0.5146 0.5154
20 0.5117 0.5169 0.5157 0.5172 0.5142 0.5146
25 0.6605 0.6614 0.6607 0.6614 0.661 0.6589
30 0.658 0.6603 0.661 0.6614 0.6593 0.6586

4.2.4 Summary of results

Table 4.4 shows the results from the final evaluations, using the optimal values of
approximationRank for each of customer A, B, and C. In addition to the results retrieved
when evaluating the MF models, the baseline scores are presented. Furthermore, the di�er-
ence between the results from MF and Baseline are presented.

Table 4.4: Summary of results, Matrix Factorization (MF).

Customer A Customer B Customer C

MF approximationRank 38 32 14
NDCG 0.3375 0.3471 0.6031
Recall 0.2973 0.2853 0.7176
Novelty 0.9939 0.9863 0.9677

Baseline NDCG 0.3724 0.3954 0.6603
Recall 0.3177 0.3365 0.7836
Novelty 0 0 0

MF-Baseline NDCG -0.0349 -0.0484 -0.0572
Recall -0.0203 -0.0512 -0.0659
Novelty 0.9939 0.9863 0.9677

Table 4.5 shows the results from the final evaluations, using the optimal values of
approximationRank and k for each of customer A, B, and C. In addition to the results
retrieved when evaluating the DMF models, the baseline scores are presented. Furthermore,
the di�erence between the results from MF and Baseline are presented, just like in table 4.4

35

4. Results

Table 4.5: Summary of results, Demographic Matrix Factorization
(DMF).

Customer A Customer B Customer C

DMF approximationRank 2 20 20
k 30 10 30
NDCG 0.3721 0.3816 0.6683
Recall 0.3392 0.3104 0.787
Novelty 0.9708 0.9867 0.9766

Baseline NDCG 0.3454 0.3603 0.6604
Recall 0.3166 0.3356 0.7836
Novelty 0 0 0

DMF-Baseline NDCG 0.0267 0.0213 0.0079
Recall 0.0226 -0.0252 0.0034
Novelty 0.9708 0.9867 0.9766

36

Chapter 5

Discussion

In this chapter, the results from Chapter 4 will be analyzed. Weaknesses of the model and
the evaluation technique used, and future work will also be discussed.

5.1 Hyperparameters
Figure 4.1, 4.2 and 4.3 show that approximationRank is indeed a hyperparameter that a�ects
the NDCG scores of the MF models. The optimal value of approximationRank was 38, 32,
and 14 for customer A, B, and C. The di�erence in optimal approximationRank might de-
pend on the amount of data that each of the models was trained on. The model for customer
A was trained on 226, 945 user-course pairs, while customer B was trained on 175, 089 pairs,
and customer C on 78, 590 pairs (see table 3.1). It seems like a larger training set requires a
higher value of approximationRank and vice versa. This is not surprising since the value of
approximationRank is the same as the number of latent factors. There are probably more
latent factors to be found in a large data set than in a small data set and vice versa.

In figure 4.4, showing how NDCG varies for di�erent values of approximationRank
when k = 30, the trend is not as obvious as in figure 4.1, where MF was used. The reason
for this might be that the value of approximationRank used was the same for all di�erent
clusters, no matter the cluster sizes. When looking at figure 4.5, showing how NDCG varies
for di�erent values of k when approximationRank = 5, there is no obvious trend either.
The reason for this might be the same: the approximationRank used was the same for all
clusters. As earlier mentioned, the optimal value of approximationRank seems to correlate
with the size of the training set. Since the clusters may vary in size, approximationRank
should probably vary for di�erent clusters.

When it comes to the hyperparameter k, it is important to compare k with realK , where
k is the number of clusters that the model aimed to categorize the users into, while realK is
the final number of clusters.

In appendix B, in table B.1 and table B.2, one can see that the values of realK for customer

37

5. Discussion

A and B are close to the corresponding values of k. In table B.3 on the other hand, the
di�erences between k and realK are in almost all cases very large. What this means is that in
the case of approximationRank = 20 and k = 30, 15 of the 30 initial clusters contained a too
small amount of data, and the users in each of those 15 clusters had to be assigned to another
cluster. The reason why k − realK is so much larger for customer C than for customer A and
B might be that customer C has many fewer personal features (units, roles, competencies,
and certificates), see table 3.1. This makes it inconvenient to try to cluster the users into a
large number of clusters since it will only result in reclustering. Focusing on customer A and
B, it is hard to correlate the optimal value of k to the data presented in table 3.1. The optimal
value of k is apparently not only correlated to the number of personal features, but also to
how many users that have a specific personal feature, which is impossible to determine from
table 3.1.

5.2 MF vs. DMF
When comparing table 4.4 with table 4.5, showing summaries of the final results of Matrix
Factorization (MF) and Demographic Matrix Factorization (DMF), one can see that DMF
performed better than MF for all three customers. This is not surprising since the MF mod-
els were trained only on user-course interactions, while the DMF models were trained on
demographic information in addition to user-course interactions. It could be interesting to
see how the NDCG scores would change if some demographic categories were removed or
added, which is left as future work.

5.3 Differences between customers
When comparing the results in table 4.5, one can see that the di�erence between
NDCG(DMF) and NDCG(Baseline), was larger for A than for B, and larger for B than
for C, meaning that the DMF on customer A performed better than DMF on customer B,
etc. The reason for this is probably the amount of data used for training. A larger amount of
training data results in a better model.

The results retrieved from DMF on customer C, shown in table 4.3, show that the NDCG
scores are very similar to each other. This is due to the big di�erence between k and realK
described in section 5.1. The tables showing the NDCG scores retrieved from grid search are
therefore a bit misleading, especially for customer C.

5.4 The evaluation technique
In the figures in the previous chapter, that is figure 4.1, 4.2, 4.3, 4.4, and 4.5, showing hyperpa-
rameter optimization using cross-validation, one can see that our models never beat baseline.
However, the DMF models beat the baseline in the final evaluation, see table 4.5. The reason
why the final evaluations give higher scores than the evaluation during hyperparameter opti-
mization is probably that the models are trained on a larger data set in the final evaluation (80
% of the full data set), compared to when cross-validation is performed. In cross-validation,

38

5.5 Future work

the models are only trained on 4/5 of 80 % of the full data set. A larger training set usu-
ally results in a more accurate model. It is not surprising that the model NDCG and recall
do not completely out-compete the corresponding baseline scores. If there are five courses
that almost all users take (possibly mandatory courses) it will be impossible for our model’s
NDCG and recall to reach the corresponding scores of the baseline algorithm. The pur-
pose of a recommender system is to make users aware of the existence of courses that they
otherwise would not discover. Ideally, courses that not many users have finished should be
recommended if relevant to the target user. This will not be taken into account by NDCG
and recall. This is the reason why novelty was introduced, even though it should just be used
as a complement to NDCG and recall since novelty itself does not take the relevance of the
recommendations into account. The novelty scores are very close to 1 in all cases, while the
baseline novelty is always 0. Another weakness of the evaluation technique is that for users
that have finished n < 5 courses, 5 − n courses will inevitably get incorrect classifications.
Furthermore, if a user-course pair is present in the test set, but the course is not present in the
train set, this course will not be recommended to the user, because of the cold-start problem.
This will result in a lower evaluation score.

To make the evaluation scores more accurate, it would be convenient to implement on-
line evaluation. However, online evaluation was not possible in this master thesis, since that
would require the recommender system to be integrated into Grade’s platform. For this rea-
son, the evaluation scores were mainly used for optimization of the hyperparameters. To get
an idea of how well the system performed, customer A manually checked the recommenda-
tions (referred to as user study) of eight users of their choice and the feedback was positive.
They thought that the recommendations seemed accurate, with the exception that some of
the recommended courses did not have any active sessions. Courses with no active sessions
were then removed from the recommendations. In addition to customer A’s feedback, the
recommendations of those eight users were analyzed more deeply. These users had similar
user features and when listing the eight users’ finished courses along with their recommended
courses it was possible to see that many of the recommendations for one user could be found
among the other users’ finished courses.

5.5 Future work
The current model handles the cold-start problem when a new user is introduced to the sys-
tem, but not when a new course is introduced. To handle this, content based filtering may
be implemented, as described in section 2.4. In addition to category, length, etc., the de-
scriptions of the courses could be used to find similarities between courses, using Natural
Language Processing. To enhance the model further, the implicit feedback used in this rec-
ommender system might be supplemented by explicit feedback. This would however require
Grade to make their users rate courses to a greater extent. It would also be interesting to
investigate if the current use of implicit feedback could be enhanced, by experimenting with
di�erent values of C. Another suggestion on how to improve the model is to take users’ scores
on functional competencies into account. This would make the system non-IID as described
in section 2.5, which comes with many challenges. Another suggestion of future work is to in-
vestigate if there are better ways to design the hybrid between collaborative and demographic
filtering, resulting in higher evaluation scores.

39

5. Discussion

As discussed in section 5.4, the evaluation techniques used in this master thesis have
weaknesses. To overcome these, a more advanced definition of Serendipity should be used,
involving the relevance of the recommendations. However, o�ine evaluation is not the best
option in this case, and online evaluation should be introduced as soon as the system has been
launched.

To improve the optimization of the recommender system, the hyperparameter
approximationRank should be optimized for each cluster, since there seems to be a correla-
tion between optimal approximationRank and cluster size. Furthermore, hyperparameter
optimization should be automatized in the future, and there may be more optimal search
algorithms than grid search, which was used in this master thesis.

40

Chapter 6

Conclusions

In this master thesis, a recommender system was developed for the E-learning company Grade
AB. Based on user-course interactions, matrix factorization (MF) was used to generate recom-
mendations to the users. In addition, the system was enhanced by also basing the recommen-
dations on several user attributes, referred to as Demographic matrix factorization (DMF).
As expected, DMF performed better than MF. Furthermore, the results of this master thesis
showed that the larger the training data set, the better the evaluation scores. However, the
di�erence of NDCG between the three clients was quite small, and the conclusion is that for
customers with similar size to customer A, B, and C, it is possible to use the recommender
system developed in this master thesis.

The biggest challenge of this project was to find a proper method to evaluate the recom-
mender system. At first sight, it was surprising that the models developed in this master the-
sis only barely beat baseline, always recommending the most popular courses. However, this
could be explained by the weaknesses of the evaluation technique. The goal of a recommender
system is to give surprising, but relevant recommendations. Therefore, always recommend-
ing the most popular courses to users will not be completely satisfactory. The novelty score
was introduced to highlight that NDCG and recall are not enough when evaluating a system.
As a complement, user studies were used, to get a better idea of the performance of the rec-
ommender systems. The user studies gave surprisingly good results, but it is important to
remember that only eight users were asked. To achieve more trustworthy evaluation scores
in the future, online evaluation should be introduced, using for example CTR.

The goal of this project was to develop a recommender system that could generate rele-
vant recommendations, avoiding all administrative work that was needed in Grade’s initial
system. This was achieved by this project, even though there are possibilities to enhance the
performance further, as described in section 5.5.

41

6. Conclusions

42

References

[1] Web-based personalized hybrid book recommendation system. 2014 International Con-
ference on Advances in Engineering Technology Research (ICAETR - 2014), Advances in En-
gineering and Technology Research (ICAETR), 2014 International Conference on, pages 1 – 5,
2014.

[2] Zahra Ahmad. Recommender systems: Explicit feedback, implicit feedback and hybrid
feedback, 2021.

[3] Joeran Beel, Marcel Genzmehr, Stefan Langer, Andreas Nürnberger, and Bela Gipp. A
comparative analysis of o�ine and online evaluations and discussion of research paper
recommender system evaluation. In Proceedings of the international workshop on repro-
ducibility and replication in recommender systems evaluation, pages 7–14, 2013.

[4] Robert M Bell and Yehuda Koren. Lessons from the netflix prize challenge. Acm Sigkdd
Explorations Newsletter, 9(2):75–79, 2007.

[5] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13:284, 2012.

[6] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Jesús Bernal. A collaborative
filtering approach to mitigate the new user cold start problem. Knowledge-Based Systems,
26:225 – 238, 2012.

[7] Longbing Cao. Non-iid recommender systems: A review and framework of recommen-
dation paradigm shifting. Engineering, 2(2):212–224, 2016.

[8] Òscar Celma and Perfecto Herrera. A new approach to evaluating novel recommen-
dations. Proceedings of the 2008 ACM Conference: Recommender Systems, pages 179 – 186,
2008.

[9] Pranay Chandekar. Evaluate your recommendation engine using ndcg.
https://towardsdatascience.com/evaluate-your-recommendation-engine-using-ndcg-
759a851452d1, 2021. Visited on 2021-11-25.

43

https://towardsdatascience.com/evaluate-your-recommendation-engine-using-ndcg-759a851452d1
https://towardsdatascience.com/evaluate-your-recommendation-engine-using-ndcg-759a851452d1

REFERENCES

[10] Jin Chen, Defu Lian, and Kai Zheng. Improving one-class collaborative filtering via
ranking-based implicit regularizer. Proceedings of the AAAI Conference on Artificial Intelli-
gence, 33:37–44, 2019.

[11] Imad Dabbura. K-means clustering: Algorithm, applications, evaluation meth-
ods, and drawbacks. https://towardsdatascience.com/k-means-clustering-algorithm-
applications-evaluation-methods-and-drawbacks-aa03e644b48a. Visited on 2021-11-05.

[12] Michael DelSole. What is one hot encoding and how to do it.
https://medium.com/@michaeldelsole/what-is-one-hot-encoding-and-how-to-do-
it-f0ae272f1179, 2021. Visited on 2021-10-28.

[13] Google Developers. Content-based filtering. https://developers.google.com/machine-
learning/recommendation/content-based/basics, 2021. Visited on 2021-09-05.

[14] Microsoft Docs. matrixfactorizationtrainer.options.alpha field.
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.trainers.
matrixfactorizationtrainer.options.alpha?view=ml-dotnet-preview. Visited on
2021-10-15.

[15] Shweta Goyal. Evaluation metrics for classification models.
https://medium.com/analytics-vidhya/evaluation-metrics-for-classification-models-
e2f0d8009d69, 2021. Visited on 2021-10-15.

[16] J. Gupta and J. Gadge. Performance analysis of recommendation system based on col-
laborative filtering and demographics. 2015 International Conference on Communication,
Information Computing Technology (ICCICT), Communication, Information Computing Tech-
nology (ICCICT), 2015 International Conference on, pages 1 – 6, 2015.

[17] Gawesh Jawaheer, Peter Weller, and Patty Kostkova. Modeling user preferences in rec-
ommender systems : A classification framework for explicit and implicit user feedback.
ACM Transactions on Interactive Intelligent Systems (TiiS), 4(2):1 – 26, 2014.

[18] Mohamed Elyes Ben Haj Kbaier, Hela Masri, and Saoussen Krichen. A personalized
hybrid tourism recommender system. 2017 IEEE/ACS 14th International Conference on
Computer Systems and Applications (AICCSA), Computer Systems and Applications (AICCSA),
2017 IEEE/ACS 14th International Conference on, AICCSA, pages 244 – 250, 2017.

[19] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, 2009.

[20] Denis Kotkov, Shuaiqiang Wang, and Jari Veijalainen. A survey of serendipity in rec-
ommender systems. Knowledge-Based Systems, 111, 08 2016.

[21] Siping Liu, Xiaohan Tu, and Renfa Li. Unifying explicit and implicit feedback for top-n
recommendation. 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(,
Big Data Analysis (ICBDA), 2017 IEEE 2nd International Conference on, pages 35 – 39, 2017.

[22] Shuyu Luo. Intro to recommender system: Collaborative filtering.
https://towardsdatascience.com/intro-to-recommender-system-collaborative-filtering-
64a238194a26, 2021. Visited on 2021-09-20.

44

https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a
https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a
https://medium.com/@michaeldelsole/what-is-one-hot-encoding-and-how-to-do-it-f0ae272f1179
https://medium.com/@michaeldelsole/what-is-one-hot-encoding-and-how-to-do-it-f0ae272f1179
https://developers.google.com/machine-learning/recommendation/content-based/basics
https://developers.google.com/machine-learning/recommendation/content-based/basics
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.trainers.matrixfactorizationtrainer.options.alpha?view=ml-dotnet-preview
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.trainers.matrixfactorizationtrainer.options.alpha?view=ml-dotnet-preview
https://medium.com/analytics-vidhya/evaluation-metrics-for-classification-models-e2f0d8009d69
https://medium.com/analytics-vidhya/evaluation-metrics-for-classification-models-e2f0d8009d69
https://towardsdatascience.com/intro-to-recommender-system-collaborative-filtering-64a238194a26
https://towardsdatascience.com/intro-to-recommender-system-collaborative-filtering-64a238194a26

REFERENCES

[23] Xin Luo, Dexian Wang, MengChu Zhou, and Huaqiang Yuan. Latent factor-based rec-
ommenders relying on extended stochastic gradient descent algorithms. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 51(2):916–926, 2021.

[24] Prem Melville and Vikas Sindhwani. Recommender systems. Encyclopedia of machine
learning, 1:829–838, 2010.

[25] Aditya Mishra. Metrics to evaluate your machine learning algorithm.
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-
algorithm-f10ba6e38234, 2018. Visited on 2021-09-30.

[26] Caleb Neale. Cross validation: A beginner’s guide.
https://towardsdatascience.com/cross-validation-a-beginners-guide-5b8ca04962cd,
2021. Visited on 2021-10-20.

[27] Netflix. Netflix prize data. https://www.kaggle.com/netflix-inc/netflix-prize-data, 2021.
Visited on 2021-12-15.

[28] Lionel Ngoupeyou Tondji. Web recommender system for job seeking and recruit-
ing. https://www.researchgate.net/figure/Content-based-filtering-vs-Collaborative-
filtering-Source_fig5_323726564, 02 2018.

[29] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N. Liu, Rajan Lukose, Martin Scholz, and
Qiang Yang. One-Class Collaborative Filtering. 2008.

[30] Sayak Paul. Hyperparameter optimization in machine learning models.
https://www.datacamp.com/community/tutorials/parameter-optimization-machine-
learning-models, 2018. Visited on 2021-11-19.

[31] Surya Priy. Clustering in machine learning - geeksforgeeks.
https://www.geeksforgeeks.org/clustering-in-machine-learning/, 2021. Visited on
2021-11-05.

[32] Shini Renjith and C Anjali. A personalized mobile travel recommender system us-
ing hybrid algorithm. 2014 First International Conference on Computational Systems and
Communications (ICCSC), Computational Systems and Communications (ICCSC), 2014 First
International Conference on, pages 12 – 17, 2014.

[33] Baptiste Rocca. Introduction to recommender systems.
https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada,
2021. Visited on 2021-09-28.

[34] Iateilang Ryngksai and L Chameikho. Recommender systems: Types of filtering tech-
niques. International Journal of Engineering Research Technology, 3(11), 2014.

[35] J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collaborative filtering
recommender systems. In The adaptive web, pages 291–324. Springer, 2007.

[36] S. Surekha. A personalized recommendation system using memory-based collaborative
filtering algorithm. In 2018 International Conference on Current Trends towards Converging
Technologies (ICCTCT), pages 1–6, 2018.

45

https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://towardsdatascience.com/cross-validation-a-beginners-guide-5b8ca04962cd
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://www.researchgate.net/figure/Content-based-filtering-vs-Collaborative-filtering-Source_fig5_323726564
https://www.researchgate.net/figure/Content-based-filtering-vs-Collaborative-filtering-Source_fig5_323726564
https://www.datacamp.com/community/tutorials/parameter-optimization-machine-learning-models
https://www.datacamp.com/community/tutorials/parameter-optimization-machine-learning-models
https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

REFERENCES

[37] Dang Thai Thinh, Duong Trang Hai, and Nguyen Hong Son. A hybrid framework for
enhancing correlation to solve cold-start problem in recommender systems. the 2014
Seventh IEEE Symposium on Computational Intelligence for Security and Defense Applications
(CISDA), Computational Intelligence for Security and Defense Applications (CISDA), 2014 Sev-
enth IEEE Symposium on, pages 1 – 5, 2014.

[38] Saúl Vargas and Pablo Castells. Rank and relevance in novelty and diversity metrics
for recommender systems. Proceedings of the Fifth ACM Conference: Recommender Systems,
pages 109 – 116, 2011.

[39] AFOUDI Yassine, LAZAAR Mohamed, and Mohammed Al Achhab. Intelligent recom-
mender system based on unsupervised machine learning and demographic attributes.
Simulation Modelling Practice and Theory, 107, 2021.

46

Appendix A

Additional results, MF

Figure A.1: Recall for di�erent values of approximationRank,
model: MF, customer: A.

47

A. Additional results, MF

Table A.1: NDCG, recall and novelty for varying values of
approximationRank, model: MF, customer: A

approximationRank k NDCG recall novelty
2 1 0.2078 0.2418 0.8303
4 1 0.1881 0.2043 0.9579
6 1 0.1992 0.2007 0.9754
8 1 0.2088 0.2121 0.9828
10 1 0.2175 0.2209 0.9854
12 1 0.2307 0.234 0.9871
14 1 0.2407 0.2439 0.9881
16 1 0.2503 0.2532 0.989
18 1 0.2632 0.265 0.9899
20 1 0.2569 0.2549 0.9905
22 1 0.2651 0.2621 0.9912
24 1 0.2705 0.2654 0.9918
26 1 0.276 0.2697 0.9922
28 1 0.2804 0.2711 0.9927
30 1 0.2837 0.2732 0.993
32 1 0.2867 0.2751 0.9934
34 1 0.2884 0.2752 0.9936
36 1 0.2896 0.2758 0.9938
38 1 0.2909 0.2753 0.9941
40 1 0.29 0.2734 0.9942
42 1 0.2814 0.2606 0.9943
44 1 0.2802 0.2568 0.9944
46 1 0.2777 0.2527 0.9946
48 1 0.264 0.2406 0.9947
50 1 0.2485 0.2268 0.9949
52 1 0.2346 0.2143 0.995
54 1 0.2301 0.2099 0.9951
56 1 0.2273 0.2064 0.9952
58 1 0.2253 0.205 0.9953
60 1 0.2233 0.2029 0.9953

48

Table A.2: NDCG, recall and novelty for varying values of
approximationRank, model: MF, customer: B

approximationRank k NDCG recall novelty
2 1 0.1656 0.1659 0.8007
4 1 0.2243 0.2259 0.9357
6 1 0.2343 0.2338 0.9622
8 1 0.2432 0.2407 0.9726
10 1 0.2752 0.2629 0.976
12 1 0.3105 0.2877 0.9787
14 1 0.317 0.2935 0.9805
16 1 0.3176 0.2939 0.9819
18 1 0.3196 0.2951 0.9825
20 1 0.3177 0.2943 0.9835
22 1 0.3184 0.2938 0.9842
24 1 0.3184 0.2947 0.9847
26 1 0.3202 0.2948 0.9851
28 1 0.3186 0.2942 0.9854
30 1 0.3172 0.2935 0.9857
32 1 0.3254 0.3019 0.9857
34 1 0.3249 0.3015 0.986
36 1 0.3223 0.2994 0.9863
38 1 0.3215 0.2978 0.9863
40 1 0.3193 0.2958 0.9864
42 1 0.317 0.2923 0.9866
44 1 0.3143 0.29 0.9867
46 1 0.3138 0.2914 0.9868
48 1 0.3123 0.2897 0.9869
50 1 0.3116 0.2894 0.987
52 1 0.3096 0.2875 0.9872
54 1 0.3069 0.2851 0.9872
56 1 0.3066 0.2866 0.9872
58 1 0.305 0.2843 0.9873
60 1 0.3044 0.2847 0.9874

49

A. Additional results, MF

Table A.3: NDCG, recall and novelty for varying values of
approximationRank, model: MF, customer: C

approximationRank k NDCG recall novelty
2 1 0.6078 0.7201 0.6602
4 1 0.6103 0.7249 0.9037
6 1 0.6122 0.7285 0.9405
8 1 0.613 0.7297 0.9512
10 1 0.6139 0.7319 0.9586
12 1 0.6144 0.7327 0.9641
14 1 0.615 0.7333 0.9666
16 1 0.6148 0.7332 0.9689
18 1 0.6147 0.7333 0.9701
20 1 0.6149 0.7337 0.9716
22 1 0.6143 0.7328 0.9725
24 1 0.6142 0.7328 0.9728
26 1 0.6138 0.7322 0.9734
28 1 0.6136 0.732 0.9736
30 1 0.6132 0.7316 0.9738
32 1 0.5932 0.7133 0.9742
34 1 0.5933 0.7134 0.9744
36 1 0.5929 0.713 0.9745
38 1 0.5927 0.7128 0.9747
40 1 0.5925 0.7125 0.9747
42 1 0.5923 0.7123 0.9749
44 1 0.5923 0.7125 0.9749
46 1 0.5922 0.7123 0.9749
48 1 0.592 0.7119 0.9749
50 1 0.592 0.7119 0.9751
52 1 0.4562 0.7191 0.9753
54 1 0.456 0.7189 0.9755
56 1 0.456 0.7191 0.9753
58 1 0.456 0.7188 0.9754
60 1 0.456 0.7189 0.9754

50

Appendix B

Additional results, DMF

51

B. Additional results, DMF

Table B.1: Grid search, model: DMF, customer: A.

approximationRank k realK NDCG recall novelty
5 5 5 0.2666 0.2485 0.9803
5 10 10 0.2774 0.2669 0.9827
5 15 14 0.2951 0.2814 0.9841
5 20 18 0.2849 0.2746 0.9843
5 25 23 0.3083 0.2815 0.9855
5 30 26 0.3215 0.2965 0.9869
10 5 5 0.2865 0.2808 0.9886
10 10 10 0.2459 0.2449 0.9888
10 15 15 0.2884 0.2871 0.9893
10 20 19 0.3021 0.2979 0.9907
10 25 24 0.2922 0.2885 0.9907
10 30 28 0.2828 0.2827 0.9902
15 5 5 0.2753 0.2737 0.9912
15 10 10 0.3029 0.2972 0.9913
15 15 15 0.2876 0.2854 0.9919
15 20 18 0.3127 0.3052 0.9923
15 25 20 0.2718 0.2712 0.9922
15 30 25 0.3053 0.2991 0.9923
20 5 4 0.286 0.2769 0.9922
20 10 10 0.3103 0.2995 0.9932
20 15 14 0.298 0.2903 0.9933
20 20 18 0.321 0.3089 0.9936
20 25 19 0.3056 0.2953 0.9935
20 30 26 0.3155 0.3028 0.9939
25 5 4 0.2872 0.2722 0.9933
25 10 9 0.3096 0.2941 0.9937
25 15 13 0.299 0.2864 0.994
25 20 20 0.2778 0.27 0.9943
25 25 23 0.2763 0.2658 0.9947
25 30 28 0.2977 0.2821 0.9948
30 5 5 0.2648 0.2513 0.9944
30 10 9 0.2454 0.2347 0.9946
30 15 13 0.2655 0.2543 0.9946
30 20 19 0.2669 0.2518 0.9949
30 25 21 0.2782 0.2649 0.9951
30 30 23 0.2934 0.2763 0.995

52

Table B.2: Grid search, model: DMF, customer: B.

approximationRank k realK NDCG recall novelty
5 5 4 0.3407 0.3176 0.9717
5 10 8 0.3521 0.3267 0.9742
5 15 13 0.3339 0.3097 0.9765
5 20 18 0.3476 0.3237 0.9787
5 25 24 0.3454 0.3196 0.9802
5 30 30 0.3387 0.3129 0.9806
10 5 4 0.3295 0.3065 0.9815
10 10 8 0.3388 0.3137 0.981
10 15 14 0.347 0.3187 0.9839
10 20 20 0.3492 0.3204 0.9846
10 25 24 0.3176 0.2949 0.9846
10 30 24 0.3428 0.3144 0.9844
15 5 5 0.3246 0.3003 0.9842
15 10 7 0.3159 0.2914 0.9848
15 15 14 0.3495 0.3213 0.9852
15 20 19 0.3349 0.3063 0.9866
15 25 25 0.3162 0.2898 0.9872
15 30 28 0.3116 0.2863 0.9872
20 5 4 0.3159 0.2942 0.9842
20 10 9 0.3531 0.3238 0.9861
20 15 14 0.3229 0.2979 0.9867
20 20 18 0.3196 0.2943 0.9867
20 25 23 0.3198 0.2929 0.9876
20 30 25 0.3155 0.2901 0.9874
25 5 5 0.3365 0.3105 0.9857
25 10 9 0.309 0.2866 0.9864
25 15 15 0.312 0.2869 0.9876
25 20 18 0.3062 0.2813 0.988
25 25 24 0.312 0.2874 0.9876
25 30 27 0.3037 0.2798 0.9874
30 5 5 0.3294 0.3043 0.9861
30 10 10 0.2919 0.2696 0.9872
30 15 14 0.317 0.2905 0.9873
30 20 19 0.2915 0.2725 0.9873
30 25 25 0.2788 0.2575 0.9881
30 30 27 0.2831 0.2632 0.9878

53

B. Additional results, DMF

Table B.3: Grid search, model: DMF, customer: C.

approximationRank k realK NDCG recall novelty
5 5 4 0.5526 0.7738 0.9535
5 10 10 0.5557 0.7791 0.9643
5 15 7 0.5145 0.7749 0.9642
5 20 7 0.5117 0.7699 0.9546
5 25 11 0.6605 0.7816 0.9645
5 30 16 0.658 0.7775 0.9609
10 5 3 0.5551 0.7783 0.9663
10 10 4 0.5554 0.7788 0.967
10 15 9 0.5153 0.7762 0.9667
10 20 13 0.5169 0.7785 0.9713
10 25 18 0.6614 0.7836 0.9727
10 30 17 0.6603 0.7821 0.9697
15 5 4 0.5567 0.7816 0.971
15 10 5 0.5561 0.7806 0.9714
15 15 3 0.5157 0.7782 0.9702
15 20 10 0.5157 0.7777 0.9721
15 25 9 0.6607 0.7833 0.9736
15 30 14 0.661 0.7843 0.9739
20 5 3 0.5555 0.7799 0.9721
20 10 3 0.5559 0.7805 0.9721
20 15 8 0.5153 0.7775 0.9725
20 20 13 0.5172 0.7811 0.9749
20 25 12 0.6614 0.7854 0.9732
20 30 15 0.6614 0.7845 0.9731
25 5 3 0.5559 0.7812 0.9728
25 10 7 0.556 0.7815 0.9731
25 15 8 0.5146 0.7771 0.9746
25 20 13 0.5142 0.7766 0.9748
25 25 12 0.661 0.7839 0.9732
25 30 11 0.6593 0.7805 0.9735
30 5 4 0.555 0.7801 0.9736
30 10 6 0.5548 0.7801 0.9746
30 15 11 0.5154 0.7782 0.9749
30 20 9 0.5146 0.7765 0.9746
30 25 14 0.6589 0.7799 0.9742
30 30 19 0.6586 0.7798 0.9751

54

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-01-17

EXAMENSARBETE Designing and implementing a recommender system for an E-learning platform
STUDENT Astrid Ekman
HANDLEDARE Rasmus Ros (LTH)
EXAMINATOR Elin Anna Topp (LTH)

Rekommendationssystem inom
E-learning

POPULÄRVETENSKAPLIG SAMMANFATTNING Astrid Ekman

I takt med digitaliseringen blir det allt svårare för användare att själva orientera sig i det
ökande informationsflödet. Automatiska rekommendationssystem kan vara ett sätt att
underlätta för användarna att hitta relevanta produkter, men rekommendationssystem
inom E-learning är hittills relativt outforskat.

Det har gjorts många studier på rekommenda-
tionssystem inom E-handel och underhållning, och
idag finns sådana system på företag såsom Ama-
zon, Netflix och Spotify. Studier om rekommenda-
tionssystem för E-learning plattformar är däremot
inte särskilt förekommande, varför det här exam-
ensarbetet fokuserat på just detta.

Den enklaste formen av rekommendationssys-
tem listar de mest populära produkterna för
samtliga användare, medan andra rekommenda-
tionssystem är användarspecifika. De vanligaste
formerna av rekommendationssystem är Collab-
orative, Demographic och Content based filter-
ing. Collaborative filtering använder enbart in-
formation om vilka användare som konsumerat
vilka produkter, kurser i det här fallet. Genom
så kallad matrisfaktorisering går det att hitta un-
derliggande preferenser hos användare, som sedan
går att använda för att generera nya rekommen-
dationer. Demographic filtering å andra sidan,
använder personlig information för att hitta lika
användare, och kan därigenom generera relevanta
rekommendationer. Content based filtering hit-
tar istället liknande produkter, till exempel genom
att titta på produktbeskrivningar, för att skapa
rekommendationer. Dessa tre delar kan kom-
bineras för att generera relevanta rekommenda-

tioner. I detta projekt låg fokus på Collabora-
tive filtering och Demographic filtering. Först de-
lades användarna in i olika grupper baserat på
enhetstillhörighet, rollbefattning, samt kompen-
tenser. Därefter utfördes Collaborative filtering
på respektive grupp.

Modellen evaluerades automatiskt och resul-
taten jämfördes sedan med resultaten från en
modell där enbart Collaborative filtering använ-
des. Kombinationen Collaborative och Demo-
graphic filtering gav alltid mer relevanta rekom-
mendationer än när enbart Collaborative filter-
ing användes. Vidare blev rekommendationerna
bättre ju mer data (användare-kurs par) modellen
tränades på, vilket generellt gäller alla maskinin-
lärningsproblem. Den automatiska evalueringen
kompletterades med att låta en kund manuellt
titta på de rekommendationer som genererades för
åtta liknande användare. Responsen var positiv,
och det gick att se att många av rekommenda-
tionerna för en användare gick att återse i övriga
användares redan avslutade kurser.

Sammanfattningsvis resulterade examensar-
betet i ett rekommendationssystem som gener-
erar relevanta rekommendationer, vilket förhopp-
ningsvis leder till att fler användare läser fler rel-
evanta kurser och därmed ökar sin kompetens.

	Introduction
	Related Work
	Grade AB
	Current recommendations

	Research questions and outline

	Theory
	User feedback
	Collaborative filtering
	Memory based CF
	Model based CF: Matrix factorization
	One-class collaborative filtering

	Demographic filtering
	Clustering techniques

	Content based filtering
	Non transitive recommender systems
	Hybrids
	Evaluation of the recommender system
	Main Evaluations techniques
	Metrics
	Cross-validation
	Hyperparameter optimization

	Method
	Data gathering
	Interview with customer
	Data set
	Train and Test split

	Model selection
	Baseline algorithm
	Evaluation

	Results
	Matrix Factorization
	Customer A
	Customer B
	Customer C

	Demographic Matrix Factorization
	Customer A
	Customer B
	Customer C
	Summary of results

	Discussion
	Hyperparameters
	MF vs. DMF
	Differences between customers
	The evaluation technique
	Future work

	Conclusions
	References
	Additional results, MF
	Additional results, DMF
	Tom sida

