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Abstract 

Fix-focal cameras require careful alignment of the sensor relative to the lens during 

assembly in order to produce a sharp image. Axis developed wide- and fish-eye 

network cameras are, for a number of reasons, focused at infinity when aligned. 

This thesis develops the software for a new inhouse tool to be used at Axis to analyze 

the back-focus effect on the camera’s focus characteristics. The tool is a machine 
called Modus, which uses a variable focus collimator to measure the sharpness of 

objects at distances not limited to infinity. 

The main purpose of this new tool is to answer the following questions: 

• How can knowledge of the back-focus effects for a given camera be 

harnessed to decide on back-focus offsets to achieve desired focus 
characteristics during alignment? 

• What are the sensor placement tolerances to achieve a certain image 

sharpness? Can this information be used to decide between active or 

passive alignment? 

A fish-eye camera, Koi, is analyzed with the new software written for Modus. The 

results show that the focus moves from infinity to 0.3 m within a back-focus window 

of 5 µm, with focus changes of ± 0-5%. The depth of focus for a number of image 

sharpness levels is also measured. 

The limitation of the applicability of the results for the Koi camera lie in the sample 

size. In this thesis only one unit of the camera is analyzed. In order to draw 

conclusions about appropriate back-focus offsets a larger sample size in needed. 

 

Keywords: Focus, Image sharpness, Back-focus, Alignment, Modus, Collimator, 
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Sammanfattning 

Vid sammansättningen av kameror ställs höga krav på finjustering av sensorn och 

objektivets relativa position för att den resulterande bilden ska bli skarp. Axis-

utvecklade nätverkskameror fokuseras, av olika anledningar, i oändligheten. 

Examensarbetet utvecklar mjukvara för ett nytt verktyg, Modus, som ska användas 

in-house för att undersöka effekten av kamerans backfokus på bildens skärpa. 
Verktyget är en maskin som är utrustad med en justerbar kollimator som gör det 

möjligt att mäta skärpan av objekt som även är närmare än oändligheten. 

Huvudsyftet med det nya verktyget är att kunna samla in data som ska besvara de 

följande frågorna: 

• Hur kan information om effekterna av backfokus användas för att 
bestämma lämpliga backfokus-offsets ute i produktion för att på så vis 

uppnå önskvärd bildskärpa för en kamera vid olika objektavstånd? 

• Vad är toleransen för placering av sensorn för att uppnå en specifik 

bildskärpa? Kan denna information användas för att bestämma om en 

produkt ska sammanfogas med aktiv eller passiv alignment? 

En fish-eye kamera, Koi, analyseras med det nyutvecklade Modusverktyget. 

Resultaten visar att fokus skiftar från oändligheten till 0.3 m då backfokus ändras 
med 5 µm. Skärpan förändras ± 0-5 % för alla objektavstånd. Toleransen mäts också 

upp vid ett antal olika nivåer av bildskärpa. 

Begränsningen av resultatets användning ligger främst i provstorleken. Endast en 

enhet av Koi-kameran har analyserats. För att kunna uttala sig om lämpliga 

backfokus-offsets behövs analyser utav fler enheter. 

 

Nyckelord: Fokus, Bildskärpa, Backfokus, Alignment, Modus, Kollimator 
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1 Introduction

1.1 Background

1.1.1 Axis Communications

Axis Communications is a technology company mainly focused on the development
of network camera systems and peripherals intended for surveillance. The product
catalog is substantial, ranging from basic fixed-focal cameras, pan-tilt-zoom cameras
, thermal imaging cameras to explosion-protected cameras. Development takes place
in Lund, Sweden with more than 2000 employees.

The production of the cameras is outsourced to electronics manufacturing services-
companies (EMS) around the world. While the physical production takes place here,
much of the production equipment is specialized and therefore developed internally
at Axis. This task falls upon the Operations-department, which oversees the process
of readying a product for mass production. Production Test System (PTS) is a part
of Operations, developing software and hardware for camera assembly- and testing
stations that are placed at the EMS.

1.1.2 Alignment

During the assembly of the camera, the camera sensor and lens must be carefully
aligned to produce a sharp image. The alignment can be divided into three different
actions on the sensor’s position: tilting it about the x- and y-axis, positioning it along
the z-axis and centering it on the x- and y-axis interception. Figure 1.1 illustrates the
coordinate system used. This figure shows the sensor tilted about the x-axis, but
similarly the sensor can be tilted about the y-axis. The distance between the lens and
the sensor along the z-axis is called the back-focus.

Axis cameras are aligned using one of two methods: passive- or active alignment.
Passive alignment is also known as mechanical alignment because the sensor and
lens are attached mechanically at a predetermined location relative to one another,
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Figure 1.1: Coordinate system used when discussing alignment

without taking the resulting image into account. Active alignment on the other hand,
takes the resulting image into account by analyzing the picture and making small
adjustments to the sensor-lens alignment to find the optimal location for that specific
unit. As a result, small differences in each sensor or lens unit can be accommodated.
In short: passive alignment results in each unit produced having the same alignment,
while active alignment results in each unit produced having the same focus charac-
teristics (ideally).

For the purpose of active alignment, PTS has developed a production machine: IBAS
and its successor IBAS 2, where IBAS is an acronym for Image Based Alignment
System. The sensor and lens are inserted into separate fixtures which can move
relative to each another. Five collimators focused at infinity each project a target
cross-hair onto the lens. The collimators are placed such that the cross-hairs are
imaged onto the sensor’s center and towards the four corners. The back-focus and
tilt of the sensor relative the lens is then adjusted such that an acceptable level of
focus is achieved at all positions. The sensor and lens are then joined with a UV-
curing adhesive. Figure 1.2 shows an IBAS 2 located at the office in Lund.

Each camera that is assembled in IBAS 2 is aligned such that it’s focused at infinity.
For a specific lens the depth of field is unique, i.e. the distance between the nearest
and farthest objects with acceptable focus, see section 2.2 for more details. The
farthest object is infinitely far away and the nearest object somewhere closer. Since
the alignment is with collimators focused at infinity, this is where the focus will be
the best, and dropping off for closer objects.
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Figure 1.2: IBAS 2 machine
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1.1.3 Modus

Without in-depth knowledge of the optics it can be difficult to determine the focus
characteristics at object distances closer than infinity. For this purpose, a machine
called Modus has been developed by PTS to analyze the focus characteristics of a
camera at object distances anywhere from a few decimeters all the way to infinity.
This is achieved with a variable focus collimator, described more in detail in section
2.1.1.

In addition to variable object distances, Modus can also offset the object from the
optical axis to simulate picturing objects which lie towards the edge of the field of
view. For example, a wide-angle camera might have a field of view of 80◦, and with
Modus it’s possible to analyze the focus across this entire range.

Figure 1.3 shows the inside of the Modus machine. The variable focus collimator
sits at the top, projecting a cross-hair down on the camera. Figure 1.4 shows how the
collimator can rotate about the y-axis to simulate objects offset from the optical axis
of the lens. The optical axis of the lens coincides with the z-axis.

1.1.3.1 Recent additions to Modus

Modus was previously limited to analyzing optical assemblies, i.e. sensors and
lenses which have been aligned and adhesively joined in IBAS 2. The collimator
could scan through a desired range of object distances and the camera took a picture
at each object distance. The focus score (described more in detail in section 2.4) was
calculated and it’s possible to find where the camera is actually focused. There is
some shrinkage of the adhesive as it cures, which can offset the alignment between
the sensor and the lens and cause the unit to fail subsequent focus tests which are
performed at the EMS during production.

Recently installed mechanical additions to Modus have made it possible to mount a
sensor and lens in the machine prior to them being glued together. This new hard-
ware consists of an assembly of components known as the sensor stack, pictured in
figure 1.5. The sensor stack consists of two goniometers stacked on one another.
A goniometer is an instrument that can rotate the attached object precisely about
one axis. The rotation center of the goniometers is designed such that it coincides
with the camera sensor, when it’s attached to its fixture, as seen in figure 1.6. This
allows the sensor to rotate about the x- and y-axis in the plane of the sensor. This
picture also shows the attachment of the blue compressed air tubing, which, through
the routing inside the sensor fixture, creates a low pressure that holds the sensor in
place.

The entire sensor stack moves along the z-axis by a linear actuator that is situated

4



Figure 1.3: Interior of the Modus machine, showing the collimator, an installed
camera and the definition of the machines coordinate system

Figure 1.4: Rotation of the collimator about the y-axis, -70◦, 0◦ and +70◦ re-
spectively

below. The sensor stack is also fixed to a X-Y translation table which allows trans-
lation of the sensor along the x- and y-axis and thus the possibility of centering it on
the optical axis.

Because Modus was not originally designed with the intention of including a sensor
stack, geometrical constraints have imposed some limitations on the movement of

5



the motors to avoid physical collision. Figure 1.4 illustrated the angular limitation
of the collimator rotation about the y-axis. The rotation is limited to ± 70◦. Since
the alignment procedure measures four corners, the collimator must rotate in both
directions and thus the preceding comment means that the alignment procedure is
carried out at ±70◦. The following list summarizes the currently existing degrees of
freedom in Modus.

• Translate sensor along z-axis

• Translate sensor along x- and y-axis

• Rotate sensor + lens about z-axis

• Tilt sensor about x- and y-axis

• Rotate the collimator about y-axis

• Rotate the collimator about z-axis

• Move the cross-hair in collimator to simulate object from 15 cm to infinity

Figure 1.5: The sensor stack
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Figure 1.6: The sensor stack with the sensor fixture mounted on top

1.2 Assignment

1.2.1 Problem formulation & purpose

The objective of this thesis project is to develop a method which can experimentally
find the focus characteristics of a camera prior to gluing the sensor to the lens. The
focus characteristics of the camera encompasses the relationship between the focus
score (image sharpness) and the parameters listed below. The object distance, angu-
lar offset and rotational symmetry parameters can already be analyzed in Modus for
a glued unit.

• The back-focus

• The object distance

• The object angular offset from the optical axis, see figure 1.1 above

• The rotational symmetry of the camera, i.e. how the focus of an object offset
from the optical axis varies as the lens rotates about the z-axis

The aim is that gathering data about the relationship between the focus and the above
mentioned parameters should inform the decision making about whether to:

• Offset the back-focus from the aligned position found by IBAS 2 in order to
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improve the focus for near-field objects, i.e. find a middle ground where the
focus is above an acceptable level for the entire depth of field

• Use passive or active alignment for a camera, based on the back-focus tol-
erance required to achieve a certain image sharpness for objects at different
distances

This will be achieved by making use of the new hardware additions to Modus that
were described in section 1.1.3.1. The thesis works includes the software develop-
ment for the new degrees of freedom, the gathering of focus data from one type of
Axis camera, and the analysis of this data to answer the questions posed above.

The intention is that this new version of Modus will be used in-house during the
development of new cameras to decide on the appropriate alignment method and
settings in a production environment.

1.2.2 Limitations

This thesis is limited to the software development of Modus and the collection and
analysis of optical data for a given camera. The development of new hardware has
been done by a mechanical engineer at Axis and is not included in this report. The
current state of the hardware in Modus was described in section 1.1.3.1.

In addition to this, the type of camera that is to be analyzed within the scope of this
thesis is limited to fix-focal lenses, with neither variable focal length nor focus. Such
varifocal lenses introduce two more parameters defining the focus characteristics and
thus raises the complexity and the amount of data that can be collected.

1.3 Report disposition

This report begins with an introduction of some theoretical concepts of optics that are
relevant for understanding the work done and results presented in this report.

The following part of the report describes the methodology followed throughout the
project. Descriptions of software development principles followed and the tools used
to develop the software are included. This section also introduces the camera that
was chosen for analysis, and what types of focus scans were performed on it using
the newly developed software.

The result section describes how the new software for Modus works, how it is or-
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ganized and the user interface that was developed for interacting with the machine.
Plots of the focus score relationship to back-focus, object distance and angular offset
are presented for the specific camera analyzed. Parts of the complete data collection
are extracted to separate plots for easier analysis.

The report concludes with a discussion on the result, how it can be used and what
should be improved. A number of ideas for future development that could not be
realized within the constraints of this thesis are also presented. Finally, the thesis is
summarized in the conclusion, reviewing the results in terms of the goals presented
in this introductory chapter.
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2 Theory

2.1 Fundamental optics

Geometrical optics is an area of physics which models light as straight rays, where
the direction of the rays can be altered by refraction or reflection. It is a simplifi-
cation where the wavelength of light is mathematically zero and the wave-related
phenomena such as diffraction and interference are non-existent.

Despite these simplifications, geometrical optics is useful in modeling how thin
lenses converge or diverge light rays. Central to geometrical optics is Snell’s law
of refraction and the thin lens approximation. The former describes how a light ray
is refracted when passing from one medium to another, and is given by equation
2.1. n1 and n2 are the refractive indices of the respective mediums, i.e. material
constants, while I1 and I2 is the angle of the light ray relative to the normal in the
respective medium.

n1sin(I1) = n2sin(I2) (2.1)

By analyzing the refraction of a ray through a spherical surface, restricting the anal-
ysis to paraxial rays and neglecting the thickness of the lens, the well-known thin
lens formula is derived:

1

a
+

1

b
=

1

f
(2.2)

Here, a and b is the distance from the lens to the object and the image, see figure
2.1. f is the focal length of the lens. Convention dictates that the object position a,
is positive when left of the lens and the image position b, is positive when right of
the lens. The material dependency, i.e. refractive index n enters in the definition of
the focal length:

1

f
= (n− 1)

[
1

R1
− 1

R2

]
(2.3)
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where R1, R2 are the radii of the front and back surface of the lens, respectively, see
figure 2.2.

The above theory and equations were collected from [1].

Figure 2.1: Parameters in the Thin lens formula[2]

Figure 2.2: Parameters in the definition of focal length[2]

2.1.1 Collimation

Parallel rays incident on a convex (positive) lens converge at a single point at the
lens’ focus. The distance from the focus to the lens is the focal length, f, of that lens.
Rays incident on a convex lens, originating from the front focus of the lens will be
parallel after the lens. This collecting of light rays and emitting them in parallel rays
is known as collimation.
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Collimation can be achieved with a device called a collimator. A light source illumi-
nates a reticle inside the collimator which in turn is projected out of the collimator
by a convex lens. The collimators used in the machines developed by PTS all have
reticles with a cross-hair pattern. Placing the cross hair at the lens’ front focus point
results in parallel rays leaving the collimator and to an observer the cross hair will
appear to be infinitely far away.

A variable focus collimator is a collimator where the position of the cross hair rela-
tive to the internal lens can be changed and consequently the observed distance to the
cross hair can be varied from a few decimeters to infinity. This type of variable col-
limator is installed in Modus. Collimators are available with different focal lengths,
the one used in Modus has a focal length of 25 mm. Figure 2.5 shows a cross section
of the components inside a variable focus collimator, the figure was retrieved from
the installation manual of the collimator in question.

The defocus of the collimator is the offset of the cross-hair from the collimator lens’
focus, such that a negative defocus implies that the cross-hair is located closer to the
collimator lens than its focus point, see equation 2.4 and figures 2.3 - 2.4.[3]

defocus = ac − fc (2.4)

Figure 2.3: Cross section of a variable collimator

Defocus is directly connected to the object distance the cross-hair would appear to
be at for a person or camera looking down the barrel of the collimator. The equation
that relates the defocus to the object distance can be derived by considering equation
2.2 for a two lens system where the image bc of the collimator lens becomes the
object aL for the camera lens, plus the distance, d between the two lenses:

bc =
acfc
ac − fc

=⇒ aL = d− bc (2.5)

12



Figure 2.4: Cross section of a variable collimator

By combining equation 2.4 and 2.5, the relationship between the defocus and camera
object distance, aL is given by equation 2.6.

aL =
fc(fc −Defocus)

Defocus
+ d (2.6)

Figure 2.5: Cross section of a variable collimator
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2.2 Camera systems

Cameras consists of one or more lenses that focus light onto a light sensitive surface.
In digital cameras, this light sensitive surface is an electronic image sensor, with the
two most common types being charged couple device (CCD) and CMOS sensor. The
theory and equations presented in this subsection are retrieved from [4].

Three parameters determine the exposure of a digital image: the camera aperture
(iris), shutter speed and sensor gain (ISO). The aperture is a physical opening inside
the lens which restricts the amount of light that can pass through. The relative size
of the aperture is given by the f-number f/N , which is defined by equation 2.7,
where N is the f-number, f the focal length and D the diameter of the aperture
opening. This equation shows that for a given physical aperture size (iris) the f-
number decreases with increasing focal length.

N ≡ f

D
(2.7)

2.2.1 Depth of field

The depth of field (DOF) of a camera is the distance between the nearest and farthest
objects that can be imaged with acceptable focus. Acceptable focus is a subjective
value, often defined by the size of the circle of confusion (CoC). The circle of con-
fusion is the size of an image of a point source. Lenses are imperfect in reality and
therefore even with an infinitesimal point source, its image will be a circle with fi-
nite diameter. The size of the circle of confusion is different for different lenses and
sensors and is determined as the largest circle which will still be perceived by the
human eye as a point, when viewed from a standardized viewing distance. The size
of the circle of confusion for many camera systems is on the scale of 0.01 - 0.03
mm.

DOF is mathematically defined in terms of the CoC as:

DOF =
2u2Nc

f2
(2.8)

where u is the distance to the object from the camera, N the f-number, c the circle
of confusion and f is the focal length of the camera lens.
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2.2.2 Depth of focus

The depth of focus is the image side conjugate of the depth of field. In other words,
it’s the distance between the farthest and nearest position of the image sensor relative
to the camera lens that will image an object with acceptable focus. The depth of
focus determines the tolerances of the placement of the image sensor or film.

Mathematically, depth of focus is calculated by:

t = 2Nc
v

f
(2.9)

where v is the image distance, i.e. the distance between the lens and the image plane
where the object in question is imaged. v can be difficult to determine, and since
its scale is on the order of f , a simplified version of the equation is often used as an
approximation of the depth of focus:

t ≈ 2Nc (2.10)

2.2.3 Fixed-focal lenses

Fixed-focal lens is a lens where the focus is fixed. The focal length and aperture
cannot be changed (no zoom). These types of cameras often have short focal lengths
and the focus is usually set to the hyperfocal distance. The hyperfocal distance is
the distance beyond which all objects can be brought into acceptable focus, given
a specified circle of confusion. Equation 2.11 shows the relationship between the
hyperfocal distance, the focal lenth, f-number and circle of confusion.

H =
f2

Nc
+ f (2.11)

2.3 Optical aberrations

Optical aberrations are imperfections in optical systems which causes light originat-
ing from a point to be focused across a larger area. Optical aberrations represent the
deviation of a real lens from the assumptions of paraxial rays made in the field of
geometrical optics.
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There are a number of different optical aberrations. They’re divided into monochro-
matic and chromatic aberrations, i.e. those which are present even for a single wave-
length of light and those which are wave-length development.

One type of optical aberration is astigmatism. This causes objects which are offset
from the optical axis (θY > 0◦) to be focused at different points in the tangential and
sagittal planes. The tangential plane is the plane that is subtended by the chief ray
and the optical axis. The sagittal plane is the plane normal to the tangential plane.
Figure 2.6 show the effect of astigmatism and the definition of the tangential and
sagittal planes. The result of astigmatism is that for a given back-focus, as the object
moves further away from the optical axis the object will become more blurry. In
terms of the MTF focus score, it will decrease with increasing offset.

Figure 2.6: Astigmatism and the definition of the sagittal and tangential planes
[4]
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2.3.1 Image sensors

In modern digital cameras, Active-pixel sensors (APS) are the most common type of
sensor, of which the CMOS (complementary metal-oxide-semiconductor) sensor is
the most well-known. Axis cameras exclusively use CMOS sensors. The pixel pitch
of a sensor is the number of mm/pixel, i.e. a measure of the size of the pixels on the
sensor.

The spatial resolution of a camera is its ability to distinguish between fine details
and is often reported as the number of line pairs per millimeter the camera is able to
resolve. Figure 2.7 shows an example of how finer details (more line pairs per mil-
limeter) is not resolvable for the given camera with the specific pixel pitch [5].

Figure 2.7: Increasing spatial frequency of the line pairs leads to unresolved
details [5]
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2.4 Modulation transfer function

The Modulation transfer function (MTF) is one of the most common ways of specify-
ing the resolution of a camera. It’s a measurement of how well a camera reproduces
patterns of black and white lines with increasing spatial frequency, i.e. increasing
lines per millimeter. In general, when a pattern of black and white lines with rela-
tively high spatial frequency is measured, the contrast between the black and white
line will be lower than for a pattern with lower spatial frequency.[6]

Figure 2.8 shows an example of an MTF-curve for a lens. The y-axis depicts the
image contrast of the line pairs. As the previous paragraph explained, the contrast
decreases with decreasing spatial frequency. The figure also shows how the MTF
is dependent on the aperture size of the lens. With decreasing aperture the MTF is
better, as seen by the difference between the MTF-curve for the lens at f-number 5.6
compared to 2.0. Figure 2.8 also shows the theoretical maximum MTF at different
apertures, known as the diffraction-limit since the effects of diffraction limit the
resolution from being higher than this.

Figure 2.8: Example of an MTF-curve for a lens [6]

The above figure presented the MTF for a lens at different apertures. However,
there is an MTF associated with the image sensor/photographic film as well. MTF
has the advantageous property of being multiplicative, i.e. the MTF of the combined
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Figure 2.9: Product of the MTF of a lens and color negative film [6]

lens/sensor is the multiplication of the two individual MTFs. Figure 2.9 below shows
how the combined MTF of a lens at f/5.6 and color film relate to the individual
MTFs.

When comparing the resolution of two cameras, or the MTF of a camera where cer-
tain parameters are being varied such as back-focus, object angle or object distance,
it’s desirable to have a single numeric value to compare with. While the MTF-curves
could be compared, this is not efficient in practise. Common methods is to compare
the MTF-50% values, i.e. the spatial frequency where the MTF is 50%. Another
method is to integrate the MTF-curve from 0 lp/mm to the Nyquist frequency. This
second method is how the MTF focus score is computed at Axis and therefore all
references throughout to the focus score refer to the integral of the MTF-curve from
0 lp/mm to the Nyquist frequency.

The reticle in the collimator in Modus is a crosshair, which means that a camera
looking into the collimator will see a crosshair that appears to be at some defined
distance. Existing algorithms implemented by image engineers at Axis are used to
calculate the MTF of the camera based on this image of the crosshair.
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2.4.1 Nyquist frequency

The Nyquist frequency of a camera is a measurement of the absolute limiting reso-
lution of its image sensor. In general, the Nyquist frequency is defined as half of the
sampling rate of a discrete signal processing system. Since imaging by a digital im-
age sensor is essentially a discrete signal processing system, the Nyquist frequency
is half of the number of pixels per unit distance, i.e. the inverse of the pixel pitch.
As an example a digital image sensor of width 9 mm, 1400 pixels wide has a sam-
pling frequency of 1400 / 9 = 155 pixels/mm. The Nyquist frequency is then 155/2
= 77.5. This means that the image sensor can resolve at most 77.5 line pairs per
millimeter.
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3 Methodology

3.1 Overview of methodology

As described in the background chapter, the mechanical parts for the new degrees of
freedom in Modus where designed by a mechanical engineer at Axis. The work in-
volved in this thesis is listed below, and further explained in following sections.

• Restructuring the old software source code of Modus, see section 3.3.2

• Developing software to measure the image distortion, section 3.3.3

• Developing software to control the motors for the new hardware, section 3.3.4

• Developing software to run focus scan programs, section 3.3.5

• Developing software to align a lens and sensor in Modus, section 3.3.6

• Developing a graphical user interface, section 3.3.7

• Designing and building a new electrical panel, section 3.4

• Gathering focus data for a particular Axis camera, section 3.5

Hardware should be interpreted as motorized equipment such as rotation tables,
goniometers, collimators. It also includes electronic sensors of varying types (in-
ductive, photoelectric, etc.). The stepper-motors used in Modus are all controlled
through motor drivers of the brand Moons, cf. [7].

Similarly, the phrase software development is used frequently throughout this report
and should be interpreted as the iterative process of:

1. Planning how to write source code to implement a new feature

2. Writing the source code in the C#- or Python programming language

3. Testing the functionality of the new source code

• A new feature without hardware interaction is tested directly
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• A new feature requiring interaction with hardware is tested along with
the whole Modus software when connected to the machine

4. Submitting the new source code for review by Axis supervisors

3.2 Software development methodology

Before describing how the new software for Modus was developed, the development
environment and tools used throughout the thesis are described in this section. A
few design principles that were followed are also briefly explained.

3.2.1 Development environment

The software development environment adopted for this thesis was predetermined by
standards set up by PTS at Axis. It’s Windows-based and centered around the .Net-
framework, with C# as the primary programming language. Microsoft Visual Studio
was used as the integrated development environment (IDE), where the code was
written, tested, debugged and built for release. Existing code libraries and APIs were
imported using NuGet-packages, which is also the standard way of how software
developed at PTS is distributed internally.

3.2.1.1 Version control

Git is an open-source distributed version control system that is used to track and
manage changes in software source code over time [8]. It was used in conjunction
with Gerrit, which is a web-based collaboration tool for software development teams
[9]. As changes were made to the existing Modus software and new features were
implemented, supervisors and other team members at Axis could review and suggest
changes. This iterative process went on until everyone was satisfied with the result,
at which point the feature/update was merged into the existing code-base.

3.2.1.2 Additional tools

In addition to C#, Python was used to write scripts for data visualization. Two python
libraries were helpful in completing this: Matplotlib and Numpy. The former is a
library with plotting functions resembling Matlab’s plotting. The latter is a library
for numerical computations, with support for multi-dimensional arrays and matrices
and a large number of mathematical functions.
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3.2.2 Design principles

This section describes a few of the software design principles that were followed
when writing software for Modus.

3.2.2.1 Object-oriented programming

The most general principle adopted, perhaps more of a design philosophy, was
object-oriented programming. It rests on four design pillars: encapsulation, data
abstraction, polymorphism and inheritance. The following paragraphs describe the
design pillars, as defined by [10].

Encapsulation describes how data should be implemented in classes which are used
externally. Modification and access to the data within the class is only possible
through methods which are made public, i.e. the methods define rules of how the
data may be interacted with.

Abstraction is the concept of declaring an interface to some functionality without
actually defining how the functionality is implemented. In other words, using the
functionality of another class should only not require knowledge of the inner work-
ings of the class, merely the workings of the interface.

Inheritance defines relationships between objects and mechanics for grouping ob-
jects into logical families. The ”is a” relationship is central, e.g. a Car-class can
inherit from a Vehicle-superclass since a car is a vehicle.

Polymorphism consists of static and dynamic polymorphism. The former refers to
method overloading, meaning that a method in a class could have several different
implementations depending on the parameters supplied to it. Dynamic polymor-
phism refers to method overriding: having methods in inherited classes overriding
methods in the parent class with the same signature. A very basic example would
be a method in a Vehicle-super class that returns the number of wheels of the vehi-
cle. The implementation in a subclass car and another subclass motorcycle would
differ.

3.2.2.2 DRY - Don’t repeat yourself

Don’t repeat yourself is a principle of software development which aims to limit
code repetition. Repeated patterns of code should be identified and properly ab-
stracted. In practice this means that a block of code that is repeated should be placed
in an appropriately named method and referenced whenever needed. The main ad-
vantage is code maintainability. Subsequent changes to the block of code will only
need to change in one place, rather than several. This minimizes the risk of bugs
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and unforeseen errors. DRY also dictates that methods should be short and effective,
serving a single purpose.[11]

3.2.2.3 Design for testing

Design for testing means that the functionality of the software can be tested during
development. This is achieved by adhering to the last point made in the previous
section - methods should serve a single purpose. This enables the developer to write
tests that only test a specific, limited functionality of the program without influences
from other parts. Therefore methods should ideally also be as independent as possi-
ble, relying only on its input parameters and private methods and variables defined
in the same class.

C# offers the possibility of writing Unit Tests in which the developer writes a small
program to test a specific public function. Conditions necessary for running the test
are initially set up, but should be kept to a minimum. The method is then called with
the input parameters and its returned result is validated against what’s expected from
it. The output will depend on the input parameters and it is therefore considered
good practise to write unit tests which test a number of different combinations of
parameters. Common, extreme and invalid values of the input parameters should be
tested to see that the method behaves as expected.[12]

When writing software that controls hardware, incorporating testing can be some-
what more challenging. Ideally, a simulated version of the hardware is desirable,
i.e. a simulated machine. Calls to hardware, such as a request for a motor to move
to a specific position could then be replaced by an appropriate time delay. With a
simulated machine it would be possible to test the software as a whole without hav-
ing access to the hardware. This is desirable since the hardware might not yet be
completed when the software is being written.
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3.3 Software development details

3.3.1 Existing software

The software written for Modus prior to this thesis was written for the purpose of
analyzing optical assemblies, i.e. sensors and lenses that have been aligned and
glued together in IBAS 2. The main capability is to scan the collimator through a
range of object distances and measure the focus at each object distance. This can be
done at different object angles, θY , and rotation angles, θZ

Figure 3.1 is an overview of the starting point of this thesis with regards to the Modus
software. Each element in the figure is a software module, in practice a C#-project.
Each module consists of one or more classes. The ModusHardware and ModusMa-
chine modules are responsible for setting up and controlling hardware. The Modus-
Main module contains classes for calibration, calculating the MTF and estimating
the target’s location on the sensor. The CameraInterface establishes a connection
between the Modus software and the camera sensor, allowing images to be captured
at request.

The SimpleFocusScan-module is, as the name suggests, a program to perform a sim-
ple scan of the collimator and measure the focus score. This module builds an ex-
ecutable file that the user launches to initiate a scan. With proper abstraction this
module should not be concerned with how the machine should be set up or operate.
It should simply provide the settings for the current camera connected, the desired
object distances and object angles to measure the focus at and perhaps process the
result in some manner.

ModusHardware

ModusMachine

ModusMain CameraInterface

SimpleFocusScan

Figure 3.1: The existing Modus software

25



3.3.2 Restructuring existing software

A number of organizational changes were made to the existing Modus source code
before beginning to implement new features. Much of the source code in the
SimpleFocusScan-module was moved to the ModusMain-module, because it dealt
with importing and processing machine settings and setting up connections. With
these functions now abstracted to the ModusMain-module, when new features are
developed for Modus and a ComplexFocusScan-module for example, is created, it
won’t have to repeat the set-up that was previously in the SimpleFocusScan-module.
Both modules will simply access these functions through the interface provided by
the ModusMain-module.

Additionally, the ModusMain-module consisted of a class called Modus which had
many responsibilites. There is a software design principle known as the Single Re-
sponsibility Principle, which states that, in object-oriented programming, classes
should have only one reason to change [13]. As is now, the Modus-class would
have to change if there were changes to how the settings for the motors, camera and
the scan program. Therefore, to better divide responsibility, everything related to
importing and running focus scans was encapsulated in a new class called ScanPro-
gramRunner. The responsibility of importing camera settings and connecting to the
camera was abstracted into a ModusProduct-class.

3.3.3 Distortion polynomial

To reduce the amount of computation needed in the MTF analysis, the full-size input
image is cropped to an area around the cross. The image of the target is projected to
different parts of the sensor depending on its position relative to the optical axis. In
order to crop the correct area on the image a relationship between the angular offset
of the target and position on the sensor is required. This relationship is provided as
a polynomial function, referred to here as the distortion polynomial. This distortion
polynomial is not always readily available for a given lens, and therefore a method
to measure it in Modus was developed.

Initially, a calibration of the sensor’s angular offset about the z-axis is performed
such that its long side is parallel with the machine’s x-axis. Rotation of the collimator
about the y-axis should then only result in an offset of the target along the x-axis in
the image. By sampling the target location in the image for different collimator
angles (object-optical axis angular offset), the relationship can be determined. A
polynomial is then fitted to the sampled data, and the coefficients of the polynomial
is saved for future reference.
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3.3.4 Motor control

All motors in Modus are bipolar stepper motors controlled by one Moons step motor
driver each. The driver works like an interface between the Modus software and
the hardware of the motor. Commands to move, stop or home the motor are sent
from the software to the motor driver. The driver has control circuitry to decode
these commands and is then responsible for timing and supplying current to the
phases of the bipolar stepper motor to fulfill the command. The exact motor driver
used in Modus is the Moons MSST5-Q-RE, which communicates using the Modbus
protocol over RS-485, see [7] for details about the motor driver.

With five new degrees of freedom in Modus, five additional motor drivers were in-
stalled. Each motor driver was configured through Moons’ proprietary configuration
software ST Configurator. Figure 3.2 shows the interface of the ST Configurator
tool through which the motor driver is configured with settings related to the motor
it’s driving and the communication network. This includes the motor phase current,
encoder settings, input/output signals, communication ID and more.

Figure 3.2: ST Configurator software for configuring the Moons motor drivers
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3.3.5 Focus scan programs

A large part of the software development phase was spent on working out how to do
focus scans which incorporate the back-focus. The implementation was done in the
new class ScanProgramRunner, part of the ModusMain-module. Initially, each type
of scan was implemented in its own function. The different types of scans are listed
below. These scans could be invoked at whatever object angle (θY ) and rotation
angle (θZ) desired.

1. Fixed defocus, fixed back-focus

2. Scan defocus, fixed back-focus

3. Fixed defocus, scan back-focus

4. Scan defocus, scan back-focus

Repeating code became an issue with the above structure, since (2) and (4) both scan
the defocus, and similarly (3) and (4) both scan the back-focus. A different approach
was developed, where all types of scans are handled through a common function, the
RunScanJob-function. Instead of differentiating between fixed- and scanned defocus
(or back-focus), it was decided to treat everything as scans. If only one position is
requested the scan start and end positions are set equal.

With this new structure a list of all the measurement points is created by evaluating
the scan start, stop and step size. A measurement point consist of a discrete position
for back-focus, defocus, θY and θZ . Running a scan is then simply a matter of
looping through the measurement points, capturing an image and calculating the
MTF focus score at each point.

3.3.6 Alignment in Modus

In order to be able to analyze the back-focus characteristics of a camera at object
angles other than θY = 0◦, the sensor must be aligned with the lens. Otherwise,
points on the center that are equidistant from the sensor’s center point will be fo-
cused at different object distances. A subsequent back-focus scan will then yield a
misrepresentation of the relationship between the back-focus, defocus, object angle
and focus score.

The procedure of alignment was described in section 1.1.2. Since IBAS 2 is a pro-
duction machine, speed of operation is important. Therefore it has five collimators
focused at infinity in fixed orientations. A single back-focus scan (z-scan) then gath-
ers data at all five locations on the sensor (center and four corners).
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Since Modus only has a single collimator, the z-scan must be performed five times,
once for each location on the sensor. The five locations are reached by combin-
ing the collimator’s rotation about the y-axis and the camera’s rotation about the
z-axis.

When writing the code for the alignment procedure, use was made of the existing
Alignment module, which is a software module developed at PTS that contains all
the functions for calculating the z-offset and tilt-offset of the sensor relative the lens,
based on the focus data from a z-scan.

3.3.7 Graphical user interface

It was important that the resulting software be practical to use for any engineers
at Axis intending to use Modus, regardless of whether they were familiar with the
underlying software or not. For this purpose, a graphical user interface was devel-
oped through which a user can interact with the machine and receive useful feedback
about the machine status, motor control and scanning progress.

There are two main subsystems available for developing graphical user interfaces
in the .NET framework: WinForms and Windows Presentation Foundation (WPF).
WinForms is essentially a class library with wrappers to access native windows
graphical elements (windows, buttons, textboxes etc.) while WPF is a GUI frame-
work for developing .NET applications. WPF is newer and offers several advantages
over WinForms, such as better performance, improved separation between UI and
data through bindings, improved security and flexibility. In contrast, WinForms is
considered easier to learn and uses a graphical toolbox for UI design while WPF
design is XML-based.[14, 15]

For the purposes of this project, either system is capable of producing the desired
outcome. WPF was chosen because of the above mentioned advantages and because
many of the recently developed GUIs at PTS uses WPF. The author also has more
experience in working with WPF than WinForms. The GUI was developed in par-
allel with the business logic of the software as new features were implemented. For
example, when alignment was implemented for Modus, a new panel in the GUI was
introduced along with controls to start the alignment procedure, display the align-
ment settings and results. Adopting this workflow allowed for both the new feature
and its accompanying UI to be tested simultaneously.
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3.4 Electrical control panel

To accommodate the newly installed degrees of freedom, a new electrical control
panel was required. The electrical control panel is where all electronic control sys-
tems for the motors, collimator, safety systems and more are located. The previous
version of Modus featured four motorized degrees of freedom, and thus the electri-
cal panel had four individual motor drivers. Figure 3.3 shows a view of the the old
electrical panel. Cable management was essentially non-existent, the placement of
the motor drivers (black boxes at the bottom) was inefficient and inaccessible, and
there was no documentation for the control circuitry. Therefore, it was decided to
completely strip the control panel and redo the layout and wiring from scratch. The
main goals of the new electrical control panel was to:

• Improve the use of space by rearranging the motor drivers

• Improve the cable management

• Improve readability by labeling wires and electrical components

• Add support for additional motor drivers and sensors

Figure 3.3: The old electrical panel for Modus

The layout of the new electrical panel followed a simple principle of grouping to-
gether components that serve the same purpose. Physical space was the main limita-

30



tion of the layout since Modus was originally designed for only four motor drivers,
as seen in the previous figure. Existing electrical schematics for other Axis machines
were adapted to the new Modus electrical panel as a temporary solution before an
electrical engineer at Axis drew a proper electrical schematic. Electrical schematic
construction was beyond the scope of this project mainly because of time constraints
and lack of access to electrical schematic software.

The aluminium sheet in figure 3.3 functioned as the mounting panel for the electri-
cal control equipment for the machine. Terminal blocks, power supplies, fuses and
relays were mounted on a DIN-rail that was bolted to the sheet metal. The input was
240 VAC, transformed to 24 VDC in a power supply transformer. The aluminium
sheet, as well as the other metallic surfaces of the machine are earthed through the
240 VAC earth cable. All electrical components reference the same common on the
power supply’s DC output side.

Everything related to power distribution was placed towards the left end of the rail,
such as the power supply and terminal blocks to which each electrical component
can connect to +24 VDC and ground. The entire DIN-rail was surrounded by wiring
ducts, containing the bulk of the cable and allowing for access to the DIN-rail from
all directions. The motor drivers were bolted directly to the aluminium sheet, ori-
ented to take up the least amount of panel area. Section 4.1 includes photos of the
completed electrical panel with labels for each of the different groups of terminal
blocks.

A number of standard electrical tools and materials were used in the layout and
construction of the electrical panel. These include, but are not limited to wires of
varying size and color, wire cutters, wire strippers, soldering station. D-sub connec-
tors of varying pin count, single-, double- and triple-leveled terminal blocks, termi-
nal blocks with built-in manual switches, wiring ducts and electrical measurement
equipment such as multimeter and oscilloscope.
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3.5 Data collection

The Axis product catalog is extensive and split into a number of different categories.
Because Modus uses the same fixtures as IBAS 2 it was necessary to select a camera
which is assembled using the IBAS2 machine. Adhering to the limitations of the
project, a fix-focal camera was chosen. It was decided to analyze a fish-eye lens
camera internally referred to as Koi (as in koi fish because it belongs to a family of
cameras with fisheye lenses).

The Koi camera features a 1.65mm F2.8 lens with FoV > 180◦and a designed depth
of field from 300 mm to infinity. Koi belongs to a category of cameras known as
fixed-dome cameras. These are compact cameras with a dome casing. Their appli-
cation area is virtually any environment where unobtrusive surveillance is required
[16]. Figure 3.4 shows a generic type of fixed-dome camera in its assembled state.
Figure 3.5 shows the sensor and lens of the Koi camera.

Figure 3.4: A generic camera in the Axis fixed-dome family

During sensor-lens alignment and assembly in the IBAS2 machine, 5 collimators
project a target at infinity onto the Koi camera. One center collimator and four
corner collimators, mounted at 150◦field-of-view and in a 3:2 aspect-ratio. Figure
3.6 show an illustration of approximately the location of the five targets on the sensor
when aligned. Due to physical limitations in Modus discussed in the Results section,
alignment in Modus is possible at a maximum of 140◦ FoV, and as such the corner
targets in Modus are slightly closer to the sensor center than in IBAS2.

The purpose of the data collection for the Koi camera was to establish the relation-
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Figure 3.5: The sensor and lens of the Koi camera

ship between focus score and varying object distances, object angles (θY ) and back-
focus (z). The sensor’s orientation about the z-axis was not included in this scan,
whose contribution to focus variance would be the result of non-rotational symme-
try in the lens. Before the scan program, the alignment procedure was run, adjusting
the sensor’s z-position and x-y-tilt to be within the alignment criteria. Table 3.1 lists
the sweep parameters and their respective start, end and step size. The total number
of measurement points adds up to 9 · 8 · 7 = 504. For each measurement point a
cropped image was captured and the MTF-focus score calculated. The complete data
collection were then plotted in a number of illustrative graphs, presented in section
4.4.

Table 3.1: Koi data collection parameters

Parameter Start Stop Step size

Defocus (mm) -2.0 0.0 0.25
θY (◦) 0 70 10
Z-offset (mm) -0.15 0.15 0.05

Referring to the section on optical aberrations, see 2.3, the MTF focus score is
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expected to drop off with increasing object angle (angular offset from the optical
axis), which corresponds to the collimator rotating further from its homed position
of 0◦.

Figure 3.6: The location of the five collimator targets on the sensor during align-
ment
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4 Results

4.1 Electrical control panel

The development of the new electrical panel was described in section 3.4. Figure 4.1
shows the completed panel before installation in Modus. The components attached
on the DIN-rail are labeled X1-X14 and their function is listed in the right hand
of the photo. The nine motor drivers are mounted below the DIN-rail, outside the
cabling channels. The RS-485 serial communication between the drivers and the
computer is seen in the bottom part of the picture as the grey cable wired in parallel
between all the motor drivers.

Figure 4.1: The electrical panel before installation in Modus
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4.2 Software development

4.2.1 Software structure overview

The software developed for Modus is split into six different modules. Their hierar-
chical structure is illustrated in figure 4.2, where an arrow from A to B should be
interpreted as B is dependent on A. The dashed line between the ModusGUI mod-
ule and the other modules implies partial dependency, i.e. certain functions of the
GUI are dependent on functionality provided by the other modules. In practice, the
modules correspond to C#-projects, each containing one or more C#-classes. Each
module is responsible for providing a specific functionality or a group of related
functionalities.

In figure 4.2 and the block diagrams in subsequent sections, the color coding in-
dicates whether the module existed prior to this thesis or not. Purple indicates an
existing module that was used as is. Blue indicates an existing module that was
further developed or rewritten to support new functions. Finally, green indicates
completely new module or functionality. The following sections describes in detail
a selection of the modules.

ModusHardware

ModusMachine

ModusWorker

ImageDistortion CameraInterface

ModusGUI

Alignment

Figure 4.2: Modus software modules hierarchical structure
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4.2.2 Modus modules details

The following sections describe in more detail the different modules of the Modus
software.

4.2.2.1 ModusHardware

This module is responsible for establishing a connection with the hardware. This in-
cludes all motor drivers, the collimator position controller and LED controller. Fig-
ure 4.3 illustrates the classes of the ModusHardware module, their public properties
and methods as well as how the classes depend on each other. The input parameter
for the ModusHardware constructor is an instance of the MachineSettings class. This
instance is supplied by the executable application, for instance by parsing a machine
settings configuration file.

The HardwareAvailability class is responsible for connecting to the collimator and
motor drivers via a Modbus protocol over RS-485. The MachineSettings-object de-
scribed previously contains the settings for establishing this connection.

ModusHardware.cs

+ HardwareAvailability: HardwareAvailability

HardwareAvailability.cs

+ MotorComPort: String
+ MotorControllersEnabled: Boolean
+ ModbusInterface: ModbusInterface
+ MachineSettings: MachineSettings

+ FindCollimator(): void
+ CreateMotorDriverInterface(): void
+ CheckAllMotorDriversAvailability(): void

MachineSettings.cs

+ CollimatorSettings: CollimatorSettings
+ ModbusInterfaceSettings: ModbusInterfaceSettings
+ MotorsSettings: MotorSettings
+ GmcProductPaths: GmcProductPathsConfig

Figure 4.3: Overview of the ModusHardware module

4.2.2.2 ModusMachine

ModusMachine abstracts the hardware into groups which correspond to how the
hardware is assembled in the machine, see figure 4.4. The interface to the controls
for the collimator, both the object distance motor, and rotation of the collimator about
the y- and z-axis are abstracted into a CollimatorStack class. Input parameter to the
ModusMachine constructor is a HardwareAvailability object from the ModusHard-
ware module.

Similarly, the SensorStack class is an abstraction which contains all the motors for
moving and rotating the camera sensor. The MeasuringTable class represents the
physical part in the machine which the SensorStack is attached to and provides meth-
ods for rotating the camera sensor and lens about the z-axis.
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ModusMachine.cs

+ HardwareAvailability: HardwareAvailability
+ SafetyController: SafetyController
+ MeasuringTable: MeasuringTable
+ CollimatorStack: CollimatorStack
+ SensorStack: SensorStack

+ ResumeMachine(bool resetFlagOnly): void
+ StopMachine(): void
+ IsHomed(): boolean
+ SeekHome(bool forceSeekHome): void
+ Dispose(): void

CollimatorStack.cs

+ CollimatorController: CollimatorConroller
+ ThetaY: IMotorDriver
+ ThetaZ: IMotorDriver
+ DefocusMin: Double
+ DefocusMax: Double
+ MaxThetaY: Double
+ MinThetaY: Double
+ MaxThetaZ: Double
+ MinThetaZ: Double

+ MoveThetaY(double angle): void
+ MoveThetaZ(double angle): void
+ SeekHomeThetaY(): void
+ SeekHomeThetaZ(): void
+ ResumeMove(bool resetFlagOnly):void
+ StopMove(): void

MeasuringTable.cs

+ ThetaZ: IMotorDriver
+ MaxThetaZ: Double
+ MinThetaZ: Double

+ MoveThetaY(double position): void
+ MoveThetaZ(double position): void
+ SeekHomeThetaY(): void
+ SeekHomeThetaZ(): void
+ ResumeMove(bool resetFlagOnly):void
+ StopMove(): void

SensorStack.cs

+ ThetaXSensor: IMotorDriver
+ ThetaYSensor: IMotorDriver
+ XSensor: IMotorDriver
+ YSensor: IMotorDriver
+ ZSensor: IMotorDriver
+ ZEncoder: IEncoder
+ MaxThetaXSensor: Double
+ MinThetaXSensor: Double
+ MaxThetaYSensor: Double
+ MinThetaXSensor: Double
+ MaxXSensor: Double
+ MinXSensor: Double
+ MaxYSensor: Double
+ MinYSensor: Double
+ MaxZSensor: Double
+ MinZSensor: Double

+ MoveThetaXSensor(double angle): void
+ MoveThetaYSensor(double angle): void
+ MoveXSensor(double position): void
+ MoveYSensor(double position): void
+ MoveZSensor(double position): void
+ SeekHomeThetaXSensor(): void
+ SeekHomeThetaySensor(): void
+ SeekHomeXSensor(): void
+ SeekHomeYSensor(): void
+ SeekHomeZSensor(): void
+ ResumeMove(bool resetFlagOnly):void
+ StopMove(): void

SafetyController.cs

+ MotorController: IMotorDriver

+ Start(): void

Figure 4.4: UML diagram for the ModusMachine module

4.2.2.3 ModusWorker

The ModusWorker module is the main workhorse of the Modus software. The
ModusWorker class contains instances of several other classes within the module.
The AngleController and TranslationController classes contains methods for cali-
brating the camera such that the sensor’s x- and y-axis line up with those of the
machine. It also finds a sensor z-coordinate at which the focus is above a specified
threshold.

The ScanProgramRunner class performs focus scans, requiring a ScanJob object as
input parameter in the RunScanJob method. The ScanJob class defines all parame-
ters required for setting up and running a scan: start- and stop position, step size for
z, defocus, θY and θZ . This class is described in more detail in section 4.2.3.2.

The ModusAlignment class provides methods for running an alignment procedure in
Modus. This is described more in detail in section 4.2.3.1

4.2.2.4 ModusGUI

The ModusGUI module contains the layout and design of the different parts of the
GUI, along with the code-behind, i.e. the action performed of the different controls
in the GUI when interacted with. Section 4.3 describes the function of the GUI in
detail.
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ModusWorker.cs

+ ProductConfig: ProductConfig
+ ModusMachine: ModusMachine
+ TranslationController: TranslationController
+ AngleController: AngleController
+ ScanProgramRunner: ScanProgramRunner
+ ModusAlignment: ModusAlignment
+ ModusImageDistortion: ModusImageDistortion

+ ConnectProduct(ProductConfig): void
+ CalibrateModus(bool productIsGlued): void
+ CreateCropDefinition(double thetaY, double thetaZ): CropDefinition
+ AnalyzeTarget(): AnalyzeResult
+ ResetMachine(): void
+ Dispose(): void

ScanProgramRunner.cs

+ ModusWorker: ModusWorker
+ ResultPath: String

+ RunScanJob(ScanJob, CancellationToken): List<ScanResult>
+ FocusScan(DefocusVariables, CancellationToken):List<ScanResult>
+ FixedScan(double defocus): ScanResult

ScanJob.cs

+ ScanJobName: String
+ ScanVariables: ScanVariables
+ ScanLengthEstimate: TimeSpan

ScanVariables.cs

+ BackFocusVariables: BackFocusVariables
+ DefocusVariables: DefocusVariables
+ ThetaYVariables: ThetaYVariables
+ TableThetaZVariables: TableThetaZVariables

BackFocusVariables.cs	/	DefocusVariables.cs	/	
ThetaYVariables.cs	/	TableThetaZVariables.cs

+ ScanType: ScanType
+ ScanStart: Double
+ ScanEnd: Double
+ ScanStepSize: Double
+ Discrete: Double[ ]

+ ToString(): String

ModusAlignment.cs

+ ModusWorker: ModusWorker
+ AlignmentVariables: AlignmentVariables

+ RunModusAlignment(double zCoarseStart, 
         double zCoarseStep, double zMainStep): AlignmentResult
+ PostAlignmentCheck(): List<ScanResult>
+ GetOffsetAndFocusScore(CropDefinition): OffsetAndFocusScore

AnalyzeResult.cs

+ TargetCenter: Point
+ TargetCenterInCrop: Point
+ FocusScore: Double

+ ToString(): String

ModusImageDistortion.cs

+ PixelPitch: Double
+ DistortionPolynomial: DistortionPolynomial

+ GetCropCenterOffsetFromModusAngles
         (double thetaY, double thetaZ): Point

AngleController.cs

+ ModusWorker: ModusWorker
+ Calibrated: Boolean
+ SensorIsFlipped: Boolean

+ CalibrateAngles(): void
+ MoveCollimatorThetaYTo(double angle): void
+ MoveCollimatorThetaZTo(double angle): void

TranslationController.cs

+ ModusWorker: ModusWorker
+ CalibratedZ: Boolean
+ CalibratedXY: Boolean
+ Calibrated: Boolean
+ SensorZCalibratedPosition: Double

+ CalibrateXY(): void
+ CalibrateZ(): void

Figure 4.5: Class diagram for the ModusWorker module

4.2.2.5 CameraInterface and ImageDistortion

The CameraInterface module contains classes and methods for establishing a con-
nection with the camera. It provides the possibility of connecting to the camera
directly via SSH or via the Generic Maincard Controller (GMC). The GMC is a
generic PCB which all different types of cameras can be connected through. This
module is referenced by the ModusWorker in its camera setup-methods.

The purpose of the ImageDistortion module is to provide methods for fitting a poly-
nomial to measured data. The number of decimals in the resulting polynomial coeffi-
cients is minimized by evaluating the goodness of the fit to the measured data.

4.2.3 Alignment and focus scanning

Two classes briefly mentioned in section 4.2.2.3 require further explanation: the
ModusAlignment- and ScanProgramRunner-class.

4.2.3.1 Modus Alignment

Section 1.1.2 explained how the sensor and lens are aligned in the IBAS 2 machine.
The alignment procedure in Modus is essentially the same, apart from a few dis-
tinct differences. IBAS 2 is equipped with five collimators: one center and four
corner collimators. In contrast, Modus has only a single collimator which can rotate
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about the y- and z-axis, along with rotation of the sensor about the z-axis, to project
the cross-hair at any location on the sensor (within the limits described in section
1.1.3.1).

Consequently, the Modus alignment procedure begins by performing a coarse and
main z-scan at the sensor’s center position, followed by rotation of the collimator
and sensor to perform the scans at a corner point. This is repeated for all the four
corners. Once this is done, the data gathered is identical to what IBAS 2 gathers in
a single coarse and main z-scan. The computation of the alignment is identical in
Modus and IBAS 2. This was possible by importing the Alignment software module
used in IBAS 2 into the Modus software environment.

4.2.3.2 ScanProgramRunner

As previously stated the ScanProgramRunner class is responsible for running scan
jobs. The parameters for the scan jobs are imported through a scan job configuration
file (.toml). Toml is an easy, minimal configuration file format. Figure 4.6 shows an
example of what a scan job configuration file with toml-syntax might look like. This
file is imported and parsed to populate the classes shown previously at the bottom
right of figure 4.5.

The ScanProgramRunner class contains the method RunScanJob, taking an instance
of the ScanJob class as input parameter. This method is essentially a sequence
of nested for-loops where each loops through a specific scan job parameter. The
pseudo-code below shows the order of the nested for-loops. Rotation of the colli-
mator and the sensor is generally slower than movement of Z or the defocus, so by
placing the former two in the two most outer loops the total time for the scan job to
complete is lowered.
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Figure 4.6: Example of a scan job configuration file
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RunScanJob ( ScanJob )
{

foreach ( Senso rThe taZ )
{

Rota teToNextThe taZ ( ) ;

foreach ( C o l l i m a t o r T h e t a Y )
{

Rota teToNextThe taY ( ) ;

foreach ( S e n s o r Z P o s i t i o n )
{

MoveToNextZ ( ) ;

foreach ( C o l l i m a t o r D e f o c u s )
{

MoveToNextDefocus ( ) ;
Cap tu re Image ( ) ;
Calcula teMTF ( ) ;
W r i t e R e s u l t T o F i l e ( ) ;

}
}

}
}

}
Listing 4.1: Pseudo code for RunScanJob-method

4.2.3.3 External references

In addition to the modules outlined in the preceding sections, the Modus software
also makes use of a number of external modules, i.e. existing software APIs and
libraries. The APIs are imported for use as NuGet packages. APIs developed both
internally at Axis and externally by a third-party were used. Below follows a list of
modules used and a brief description of their function.

Internal Axis APIs/libraries:

• Imaging: Capturing fullsize/cropped images from the camera sensor. Image
processing and analysis methods for finding a cross-hair in the image and de-
termining the focus by means of the MTF- or gradient method.

• GeneralClient/GMCC: Configuring and communicating with an Axis generic
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main card.

• StepperMotorController: API for controlling stepper motor drivers from the
Moons manufacturer and using the Modbus protocol.

External APIs/libraries:

• NModbus4: A C# implementation of the Modbus protocol, providing all the
functions as specified by the Modbus protocol.

• MathNet.Numerics: Methods and algorithms for numerical computations.

• NLog: Open-source logging for .NET environment. Used to log the actions
performed by Modus and the state of the machine.

• TriopticsCollimatorController: API for controlling a variable object dis-
tance collimator.

• Extended.Wpf.Toolkit: Provides extension tools for WPF.

• Nett: Library for reading and writing TOML-files.

4.2.4 Data processing and visualization scipts

As the pseudo-code in listing 4.1 showed, the RunScanJob-method writes the results
from the scan to file. Specifically, it’s a comma-separated text file (.csv). For each
measurement point (combination of the scan job parameters) the MTF is calculated
and the result written to a separate row in the text file. Figure 4.7 shows an example
of a file output. The parameter start, stop and step sizes preamble the result. The
first 9 measurement points of the particular scan in question is shown. As the figure
illustrates, for each measurement point the back-focus (z), defocus, collimator θY ,
sensor θZ , focus score and target x- and y-coordinate is reported. Lines preambled
by the hash-symbol, #, are comments and subsequent parsing of the file can ignore
this.

This raw data can then be visualized in a number of ways, section 4.4 demonstrates
this. Python scripts were written that import the result file, perform some basic
data processing, creates plots and then saves the figures to a desired location on disk.
These scripts are run from the Python command line or through a Python IDE.
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1   # Scan start-time: 180659
2   # Collimator theta-Y scan type = Sweep
3   # Scan start = 0,000000
4   # Scan end = 70,000000
5   # Scan coarse stride = 10,000000
6   
7   # Measuring table theta-Z scan type = Discrete
8   # Discrete values = [0]
9   

10   # Back-focus scan type = Sweep
11   # Sweep-type = Relative to alignment
12   # Scan start = -0,000015
13   # Scan end = 0,000015
14   # Scan stride = 0,000005
15   
16   # Collimator defocus scan type = Sweep
17   # Scan coarse start = -0,002000
18   # Scan coarse end = 0,000000
19   # Scan coarse stride = 0,0005
20   # Scan fine iterations = 0,000
21   # Scan fine stride = 0,000000
22   
23   
24   # [Back-focus, Defocus, CollΘY, TableΘZ, Focus, TargetX, TargetY]
25   
26   
27   0.001751, -2, 0, 0, 0.179732, 1749, 1265
28   0.001751, -1.5, 0, 0, 0.170895, 1750, 1265
29   0.001751, -1, 0, 0, 0.16129, 1750, 1265
30   0.001751, -0.5, 0, 0, 0.151416, 1750, 1265
31   0.001751, 0, 0, 0, 0.140076, 1750, 1265
32   0.001756, -2, 0, 0, 0.196905, 1749, 1265
33   0.001756, -1.5, 0, 0, 0.192522, 1750, 1265
34   0.001756, -1, 0, 0, 0.185203, 1750, 1265
35   0.001756, -0.5, 0, 0, 0.175033, 1750, 1265
36   0.001756, 0, 0, 0, 0.165799, 1751, 1265
37   0.001761, -2, 0, 0, 0.209098, 1750, 1265
38   0.001761, -1.5, 0, 0, 0.208455, 1750, 1265
39   0.001761, -1, 0, 0, 0.202177, 1750, 1265
40   0.001761, -0.5, 0, 0, 0.196185, 1750, 1265
41   0.001761, 0, 0, 0, 0.187728, 1751, 1265
42   0.001766, -2, 0, 0, 0.211639, 1750, 1265
43   0.001766, -1.5, 0, 0, 0.214619, 1750, 1265
44   0.001766, -1, 0, 0, 0.213231, 1750, 1265
45   0.001766, -0.5, 0, 0, 0.210656, 1751, 1265
46   0.001766, 0, 0, 0, 0.205878, 1751, 1265
47   0.001771, -2, 0, 0, 0.201924, 1750, 1265
48   0.001771, -1.5, 0, 0, 0.206709, 1750, 1265
49   0.001771, -1, 0, 0, 0.211159, 1751, 1265
50   0.001771, -0.5, 0, 0, 0.211289, 1751, 1265
51   0.001771, 0, 0, 0, 0.213858, 1751, 1265
52   0.001776, -2, 0, 0, 0.178489, 1750, 1265
53   0.001776, -1.5, 0, 0, 0.187808, 1750, 1265
54   0.001776, -1, 0, 0, 0.193933, 1751, 1265
55   0.001776, -0.5, 0, 0, 0.202157, 1751, 1265
56   0.001776, 0, 0, 0, 0.20724, 1751, 1265
57   0.001781, -2, 0, 0, 0.150429, 1750, 1265
58   0.001781, -1.5, 0, 0, 0.15836, 1751, 1265
59   0.001781, -1, 0, 0, 0.169036, 1751, 1265
60   0.001781, -0.5, 0, 0, 0.179344, 1751, 1265
61   0.001781, 0, 0, 0, 0.189352, 1751, 1265
62   0.001751, -2, 10, 0, 0.179102, 1903, 1264
63   0.001751, -1.5, 10, 0, 0.169931, 1903, 1264
64   0.001751, -1, 10, 0, 0.16182, 1904, 1264
65   0.001751, -0.5, 10, 0, 0.151103, 1904, 1264
66   0.001751, 0, 10, 0, 0.138919, 1904, 1264
67   0.001756, -2, 10, 0, 0.198615, 1903, 1264
68   0.001756, -1.5, 10, 0, 0.193006, 1903, 1264
69   0.001756, -1, 10, 0, 0.184512, 1904, 1264
70   0.001756, -0.5, 10, 0, 0.174341, 1904, 1264
71   0.001756, 0, 10, 0, 0.164575, 1904, 1264
72   0.001761, -2, 10, 0, 0.210644, 1903, 1264
73   0.001761, -1.5, 10, 0, 0.208385, 1903, 1264

Figure 4.7: Example of a scan job result output file

4.3 User interface

4.3.1 Graphical user interface

The graphical user interface is split into six different tabs which each serve a partic-
ular function, as shown below in figure 4.8a through 4.8f.

The control panel (fig. 4.8a) allows the user to control all the motors of the machine.
Each motor can be homed and moved in either direction. All motors can also be
controlled at once by stopping or resuming motion, and by homing all simultane-
ously. In addition to motor control, the control panel also allows for control of the
collimator by setting the LED brightness and positioning the object by controlling
the defocus. The figure shows the control panel in a disabled state, prior to loading
the machine settings. The machine settings are specified in a TOML-configuration
file, which contains all the settings pertaining to the motors, collimator, additional
settings paths and the Modbus communication protocol. The machine settings are
loaded through the menu: File - Load Machine settings.

The Load Product tab is where the user loads settings for a specific camera. The
contents of the configuration file are displayed for the user and can be changed in-
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teractively, before the camera is connected. The Connect-button establishes a con-
nection between the software and the GMC, allowing for images to be captured, as
well as camera settings such as shutter speed and signal gain to be configured. Upon
successful connection, the Calibrate-button will be enabled. Its function is to run a
number of calibration procedures. It first moves the sensor in the z-direction, look-
ing for a position where the focus is above the specified calibration minimum focus.
This position is required for the ensuing calibrations.

In it’s homed position the motor controlling the sensor’s rotation about the z-axis will
offset the sensor’s y-axis from the machine’s y-axis. This is adjusted for by rotating
the collimator±15◦, registering the target’s x- and y-location on the sensor and then
calculating the offset angle from these locations. The third and final calibration is to
position the sensor in x & y such that the target is centered on the sensor when the
collimator is at 0◦.

The alignment tab allows the user to align the currently connected and calibrated
camera. The alignment procedure can be cancelled at any time, which requires the
procedure to restart from the beginning if started again, i.e. a pause-resume function
is currently not implemented. The user has the option to enable a post-alignment
check to be done, which essentially means that after the alignment the focus is mea-
sured once more at the center point and four corner points. The result is displayed
in the post-alignment result box. The aligned z-coordinate is also displayed after the
completion.

Through the scan job tab, the user can load a scanjob-file, edit the settings and then
start the focus scan. The live view tab continuously updates, showing the lastest
image that was captured, the focus score calculated, and the location of the cross-
hair on the sensor.

Finally, the utilities tab is a tool-type tab, where currently the object distance can
be calculated given the collimator’s focal length, the camera lens’ focal length, the
defocus and the distance between the collimator lens and the camera lens.
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(a) The control panel tab (b) The product loading tab

(c) The alignment tab (d) The scan job tab

(e) The live view tab (f) The utilities tab

Figure 4.8: The graphical user interface for Modus

46



4.3.2 Setup and start of a scan

This section describes the steps involved in setting up the Modus machine, loading
a product and running a scan, from start to finish. The intention of this section is
that anyone looking to use the machine in order to collect some focus data about a
specific camera should be able to do so independently by following the steps laid out
below.

Step 1: Installation of camera:

1. Install the lens and sensor into the machine, onto the respective fixture of each,
see figure 4.9 & 4.10

2. Switch on the compressed air which develops suction between the camera
sensor and its fixture, improving the fixation.

3. Close all doors to the machine

4. Turn on the power to the generic main card (GMC)

5. Connect the USB- and Ethernet-cable to your computer

Step 2: Software start-up:

1. Start the ModusGUI software

2. Load the machine settings through File − > Load machine settings. Navigate
to the machine settings configuration file (filetype TOML).

3. Wait for the software to establish a connection with the motors and collimator

4. Home the motors if they are not already homed. In the control panel tab, click
the Seek Home-button. This should not be required between subsequent runs
of the software unless the power has been cut to the machine or something
went wrong, meaning that the motor has lost its position.

5. In the Load product tab, click Load config and navigate to the desired product
configuration file.

6. Click the connect-button to connect the software to the GMC. If the connection
times out, cycle the power to the main card and try again.

7. Click the calibrate-button to calibrate the loaded camera.

8. If no distortion polynomial is available, click the Measure distortion-button to
begin measuring it.
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Step 3: Alignment and scan program start

1. In the Alignment tab, review the alignment settings. Make changes as needed.

2. Check the post-alignment checkbox

3. Start the alignment procedure by clicking the Run Alignment-button.

4. If, for any reason, the alignment procedure should be cancelled, click the Can-
cel Alignment-button.

5. Upon alignment completion, review the results in the display.

Step 4: Scan program start

1. In the Scanning tab, load a scan job file by clicking the Load scan job-button
and navigate to the desired file.

2. Review the scan job parameters and change as desired.

3. Select the scan job to run in the drop down box at the top and the click on
Run selected. Alternatively, click on Run all to run all the loaded scan jobs in
sequence.

4. Wait until the scan completes, cancel at any time by clicking on the Stop scan-
button.

Step 5: Result output and completion

1. Navigate to the results output folder to find the result from the alignment and
the scan jobs.

2. Analyze and visualize the raw data using one or more of the provided Python
scripts or differently.

3. Close the ModusGUI application. This closes the connection with the generic
main card, the motor drivers and the collimator.

4. Disconnect the USB- and Ethernet-cables.

5. Turn off the power to the genereic main card and switch off the compressed
air.

6. Remove the sensor, lens and fixtures from the machine.
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Figure 4.9: Installation of a sensor fixture and sensor

Figure 4.10: Installation of lens fixture and lens
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4.3.3 Configuration files

The user must supply two configuration files in order to initialize the machine and
connect to a camera: the machine settings configuration file and the product configu-
ration file. Below follows a brief description of what’s included in each file and how
they’re structured.

Machine settings configuration:

This configuration file contains settings for the 9 different motors, the Modbus com-
munication protocol, the collimator as well as local paths to settings for the GMC.
Figure 4.11 shows an extract from the Modus machine settings configuration file
currently in use. It shows the settings for local GMC paths, the collimator and the
motor controlling the rotation of the collimator about the y-axis.

Camera product configuration:

The product configuration file for the Koi camera is shown in figure 4.12. It con-
tains information about the specific camera such as sensor size, focal length as well
as calibration and alignment parameters (start- and stop position, step size).

50



Figure 4.11: Part of the machine settings configuration file for Modus

51



Figure 4.12: The product configuration file for the Koi camera
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4.4 Data collection

4.4.1 Koi focus scan data

Focus data was collected for a Koi unit at the measurement points described in sec-
tion 3.5. With the scan limited to three sweep parameters (back-focus, defocus,
object angle) the focus score can be treated as a function of three independent vari-
ables:

focus = f(z, d, θY ) (4.1)

where z, d and θY is the back-focus, defocus and object angle respectively. When
d = 0 the cross-hair is placed at the collimator lens’ focal point, resulting in the
cross-hair appearing to be infinitely far away. When d < 0 the cross-hair appears
closer than infinity and when d > 0 it appears beyond infinity. Beyond infinity
simple means that the location of the image plane of a camera looking at an object
beyond infinity will be in front of the camera’s rear focal plane.

The focus score was calculated at 504 measurement points. The duration of the
scan was approximately 25 minutes, with an average of 3 seconds per measurement
point. This duration does not include the set-up of the machine, neither the alignment
procedure. The duration of the alignment procedure can vary from unit to unit. Some
units require more than one iteration of the alignment procedure. Each iteration
takes approximately 5 minutes to complete (60 seconds per alignment position × 5
alignment positions).

The complete data collection is presented in a number of contour plots, see figure
4.13a through 4.13f. The focus score is color represented and each contour plot
represents a specific offset from the aligned back-focus (z). The x-axis represents
the viwing angle, θY , and the y-axis the defocus. A defocus of -2.0 mm corresponds
to an object distance of 25 cm. In figure 4.14a to 4.14f a bilinear interpolation has
been applied to the data set.

As seen in figure 4.13 and 4.14 focus score is maximized when the z-offset, defocus
and collimator θY = 0. Focus at the near-point, when defocus = -1.75, is maxi-
mized at a z-offset of approximately -0.005 mm. The contours also illustrate that
the maximum focus at 70◦ occurs at the same z-offset as for 0◦, regardless of the
defocus.

Following the contours from left to right, i.e. with increasing collimator angle, the
focus score consistently decreases at all defocus levels. In other words, the focus
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decreases as the target moves from the sensor’s center point towards the edge, no
matter if the object is at infinity or at the lens’ near-point.
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(a) Z = -0.015 mm
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(b) Z = -0.010 mm
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(c) Z = -0.005 mm
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(d) Z = 0.000 mm

0.0 10
.0

20
.0

30
.0

40
.0

50
.0

60
.0

70
.0

Collimator Y (°) 

-2.0

-1.5

-1.0

-0.5

0.0

De
fo

cu
s (

m
m

)

Koi: Z = 0.005 mm relative to alignment

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fo
cu

s s
co

re

(e) Z = 0.005 mm
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(f) Z = 0.010 mm

Figure 4.13: Contours of focus vs. collimator θY and defocus at different z-
offsets
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(b) Z = -0.010 mm

0.0 10
.0

20
.0

30
.0

40
.0

50
.0

60
.0

70
.0

Collimator Y (°) 

-2.0

-1.5

-1.0

-0.5

0.0

De
fo

cu
s (

m
m

)

Koi: Z = -0.005 mm relative to alignment

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fo
cu

s s
co

re
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(d) Z = 0.000 mm
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(e) Z = 0.005 mm
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(f) Z = 0.010 mm

Figure 4.14: Contours of focus vs. collimator θY and defocus at different z-
offsets with bilinear interpolation
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From the complete scan data illustrated in the contour plots, the focus score can be
extracted as a function of z, at θY = 0, 70◦, as well as at infinity and the near-point.
This is shown in figure 4.15, where the data has also been fitted by a third order
polynomial. The blue curve in the image shows the relationship between the back-
focus offset (z-offset) and the focus score for a target at infinity (defocus = 0) and
0◦ object angle. The red curve is the same relationship, but now with the target at
the near-point of 300 mm (defocus = -2 mm). The green and black curves illustrate
the same relationships at an object angle of 70◦. The coefficients of the polynomials
fitting the four data sets is presented in table 4.1.
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Figure 4.15: Focus vs. backfocus at infinity/nearpoint & center/edge

Table 4.1: Coefficients for focus-backfocus polynomial regression

Defocus (mm) θY (◦) p3 p2 p1 c

0 0 −4.066e4 −2.425e2 4.262 2.130e−1
-2.0 0 −8.251e4 −2.166e2 −2.901 2.010e−1

0 70 −1.814e3 −9.857e1 6.088e−1 1.464e1
-2.0 70 3.949e2 −6.819e1 −1.251 1.303e−1
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The top focus scores, based on the polynomial fit, has been extracted from figure
4.15 and are presented in table 4.2. The colored percentages show the difference
relative to the focus score at the alignment position (z-offset = 0, θY = 0), i.e. where
the focus score is 0.214.

Table 4.2: Top focus score at infinity/near-point and center/edge

Z-offset (mm) θY (◦) Focus(∞) Focus (300 mm) Diff.

0 0 0.214 0.201 0.013 (6%)
-0.005 0 0.206 (-3.7%) 0.210 (+4.3%) 0.004 (2%)
0 70 0.147 0.131 0.016 (11 %)
-2.0 70 0.142 (-3.4%) 0.135 (+3.1 %) 0.007 (5 %)

With the polynomial fit it is possible to determine the depth of focus at different focus
scores. Section 2.2.2 introduced the depth of focus concept. The depth of focus can
be seen as the tolerance of placement of the sensor, i.e. the size of the window where
the sensor must be placed in order to achieve a certain focus score.

Figure 4.16 illustrates how the depth of focus can be extracted from the relationship
between the focus score and the back-focus. With a focus requirement of 0.20 at
θY = 0◦, a horizontal line at 0.20 intersects the two curves at four back-focus values.
The two central intersections are of interest, since between these two points the focus
score will be above 0.20 both at infinity and at the near-point. This depth of focus is
approximately 7-8 µm.

Similarly, at θY = 70◦ a focus requirement of 0.13 results in a depth of focus of
approximately 14 µm. Table 4.3 shows the depth of focus at three different focus
score requirements at θY = 0◦ and θY = 70◦, respectively.

Table 4.3: Sensor z-position tolerance at varying focus requirements and colli-
mator angles

Focus requirement θY (◦) Min. z (mm) Max. z (mm) Depth of focus (mm)
0.20 0 −0.0070 0.0005 0.0075
0.18 0 −0.0120 0.0050 0.0170
0.16 0 −0.0160 0.0085 0.0245

0.13 70 −0.0112 0.0003 0.0115
0.12 70 −0.0156 0.0062 0.0218
0.11 70 −0.0196 0.0107 0.0303
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Figure 4.16: Back-focus tolerance to satisfy focus score 0.20 and 0.13

To better visualize how the depth of focus changes with focus score, figure 4.17 was
extracted from the polynomial fits. It shows the relationship between the focus score
requirement and the depth of focus. As can be seen, the gradient of the depth of
focus (back-focus tolerance) curve is steeper at θY = 70◦ than θY = 0◦. Thus, by
lowering the focus score requirement by a certain amount, the depth of focus will
increase more towards the edge of the sensor than the center.

Figure 4.18 shows the same result as figure 4.17, however here the focus score re-
quirement is represented as a percentage relative to the highest focus score. That is,
100 % for the θY = 0◦-curve corresponds to the highest focus measured at this an-
gle. Likewise, 100 % for the θY = 70◦-curve corresponds to the highest focus score
measured at this angle. Thus, this figure makes it possible to read out the depth of
focus at both object angles, given a focus requirement relative to the alignment posi-
tion. For example, at 95 % relative focus score, the depth of focus is approximately
9 µm and 13 µm, at θY = 0, 70◦ respectively.
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Figure 4.17: Depth of focus vs. focus score requirement
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Figure 4.18: Depth of focus vs. relative focus score requirement
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5 Discussion

The following sections discuss the results that were presented in the previous section.
With regards to the hardware and software, the discussion is mainly focused around
a discussion about the user friendliness and suggested improvements.

The discussion on the analysis of the Koi camera and the results from the focus data
collection goes over the validity and confidence in the result and what can be done to
improve on this. Additionally, arguments for further data collection is made in order
to better answer the questions posed at the beginning of this thesis.

5.1 Hardware

The new hardware installed in Modus has mostly worked well. There is however
some concern as to the attachment between the sensor fixture and the sensor stack.
Sometimes after a scan program has completed, the sensor has moved out of align-
ment, indicating that it has moved somehow. The part on the top of the sensor stack
is 3D-printed and the it’s possible that the tolerances are not good enough to keep
the sensor fixture in place as it’s rotated and moved up and down during a scan pro-
gram. A new version of the 3D-printed will be manufactured, this time CNC-milled
aluminium, which should improve the tolerance.

The limitations of the rotation of the collimator about the y-axis was discussed in
section 1.1.3. Limited to θY = ±70◦, the maximum FoV that can be measured is
140◦. However, Axis cameras with fish-eye lenses have FoVs of more than 180◦. If
Modus were to be redesigned, it would be a top priority to be able to scan FoVs up
to and perhaps beyond 180◦.

The electrical panel that was created for the new hardware is a significant improve-
ment on the old one in terms of cable management and efficiency of the use of space.
However, in hindsight it would have been better to split the electrical panel into two.
As of now, there is hardly any space available on the panel for more components and
the space between the cabling channel and terminal blocks is too small. This makes
it difficult to feed wires through the cabling channel and into the desired terminal
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block. There should simply be more room for your hands when it’s necessary to do
work on the wiring. It’s especially difficult with the electrical panel installed in the
machine. It’s placed on the underside of the machine and all the way in the back,
requiring one to sit on one’s knees and reach in the back. It’s an uncomfortable expe-
rience to service the electrical panel when it’s installed in the machine, and it would
be highly prioritized to move it into a more easily accessible position.

5.2 Software development

5.2.1 Testability

Section 3.2.2.3 described the principle of writing testable software and the idea of
having a simulated version of the machine for the development cycle. Unfortunately,
a simulated machine was never developed for the Modus software, mainly due to
time constraints and the fact that throughout the project the real Modus machine was
available to test on. Due to the lack of a simulated Modus machine, it’s not possible
to test new features or bug fixes remotely. Therefore, even though the hardware is
installed and working, it’s still relevant to develop a simulated machine to have for
future development and debugging.

5.2.2 Software structure

Section 4.2.2 described how the software for Modus was divided into a number of
modules. In hindsight, the ModusWorker module could benefit from being split into
two separate modules. One module should be responsible for loading the camera’s
configuration settings and connecting it to the GMC through the CameraInterface-
module. This module should also contain the calls to methods for capturing the
image and calculating the MTF focus score. This way, a camera could essentially
be loaded into Modus and images be captured without having to connect and set
up the entire machine. While perhaps not something that would be necessary to do
on a daily basis, it would be a more logical abstraction of the software, instead of
having the ModusWorker module be responsible for everything. The second Module
would then contain the functionality which requires both the Modus machine and
the camera to be set up, for example calibration, alignment and running focus scan
jobs.
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5.2.3 Future development of the Modus software

To improve the user experience a number of new software features could be devel-
oped. One of the more significant would be a way to interact with Modus remotely
while it’s running a focus scan of a camera. A focus scan can take a long time if
a large number of measurement points are provided. If a server is set up on the
computer that’s running the Modus software, the user could connect to the server
remotely and request information about the status of the focus scan, view the pre-
liminary results and be alerted if something went wrong and the scan fails. Even
better would be if the server would allow the user to remotely send control com-
mands to create new scans, start the alignment procedure and cancel at any time.
Alternatively, the computer that’s controlling Modus could be connected through
with a remote desktop environment.

At the moment the software supports focus scans of the four parameters θy, θZ , de-
focus and back-focus. There is no functionality for controlling motors on a varifocal
lens, i.e. the aperture, zoom or focus motors. While this was not within the scope
of this thesis, it would be the next step in development of the machine to support
also varifocal lenses, since these type of cameras constitute a large portion of Axis’
product catalog.

Focus scanning in Modus is currently quite limited to doing sweeps of parameters
between a start and and end point, with a fixed step size. It would also be useful
to have some smarter algorithms which search for a given focus. For instance, if
the user would like to find between what back-focus the focus score is above 0.18,
Modus could start at some back-focus which is known to be larger than the result,
and then decrease the back-focus with relatively large step size. By analyzing when
the desired focus is approaching, the algorithm would adapt to a smaller step size and
finish when the focus score is within some tolerance, for example 0.01. The back-
focus distance would then be reported. This procedure would then be repeated for the
second back-focus that satisfies the focus score 0.18 ±0.01, c.f. figure 4.16.

5.3 Graphical user interface

5.3.1 User experience improvement

The GUI is a significant improvement on the user experience of Modus. Previously,
the user would run Modus from an executable without any visual feedback apart from
the logging output. The machine settings, product configuration and all focus scan
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positions were imported upon program launch and then the scan proceeded. If the
scan failed for some reason, the entire program would exit and the user would have
to start-over from scratch, connecting again to the machine, initializing all motors
and the collimator and loading the camera.

With the new structure of the source code, errors upon initialization, calibration,
alignment, focus scans or any other procedure can be caught and the user can alter
settings interactively in the GUI and retry immediately. There is also constant feed-
back about the motors’ and collimator’s status and position, as well as a live view
which always displays the latest image of the cross-hair target, the focus score and
the target’s position on the sensor.

If the source code for the GUI was to be rewritten, it could have been appropriate to
adopt a design pattern which better separates the source code controlling the GUI,
i.e. callback-functions for button clicks and such, from the business logic of the
program. This could be achieved by implementing the Model-View-View Model
(MVVM) design pattern. The Model component in this case contains the business
logic of the program, the View-component contains the XAML-design code and the
View Model facilitates the interaction between the two primarily through the use of
WPF-bindings. The improvement would be that the code for the GUI and the code
for the Modus functionality are completely separated and not dependent on each
other.

5.4 Data collection

Section 4.4.1 presented the results for the focus scans performed on the Koi cam-
era. The data showed the focus score decreasing with increasing θY , which can be
attributed to the optical aberration astigmatism that was presented in section 2.3. It’s
also noted that the focus score is highest at the same back-focus for every θY . This
shows that the field-curvature aberration of the camera is small, not being measur-
able for the back-focus step size of 5 µm.

The back-focus tolerance for different focus scores was extracted from the data and
presented in table 4.3. A discussion on the validity and confidence in these results is
in order. The data was fitted with a third order polynomial. A third order polynomial
has two critical points, a local maximum and a local minimum, and everywhere else
it’s monotonic, i.e. tending towards ±∞. This is not how the relationship between
the focus score and the back-focus behaves in reality. The relationship is unimodal,
with a single global maximum. Thus, it is important to realize that the polynomial
fitted to the data may only be used for interpolation and not extrapolation.
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The results show the sensitivity of the Koi camera. Within just 5 µm back-focus the
top focus score shifts from infinity to the near-point of 300 mm. However the depth
of field is very large. By offsetting the back-focus by µm the top focus score may
have moved to the near-point, but table 4.2 showed that the focus score at infinity and
θY = 0◦ only decreased by 3.7 %. Likewise, at θY = 70◦, the focus score decrease
of a target at infinity when offsetting the back-focus by 5 µm was 3.4 %. The focus
score for an object at the near-point increased by 4.3 % and 3.1 % at θY = 0, 70◦,
respectively, for the same 5 µm back-focus offset.

Since the near-point and infinity represent the two extreme distances of the object
space, and the focus score within this range changes on the order of ±4%, it can be
concluded that the focus score for an object at any position between the near-point
and infinity would be within this same range. Thus, for the measured Koi unit, the
relevant back-focus offset is between 0 and 5 µm and the focus score changes to be
expected is below 5 % throughout the object space, between 0 and 70 ◦ θY .

The ideal back-focus offset is somewhere between 0 and 5 µm. However, the ideal
offset depends on criteria that must be specified by the project developing the cam-
era. The results here have not taken into consideration the application areas of the
camera. For surveillance in a convenience store for example, the range of object
distances to be imaged sharply might lie between 0.5 and 25 m. In that case, focus
data should be gathered at these object distances instead of at 0.3 m and infinity.
Because of the large depth of field of fish-eye lens cameras, the focus score results
at these distances would be very similar to the results presented here for 0.3 m and
infinity.

While the results provide information about the back-focus tolerance at different fo-
cus score requirements, it only holds true for the particular unit that was analyzed.
In order to be able to draw conclusions about the Koi camera in general, several
more units would have to be analyzed. With a larger sample size, the variance be-
tween units of the same camera could be shown statistically by calculating the mean,
standard deviation and confidence intervals. With this information, the foundation
would be stronger for making decisions about whether to offset the sensor from the
alignment position in order to increase the focus score at object positions closer than
infinity.
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5.5 Future role of Modus

5.5.1 Development phase

The preceding results and discussion show that Modus can be used during the de-
velopment phase of new cameras at Axis. At the moment it is limited to fixed-focal
cameras. Using Modus, the focus score can be measured as a function of the object
distance, back-focus, object angle and rotational angle.

By analyzing several units of a camera in Modus, the relationship between the back-
focus and focus can be statistically proven. This information can form the foundation
for decisions on whether to offset the back-focus when gluing the sensor and lens in
IBAS 2 in order to improve the focus for objects closer than infinity.

5.5.2 Production phase

Modus could also be used out in production. After the sensor and lens have been
glued in IBAS 2, the rest of the camera is assembled and several tests are performed.
Among these are focus tests. Because Modus is fitted with a variable focus col-
limator, a unit which fails these subsequent focus tests could be disassembled and
analyzed in Modus at, for instance infinity and the near-point. Using a graph such
as figure 4.15 previously shown, the back-focus offset from the alignment position
could be determined. By measuring this at the five positions on the sensor, the tilt
offset could also be calculated. This could provide details about how the UV-curing
adhesive has misaligned the sensor, something which today is not known.

Two approaches to measuring the misalignment of failed units in production can
be envisioned. The first is to, as the previous paragraph explained, compare the
measurements from Modus of a failed unit with that of measurements of non-glued
units of the same camera in Modus. However, since it is expected that there is some
variance between units, it is currently not known how accurate this misalignment
prediction could be. Instead, the focus score saved during the alignment in IBAS
2 for each unit could be used. If the unit then fails, the measured focus score in
Modus could be directly compared to the focus scores measured in IBAS 2 during
the alignment. The calculated misalignment would then be based only on the specific
unit of the camera, and not an average of a number of units.

The above ideas are hypothetical, and would require significant testing to validate. A
number of different cameras should be measured in the IBAS 2 located at the office
in Lund and then in Modus to see if the results are comparable.
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6 Conclusion

This thesis set out with the goal of developing a tool for analyzing the focus char-
acteristics of Axis cameras prior to sensor-lens assembly. The aim was to expand
on the capabilities of the Modus machine to also be able to find the relationship
between the MTF focus score and the back-focus, defocus and object angle. With
a more complete picture of the focus characteristics it should be possible to make
informed choices about what back-focus to aim for during production in order to
achieve the desired depth of field.

Modus has been updated with new mechanical parts and electronics to support the
analysis of a camera where the lens and sensor are not glued together. Several new
software features have been implemented that can scan the back-focus, defocus and
object angle and calculate the focus score at each combination of the parameters. A
graphical user interface was developed to interact with the machine, allowing anyone
to use it with ease.

Koi, a fish-eye lens camera was analyzed as part of the development of Modus. The
results from the focus scan of Koi provided a mapping of the focus score within a
certain range of the sweep parameters. Some key plots and conclusions could be
drawn from this set of focus data:

1. The relationship between the back-focus tolerance and the focus score

2. The back-focus offset required to alter the focus score at object distances other
than infinity

3. The misalignment of a glued unit by analyzing it in Modus at several different
object distances

While the results answers the questions posed at the beginning of the thesis, they are
limited to the specific unit of Koi that was analyzed. As discussed in the previous
chapter, it is necessary to analyze a number of units in order to find out how (1) and
(2) above varies between units.

Future development should focus on developing Modus capabilities to analyze var-
ifocal lenses. The GUI should be made more responsive and user friendly. Smarter
focus scanning algorithms should be implemented to cut down on scan durations.
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Finally, Modus role in the production line should be studied further, since it can po-
tentially provide further information about why units that were successfully aligned
in IBAS 2 fail subsequent focus tests.
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A Time plan

Figure A.1 and A.2 illustrates the original time plan and the actual time plan. The
actual time plan differs from the planned in some areas. Firstly, the tasks were broken
down into smaller tasks, and some tasks omitted all together. Some tasks took less
time than expected. For example the data processing- and analysis task was planned
for four weeks, but in reality the effective time spent was roughly two weeks spread
out over a number of weeks.

In contrast, some tasks had not been considered by the time the original time plan
was written. For instance, implementation of alignment for Modus was not some-
thing that was anticipated during the planning phase, taking approximately two
weeks to complete. Likewise, the need for the graphical user interface emerged
as the project ensued and required one to two weeks of development.

There was some delay in the manufacturing of the new hardware for Modus, which
is the reason for the extension of the thesis into February. This delay meant that
installation & testing of the new hardware had to be postponed a few weeks, and as
a result also the product analysis part of the project.
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