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Abstract 
Motivation: 3D brain organoids are biological models of human brian development from which a rich 
body of data can be extracted that allows for insights about neuronal dynamics. Several tools, such 
as fluorescence calcium imaging microscopy and electrophysiological recordings are being used to 
asses how 3D brain organoid dynamics recapitulate what is known from the human brain. In-silico 
automated workflows that process such datasets on a large scale in a robust and reproducible man-
ner need to be developed. 
Results: An automated, modular and scalable workflow was written using Python 3.9. ImageJ, In-
scopix API and Caiman/CNMFe that outputs neuronal cell traces and additional scripts were pro-
duced to enable large scale analysis of Axion multi-electrode array output. 
Contact: mattisknulst@gmail.com  
Supplementary information: Supplementary information is found in the appendix. Documentation 
(README) sent separately. 
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Background  

Introduction 

Recent advances in cell cultures have enabled the creation of three-
dimensional pluripotent stem cell aggregates that organize themselves 
into structures that closely resemble that of the human brain. The usage 
of stem cells means brain models can be created with the same genetic 
content that can be found in humans (Kim et al., 2020). These methods 
could be important both for prospective pharmaceutical research, where 
organs from animal models normally act surrogates for their human 
counterparts and in personalized medicine. While the methods for grow-
ing these cultures and techniques for observing them are getting more 
common (Marton & Pașca, 2020), there is a great need to scale up and 
automate the in-silico processing of the raw data. 

Data types and general workflow 

This paper will treat the automatization of the processing of two types 
of raw data; calcium fluorescence microscopy imaging (FM) data col-
lected with an Olympus spinning disk confocal inverted microscope 
(IX83), equipped with a dual-camera Yokogawa W1 spinning disk (SD) 
for fast confocal acquisition, controlled by cellSens 
(https://www.olympus-lifescience.com/en/software/cellsens/) software, 
videos recorded using a 20x/0.75 UPLSApo WD with a 0.6 mm objec-
tive and 488 nm laser on brain organoids with the calcium reporter 
GCAMP6s (TW et al., 2013). and multi-electrode array data (MEA) 
using Axion’s Maestro Pro multi-well microelectrode array system with 
a 48-well plate (providing a simultaneous recording of 768 channels). 
The computational processing of the data was performed on a work-
station with 4 logical processor units and 128 GB of RAM, which during 
development was upgraded to 36 logical CPUs and 64 GB of RAM. The 
operating system was Windows 10 Pro. 

The typical raw FM data takes up approximately 10 GB of disk space 
(for a 5-minute recording, 5000 frames at 1024x1024 pixel (px) resolu-
tion with one frame acquired every 65 msec, ~15.4 Hz) and is contained 
in a binary library which can be read with the Bio-Formats library 
(Linkert et al., 2010) and exported to a tagged image file (TIF). This, as 
well as spatial downsampling by 2x bilinear interpolation and removal of 
the leading 100 frames, is performed with ImageJ (Rueden et al., 2017).  
The output consists of an intermediate video file which is 25% the size 
of the original raw data and typically has 4900 frames at 512x512 px 
resolution.  

The downsampled file is processed further using Inscopix 
(https://www.inscopix.com/software-analysis) proprietary Python API. 
Inscopix is a provider of hardware and software for FM brain imaging 
and their API contains many functions that can be incorporated in this 
workflow.  First there is a preprocessing API function, which prepares 
the image stack (attempting to correct missing pixels) before it is sent 
through bandpass filtering to remove unwanted high or low-frequency 
fluorescence oscillations per pixel. Next, regions of interest (ROIs) that 
are showing activity are identified using the “constrained non-negative 
matrix factorization for microendoscopic data” (CNMFe) algorithm 
which allows for neuronal ROI segmentation and extraction of each 
ROI’s calcium temporal dynamics (Zhou et al., 2018) contained within a 
Docker (by default Inscopix provides their own default version of 
CNMFe during setup), but accessed via the Inscopix API. This method 
(CNMFe) is advantageous in that it allows for a better resolution of 

spatially overlapping ROIs, provides good modelling of background 
activity and works well even in situations with low signal-to-noise ratio 
compared to other methods (Pnevmatikakis et al., 2014, 2016). 

The ROI information is used to extract a trace, which is the raw fluo-
rescence intensity value by frame and this information is used to detect 
events corresponding to neuronal spike activity (event detection). Up to 
this point, the intermediary information is held within binary files, and at 
the end of the Inscopix API module, it is exported to comma-separated 
values (CSV) tables. One intermediary file and a directory containing the 
settings and temporary files for Caiman is produced which take up 
roughly little over the in-going downsampled file size on the hard drive, 
these can be safely removed to use less storage. The CSV table output 
contains information about the quality of the data and ROI traces are 
listed in columns together with the corresponding time information.  

CNMFe is the most computationally expensive step both regarding 
memory consumption and CPU load. The in-going video file shows 
populations of identified neural components (somata and dendrites) with 
variable shapes inside the previously imaged area of the organoid, the 
algorithm must separate fluorescing components and infer the underlying 
action potentials, while accounting for the fact that the analysis is done 
on a two-dimensional representation of a three-dimensional system, the 
calcium reporter will also have a slower decay than the time it takes for a 
neuron to return to resting potential (Pnevmatikakis et al., 2016). The 
most important parameters in inferring traces are the average component 
diameters, specified in pixels, minimum peak to noise ratio and with 
regards to the memory consumption, how to break images up and pro-
cess them in patches (new in Inscopix 1.6).  

Because traces are sometimes anomalous, a third module was written 
and introduced after this step that identified and flagged anomalous ROIs 
and a fourth module is planned to do different statistical analyses on the 
traces but is still being developed at the time of writing. 

For the MEA analysis, the manufacturers' software can directly output 
statistics and metrics based on the raw input data (changes in voltage 
over time), this output is contained in a single CSV table containing 
merged tables of different shapes which need to be parsed and summa-
rized in a single table so that individuals and experimental groups of 
organoids can be plotted against each other. The experimental setup of 
MEA is still being worked out, the focus here has been to enable parsing 
a large number of output files from this technology. 

Aim 

This paper aims to develop and evaluate methods to automate the 
above-specified steps into a workflow that can be reliably used with 
minimal user interaction.  

 This workflow should be scalable, able to utilize hardware 
upgrades as well as accommodate large input batch sizes.  

 It should be reproducible, meaning that the workflow ap-
plication itself is portable and can be set up on other sys-
tems, where the installation can produce the same results.  

 Further, the workflow application should be robust, if there 
are disturbances during processing, there should be check-
points that minimize losses in processing time by picking 
up where the failure occurred automatically once restarted. 
There should also be logging for the scope of each layer of 
software so that if there are errors they can be quickly 
identified and remedied.  

 All relevant software must be provided with documenta-
tion that explains the scripts and how they work well 
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enough that a user with minimal experience of working on 
the command line can use the software and validate results, 
as well as extend the pipeline with new modules.  

 The documentation also needs to explain the process of 
developing new scripts that are intended to be part of the 
pipeline to streamline the future inclusion of these addi-
tional steps into the workflow and/or the re-ordering of the 
same. To facilitate this, the scripts need to be readable and 
modular. 

 The directory structure for batch intermediary and result 
output needs to be planned that is easily navigated by us-
ers.  

Methods and Results 

Pipeline application 

The first consideration was whether to use a workflow management 
system such as Snakemake (Mölder et al., 2021) to automate the pipe-
line. Since the workstation was running Windows, this may have been 
possible through Windows Subsystem for Linux (WSL), but the specific 
setup meant that the Inscopix software environment was installed outside 
WSL, moving it inside WSL would have prevented the usage of the 
Inscopix GUI (the software license allows for only a single installation). 
A decision was therefore made to write a custom workflow application 
in Python. Since the Inscopix API depended on Conda, the workflow 
application could use other Conda environments for modules with con-
flicting requirements, adding minimal overhead in the installation pro-
cess and software layers. 

To make system calls from Python, the subprocess module 
(https://docs.python.org/3/library/subprocess.html) was used, this mod-
ule has improved in collecting and returning child process terminal out-
put on Windows systems since Python version 3.6 which is the required 
version of the Inscopix API, leading to the main body of the pipeline 
being written in Python 3.9 and having an isolated environment. 

ImageJ has a CLI interface, which allows for running the tool in head-
less mode or batch mode, unfortunately, Bio-Formats is incompatible 
with the headless mode, so the batch mode is used instead with a macro 
script generated from a template by the pipeline. The major difference 
between this solution and the headless mode is that the batch mode re-
sults in a splash screen appearing on the desktop when a file is being 
processed, which may be distracting if the pipeline is running in the 
background. ImageJ additionally has a portable installation that is pack-
aged inside the main directory. 

The Inscopix API was implemented as a module inside a python 
package directory that sits in the main directory, because of requirement 
conflicts this script cannot be imported by the main script and is instead 
run in the Inscopix custom environment using Conda. 

The main script is kept condensed by having a main function that im-
ports modules in the pipeline, runs steps in the pipeline, logs output and 
errors as well as checks for final outputs at each module and moves to 
the next step if this output is present. Additional modules/steps, no mat-
ter the software used, can be added to the main function using a custom 
function that makes system calls. Further, the main function is parallel-
ized using the python multiprocessing module 
(https://docs.python.org/3/library/multiprocessing.html).  

The setup process only requires extraction of the pipeline application 
main directory on a computer where the Inscopix software has been 
installed, as well as the creation of the environment for the pipeline 

application itself and the accompanying anomaly detection module. In 
the hour of writing the pipeline solution has processed 1393 FM files, 
each file taking on average 25 minutes to process. 

 

Anomaly detection 

ROI traces should ideally have a fast rise and slow decay dependent 
on the action of GCAMP6s and neuron function (Chen et al., 2013), see 
fig 1a (appendix A). To explore options for automatically identifying 
anomalous ROI traces 7029 manually annotated (accepted or rejected) 
were collected. An estimated 5.7 % of the ROIs (in the manually anno-
tated data) produced anomalous traces, see appendix A. An exploratory 
data analysis was conducted, and a random forest classifier model was 
trained using Scikit-Learn (https://scikit-
learn.org/stable/user_guide.html) and then implemented as a python 
module in the pipeline. The data was split (using stratified sampling) into 
a training set with 3953 traces for training and 1318 for testing, after 
tuning (optimizing for high recall score) the classifier was evaluated on a 
validation set containing 1758 traces. The model has an F1 score of 0.77 
(harmonic mean of precision and recall) for traces that should be rejected 
(see appendix A). The module produces a copy of the original ROI traces 
CSV including only the accepted traces and plots all traces output along 
with model predictions so that they can be reviewed. 

Multi-electrode array data 

The MEA data analysis software from Axion lacked a CLI interface 
and consisted of compiled Matlab scripts. The software can process one 
48-well plate at a time in what will remain a manual step, but the results 
of this per-plate analysis must be directly exported to a CSV file. This 
CSV is the result of combining many tables and metrics into one table 
and is not suitable for analysis without parsing the data first. A parser 
script was written in Python which can iterate over many CSV outputs, 
extracting metrics and collecting them together with information about 
individual organoids, well number and original file in a Pandas 
(https://pandas.pydata.org/docs/) data frame, as well as exporting the 
result to a new portable CSV. The parser is written as a Python class that 
can be instantiated for each input file, allowing it to be used by other 
scripts working with batch analysis of the Axion output. 

Discussion 
The data processing was automated successfully on the target system 

and is modularized in such a way that it is readable and extendable with 
minimal Python knowledge. The pipeline is robust and has checkpoints 
for dealing with interruptions during processing. It is also portable and 
can be quickly set up on a new system. Inscopix version 1.6 which was 
released during development has been implemented in a future patch. 
The pipeline uses Git for version control and a separate Git branch that 
can be merged to the main branch to apply the Inscopix 1.6 update. Dur-
ing development, the main challenge was the proper implementation of 
Caiman/CNMFe. Most of the processing time is consumed by this step, 
the package is included with a default Inscopix installation, but had very 
long (>1 hour) processing times on the target systems. A Docker image 
was written interactively before the development of this pipeline and 
based on the GitHub installation of Caiman 
(https://github.com/flatironinstitute/CaImAn). The Docker container was 
implemented using the Docker Python software development kit (SDK) 
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(https://docker-py.readthedocs.io/en/stable/).  There were several chal-
lenges with the implementation, mainly the lack of a make file (which 
would contain the instructions to generate a new Docker image, and 
which could be altered to avoid limitations in the original build). Addi-
tionally, the Docker SDK changes affecting the Inscopix API were un-
documented, and the container was named in such a way that the Docker 
could only have one instance at any time. This was corrected by giving 
container instances unique names, but parallel Docker containers would 
always set all available CPUs to 100%. While the memory of the target 
system would allow for at least 4 parallel processes, the highest safe 
setting was determined to be 2. This is probably due to the parallel pro-
cessing of patches, before Inscopix 1.6 the CNMFe function only took a 
keyword argument for the number of processes per patch, in the new 
version the processing mode can be set to parallel or sequential. Sequen-
tial should be preferred here if Inscopix API functions are used at a low-
er level where parallel processes are managed from the top to avoid 
unpredictable results when running the entire pipeline in parallel. 

During testing of the new version of the Inscopix software, Caiman’s 
recommended installation 
(https://caiman.readthedocs.io/en/master/Installation.html#installing-
caiman) was also tested, retrieved from conda-forge, and this version of 
the pipeline will be able to run completely without the use of Docker. 
The update will also result in slight changes to the output. ROI traces 
will now be normalized in the Inscopix CNMFe function using ∆F/F 
(change in fluorescence normalized to the background fluorescence). 
The same normalization needs to be applied to the random forest classi-
fication model in anomaly detection. 

The anomaly detection module has faced a few challenges, the data 
used for training the random forest model was exclusively 4900 frames 
long and since dimensionality reduction/feature selection was not ap-
plied, the model can only accurately label vectors with dimensions 
(,4900). Since this is an unbalanced data set, several strategies were 
applied to increase the proportion of traces that should be rejected. The 
database was expanded two times, first with additional manually curated 
traces and the second time with data produced while configuring 
CNMFe’s pixel seeding operation mode to extract the components spa-
tial footprints, which contained a high proportion of rejected traces. 
Splitting the data was also reworked to make sure the proportion of 
rejected traces in the randomly selected sets remained the same. The F1 
score of the model (0.77) likely reflects the fact that while a large pro-
portion of rejected traces can be almost immediately identified by a 
human observer (see appendix A) there is a significant proportion of 
edge cases. A recent paper exploring hyperparameter optimization for 
machine learning models that detect anomalous ROI traces determined 
that human inter-rater agreement is 87% (Tran et al., 2020). Further, 
while some traces that should be rejected are flagged as false positives, 
there is not a considerable cost in traces that should be accepted (1% 
accepted traces mislabeled as rejected in the validation set, against 74% 
correctly labelled rejected traces). Since neuronal traces are likely to be 
heterogeneous during varying experimental conditions, this module only 
adds a clean table file, without destroying the in-going data and produces 
labelled plots for every trace, providing inherent quality control for this 
step. 

Conclusion 

The MEA data processing script efficiently parses output files and 
prepares a collected table output file for large scale analyses. 

In the FM data processing, the pipeline has efficiently reduced a work-
flow that required manual script editing and file operations with each 
step and without the advantage of parallel processing throughout the 
workflow to a parallelized single step that can be started with minimal 
user interaction from the command line. The pipeline application pro-
duces logs for each layer, is well documented and has checkpoints to 
skip completed steps in case execution is interrupted. Intermediary and 
result files are kept in a numbered tree structure with a parent directory 
name based on the in-going raw files so that large batch outputs can be 
quickly navigated. The setup process on a new system is minimal. 

After a major update to the Inscopix API, that module has been re-
worked with a future patch that can be applied, which increases the po-
tential for taking advantage of parallel processing. 

The software ecosystem involved in processing brain organoid data is 
still actively developing to meet the requirements of large-scale opera-
tions, demanding automated data processing pipelines to use version 
control, be flexible, modular and continuously updated to follow. The 
solution presented here takes advantage of existing resources in a target 
system to devise such a workflow, while at the same time being portable, 
reproducible on other systems and remaining approachable for the user. 
While stringing a set of algorithms together for massive analysis enables 
high throughput, it appears that there is a risk for a loss in the quality of 
output data. Filtering the output of the pipeline such as was done in the 
present pipeline is an intuitive first step, but in the future it should be 
explored whether especially the CNMF-e algorithm can be rewritten to 
allow for a greater flexibility in input data while producing robust and 
high-quality output. 
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Appendix A:  

   

Anomaly detection 

Table 1: Showing validation scores for 0=Rejected and 1=Accepted traces in the validation data set 
 

 
   

 Precision Recall F1-

score 

Support 

0 0.80 0.74 0.77 91 

1 0.99 0.99 0.99 1667 

Accuracy   0.98 1758 

Macro 

avg 

0.89 0.89 0.98 1758 

Weighted 

avg 

0.89 0.98 0.98 1758 

Figure 3: Confusion matrix showing the results of the random forest classifier on 
the validation set 

Figure 1: Showing the expected fluorescence peaks, 
peak events are marked with red dots and show a fast 
increase and calcium reporter decay time dependent 
decrease. 

Figure 2: A typical rejected trace, with irregular 
peaks that do not decay to a baseline for many frames 
beyond the decay time. 



Appendix B:  

   

Axion multi-electrode array 

 

Figure 1: Information extracted from multiple Axion MEA out-
put files and exported to a single CSV table. 



User guide a:head pipeline application v
1.3

 

Configuration  
This is the current version of the conf.ini with instructions on what to change (if required):

Things to avoid:

back-slashes (seems to work fine, but still always a good praxis)
spaces in paths
be aware that if the input folder is the parent directory of the output (results), this directory will be listed when the 
pipeline is run with the -l flag, obviously, don't pick this directory as  input.
keep everything on one line after a keyword in the configuration file, new lines will be read as new keywords or may 
cause errors

Running the scripts QUICK START (look below for setup
instructions)

 

Make sure you have updated conf.ini! Also, be sure that docker is running. Open Anaconda Prompt (activate pipeline), enter:

[INFO]
author = Mattis Knulst
email = mattisknulst@gmail.com
 
[IMAGEJ]
script = pipeline_modules/file_convertion_frames_removal_SD.ijm
imagej_exe = fiji-win64/Fiji.app/ImageJ-win64.exe
 
[GENERAL]
watched_folder = C:/dir/in_folder,D:/other/dir #comma-separated, single line
results_folder = C:/dir/results_folder
version = 1.3
 
[ISX_OPTIONS]
num_processes=2
min_pnr = 20
event_threshold = 0.2
 
[SCRIPTS]
# not in use
 
 

af://n326
af://n328
af://n341


Common use cases:

List all raw files in all directories specified (as watched_folder) in the configuration file and place the output under the 
directory specified in conf.ini (default)

Choose single input directory from the watched folder in conf.ini (type all to process all)

Start wildcard batch processing by specifying a pattern using * e.g. *plate3* will list all the directories containing the string 
...plate3... or *202105* will list all directories that start (and contains the string, use with care) with 202105 and are found in 
the path specified in conf.ini watched_folder. This option will always display the results of your search and prompt you 
before starting the batch processing. It will do this for each of the specified input directories in the configuration file.

Finally:

Will start a wildcard batch with 6 parallel processes and override the results folder in conf.ini, giving the processed
directories a common root on drive H called my_batch_results.

EXTRA: For troubleshooting, it is recommended to redirect errors from Powershell to a log file (this is extremely helpful 
when trying to figure out why 1/300 files didn't finish correctly):

 

Setup Instructions  

cd path\to\pipeline\folder
conda activate pipeline
python pipeline.py -h
usage: pipeline.py [-h] [-i INPUT] [-v] [-l] [-w] [-o OUTPUT] [-p POOL] [-j JOBS]
 
Bringing pipeline execution to Windows!
 
optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        Specify single input directory
  -v, --version         show version and exit
  -l, --list            Lets you pick input from watched folder in conf.ini
  -w, --wildcard        iterate over folders matching a pattern
  -o OUTPUT, --output OUTPUT
                        override the output directory specified in conf.ini
  -p POOL, --pool POOL  Place copy of all final output csv files in this directory
  -j JOBS, --jobs JOBS  Specify number of parallel processes, default=2

python pipeline.py --input H:/raw/20210520_experiment_1

python pipeline.py --list

python pipeline.py --wildcard

python pipeline.py --jobs 6 --wildcard --output H:/my_batch_results

conda activate pipeline
python pipeline.py --list -j 4 2> error_log.txt

af://n358


1. Make sure Inscopix is set up according to its own documentation first (this should involve installing Anaconda, but there 
may be an exception to the instructions for installing CNMFe/Caiman, see Inscopix new version notes at end of this 
document)

2. Open the anaconda powershell prompt
3. Enter:

4. Download and extract the latest version of the pipeline scripts, it makes sense to put them somewhere near 
Inscopix, but this is not necessary for the scripts to work. 
IMPORTANT: Be sure to have read the previous section about the configuration file before running the pipeline!

USEFUL BASH COMMANDS: Validating the pipeline and monitor Docker  

Bash is the right tool for batch file operations, and since you have WSL, you have Bash. 
After starting WSL, note that paths will change from C:\dir to /mnt/c/dir, do NOT forget the leading /. 
Navigate to the parent directory of the results. 
Count all folders:

List all folders that still have the temp_cnmfe directory:

optionally, count them:

Remove the entire 2_preprocessing directory, only in those folders where cnmfe failed:

This lets the pipeline automatically use the processed ImageJ file to redo the ISX part.
Now, maybe you are interested in all the files that do not have a temp_cnmfe:

Wonder how many directories have cellset traces files?

# notice that the environment names are given here and in the pipeline.py script
# these are hardcoded so make sure to spell them correctly!
conda create --name pipeline -c bioconda -c conda-forge python=3.9 alive-progress
# hit enter, let it work
# then:
conda create --name anomaly_detection -c bioconda -c conda-forge numpy=1.20.2 \
python=3.9.2 scikit-learn=0.24.1 scipy=1.6.2 matplotlib==3.4.1 seaborn==0.11.1 pip
# it is possible you will have to remove the \ and put it all on a single line (Windows)

#there is always at least one folder called temp which should not be in the output so subtract 1 
from result
find . -mindepth 1 -maxdepth 1 -type d | wc -l

 for incomplete in $(find . -type d -path "*/*/temp_cnmfe");do echo ${incomplete%/*};done

 for incomplete in $(find . -type d -path "*/*/temp_cnmfe");do echo ${incomplete%/*};done | wc -
l

 for incomplete in $(find . -type d -path "*/*/temp_cnmfe");do rm -rf ${incomplete%/*};done

find . -maxdepth 1 -type d -not -path "*/*/temp_cnmfe"
# and to count:
find . -maxdepth 1 -type d -not -path "*/*/temp_cnmfe" | wc -l
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And finally, any of these can instead of printing the results to screen, dump the output into a file:

Now for Docker, which can be controlled from WSL

WSL is a very useful tool on Windows, following is an example Bash/Python script sitting in the home directory of WSL on 
the workstation. 
If the Bash script is called validate.sh and set as executable (chmod +x ~/validate.sh) it can be called from Windows: 
These scripts are not optimized code, but were written quickly to produce an updatable report in the WSL home dir to track 
pipeline progress.  
They also serve well to demonstrate how to work with the directory structure produced by the pipeline.

for trace in ls */*/*cellset-traces*;do echo ${trace%*/*/*};done | sort | uniq
# and count:
for trace in ls */*/*cellset-traces*;do echo ${trace%*/*/*};done | sort | uniq |wc -l

find . -maxdepth 1 -type d -not -path "*/*/temp_cnmfe" > no_failed_cnmfe.txt
for trace in ls */*/*cellset-traces*;do echo ${trace%*/*/*};done | sort | uniq > 
successfully_completed.txt

# list all active containers
docker container ls
# shut down a container gracefully
docker stop ID
# force stop container
docker kill ID
# view active container stats
docker stats
# loop to check up time, sleep value in seconds to wait before calling again
while true;do clear;docker container ls;sleep 10;done
# this loop may look similar to docker stats, but it is easier to
# copy the IDs in the first row

bash -e "~/validate.sh" #from PowerShell
################
validate.sh
#!/bin/bash
raw_super_dir="/mnt/f/Raw_data_M40/"
find /mnt/d/pipeline_output -mindepth 1 -maxdepth 1 -type d > ~/out_dirs_list.txt
count=0
res_count=0
declare -i res_count #these should contain integers, not strings
declare -i count
while read dir
# count how many raw dirs have produced outputs
        do count+=$(find ${raw_super_dir}${dir##*/} -mindepth 1 -maxdepth 1 -type d | egrep -c 
^/mnt/)
        res_count+=$(find $dir -mindepth 1 -maxdepth 1 -type d | awk 'BEGIN { FS = "/" } ; { 
print $5 $6 }' | egrep -c "^[0-9]")
done < ~/out_dirs_list.txt
# counting the raw data based on the result folders
echo "This many should be processed"
echo $count
 
# counting how many of the listed raw data directories have produced a corresponding output
echo "This many raw data directories have produced output"
echo $res_count
 



# listing relevant files
echo "examining these files"
egrep "[0-9]+_[A-Z]+$" out_dirs_list.txt
 
echo -e "OUT_DIR_NAME\tFILE_NAME\tSTATUS\tPROCESSING_TIME\tNUM_COMPONENTS" > report.tsv
# this loop only works on the output that has output in the results folder
egrep "[0-9]+_[A-Z]+$" out_dirs_list.txt | while read dir
do
        for log_file in ${dir}/*timed_log.tsv
        do
                python3 time_diff.py $log_file
        done
done >> report.tsv
# now we need to look for results that should have been processed but are missing
# generate search list
for p in $(egrep "[0-9]+_[A-Z]+$" out_dirs_list.txt);
do find "/mnt/f/Raw_data_M40/"${p##*/} -maxdepth 1 -mindepth 1 -type d;
done > to_be_processed.txt
# check if expected directories have been created
while read line;
do
[[ -d "/mnt/d/pipeline_output/"${line#*/*/*/*/} ]] || echo -e 
"NA\t/mnt/d/pipeline_output/"${line#*/*/*/*/}"\t-1\tNA\tNA"
# this checks for the glob expanded directories and if the directory does not exist prints the 
directory and a -1 in the table
done < to_be_processed.txt >> report.tsv

######################################
#time_diff.py
#######################################
#!/usr/bin/python3
import sys
from datetime import datetime
from pathlib import Path
log_file = sys.argv[1]
times = []
try:
        with open(log_file, 'r') as log:
                for line in log:
                        line = line.strip().split()
                        time = datetime.strptime(line[0], '%X')
                        times.append(time)
except:
        quit()
# "OUT_DIR_NAME      FILE_NAME       STATUS  PROCESSING_TIME NUM_COMPONENTS"
processing_time = times[-1]-times[0]
out_dir_name = Path(log_file).parent
file_name = log_file.replace('timed_log.tsv', '')
traces_file = Path(file_name).joinpath('3_event_detection_export', Path(file_name).name[1:] + '-
cellset-traces.csv')
status=0
num_components=0
if not Path(file_name).exists():
    status = -1
elif Path(file_name).joinpath('3_event_detection_export').exists():
    status = 1
    num_components = 0
elif traces_file.exists():
    status = 1
    with open(traces_file) as tf:



Pipeline.py  
The following chapters describe the different parts of the pipeline and how they work, they are here to assist 
with troubleshooting and or developing the pipeline further but may not be necessary for normal operation.

This script is written to take a single directory of inputs and execute 
steps in the pipeline consecutively on outputs until final outputs are produced. 
The pipeline is a main function called 

that takes a specific directory containing raw data as an argument with the flag -i, or optionally looks through 
a folder specified in config.ini and prompts the user to select an input folder. The main function determines the entire
workflow for a single file.

The pipeline itself is an intermediate layer, another script can import its main 
function and iterate over a set of input directories. Below it is a directory of modules 
containing native python scripts as functions that operate on a single set (derived from 
one directory of input data) of files. 

Scripts and programs in other languages need to be executed with the subprocess 
module. A helper function in this script called 

 attempts to check the commands that are passed to subprocess and capture the output and 
can be added into the main function similar to how ImageJ is implemented.

The pipeline is designed to be run from its own Python 3.9 environment (requirements specified under setup instructions). 

Inside the main function, there is a variable called "root_out" which will always expand to 
output_dir/name_of_experiment_dir/

If intermediary or additional results are created, the structure under root_out is a numbered set of directories, 
this helps see in which order everything happens and aids in troubleshooting, so it is recommended that future directories 
be added as root_out/n+1_future_step.

        header_ls = tf.readline().strip().split(',')
        num_components = len(header_ls)-1
 
print(f'{out_dir_name}\t{file_name}\t{status}\t{processing_time}\t{num_components}')

run_pipeline()

run_script()

shell_command = "conda activate my_env && python my_script.py arg1 arg2 arg3"
run_script(shell_command)
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Pipeline modules  
This is a python package folder which sits next to pipeline.py. Any .py script that is put here can then be imported into the 
main script using

When imported like this, the entire script will run once, except the part that is below:

This means anything defined in that script will be accessible from the main script which greatly increases the readability of 
the main script and troubleshooting, since a broken module script can be worked on separately from the rest of the 
application. Because of this , it is a good idea to give anything defined inside the script a docstring which declares how the 
input should look and what the expected output is. Additionally it is a good idea to add tests below the if name = main so 
functions can be evaluated without running the full application. If python scripts follow these general guidelines they can just 
be dropped in the pipeline_modules folder, imported in pipeline.py and run on an input in its main function.

pre_isx.py  
Contains 4 functions, 3 of which summarize the main functionality of the previous Jupyter notebooks that call Inscopix 
functions to preprocess fluorescence microscopy image data. The fourth function strings these functions together so they can 
be run sequentially from the main script with one line.

The input comes from the output of ImageJ which downsamples and rescales the raw data and outputs large Tif files. At the 
end of these steps the Tif files will have gone through image analysis to extract components and their associated information 
(traces and so on) as csv files.

search.py  
This is a housekeeping module which supplies functions for searching through directories via the CLI and either running the 
pipeline on a single directory or in batch mode. Wildcard search 

anomaly_detection.py  
This module loads a pre-generated random forest model that is stored within the main directory (pipeline/models), it then 
reads CSV files with traces into Numpy arrays, normalizes the traces (also using a model from pipeline/models) and predicts 
whether a trace should be accepted or rejected. All traces will be plotted and Accepted traces are collected in a new 
clean_traces.csv.

from pipeline_modules import script

if __name__ == "__main__":
    main() # code block for testing a module script directly

def run(out_root):
    print('Writing to this directory: ', out_root)
    preprocessing(out_root=out_root)
    cnmfe_processing(out_root=out_root)
    event_detection(out_root=out_root)
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The models are generated with the random_forest.py script. This script is built using Scikit-learn. Models are stored as file-
streams using pickle. Since this is an unbalanced dataset, the data is split using stratified sampling into training, testing and 
validation.

qc_log.py  
Another housekeeping module, containing functions for logging and quality checks. Also contains a function for removing 
temporary files that stay open in the subprocess.

ImageJ  
A full version of ImageJ Fiji (1.53c portable install) is packaged with the pipeline application. It is called from the main 
script and fed a custom script so the user doesn't have to interact with the software. The script template is a form of pseudo-
java, ImageJ:s own scripting language. This script is in the same directory as the python modules and could be edited as long 
as the input and output definitions remain unaltered, because the python script just looks for the lines that begin with dir1, 
dir2 and my_name. Since the introduction of multiprocessing, the intermediary script that is sent as a batch file to ImageJ is 
named with the same name as the in-going file and deleted after ImageJ completes. This is to avoid concurrent read/write to 
the same file by parallel processes.

Standalone scripts  
Multi-electrode analysis  

This script is delivered separately from the pipeline. 

Installation  

Use either conda or pip to set up an environment with numpy, pandas, matplotlib, seaborn and jupyter or use one that has 
these packages installed.

The scripts were written under python 3.9, but should work for lower versions of python, though this has not been tested. I 
suggest using 3.8+ as your python version.

conda create -n mea python=3.9 numpy pandas matplotlib seaborn jupyter
conda activate mea
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Program structure  

There is one script file, one jupyter notebook file, a plot directory, and a data directory. The user should start the jupyter 
server from within the environment:

When mea_plotter is selected, just run all cells. The python script will parse all .csv files in data and generate plots that show 
the value specified in y_var, which sits in the jupyter notebook, under settings.

Above settings the column names are printed, y_var can be changed to any column name that is an int or float data type, 
changing what is shown in the plots.

 

Main function  

The program will parse all files in the data directory. If the python script is called directly, plots will be generated in the plots 
directory. Otherwise the jupyter notebook is currently the recommended interface. 

Jupyter will run the main functions of the parser and a file called export_v1.csv will be generated, the same information is 
imported into the jupyter environment as df, which is a pandas dataframe. This means all the nasty parsing is kept off stage 
and the user can focus on exploring the data with jupyter. 

 

General notes on writing modules  
The general structure of a module that can be imported is a script put in the pipeline_modules folder that has a main function:

Then in the pipeline.py script:

Input/Output  
There are two general cases for input and output of a module. In the first case the module produces output inside the input 
directory. 

jupyter notebook

# example_script.py
from pathlib import Path
def main(my_path_as_string):
    return Path(my_path_as_string)

from pipeline_modules import example_script
def run_pipeline():
    my_wdir = os.getcwd()
    my_wdir_as_path_obj = example_script.main(my_wdir)
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Here is an example of a module that generates output in the input folder (these can be pasted to files and run to get a general 
sense of the naming conventions, they only produce text output): 

To avoid clutter it can be nice to instead move output into a directory that is relative to other output directories from the same 
source:

(It is probably best to construct output paths inside the main script and write new scripts just take these as arguments)

If only a few files are output from a module, create the output dir inside pipeline.py and take the full output path inside the 
main function. 
Reasons: 1. pipeline.py should be readable and it should be understandable where output will end up, 2. root_out is already a 
path object inside pipeline.py, save yourself some work

Finally, if you wrote a module that is imported, always add tests e.g.:

Environment  

from pathlib import Path
def main(root_dir):
    root_dir = Path(root_dir)
    # root_dir = results/{experiment_dir}
    # experiment_dir is used in naming all output files
    # and is taken directly from the name of the input dir in step 1
    base_file_name = root_dir.name
    # extract {experiment_dir} as a string
    input_file_1 = root_dir.joinpath("step_1", base_file_name + "_1.isxd")
    output_file_1 = input_file_1.parent.joinpath(base_file_name + "_2.isxd")
    print(f"Doing something to {input_file_1}\n and outputting {output_file_1}")
 
main(Path.cwd())
    

from pathlib import Path
def main(root_dir):
    root_dir = Path(root_dir)
    # root_dir = results/{experiment_dir}
    # experiment_dir is used in naming all output files
    # and is taken directly from the name of the input dir in step 1
    base_file_name = root_dir.name
    # extract {experiment_dir} as a string
    input_file_1 = root_dir.joinpath("step_1",base_file_name + "_1.isxd")
    output_file_1 = root_dir.joinpath("step_2", base_file_name + "_2.isxd")
    #output_file_1.mkdir(exist_ok=True)
    print(f"Doing something to {input_file_1}\n and outputting {output_file_1}")
    
main(Path.cwd())

def main(root_out):
    pass #do something
if __name__ == "__main__":
    print(main("test"))
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The pipeline has its own environment. Changing the requirements of the pipeline environment is not recommended because 
changed requirements affects the Setup instructions. If this is done, also update Setup instructions in this document! 
The pipeline integrates well with Conda. Refer to https://docs.conda.io/en/latest/ for how to setup and export environments
for your scripts.

Adding external scripts  
Python packages and modules can be put inside pipeline_modules or next to it and straightforwardly imported in the 
pipeline.py script, then their main function can be added to run_pipeline().

R-scripts should be inside the pipeline main directory, and can be added with the run_script() function (make sure the script 
is designed to be run from CLI and takes input and output as CLI arguments)

Inside pipeline.py the SCRIPTS section is accessible as a dictionary after doing script_dict = config['SCRIPTS']. In this case 
we would specify the new script path as new_script_path = script_dict['new_script']. The external script should take 
parameters somehow, which is easiest to find by running the script in a CLI and looking at its command line options. Note 
how the script should be executed and prepare the proper variables containing inputs and outputs for the script, then do 
run_script(f"{new_script_path} arg1 arg2 argn") where args are flags or parameters that are sent to the script. The 
run_script() function then attempts to make sure that special characters are escaped properly and sends the command to the 
script directly.

If the program or script lives anywhere else on the system, specifying a full path to its executable works, but it will not 
follow the pipeline to a new system, so the conf.ini needs to be updated when installing. Otherwise the procedure is the 
same.

run_script() will return the text output, consisting of standard out and standard error, you can store each in variables like 

Changes to Inscopix API relating to
Docker implementation

 

[SCRIPTS]
new_script = bin/my_fancy.rscript

out, err = run_script()
# print output
print(out, '\n', err)

#Original setup instructions for Docker
1. run a docker container with latest ubuntu
   `docker run -ti --name caiman ubuntu:latest /bin/bash`
2. Install conda, caiman and isx conda wrapper
   ```
   apt update && apt install -y time libgl1 htop psmisc wget
   wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
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   wget https://raw.githubusercontent.com/inscopix/isx-cnmfe-
wrapper/master/isx_cnmfe_wrapper/runner.py
   bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda
   $HOME/miniconda/bin/conda init bash
   source $HOME/.bashrc
   conda install caiman=1.8.5 python=3.7.8 numpy=1.19.4 pandas=1.1.4 scipy=1.5.3 libgcc-ng=9.3.0 
libgfortran-ng=9.3.0 libgfortran5=9.3.0 hdf5=1.10.5 freetype=2.10.4 dbus=1.13.6 pyqt=5.9.2 
qtpy=1.9.0 requests=2.25.0 matplotlib=3.3.3 libopenblas=0.3.12 libblas=3.9.0 libcblas=3.9.0 
libxml2=2.9.9 zipp=3.4.0 bokeh=2.2.3 -c conda-forge -y
   exit
   ```
3. Save the container to an image and tag it
   (also set ipcluster to be started as the container's main process)
   `docker commit --change "ENTRYPOINT bash -c '/root/miniconda/bin/ipcluster start -n 4'" 
caiman caiman`
4. Define the caiman container
   `docker run -v e:/:/mnt/e -v f:/:/mnt/f -v g:/:/mnt/g -v h:/:/mnt/h -v i:/:/mnt/i -d --name 
caiman caiman`
5. Test by hand
    * `docker exec -ti caiman bash` to get a container shell
    * smallest file
        * with data in host
          (wall time 10:17.17, memory 4.2 GB)
          `/usr/bin/time -v python /root/runner.py --input_files 
/mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-SD2TD2/20201027_plate20_org-A3_area-E4_0_trimSD-
SD2TD2_001-BP.tiff --params_file /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-
SD2TD2/caiman_params.yaml --output_file  /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-
SD2TD2/output_docker_host.hd5`
        * with data copied into the container
          (wall time 9:23.07+0:03.00 for copying the input file, memory 4.2 GB)
          ```
          /usr/bin/time cp /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-
SD2TD2/20201027_plate20_org-A3_area-E4_0_trimSD-SD2TD2_001-BP.tiff /root/input.tiff
          /usr/bin/time -v python /root/runner.py --input_files /root/input.tiff --params_file 
/mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-SD2TD2/caiman_params.yaml --output_file 
/root/output.hd5
          cp /root/output.hd5 /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-
SD2TD2/output_docker_guest.hd5
          ```
    * full file
        * with data in host
          (wall time 57:21.95, memory 26.8 GB)
          ```
          /usr/bin/time -v python /root/runner.py --input_files 
/mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-bp/20201027_plate20_org-A3_area-E4_0_trimSD_bp.tiff --
params_file /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-bp/caiman_params.yaml --output_file 
/mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-bp/output_docker_host.hd5
          ```
        * with data copied into the container
          (wall time 55:23.28+0:31:00 for copying the input file, memory 26.8 GB)
          ```
          /usr/bin/time cp /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-bp/20201027_plate20_org-
A3_area-E4_0_trimSD_bp.tiff /root/input.tiff
          /usr/bin/time -v python /root/runner.py --input_files /root/input.tiff --params_file 
/mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-bp/caiman_params.yaml --output_file /root/output.hd5
          cp /root/output.hd5 /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-
bp/output_docker_guest.hd5
          ```
6. Install docker python package in the host environment
    * Run Powershell Prompt from Anaconda Navigator
    * Run `conda activate isxenv` followed by `conda install docker-py`



Notes on directories and files that were altered, along with the copies of these files are inside the pipeline directory, under a 
directory named "isx_backup_scripts". 

INSCOPIX 1.6 UPDATE:  
See new branch for the changes that need to be made to upgrade to the new inscopix API version.

7. Running from python isxenv
    * Open Powershell Prompt from Anaconda Navigator
    * Run `conda activate isxenv`
    * Run `python`
    * Run
      ```
import os
import isx.cnmfe
os.chdir('G:/IDPS_dir_test_JBA/CNMFe_test')
isx.cnmfe.run_cnmfe('20201027_plate20_org-A3_area-E4_0_trimSD-SD2TD2_001-BP.isxd', 'cnmfe-
SD2TD2/outCell_docker.isxd', 'cnmfe-SD2TD2/outEvent_docker.isxd', output_dir='cnmfe-SD2TD2', 
overwrite_tiff=True, inDocker=True)
# wall time 0:09:38 (0:09:32 on CaImAn, 0:00:06 on pre/postprocessing)
isx.cnmfe.run_cnmfe('20201027_plate20_org-A3_area-E4_0_trimSD-SD2TD2_001-BP.isxd', 'cnmfe-
SD2TD2/outCell.isxd',        'cnmfe-SD2TD2/outEvent.isxd',        output_dir='cnmfe-SD2TD2', 
overwrite_tiff=True, num_processes=4)
# wall time 0:16:11 (0:16:05 on CaImAn, 0:00:06 on pre/postprocessing)
isx.cnmfe.run_cnmfe('20201027_plate20_org-A3_area-E4_0_trimSD_bp.isxd', 'cnmfe-
bp/outCell_docker.isxd', 'cnmfe-bp/outEvent_docker.isxd', output_dir='cnmfe-bp', 
overwrite_tiff=True, inDocker=True)
# wall time 0:58:34 (0:58:05 on CaImAn, 0:00:29 on pre/postprocessing)
isx.cnmfe.run_cnmfe('20201027_plate20_org-A3_area-E4_0_trimSD_bp.isxd', 'cnmfe-
bp/outCell_4c.isxd',        'cnmfe-bp/outEvent_4c.isxd',        output_dir='cnmfe-bp', 
overwrite_tiff=True, num_processes=4)
# wall time 9:40:25 (9:39:57 on CaImAn, 0:00:28 on pre/postprocessing)
isx.cnmfe.run_cnmfe('20201027_plate20_org-A3_area-E4_0_trimSD_bp.isxd', 'cnmfe-
bp/outCell_4c.isxd',        'cnmfe-bp/outEvent_4c.isxd',        output_dir='cnmfe-bp', 
overwrite_tiff=True, num_processes=2)
# wall time  ( on CaImAn, on pre/postprocessing)
      ```
 

 NOTES:
 20210720
 
 * Moved the latest version of the pipeline to E: so it can sit next to the ISX scripts.
 
 * Setting up the conda environment for the pipeline and for anomaly_detection
 
 * Created a TestResults folder
 
 * Updated conf.ini
 
   - num_processes=1
   - added test folders
 
 * running pipeline with -j 1
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 * release notes do not mention any particular changes to the function kwargs
 
 * importing cnmfe yields error: ImportError: cannot import name 'incremental_pca'
 
   - following docs chapter 5.1.4 attempting to use pip to install caiman
     pip install "git+https://github.com/flatironinstitute/CaImAn.
     git@7dc5b42ab06c6a6b86ff1520dfc5b2334f335a78"
     pip install “git+https://github.com/inscopix/isx-cnmfe-wrapper@v1.2”
 
   # succesfully installed!
 
 * pre_isx.py ln 144 going through the isx.run_cnmfe() function and checking what keywords have 
changed
 
   - commenting keywords out for now
   - commenting out the import isx.cnmfe
 
 * ISX.log: CNMFE analysis failed with error  run_cnmfe() got an unexpected keyword argument 
'output_events_files' 
 
   - commenting this out as well
 
 * isx.event_detection() now outputs the event files, updating line 190 in pre_isx.py
 
   - something is not working here, log reveals that CNMFE is working, but not event detection
   - 20210726 after updating keywords and setting them to what Bruno, Joanna and Xiaoliang 
suggested, event detection now seems to be working
 
 * adding profile to the isx.run_cnmfe function to report runtimes
 
 * bg_spatial_subsampling=2
 
 * stopped processing after 1+ hour
 
 * used pip to remove the git clone of caiman
 
 * installed caiman package from conda-forge
   -CNMFe: Total runtime = 1.502e+06 ms = ~25 minutes
   20210727
 
 * after updating to isx.event_detection(), this needs to happen after looking for the final 
output!
 
 * the traces file now contains negative values and anomaly detection is definitely not working
 
 * ln 217 adding isx.auto_accept_reject()
 
 * When setting params to suggested - error:
   - There are too many patches. Try increasing the patch size, decreasing the patch overlap, or 
spatially downsampling the data to reduce the number of patches.
   - wrote loop to try +1 patch size until it works, stopped at 43 MINIMUM VALUE
   
   # Conclusion
   The output traces are now normalized using dF/F, which means anomaly detection will have to 
be adjusted accordingly (perhaps if the data used to train the model can be normalized in the 
same way)
   Using CNMFe without the custom Docker image works. It is likely using the conda-forge version 
as recommended in Caiman documentation would work for older versions as well.
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