

Master’s Degree Project in Bioinformatics, 30 credits

Department of Biology
Lund University

Mattis Knulst

Automated pipeline for processing
fluorescence calcium imaging
microscopy data and
electrophysiological measurements
from 3D brain organoids

2021

 Bioinformatics Program, 2021

Advance Access Publication Date: 20 August 2021

Bioinformatics software development

Software engineering

Automated pipeline for processing fluores-
cence calcium imaging microscopy data and
electrophysiological measurements from 3D
brain organoids
Mattis Knulst1, *
1Department of Biology, Biology building, Sölvegatan 35, Lund, Sweden

*To whom correspondence should be addressed.

Supervisor: Dr. Bruno Fontinha, a:head bio ag

Received on 2021-08-23; revised on 2021-12-01; accepted on 2021-12-01

Abstract
Motivation: 3D brain organoids are biological models of human brian development from which a rich
body of data can be extracted that allows for insights about neuronal dynamics. Several tools, such
as fluorescence calcium imaging microscopy and electrophysiological recordings are being used to
asses how 3D brain organoid dynamics recapitulate what is known from the human brain. In-silico
automated workflows that process such datasets on a large scale in a robust and reproducible man-
ner need to be developed.
Results: An automated, modular and scalable workflow was written using Python 3.9. ImageJ, In-
scopix API and Caiman/CNMFe that outputs neuronal cell traces and additional scripts were pro-
duced to enable large scale analysis of Axion multi-electrode array output.
Contact: mattisknulst@gmail.com
Supplementary information: Supplementary information is found in the appendix. Documentation
(README) sent separately.

 1

Background

Introduction

Recent advances in cell cultures have enabled the creation of three-
dimensional pluripotent stem cell aggregates that organize themselves
into structures that closely resemble that of the human brain. The usage
of stem cells means brain models can be created with the same genetic
content that can be found in humans (Kim et al., 2020). These methods
could be important both for prospective pharmaceutical research, where
organs from animal models normally act surrogates for their human
counterparts and in personalized medicine. While the methods for grow-
ing these cultures and techniques for observing them are getting more
common (Marton & Pașca, 2020), there is a great need to scale up and
automate the in-silico processing of the raw data.

Data types and general workflow

This paper will treat the automatization of the processing of two types
of raw data; calcium fluorescence microscopy imaging (FM) data col-
lected with an Olympus spinning disk confocal inverted microscope
(IX83), equipped with a dual-camera Yokogawa W1 spinning disk (SD)
for fast confocal acquisition, controlled by cellSens
(https://www.olympus-lifescience.com/en/software/cellsens/) software,
videos recorded using a 20x/0.75 UPLSApo WD with a 0.6 mm objec-
tive and 488 nm laser on brain organoids with the calcium reporter
GCAMP6s (TW et al., 2013). and multi-electrode array data (MEA)
using Axion’s Maestro Pro multi-well microelectrode array system with
a 48-well plate (providing a simultaneous recording of 768 channels).
The computational processing of the data was performed on a work-
station with 4 logical processor units and 128 GB of RAM, which during
development was upgraded to 36 logical CPUs and 64 GB of RAM. The
operating system was Windows 10 Pro.

The typical raw FM data takes up approximately 10 GB of disk space
(for a 5-minute recording, 5000 frames at 1024x1024 pixel (px) resolu-
tion with one frame acquired every 65 msec, ~15.4 Hz) and is contained
in a binary library which can be read with the Bio-Formats library
(Linkert et al., 2010) and exported to a tagged image file (TIF). This, as
well as spatial downsampling by 2x bilinear interpolation and removal of
the leading 100 frames, is performed with ImageJ (Rueden et al., 2017).
The output consists of an intermediate video file which is 25% the size
of the original raw data and typically has 4900 frames at 512x512 px
resolution.

The downsampled file is processed further using Inscopix
(https://www.inscopix.com/software-analysis) proprietary Python API.
Inscopix is a provider of hardware and software for FM brain imaging
and their API contains many functions that can be incorporated in this
workflow. First there is a preprocessing API function, which prepares
the image stack (attempting to correct missing pixels) before it is sent
through bandpass filtering to remove unwanted high or low-frequency
fluorescence oscillations per pixel. Next, regions of interest (ROIs) that
are showing activity are identified using the “constrained non-negative
matrix factorization for microendoscopic data” (CNMFe) algorithm
which allows for neuronal ROI segmentation and extraction of each
ROI’s calcium temporal dynamics (Zhou et al., 2018) contained within a
Docker (by default Inscopix provides their own default version of
CNMFe during setup), but accessed via the Inscopix API. This method
(CNMFe) is advantageous in that it allows for a better resolution of

spatially overlapping ROIs, provides good modelling of background
activity and works well even in situations with low signal-to-noise ratio
compared to other methods (Pnevmatikakis et al., 2014, 2016).

The ROI information is used to extract a trace, which is the raw fluo-
rescence intensity value by frame and this information is used to detect
events corresponding to neuronal spike activity (event detection). Up to
this point, the intermediary information is held within binary files, and at
the end of the Inscopix API module, it is exported to comma-separated
values (CSV) tables. One intermediary file and a directory containing the
settings and temporary files for Caiman is produced which take up
roughly little over the in-going downsampled file size on the hard drive,
these can be safely removed to use less storage. The CSV table output
contains information about the quality of the data and ROI traces are
listed in columns together with the corresponding time information.

CNMFe is the most computationally expensive step both regarding
memory consumption and CPU load. The in-going video file shows
populations of identified neural components (somata and dendrites) with
variable shapes inside the previously imaged area of the organoid, the
algorithm must separate fluorescing components and infer the underlying
action potentials, while accounting for the fact that the analysis is done
on a two-dimensional representation of a three-dimensional system, the
calcium reporter will also have a slower decay than the time it takes for a
neuron to return to resting potential (Pnevmatikakis et al., 2016). The
most important parameters in inferring traces are the average component
diameters, specified in pixels, minimum peak to noise ratio and with
regards to the memory consumption, how to break images up and pro-
cess them in patches (new in Inscopix 1.6).

Because traces are sometimes anomalous, a third module was written
and introduced after this step that identified and flagged anomalous ROIs
and a fourth module is planned to do different statistical analyses on the
traces but is still being developed at the time of writing.

For the MEA analysis, the manufacturers' software can directly output
statistics and metrics based on the raw input data (changes in voltage
over time), this output is contained in a single CSV table containing
merged tables of different shapes which need to be parsed and summa-
rized in a single table so that individuals and experimental groups of
organoids can be plotted against each other. The experimental setup of
MEA is still being worked out, the focus here has been to enable parsing
a large number of output files from this technology.

Aim

This paper aims to develop and evaluate methods to automate the
above-specified steps into a workflow that can be reliably used with
minimal user interaction.

 This workflow should be scalable, able to utilize hardware
upgrades as well as accommodate large input batch sizes.

 It should be reproducible, meaning that the workflow ap-
plication itself is portable and can be set up on other sys-
tems, where the installation can produce the same results.

 Further, the workflow application should be robust, if there
are disturbances during processing, there should be check-
points that minimize losses in processing time by picking
up where the failure occurred automatically once restarted.
There should also be logging for the scope of each layer of
software so that if there are errors they can be quickly
identified and remedied.

 All relevant software must be provided with documenta-
tion that explains the scripts and how they work well

 2

enough that a user with minimal experience of working on
the command line can use the software and validate results,
as well as extend the pipeline with new modules.

 The documentation also needs to explain the process of
developing new scripts that are intended to be part of the
pipeline to streamline the future inclusion of these addi-
tional steps into the workflow and/or the re-ordering of the
same. To facilitate this, the scripts need to be readable and
modular.

 The directory structure for batch intermediary and result
output needs to be planned that is easily navigated by us-
ers.

Methods and Results

Pipeline application

The first consideration was whether to use a workflow management
system such as Snakemake (Mölder et al., 2021) to automate the pipe-
line. Since the workstation was running Windows, this may have been
possible through Windows Subsystem for Linux (WSL), but the specific
setup meant that the Inscopix software environment was installed outside
WSL, moving it inside WSL would have prevented the usage of the
Inscopix GUI (the software license allows for only a single installation).
A decision was therefore made to write a custom workflow application
in Python. Since the Inscopix API depended on Conda, the workflow
application could use other Conda environments for modules with con-
flicting requirements, adding minimal overhead in the installation pro-
cess and software layers.

To make system calls from Python, the subprocess module
(https://docs.python.org/3/library/subprocess.html) was used, this mod-
ule has improved in collecting and returning child process terminal out-
put on Windows systems since Python version 3.6 which is the required
version of the Inscopix API, leading to the main body of the pipeline
being written in Python 3.9 and having an isolated environment.

ImageJ has a CLI interface, which allows for running the tool in head-
less mode or batch mode, unfortunately, Bio-Formats is incompatible
with the headless mode, so the batch mode is used instead with a macro
script generated from a template by the pipeline. The major difference
between this solution and the headless mode is that the batch mode re-
sults in a splash screen appearing on the desktop when a file is being
processed, which may be distracting if the pipeline is running in the
background. ImageJ additionally has a portable installation that is pack-
aged inside the main directory.

The Inscopix API was implemented as a module inside a python
package directory that sits in the main directory, because of requirement
conflicts this script cannot be imported by the main script and is instead
run in the Inscopix custom environment using Conda.

The main script is kept condensed by having a main function that im-
ports modules in the pipeline, runs steps in the pipeline, logs output and
errors as well as checks for final outputs at each module and moves to
the next step if this output is present. Additional modules/steps, no mat-
ter the software used, can be added to the main function using a custom
function that makes system calls. Further, the main function is parallel-
ized using the python multiprocessing module
(https://docs.python.org/3/library/multiprocessing.html).

The setup process only requires extraction of the pipeline application
main directory on a computer where the Inscopix software has been
installed, as well as the creation of the environment for the pipeline

application itself and the accompanying anomaly detection module. In
the hour of writing the pipeline solution has processed 1393 FM files,
each file taking on average 25 minutes to process.

Anomaly detection

ROI traces should ideally have a fast rise and slow decay dependent
on the action of GCAMP6s and neuron function (Chen et al., 2013), see
fig 1a (appendix A). To explore options for automatically identifying
anomalous ROI traces 7029 manually annotated (accepted or rejected)
were collected. An estimated 5.7 % of the ROIs (in the manually anno-
tated data) produced anomalous traces, see appendix A. An exploratory
data analysis was conducted, and a random forest classifier model was
trained using Scikit-Learn (https://scikit-
learn.org/stable/user_guide.html) and then implemented as a python
module in the pipeline. The data was split (using stratified sampling) into
a training set with 3953 traces for training and 1318 for testing, after
tuning (optimizing for high recall score) the classifier was evaluated on a
validation set containing 1758 traces. The model has an F1 score of 0.77
(harmonic mean of precision and recall) for traces that should be rejected
(see appendix A). The module produces a copy of the original ROI traces
CSV including only the accepted traces and plots all traces output along
with model predictions so that they can be reviewed.

Multi-electrode array data

The MEA data analysis software from Axion lacked a CLI interface
and consisted of compiled Matlab scripts. The software can process one
48-well plate at a time in what will remain a manual step, but the results
of this per-plate analysis must be directly exported to a CSV file. This
CSV is the result of combining many tables and metrics into one table
and is not suitable for analysis without parsing the data first. A parser
script was written in Python which can iterate over many CSV outputs,
extracting metrics and collecting them together with information about
individual organoids, well number and original file in a Pandas
(https://pandas.pydata.org/docs/) data frame, as well as exporting the
result to a new portable CSV. The parser is written as a Python class that
can be instantiated for each input file, allowing it to be used by other
scripts working with batch analysis of the Axion output.

Discussion
The data processing was automated successfully on the target system

and is modularized in such a way that it is readable and extendable with
minimal Python knowledge. The pipeline is robust and has checkpoints
for dealing with interruptions during processing. It is also portable and
can be quickly set up on a new system. Inscopix version 1.6 which was
released during development has been implemented in a future patch.
The pipeline uses Git for version control and a separate Git branch that
can be merged to the main branch to apply the Inscopix 1.6 update. Dur-
ing development, the main challenge was the proper implementation of
Caiman/CNMFe. Most of the processing time is consumed by this step,
the package is included with a default Inscopix installation, but had very
long (>1 hour) processing times on the target systems. A Docker image
was written interactively before the development of this pipeline and
based on the GitHub installation of Caiman
(https://github.com/flatironinstitute/CaImAn). The Docker container was
implemented using the Docker Python software development kit (SDK)

 3

(https://docker-py.readthedocs.io/en/stable/). There were several chal-
lenges with the implementation, mainly the lack of a make file (which
would contain the instructions to generate a new Docker image, and
which could be altered to avoid limitations in the original build). Addi-
tionally, the Docker SDK changes affecting the Inscopix API were un-
documented, and the container was named in such a way that the Docker
could only have one instance at any time. This was corrected by giving
container instances unique names, but parallel Docker containers would
always set all available CPUs to 100%. While the memory of the target
system would allow for at least 4 parallel processes, the highest safe
setting was determined to be 2. This is probably due to the parallel pro-
cessing of patches, before Inscopix 1.6 the CNMFe function only took a
keyword argument for the number of processes per patch, in the new
version the processing mode can be set to parallel or sequential. Sequen-
tial should be preferred here if Inscopix API functions are used at a low-
er level where parallel processes are managed from the top to avoid
unpredictable results when running the entire pipeline in parallel.

During testing of the new version of the Inscopix software, Caiman’s
recommended installation
(https://caiman.readthedocs.io/en/master/Installation.html#installing-
caiman) was also tested, retrieved from conda-forge, and this version of
the pipeline will be able to run completely without the use of Docker.
The update will also result in slight changes to the output. ROI traces
will now be normalized in the Inscopix CNMFe function using ∆F/F
(change in fluorescence normalized to the background fluorescence).
The same normalization needs to be applied to the random forest classi-
fication model in anomaly detection.

The anomaly detection module has faced a few challenges, the data
used for training the random forest model was exclusively 4900 frames
long and since dimensionality reduction/feature selection was not ap-
plied, the model can only accurately label vectors with dimensions
(,4900). Since this is an unbalanced data set, several strategies were
applied to increase the proportion of traces that should be rejected. The
database was expanded two times, first with additional manually curated
traces and the second time with data produced while configuring
CNMFe’s pixel seeding operation mode to extract the components spa-
tial footprints, which contained a high proportion of rejected traces.
Splitting the data was also reworked to make sure the proportion of
rejected traces in the randomly selected sets remained the same. The F1
score of the model (0.77) likely reflects the fact that while a large pro-
portion of rejected traces can be almost immediately identified by a
human observer (see appendix A) there is a significant proportion of
edge cases. A recent paper exploring hyperparameter optimization for
machine learning models that detect anomalous ROI traces determined
that human inter-rater agreement is 87% (Tran et al., 2020). Further,
while some traces that should be rejected are flagged as false positives,
there is not a considerable cost in traces that should be accepted (1%
accepted traces mislabeled as rejected in the validation set, against 74%
correctly labelled rejected traces). Since neuronal traces are likely to be
heterogeneous during varying experimental conditions, this module only
adds a clean table file, without destroying the in-going data and produces
labelled plots for every trace, providing inherent quality control for this
step.

Conclusion

The MEA data processing script efficiently parses output files and
prepares a collected table output file for large scale analyses.

In the FM data processing, the pipeline has efficiently reduced a work-
flow that required manual script editing and file operations with each
step and without the advantage of parallel processing throughout the
workflow to a parallelized single step that can be started with minimal
user interaction from the command line. The pipeline application pro-
duces logs for each layer, is well documented and has checkpoints to
skip completed steps in case execution is interrupted. Intermediary and
result files are kept in a numbered tree structure with a parent directory
name based on the in-going raw files so that large batch outputs can be
quickly navigated. The setup process on a new system is minimal.

After a major update to the Inscopix API, that module has been re-
worked with a future patch that can be applied, which increases the po-
tential for taking advantage of parallel processing.

The software ecosystem involved in processing brain organoid data is
still actively developing to meet the requirements of large-scale opera-
tions, demanding automated data processing pipelines to use version
control, be flexible, modular and continuously updated to follow. The
solution presented here takes advantage of existing resources in a target
system to devise such a workflow, while at the same time being portable,
reproducible on other systems and remaining approachable for the user.
While stringing a set of algorithms together for massive analysis enables
high throughput, it appears that there is a risk for a loss in the quality of
output data. Filtering the output of the pipeline such as was done in the
present pipeline is an intuitive first step, but in the future it should be
explored whether especially the CNMF-e algorithm can be rewritten to
allow for a greater flexibility in input data while producing robust and
high-quality output.

Acknowledgements: The author would like to thank a:head bio ag for

the opportunity to write and analyze the pipeline. In particular Dr. Bruno
Fontinha and Joanna Kaczanowska have provided great feedback on the
implementation and practical application of the pipeline. Finally, none of
the pipeline would have been written at all if it weren’t for the unwaver-
ing support of Sara Albertz. Thank you all!

 4

References

Chen, T. W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L.,

Baohan, A., Schreiter, E. R., Kerr, R. A., Orger, M. B.,

Jayaraman, V., Looger, L. L., Svoboda, K., & Kim, D. S. (2013).

Ultrasensitive fluorescent proteins for imaging neuronal activity.

Nature, 499(7458), 295–300. https://doi.org/10.1038/nature12354

Kim, J., Koo, B. K., & Knoblich, J. A. (2020). Human organoids: model

systems for human biology and medicine. Nature Reviews

Molecular Cell Biology, 21(10), 571–584.

https://doi.org/10.1038/s41580-020-0259-3

Linkert, M., Rueden, C. T., Allan, C., Burel, J.-M., Moore, W.,

Patterson, A., Loranger, B., Moore, J., Neves, C., MacDonald,

D., Tarkowska, A., Sticco, C., Hill, E., Rossner, M., Eliceiri, K.

W., & Swedlow, J. R. (2010). Metadata matters: access to image

data in the real world. Journal of Cell Biology, 189(5), 777–782.

https://doi.org/10.1083/JCB.201004104

Marton, R. M., & Pașca, S. P. (2020). Organoid and Assembloid

Technologies for Investigating Cellular Crosstalk in Human

Brain Development and Disease. Trends in Cell Biology, 30(2),

133–143. https://doi.org/10.1016/J.TCB.2019.11.004

Mölder, F., Jablonski, K. P., Letcher, B., Hall, M. B., Tomkins-Tinch, C.

H., Sochat, V., Forster, J., Lee, S., Twardziok, S. O., Kanitz, A.,

Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S., & Köster, J.

(2021). Sustainable data analysis with Snakemake.

F1000Research 2021 10:33, 10, 33.

https://doi.org/10.12688/f1000research.29032.1

Pnevmatikakis, E. A., Gao, Y., Soudry, D., Pfau, D., Lacefield, C.,

Poskanzer, K., Bruno, R., Yuste, R., & Paninski, L. (2014). A

structured matrix factorization framework for large scale

calcium imaging data analysis. 1–16.

http://arxiv.org/abs/1409.2903

Pnevmatikakis, E. A., Soudry, D., Gao, Y., Machado, T. A., Merel, J.,

Pfau, D., Reardon, T., Mu, Y., Lacefield, C., Yang, W., Ahrens,

M., Bruno, R., Jessell, T. M., Peterka, D. S., Yuste, R., &

Paninski, L. (2016). Simultaneous Denoising, Deconvolution,

and Demixing of Calcium Imaging Data. Neuron, 89(2), 285.

https://doi.org/10.1016/j.neuron.2015.11.037

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A.

E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for

the next generation of scientific image data. BMC Bioinformatics,

18(1), 1–26. https://doi.org/10.1186/s12859-017-1934-z

Tran, L. M., Mocle, A. J., Ramsaran, A. I., Jacob, A. D., Frankland, P.

W., & Josselyn, S. A. (2020). Automated Curation of CNMF-E-

Extracted ROI Spatial Footprints and Calcium Traces Using

Open-Source AutoML Tools. Frontiers in Neural Circuits,

14(July), 1–9. https://doi.org/10.3389/fncir.2020.00042

TW, C., TJ, W., Y, S., SR, P., SL, R., A, B., ER, S., RA, K., MB, O., V,

J., LL, L., K, S., & DS, K. (2013). Ultrasensitive fluorescent

proteins for imaging neuronal activity. Nature, 499(7458), 295–

300. https://doi.org/10.1038/NATURE12354

Zhou, P., Resendez, S. L., Rodriguez-Romaguera, J., Jimenez, J. C.,

Neufeld, S. Q., Giovannucci, A., Friedrich, J., Pnevmatikakis, E.

A., Stuber, G. D., Hen, R., Kheirbek, M. A., Sabatini, B. L.,

Kass, R. E., & Paninski, L. (2018). Efficient and accurate

extraction of in vivo calcium signals from microendoscopic video

data. ELife, 7, 1–37. https://doi.org/10.7554/eLife.28728

Appendix A:

Anomaly detection

Table 1: Showing validation scores for 0=Rejected and 1=Accepted traces in the validation data set

 Precision Recall F1-

score

Support

0 0.80 0.74 0.77 91

1 0.99 0.99 0.99 1667

Accuracy 0.98 1758

Macro

avg

0.89 0.89 0.98 1758

Weighted

avg

0.89 0.98 0.98 1758

Figure 3: Confusion matrix showing the results of the random forest classifier on
the validation set

Figure 1: Showing the expected fluorescence peaks,
peak events are marked with red dots and show a fast
increase and calcium reporter decay time dependent
decrease.

Figure 2: A typical rejected trace, with irregular
peaks that do not decay to a baseline for many frames
beyond the decay time.

Appendix B:

Axion multi-electrode array

Figure 1: Information extracted from multiple Axion MEA out-
put files and exported to a single CSV table.

User guide a:head pipeline application v
1.3

Configuration
This is the current version of the conf.ini with instructions on what to change (if required):

Things to avoid:

back-slashes (seems to work fine, but still always a good praxis)
spaces in paths
be aware that if the input folder is the parent directory of the output (results), this directory will be listed when the
pipeline is run with the -l flag, obviously, don't pick this directory as input.
keep everything on one line after a keyword in the configuration file, new lines will be read as new keywords or may
cause errors

Running the scripts QUICK START (look below for setup
instructions)

Make sure you have updated conf.ini! Also, be sure that docker is running. Open Anaconda Prompt (activate pipeline), enter:

[INFO]
author = Mattis Knulst
email = mattisknulst@gmail.com

[IMAGEJ]
script = pipeline_modules/file_convertion_frames_removal_SD.ijm
imagej_exe = fiji-win64/Fiji.app/ImageJ-win64.exe

[GENERAL]
watched_folder = C:/dir/in_folder,D:/other/dir #comma-separated, single line
results_folder = C:/dir/results_folder
version = 1.3

[ISX_OPTIONS]
num_processes=2
min_pnr = 20
event_threshold = 0.2

[SCRIPTS]
not in use

af://n326
af://n328
af://n341

Common use cases:

List all raw files in all directories specified (as watched_folder) in the configuration file and place the output under the
directory specified in conf.ini (default)

Choose single input directory from the watched folder in conf.ini (type all to process all)

Start wildcard batch processing by specifying a pattern using * e.g. *plate3* will list all the directories containing the string
...plate3... or *202105* will list all directories that start (and contains the string, use with care) with 202105 and are found in
the path specified in conf.ini watched_folder. This option will always display the results of your search and prompt you
before starting the batch processing. It will do this for each of the specified input directories in the configuration file.

Finally:

Will start a wildcard batch with 6 parallel processes and override the results folder in conf.ini, giving the processed
directories a common root on drive H called my_batch_results.

EXTRA: For troubleshooting, it is recommended to redirect errors from Powershell to a log file (this is extremely helpful
when trying to figure out why 1/300 files didn't finish correctly):

Setup Instructions

cd path\to\pipeline\folder
conda activate pipeline
python pipeline.py -h
usage: pipeline.py [-h] [-i INPUT] [-v] [-l] [-w] [-o OUTPUT] [-p POOL] [-j JOBS]

Bringing pipeline execution to Windows!

optional arguments:
 -h, --help show this help message and exit
 -i INPUT, --input INPUT
 Specify single input directory
 -v, --version show version and exit
 -l, --list Lets you pick input from watched folder in conf.ini
 -w, --wildcard iterate over folders matching a pattern
 -o OUTPUT, --output OUTPUT
 override the output directory specified in conf.ini
 -p POOL, --pool POOL Place copy of all final output csv files in this directory
 -j JOBS, --jobs JOBS Specify number of parallel processes, default=2

python pipeline.py --input H:/raw/20210520_experiment_1

python pipeline.py --list

python pipeline.py --wildcard

python pipeline.py --jobs 6 --wildcard --output H:/my_batch_results

conda activate pipeline
python pipeline.py --list -j 4 2> error_log.txt

af://n358

1. Make sure Inscopix is set up according to its own documentation first (this should involve installing Anaconda, but there
may be an exception to the instructions for installing CNMFe/Caiman, see Inscopix new version notes at end of this
document)

2. Open the anaconda powershell prompt
3. Enter:

4. Download and extract the latest version of the pipeline scripts, it makes sense to put them somewhere near
Inscopix, but this is not necessary for the scripts to work.
IMPORTANT: Be sure to have read the previous section about the configuration file before running the pipeline!

USEFUL BASH COMMANDS: Validating the pipeline and monitor Docker

Bash is the right tool for batch file operations, and since you have WSL, you have Bash.
After starting WSL, note that paths will change from C:\dir to /mnt/c/dir, do NOT forget the leading /.
Navigate to the parent directory of the results.
Count all folders:

List all folders that still have the temp_cnmfe directory:

optionally, count them:

Remove the entire 2_preprocessing directory, only in those folders where cnmfe failed:

This lets the pipeline automatically use the processed ImageJ file to redo the ISX part.
Now, maybe you are interested in all the files that do not have a temp_cnmfe:

Wonder how many directories have cellset traces files?

notice that the environment names are given here and in the pipeline.py script
these are hardcoded so make sure to spell them correctly!
conda create --name pipeline -c bioconda -c conda-forge python=3.9 alive-progress
hit enter, let it work
then:
conda create --name anomaly_detection -c bioconda -c conda-forge numpy=1.20.2 \
python=3.9.2 scikit-learn=0.24.1 scipy=1.6.2 matplotlib==3.4.1 seaborn==0.11.1 pip
it is possible you will have to remove the \ and put it all on a single line (Windows)

#there is always at least one folder called temp which should not be in the output so subtract 1
from result
find . -mindepth 1 -maxdepth 1 -type d | wc -l

 for incomplete in $(find . -type d -path "*/*/temp_cnmfe");do echo ${incomplete%/*};done

 for incomplete in $(find . -type d -path "*/*/temp_cnmfe");do echo ${incomplete%/*};done | wc -
l

 for incomplete in $(find . -type d -path "*/*/temp_cnmfe");do rm -rf ${incomplete%/*};done

find . -maxdepth 1 -type d -not -path "*/*/temp_cnmfe"
and to count:
find . -maxdepth 1 -type d -not -path "*/*/temp_cnmfe" | wc -l

af://n371

And finally, any of these can instead of printing the results to screen, dump the output into a file:

Now for Docker, which can be controlled from WSL

WSL is a very useful tool on Windows, following is an example Bash/Python script sitting in the home directory of WSL on
the workstation.
If the Bash script is called validate.sh and set as executable (chmod +x ~/validate.sh) it can be called from Windows:
These scripts are not optimized code, but were written quickly to produce an updatable report in the WSL home dir to track
pipeline progress.
They also serve well to demonstrate how to work with the directory structure produced by the pipeline.

for trace in ls */*/*cellset-traces*;do echo ${trace%*/*/*};done | sort | uniq
and count:
for trace in ls */*/*cellset-traces*;do echo ${trace%*/*/*};done | sort | uniq |wc -l

find . -maxdepth 1 -type d -not -path "*/*/temp_cnmfe" > no_failed_cnmfe.txt
for trace in ls */*/*cellset-traces*;do echo ${trace%*/*/*};done | sort | uniq >
successfully_completed.txt

list all active containers
docker container ls
shut down a container gracefully
docker stop ID
force stop container
docker kill ID
view active container stats
docker stats
loop to check up time, sleep value in seconds to wait before calling again
while true;do clear;docker container ls;sleep 10;done
this loop may look similar to docker stats, but it is easier to
copy the IDs in the first row

bash -e "~/validate.sh" #from PowerShell
################
validate.sh
#!/bin/bash
raw_super_dir="/mnt/f/Raw_data_M40/"
find /mnt/d/pipeline_output -mindepth 1 -maxdepth 1 -type d > ~/out_dirs_list.txt
count=0
res_count=0
declare -i res_count #these should contain integers, not strings
declare -i count
while read dir
count how many raw dirs have produced outputs
 do count+=$(find ${raw_super_dir}${dir##*/} -mindepth 1 -maxdepth 1 -type d | egrep -c
^/mnt/)
 res_count+=$(find $dir -mindepth 1 -maxdepth 1 -type d | awk 'BEGIN { FS = "/" } ; {
print $5 $6 }' | egrep -c "^[0-9]")
done < ~/out_dirs_list.txt
counting the raw data based on the result folders
echo "This many should be processed"
echo $count

counting how many of the listed raw data directories have produced a corresponding output
echo "This many raw data directories have produced output"
echo $res_count

listing relevant files
echo "examining these files"
egrep "[0-9]+_[A-Z]+$" out_dirs_list.txt

echo -e "OUT_DIR_NAME\tFILE_NAME\tSTATUS\tPROCESSING_TIME\tNUM_COMPONENTS" > report.tsv
this loop only works on the output that has output in the results folder
egrep "[0-9]+_[A-Z]+$" out_dirs_list.txt | while read dir
do
 for log_file in ${dir}/*timed_log.tsv
 do
 python3 time_diff.py $log_file
 done
done >> report.tsv
now we need to look for results that should have been processed but are missing
generate search list
for p in $(egrep "[0-9]+_[A-Z]+$" out_dirs_list.txt);
do find "/mnt/f/Raw_data_M40/"${p##*/} -maxdepth 1 -mindepth 1 -type d;
done > to_be_processed.txt
check if expected directories have been created
while read line;
do
[[-d "/mnt/d/pipeline_output/"${line#*/*/*/*/}]] || echo -e
"NA\t/mnt/d/pipeline_output/"${line#*/*/*/*/}"\t-1\tNA\tNA"
this checks for the glob expanded directories and if the directory does not exist prints the
directory and a -1 in the table
done < to_be_processed.txt >> report.tsv

######################################
#time_diff.py
#######################################
#!/usr/bin/python3
import sys
from datetime import datetime
from pathlib import Path
log_file = sys.argv[1]
times = []
try:
 with open(log_file, 'r') as log:
 for line in log:
 line = line.strip().split()
 time = datetime.strptime(line[0], '%X')
 times.append(time)
except:
 quit()
"OUT_DIR_NAME FILE_NAME STATUS PROCESSING_TIME NUM_COMPONENTS"
processing_time = times[-1]-times[0]
out_dir_name = Path(log_file).parent
file_name = log_file.replace('timed_log.tsv', '')
traces_file = Path(file_name).joinpath('3_event_detection_export', Path(file_name).name[1:] + '-
cellset-traces.csv')
status=0
num_components=0
if not Path(file_name).exists():
 status = -1
elif Path(file_name).joinpath('3_event_detection_export').exists():
 status = 1
 num_components = 0
elif traces_file.exists():
 status = 1
 with open(traces_file) as tf:

Pipeline.py
The following chapters describe the different parts of the pipeline and how they work, they are here to assist
with troubleshooting and or developing the pipeline further but may not be necessary for normal operation.

This script is written to take a single directory of inputs and execute
steps in the pipeline consecutively on outputs until final outputs are produced.
The pipeline is a main function called

that takes a specific directory containing raw data as an argument with the flag -i, or optionally looks through
a folder specified in config.ini and prompts the user to select an input folder. The main function determines the entire
workflow for a single file.

The pipeline itself is an intermediate layer, another script can import its main
function and iterate over a set of input directories. Below it is a directory of modules
containing native python scripts as functions that operate on a single set (derived from
one directory of input data) of files.

Scripts and programs in other languages need to be executed with the subprocess
module. A helper function in this script called

 attempts to check the commands that are passed to subprocess and capture the output and
can be added into the main function similar to how ImageJ is implemented.

The pipeline is designed to be run from its own Python 3.9 environment (requirements specified under setup instructions).

Inside the main function, there is a variable called "root_out" which will always expand to
output_dir/name_of_experiment_dir/

If intermediary or additional results are created, the structure under root_out is a numbered set of directories,
this helps see in which order everything happens and aids in troubleshooting, so it is recommended that future directories
be added as root_out/n+1_future_step.

 header_ls = tf.readline().strip().split(',')
 num_components = len(header_ls)-1

print(f'{out_dir_name}\t{file_name}\t{status}\t{processing_time}\t{num_components}')

run_pipeline()

run_script()

shell_command = "conda activate my_env && python my_script.py arg1 arg2 arg3"
run_script(shell_command)

af://n391

Pipeline modules
This is a python package folder which sits next to pipeline.py. Any .py script that is put here can then be imported into the
main script using

When imported like this, the entire script will run once, except the part that is below:

This means anything defined in that script will be accessible from the main script which greatly increases the readability of
the main script and troubleshooting, since a broken module script can be worked on separately from the rest of the
application. Because of this , it is a good idea to give anything defined inside the script a docstring which declares how the
input should look and what the expected output is. Additionally it is a good idea to add tests below the if name = main so
functions can be evaluated without running the full application. If python scripts follow these general guidelines they can just
be dropped in the pipeline_modules folder, imported in pipeline.py and run on an input in its main function.

pre_isx.py
Contains 4 functions, 3 of which summarize the main functionality of the previous Jupyter notebooks that call Inscopix
functions to preprocess fluorescence microscopy image data. The fourth function strings these functions together so they can
be run sequentially from the main script with one line.

The input comes from the output of ImageJ which downsamples and rescales the raw data and outputs large Tif files. At the
end of these steps the Tif files will have gone through image analysis to extract components and their associated information
(traces and so on) as csv files.

search.py
This is a housekeeping module which supplies functions for searching through directories via the CLI and either running the
pipeline on a single directory or in batch mode. Wildcard search

anomaly_detection.py
This module loads a pre-generated random forest model that is stored within the main directory (pipeline/models), it then
reads CSV files with traces into Numpy arrays, normalizes the traces (also using a model from pipeline/models) and predicts
whether a trace should be accepted or rejected. All traces will be plotted and Accepted traces are collected in a new
clean_traces.csv.

from pipeline_modules import script

if __name__ == "__main__":
 main() # code block for testing a module script directly

def run(out_root):
 print('Writing to this directory: ', out_root)
 preprocessing(out_root=out_root)
 cnmfe_processing(out_root=out_root)
 event_detection(out_root=out_root)

af://n404
af://n410
af://n414
af://n416

The models are generated with the random_forest.py script. This script is built using Scikit-learn. Models are stored as file-
streams using pickle. Since this is an unbalanced dataset, the data is split using stratified sampling into training, testing and
validation.

qc_log.py
Another housekeeping module, containing functions for logging and quality checks. Also contains a function for removing
temporary files that stay open in the subprocess.

ImageJ
A full version of ImageJ Fiji (1.53c portable install) is packaged with the pipeline application. It is called from the main
script and fed a custom script so the user doesn't have to interact with the software. The script template is a form of pseudo-
java, ImageJ:s own scripting language. This script is in the same directory as the python modules and could be edited as long
as the input and output definitions remain unaltered, because the python script just looks for the lines that begin with dir1,
dir2 and my_name. Since the introduction of multiprocessing, the intermediary script that is sent as a batch file to ImageJ is
named with the same name as the in-going file and deleted after ImageJ completes. This is to avoid concurrent read/write to
the same file by parallel processes.

Standalone scripts
Multi-electrode analysis

This script is delivered separately from the pipeline.

Installation

Use either conda or pip to set up an environment with numpy, pandas, matplotlib, seaborn and jupyter or use one that has
these packages installed.

The scripts were written under python 3.9, but should work for lower versions of python, though this has not been tested. I
suggest using 3.8+ as your python version.

conda create -n mea python=3.9 numpy pandas matplotlib seaborn jupyter
conda activate mea

af://n419
af://n421
af://n423
af://n424
af://n426

Program structure

There is one script file, one jupyter notebook file, a plot directory, and a data directory. The user should start the jupyter
server from within the environment:

When mea_plotter is selected, just run all cells. The python script will parse all .csv files in data and generate plots that show
the value specified in y_var, which sits in the jupyter notebook, under settings.

Above settings the column names are printed, y_var can be changed to any column name that is an int or float data type,
changing what is shown in the plots.

Main function

The program will parse all files in the data directory. If the python script is called directly, plots will be generated in the plots
directory. Otherwise the jupyter notebook is currently the recommended interface.

Jupyter will run the main functions of the parser and a file called export_v1.csv will be generated, the same information is
imported into the jupyter environment as df, which is a pandas dataframe. This means all the nasty parsing is kept off stage
and the user can focus on exploring the data with jupyter.

General notes on writing modules
The general structure of a module that can be imported is a script put in the pipeline_modules folder that has a main function:

Then in the pipeline.py script:

Input/Output
There are two general cases for input and output of a module. In the first case the module produces output inside the input
directory.

jupyter notebook

example_script.py
from pathlib import Path
def main(my_path_as_string):
 return Path(my_path_as_string)

from pipeline_modules import example_script
def run_pipeline():
 my_wdir = os.getcwd()
 my_wdir_as_path_obj = example_script.main(my_wdir)

af://n430
af://n436
af://n440
af://n445

Here is an example of a module that generates output in the input folder (these can be pasted to files and run to get a general
sense of the naming conventions, they only produce text output):

To avoid clutter it can be nice to instead move output into a directory that is relative to other output directories from the same
source:

(It is probably best to construct output paths inside the main script and write new scripts just take these as arguments)

If only a few files are output from a module, create the output dir inside pipeline.py and take the full output path inside the
main function.
Reasons: 1. pipeline.py should be readable and it should be understandable where output will end up, 2. root_out is already a
path object inside pipeline.py, save yourself some work

Finally, if you wrote a module that is imported, always add tests e.g.:

Environment

from pathlib import Path
def main(root_dir):
 root_dir = Path(root_dir)
 # root_dir = results/{experiment_dir}
 # experiment_dir is used in naming all output files
 # and is taken directly from the name of the input dir in step 1
 base_file_name = root_dir.name
 # extract {experiment_dir} as a string
 input_file_1 = root_dir.joinpath("step_1", base_file_name + "_1.isxd")
 output_file_1 = input_file_1.parent.joinpath(base_file_name + "_2.isxd")
 print(f"Doing something to {input_file_1}\n and outputting {output_file_1}")

main(Path.cwd())

from pathlib import Path
def main(root_dir):
 root_dir = Path(root_dir)
 # root_dir = results/{experiment_dir}
 # experiment_dir is used in naming all output files
 # and is taken directly from the name of the input dir in step 1
 base_file_name = root_dir.name
 # extract {experiment_dir} as a string
 input_file_1 = root_dir.joinpath("step_1",base_file_name + "_1.isxd")
 output_file_1 = root_dir.joinpath("step_2", base_file_name + "_2.isxd")
 #output_file_1.mkdir(exist_ok=True)
 print(f"Doing something to {input_file_1}\n and outputting {output_file_1}")

main(Path.cwd())

def main(root_out):
 pass #do something
if __name__ == "__main__":
 print(main("test"))

af://n455

The pipeline has its own environment. Changing the requirements of the pipeline environment is not recommended because
changed requirements affects the Setup instructions. If this is done, also update Setup instructions in this document!
The pipeline integrates well with Conda. Refer to https://docs.conda.io/en/latest/ for how to setup and export environments
for your scripts.

Adding external scripts
Python packages and modules can be put inside pipeline_modules or next to it and straightforwardly imported in the
pipeline.py script, then their main function can be added to run_pipeline().

R-scripts should be inside the pipeline main directory, and can be added with the run_script() function (make sure the script
is designed to be run from CLI and takes input and output as CLI arguments)

Inside pipeline.py the SCRIPTS section is accessible as a dictionary after doing script_dict = config['SCRIPTS']. In this case
we would specify the new script path as new_script_path = script_dict['new_script']. The external script should take
parameters somehow, which is easiest to find by running the script in a CLI and looking at its command line options. Note
how the script should be executed and prepare the proper variables containing inputs and outputs for the script, then do
run_script(f"{new_script_path} arg1 arg2 argn") where args are flags or parameters that are sent to the script. The
run_script() function then attempts to make sure that special characters are escaped properly and sends the command to the
script directly.

If the program or script lives anywhere else on the system, specifying a full path to its executable works, but it will not
follow the pipeline to a new system, so the conf.ini needs to be updated when installing. Otherwise the procedure is the
same.

run_script() will return the text output, consisting of standard out and standard error, you can store each in variables like

Changes to Inscopix API relating to
Docker implementation

[SCRIPTS]
new_script = bin/my_fancy.rscript

out, err = run_script()
print output
print(out, '\n', err)

#Original setup instructions for Docker
1. run a docker container with latest ubuntu
 `docker run -ti --name caiman ubuntu:latest /bin/bash`
2. Install conda, caiman and isx conda wrapper
   ```
   apt update && apt install -y time libgl1 htop psmisc wget
   wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

https://docs.conda.io/en/latest/
af://n457
af://n465


   wget https://raw.githubusercontent.com/inscopix/isx-cnmfe-
wrapper/master/isx_cnmfe_wrapper/runner.py
   bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda
   $HOME/miniconda/bin/conda init bash
   source $HOME/.bashrc
   conda install caiman=1.8.5 python=3.7.8 numpy=1.19.4 pandas=1.1.4 scipy=1.5.3 libgcc-ng=9.3.0 
libgfortran-ng=9.3.0 libgfortran5=9.3.0 hdf5=1.10.5 freetype=2.10.4 dbus=1.13.6 pyqt=5.9.2 
qtpy=1.9.0 requests=2.25.0 matplotlib=3.3.3 libopenblas=0.3.12 libblas=3.9.0 libcblas=3.9.0 
libxml2=2.9.9 zipp=3.4.0 bokeh=2.2.3 -c conda-forge -y
   exit
   ```
3. Save the container to an image and tag it
 (also set ipcluster to be started as the container's main process)
 `docker commit --change "ENTRYPOINT bash -c '/root/miniconda/bin/ipcluster start -n 4'"
caiman caiman`
4. Define the caiman container
 `docker run -v e:/:/mnt/e -v f:/:/mnt/f -v g:/:/mnt/g -v h:/:/mnt/h -v i:/:/mnt/i -d --name
caiman caiman`
5. Test by hand
 * `docker exec -ti caiman bash` to get a container shell
 * smallest file
 * with data in host
 (wall time 10:17.17, memory 4.2 GB)
 `/usr/bin/time -v python /root/runner.py --input_files
/mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-SD2TD2/20201027_plate20_org-A3_area-E4_0_trimSD-
SD2TD2_001-BP.tiff --params_file /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-
SD2TD2/caiman_params.yaml --output_file /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-
SD2TD2/output_docker_host.hd5`
 * with data copied into the container
 (wall time 9:23.07+0:03.00 for copying the input file, memory 4.2 GB)
          ```
          /usr/bin/time cp /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-
SD2TD2/20201027_plate20_org-A3_area-E4_0_trimSD-SD2TD2_001-BP.tiff /root/input.tiff
          /usr/bin/time -v python /root/runner.py --input_files /root/input.tiff --params_file 
/mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-SD2TD2/caiman_params.yaml --output_file 
/root/output.hd5
          cp /root/output.hd5 /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-
SD2TD2/output_docker_guest.hd5
          ```
 * full file
 * with data in host
 (wall time 57:21.95, memory 26.8 GB)
          ```
          /usr/bin/time -v python /root/runner.py --input_files 
/mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-bp/20201027_plate20_org-A3_area-E4_0_trimSD_bp.tiff --
params_file /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-bp/caiman_params.yaml --output_file 
/mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-bp/output_docker_host.hd5
          ```
 * with data copied into the container
 (wall time 55:23.28+0:31:00 for copying the input file, memory 26.8 GB)
          ```
          /usr/bin/time cp /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-bp/20201027_plate20_org-
A3_area-E4_0_trimSD_bp.tiff /root/input.tiff
          /usr/bin/time -v python /root/runner.py --input_files /root/input.tiff --params_file 
/mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-bp/caiman_params.yaml --output_file /root/output.hd5
          cp /root/output.hd5 /mnt/g/IDPS_dir_test_JBA/CNMFe_test/cnmfe-
bp/output_docker_guest.hd5
          ```
6. Install docker python package in the host environment
 * Run Powershell Prompt from Anaconda Navigator
 * Run `conda activate isxenv` followed by `conda install docker-py`

Notes on directories and files that were altered, along with the copies of these files are inside the pipeline directory, under a
directory named "isx_backup_scripts".

INSCOPIX 1.6 UPDATE:
See new branch for the changes that need to be made to upgrade to the new inscopix API version.

7. Running from python isxenv
 * Open Powershell Prompt from Anaconda Navigator
 * Run `conda activate isxenv`
 * Run `python`
 * Run
      ```
import os
import isx.cnmfe
os.chdir('G:/IDPS_dir_test_JBA/CNMFe_test')
isx.cnmfe.run_cnmfe('20201027_plate20_org-A3_area-E4_0_trimSD-SD2TD2_001-BP.isxd', 'cnmfe-
SD2TD2/outCell_docker.isxd', 'cnmfe-SD2TD2/outEvent_docker.isxd', output_dir='cnmfe-SD2TD2', 
overwrite_tiff=True, inDocker=True)
# wall time 0:09:38 (0:09:32 on CaImAn, 0:00:06 on pre/postprocessing)
isx.cnmfe.run_cnmfe('20201027_plate20_org-A3_area-E4_0_trimSD-SD2TD2_001-BP.isxd', 'cnmfe-
SD2TD2/outCell.isxd',        'cnmfe-SD2TD2/outEvent.isxd',        output_dir='cnmfe-SD2TD2', 
overwrite_tiff=True, num_processes=4)
# wall time 0:16:11 (0:16:05 on CaImAn, 0:00:06 on pre/postprocessing)
isx.cnmfe.run_cnmfe('20201027_plate20_org-A3_area-E4_0_trimSD_bp.isxd', 'cnmfe-
bp/outCell_docker.isxd', 'cnmfe-bp/outEvent_docker.isxd', output_dir='cnmfe-bp', 
overwrite_tiff=True, inDocker=True)
# wall time 0:58:34 (0:58:05 on CaImAn, 0:00:29 on pre/postprocessing)
isx.cnmfe.run_cnmfe('20201027_plate20_org-A3_area-E4_0_trimSD_bp.isxd', 'cnmfe-
bp/outCell_4c.isxd',        'cnmfe-bp/outEvent_4c.isxd',        output_dir='cnmfe-bp', 
overwrite_tiff=True, num_processes=4)
# wall time 9:40:25 (9:39:57 on CaImAn, 0:00:28 on pre/postprocessing)
isx.cnmfe.run_cnmfe('20201027_plate20_org-A3_area-E4_0_trimSD_bp.isxd', 'cnmfe-
bp/outCell_4c.isxd',        'cnmfe-bp/outEvent_4c.isxd',        output_dir='cnmfe-bp', 
overwrite_tiff=True, num_processes=2)
# wall time  ( on CaImAn, on pre/postprocessing)
      ```


 NOTES:
 20210720

 * Moved the latest version of the pipeline to E: so it can sit next to the ISX scripts.

 * Setting up the conda environment for the pipeline and for anomaly_detection

 * Created a TestResults folder

 * Updated conf.ini

 - num_processes=1
 - added test folders

 * running pipeline with -j 1

af://n467

 * release notes do not mention any particular changes to the function kwargs

 * importing cnmfe yields error: ImportError: cannot import name 'incremental_pca'

 - following docs chapter 5.1.4 attempting to use pip to install caiman
 pip install "git+https://github.com/flatironinstitute/CaImAn.
 git@7dc5b42ab06c6a6b86ff1520dfc5b2334f335a78"
 pip install “git+https://github.com/inscopix/isx-cnmfe-wrapper@v1.2”

 # succesfully installed!

 * pre_isx.py ln 144 going through the isx.run_cnmfe() function and checking what keywords have
changed

 - commenting keywords out for now
 - commenting out the import isx.cnmfe

 * ISX.log: CNMFE analysis failed with error run_cnmfe() got an unexpected keyword argument
'output_events_files'

 - commenting this out as well

 * isx.event_detection() now outputs the event files, updating line 190 in pre_isx.py

 - something is not working here, log reveals that CNMFE is working, but not event detection
 - 20210726 after updating keywords and setting them to what Bruno, Joanna and Xiaoliang
suggested, event detection now seems to be working

 * adding profile to the isx.run_cnmfe function to report runtimes

 * bg_spatial_subsampling=2

 * stopped processing after 1+ hour

 * used pip to remove the git clone of caiman

 * installed caiman package from conda-forge
 -CNMFe: Total runtime = 1.502e+06 ms = ~25 minutes
 20210727

 * after updating to isx.event_detection(), this needs to happen after looking for the final
output!

 * the traces file now contains negative values and anomaly detection is definitely not working

 * ln 217 adding isx.auto_accept_reject()

 * When setting params to suggested - error:
 - There are too many patches. Try increasing the patch size, decreasing the patch overlap, or
spatially downsampling the data to reduce the number of patches.
 - wrote loop to try +1 patch size until it works, stopped at 43 MINIMUM VALUE

 # Conclusion
 The output traces are now normalized using dF/F, which means anomaly detection will have to
be adjusted accordingly (perhaps if the data used to train the model can be normalized in the
same way)
 Using CNMFe without the custom Docker image works. It is likely using the conda-forge version
as recommended in Caiman documentation would work for older versions as well.

	User guide a:head pipeline application v 1.3
	Configuration
	Running the scripts QUICK START (look below for setup instructions)
	Setup Instructions
	USEFUL BASH COMMANDS: Validating the pipeline and monitor Docker

	Pipeline.py
	Pipeline modules
	pre_isx.py
	search.py
	anomaly_detection.py
	qc_log.py
	ImageJ

	Standalone scripts
	Multi-electrode analysis
	Installation
	Program structure
	Main function

	General notes on writing modules
	Input/Output
	Environment

	Adding external scripts
	Changes to Inscopix API relating to Docker implementation
	INSCOPIX 1.6 UPDATE:

