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Abstract

Topology optimization is a method used to find optimal material distributions, within
a specified domain, with respect to some performance measure. To avoid various ar-
tifacts to appear in the suggested design, the solution space is typically restricted,
where some restriction methods allow different length scales to be controlled in the
design. The suggested material distribution may result in complex designs that are
difficult and costly to manufacture. By controlling the perimeter of the design, solu-
tions with limited complexity can be found.

In this thesis, two different methods of controlling the perimeter of the solution in
topology optimization are investigated. First, a method is presented where a con-
straint on the total variation is added to the optimization problem. The method is
evaluated by solving a 2-dimensional heat flow topology optimization problem, where
two different penalization strategies are used. With the total variation constraint
method, the perimeter cannot be fully controlled. However, some useful applications
in engineering might still be found. For comparison, the topology optimization prob-
lem is also solved using a PDE-filter, which is modified for computational efficiency.
Finally, a filter with total variation regularization is presented, without being success-
fully implemented.
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Notations

∇ = Nabla operator
∆ = Laplacian
δi.j = Kronecker delta
FEM = finite element method
MMA = Method of Moving Asymptotes
PDE = partial differential equation
SIMP = Solid Isotropic Material with Penalization
TV = total variation
Mx = number of elements in the x-direction
My = number of elements in the y-direction
Me = Mx ×My = total number of elements
Mn = number of nodes
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1 Introduction

Topology optimization is an engineering tool where a computer program is used to
provide solutions to design problems. The question is where material should be placed
within a specified design domain, as illustrated in figure 1a, to achieve the best possible
performance. The optimization problem typically consist of an objective, with one or
several constraints. A common objective is to maximize the stiffness of a structure
with a typical constraint on the volume, or area, of the design. However, many other
problems may be solved including heat flow and stress optimization. Unwanted micro-
structures such as checker-boarding may appear in the solution, as seen in figure 1b.
To achieve useful results, methods to avoid these unwanted solutions are needed, some
of which allows the control of various length scales in the design.

(a) (b) (c)

Figure 1: a) 2-d topology optimization problem. b) Design obtained from stiffness
optimization with a volume constraint without filter. c) Design obtained from stiffness
optimization with a volume constraint and a density filter.

A common method is to apply a density filter [4] that filters away any structure
smaller than a specified size, which was used to achieve the design in figure 1c. The
suggested designs could be highly complex demanding the use of expensive manufac-
turing methods. It can therefore be of interest to find designs with limited complexity,
which can be done by controlling the perimeter of the solution, that is, the length of
the boundary segments in a 2-dimensional design.

The aim of this thesis is to implement and evaluate a method to control the perimeter
of the design in a 2-dimensional heat flow problem using the so-called total variation,
defined in section 4.1.

The thesis begins with a brief description of the topology optimization method used
throughout the work and a description of common restriction methods. The opti-
mization problem investigated throughout this thesis is then introduced, followed by
the different restriction methods that have been implemented, starting with total
variation constraint. For comparison, a PDE-filter with a modification for improved
computational efficiency is implemented and finally a filter with total variation regu-
larization is presented. This is followed by the results, discussion and conclusions for
the three investigated restriction methods.
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2 Toplogy optimization

2.1 Density-based topology optimization

To be able to solve the topology optimization problem, the state problem, the equation
that describes the physical behaviour of the system, must be evaluated with respect
to the material distribution. Therefore, a method to distinguish between material and
void in the design domain must be introduced. In density-based topology optimization
[1] the material distribution is described by an artificial density ρ = ρ(x, y), where
the term artificial is used since the density is not coupled to the weight of the design
but to the amount of material placed in the design domain. Areas where material
should be placed are represented by ρ = 1, while areas where ρ = 0 should be left
empty. In this thesis, the state problem is solved by the finite element method, where
the density is coupled to the finite element equation via the stiffness matrix. To allow
the use of gradient based solution algorithms, ρ is allowed to vary continuously on
0 < ρ < 1. However, the intermediate densities has no physical interpretation and
a discrete solution where ρ is binary is therefore sought. Since the results are often
displayed as grey-scale images with ρ = 1 being black and ρ = 0 being white, a binary
solution is often referred to as a crisp black and white solution.

A way of measuring how far the solution is from being binary is the ”measure of
non-discreteness” [21]

Mnd =
4
∑Me

i=1 ρi(1− ρi)

Me

, (1)

where Me is the number of elements. Mnd = 0 when ρ is binary and takes the maximal
value 1 when the density of all elements is 0.5.

2.2 Penalization

To achieve a crisp black and white solution, intermediate densities must be penalized
in the problem formulation. Several approaches to penalize intermediate densities has
been proposed in the literature. A straightforward approach is to add a penalty term
to the objective function on the form βf(ρ) [9], where β is a constant that allows the
amount of penalization to be controlled and f(ρ) is chosen depending on the design
problem and whether the objective function is minimized or maximized.

SIMP (Solid Isotropic Material with Penalization) introduced by Bendsøe and Kikuchi
[1] is another penalization method where the stiffness matrix is calculated using ρq

instead of ρ , with the SIMP-parameter 1 ≤ q. This lowers the stiffness of elements
with intermediate densities, thus reducing their relative performance. q = 3 or q = 4
are common values for the SIMP-parameter for mechanical compliance problems, but
for heat flow problems a larger SIMP-parameter is often needed to achieve a crisp
black and white solution [8].

2



With penalization, a nearly crisp black and white solution can be achieved, but the
solution may be mesh-dependent with micro-structures in the design such as checker-
boarding, as illustrated in figure 1b. Checker-boarding patterns were previously
thought to be an optimal micro-structure design, but it has been proven by Diaz
and Sigmund [5] and Jog and Haber [2] that the stiffness of the checker-boarding
patterns are overestimated due to numerical limitations of low order finite element
methods. Since the aim is to find designs that can be realized, mesh-dependent micro
structures are unwanted in the design. Two ways of avoiding these solutions are to
introduce a filter or to impose a bound on the perimeter of the design.

2.3 Filtering methods

The so called sensitivity filtering was introduced by Sigmund [17] [22]. The filter
consists of a local average of the objective function derivatives in the form

∂̂f

∂ρk
= (ρk)

−1 1∑Me

i=1wj

Me∑
i=1

wjρi
∂f

∂ρi
, (2)

where the filtered sensitivities (derivatives) are ∂̂f
∂ρk

and the true sensitives are ∂f
∂ρi

.

In the density filter, suggested by Bruns and Tortorelli [4], each element density
is a weighted mean value of all element densities within a specified radius r. The
density filter thereby introduces a characteristic length scale, a minimum radius of
any member in the design which can be coupled to a manufacturing constraint such
as a minimum end mill radius. The filtered density ρ̃ of each element is described on
the form

ρ̃i(ρ) =
Me∑
j

wj(xi, xj, yi, yj, r)ρj
w

, (3)

where
∑Me

j is the sum over all elements, (xk, yk) are the coordinates of element k, wj

is the weight function and w =
∑Me

j wj. Bruns and Tortorelli [4] suggest a weight
function that is decreasing with the square of the distance from the element center,
although any meaningful weight function may be used.

The PDE-filter, first proposed by Lazarov and Sigmund [14] and later modified by
Wallin et al. [3] to mitigate issues with designs sticking to the design domain bound-
aries, relies on minimizing a potential function where there is a competition between
the gradients of the filtered variables and the differences between the filtered and the
unfiltered variable. Minimization of the potential function results in a partial differ-
ential equation (PDE) that can be solved using the finite element method on the same
mesh as the state problem. An implementation of the PDE-filter is done in chapter-5.

Other restriction methods found in literature are level set methods [6] where use is
made of the local scattering function (LSF), phase-field filtering [16] where the length
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scale penalization is include in the objective and perimeter control [9], which is the
main subject in this thesis.

2.4 Perimeter control

Several approaches to perimeter control has been suggested in the literature. In
the ”perimeter method” [9] the perimeter is controlled by including a logarithmic
function of the perimeter in the objective function on the form βf(P ), where the
constant β is varied through the iterations. Beckers [15] implemented a method with a
perimeter constraint on a binary design variable, with satisfying results when applied
to a mechanical compliance problem. Duysinx [19] and Borrvall [23] implemented
perimeter control on a mechanical compliance problem. In these works, the perimeter
is estimated using numerical approximations of the total variation of ρ. Since the
total variation is an accurate measure of the perimeter when ρ is binary, the demand
of a binary solution is emphasized.

2.5 Solving the optimization problem

Iterative algorithms are used to solve the optimization problem. Gradient-based op-
timization algorithms are commonly used in topology optimization [19] with Convex
Linear Approximation (CONLIN) and the Method of Moving Asymptotes (MMA)
[13] being two of the most frequently used methods. The latter is chosen for the
implementations in this thesis since it has, according to Duysinx [19], been proven to
be more numerically stable when applied to difficult problems. Other optimization
algorithms such as meta-heuristics and genetic algorithms exist but are typically not
applicable for this topology optimization problem due to the large number of state
evaluations they need.

Since the MMA is gradient based, derivatives with respect to the design variable ρ
of the objective function as well as the constraints, need to be computed at each
iteration. Topology optimization problems are typically non-convex, thus multiple
local optima may exist, and the solution algorithm may converge to one of these local
optima, that may be highly sub-optimal. It should therefore be noted that there is
no guarantee that the problem converges to an optimal solution. Also, in topology
optimization, there may not be one optimal solution but finitely many. However, in
engineering it is most often satisfactory to find a solution that improves performance.
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3 Optimization problem

3.1 ”Heat compliance” minimization problem

The ”heat compliance” minimization problem investigated in this thesis is a standard
model problem in density based topology optimization [8]. The goal is to optimize the
heat dissipation by minimizing the ”heat compliance” of a 2-dimensional homogeneous
isotropic plate that is subject to uniform heating with a constraint on the area of the
design. The design is represented by a material distribution, given by an artificial
dimensionless density ρ = ρ(x, y) that takes the values 0 ≤ ρ ≤ 1. The area of the
design is defined as A =

∫
Ω
ρ dA and is the physical area of the design when ρ is

binary. The temperature of the plate is determined using the finite element method.

The design domain Ω, illustrated in figure 2, is a square with side length L = 1 m and
with boundary Γ consisting of the two parts ΓN and ΓD. The boundary is perfectly
insulated at ΓN , and at ΓD the temperature is fixed at 0. The heat conductivity of
the isotropic material is defined by α = 1 W/(m ·K) and the design domain is subject
to an evenly distributed heat load Q = 4 W/m2 that is independent of ρ.

Figure 2: Geometry and design domain for the minimum heat compliance problem.

3.2 Discrete form of the ”heat compliance” minimization prob-
lem

The design domain is discretized into a uniform mesh with Me = Mx × My 4-node
elements and the density field is assumed to be element-wise constant represented by
the density vector ρ. A summary of the finite element formulation can be found in
box 1, while the derivation of the expressions can be found in Appendix B. 4-node
bi-linear square elements are chosen for computational efficiency, instead of the more
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commonly used isoparametric elements [10]. The element shape functions are

N e
1 (x, y) =

1

h2
(x− x2)(y − y4),

N e
2 (x, y) = − 1

h2
(x− x1)(y − y3),

N e
3 (x, y) =

1

h2
(x− x4)(y − y2),

N e
4 (x, y) = − 1

h2
(x− x3)(y − y1),

(4)

where h is the side length of the element and the elements are aligned with the
coordinate axes, as illustrated in figure 3.

Figure 3: 4-node square element with side length h.

K(ρ)u = f , (5)

with
K(ρ) =

∫
Ω
P (ρ)BTDB dA stiffness matrix ,

f = fl =
∫
Ω
NTQ dA load vector ,

u node temperature vector containing the unknown node temperatures,
D = αI constitutive matrix,
N = [N1N2...Nn] global element shape function matrix,
Ne = [N e

1 N e
2 N e

3 N e
4 ]

T . contains the element shape functions for element e,
B = ∇N ,

Box 1: Finite element formulation.

The global stiffness matrix K(ρ) is computed element-wise and is then assembled

using the FEM assembly routine denoted
∑∑

, i.e.

K =
∑∑

Ke
i (ρ), (6)

where

Ke
i (ρ) =

∫
Ωe

i

P (ρ)BeTDBe dA (7)
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and P (ρ) is the penalized density, to be specified below. If ρ is element-wise constant
and represented by the density vector ρ = [ρ1, ρ2 ... ρMe ]

T , with Me being the number
of elements,

Ke
i (ρi) = P (ρi)K

e
0,i = P (ρi)

∫
Ωe

i

BeTDBe dA (8)

where the penalised density scales the corresponding element stiffness matrix. The
”heat compliance” is calculated as fTu and is proportional to the average temperature
of the design domain, Ω, since the heat load is evenly distributed. The discrete
optimization problem may be written as

min
ρ,u

g0 = fTu

subject to:

{
A(ρ) ≤ ωA0

K(ρ)u = f ,
(9)

where A(ρ) = 1Tρh2, 1 is a column vector with the same length as ρ with the values
1 at each index, A0 is the total area of the design domain, 0 < ω < 1 is a constant
and K(ρ)u = f is the finite element equation (5).

3.3 Penalization

With the standard SIMP-scheme, the penalized density is P (ρi) = ρqi . Since the heat
load Q is distributed evenly over the design domain, a minimum value p for the scaling
of the stiffness matrix must be introduced to allow heat to be dissipated from the void
areas and to avoid a singular stiffness matrix. A relatively large value of p, compared
to mechanical compliance problems where the load is typically not evenly distributed,
is needed. Otherwise the solution algorithm tends to increase the density in the void
areas, resulting in a solution where the performance is not only dependent on the
material distribution, but also on the contrast between the void areas and the areas
with material.

Modified SIMP-scheme

The modified SIMP-scheme, used by Hägg and Wadbro [7], with the penalization
function

P (ρi) = p+ (1− p)ρqi (10)

is used, where q is the SIMP-parameter and p = 10−3 defines the minimum value for
the penalized density. To achieve a discrete solution, a continuation strategy [7] is
used where the problem is solved for q = 1, 2, 3...10.
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Combined penalization

In the combined penalization method, the modified SIMP-scheme, with a constant
SIMP-parameter q = 3, is used together with an added term to the goal function

c1(n, h)ρ
T (1− ρ). (11)

In analogy with the continuation method used for the modified SIMP-scheme, the
parameter c1(n, h) = kh(2.2n) is increased, where k = 0.125, h is the element side
length and the problem is solved for n = 1, 2...14.

3.4 Solution method

In this thesis all optimization programs are implemented in Matlab using a MMA-
solver implemented by K. Svanberg, which is available under a ”free license” and can
be downloaded from the authors website [12]. A full description of the MMA-code
can be found in [11].

3.5 Sensitivity analysis

The objective in (9) reads g0 = fTu, where f is constant. Differentiation of g0 with
respect to ρi yields

∂g0
∂ρi

=
∂

∂ρi
(fTu) = fT ∂u

∂ρi
= uTK

∂u

∂ρi
, (12)

where equation (5) was used in the last step. Since ∂f
∂ρj

= 0 and f = Ku, by eq. (5),

0 =
∂f

∂ρi
=

∂K

∂ρi
u+K

∂u

∂ρi
⇒ ∂u

∂ρi
= −K−1∂K

∂ρi
u (13)

which together with (12) gives

∂g0
∂ρi

= −uT ∂K

∂ρi
u. (14)

When the density is element-wise constant, expressions (6), (8) and (14) can be used
to conclude that

∂g0
∂ρi

= −ueT
i

∂Ke
i

∂ρi
ue

i = −∂P (ρi)

∂ρi
ueT

i Ke
0,iu

e
i , (15)

where ue
i is a vector containing the node temperatures for element i and Ke

i is the
element stiffness matrix for element i.
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The sensitivity of the area constraint is trivially calculated as

∂A(ρ)

∂ρi
= h2, (16)

and is the same for all index i since all elements are equally sized.

9



4 Total variation constraint

4.1 Optimization problem

To impose a bound on the perimeter of the design, the optimization problem (9) is
modified by including the total variation as a constraint. The optimization problem
may then be written as

min
ρ,u

g0 = fTu,

subject to:


TV (ρ) ≤ τ
A(ρ) ≤ ωV0

K(ρ)u = f ,

(17)

where TV (ρ) is an approximation of the total variation of the elementwise constant
density field, represented by the density vector ρ, and τ is the upper limit of the
perimeter. For a smooth density field the total variation is defined as

TV =

∫
Ω

|∇ρ|dA =

∫
Ω

√
∇ρ · ∇ρ dA. (18)

However, element-wise constant fields are in general not smooth. A definition of the
total variation of a non-smooth field exists and can be found in [23], but for practical
reasons, a numerical approximation introduced by Borrvall [23] is used here.

4.2 Numerical approximation of Total Variation

For an element-wise constant density distribution, it is not obvious how |∇ρ| should
be interpreted and computed. A method where the gradients are estimated using
finite differences of element densities is suggested by Borrvall [23], where, due to the
discretization of the density distribution as element-wise constant, a fully isotropic
approximation of the total variation is not possible to obtain. Borrvall suggests several
expressions where differences are evaluated in different directions. TV4 is chosen here
since it is least anisotropic of the alternatives,

TV4(ρ) = (
√
2− 1)h

(
Mx−1∑
i=1

My∑
j=1

δxi,j +
Mx∑
i=1

My−1∑
j=1

δyi,j)

)

+

√
2− 1√
2

h

(
Mx∑
i=2

My−1∑
j=1

δxyi,j +
Mx−1∑
i=1

My−1∑
j=1

δyxi,j

)
,

(19)

where Mx, My is the number of elements in the x- and y-direction respectively. The
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finite differences δxi,j, δ
y
i,j, δ

xy
i,j , δ

yx
i,j used in (19) are defined as

δxi,j = |ρi+1,j − ρi,j|,
δyi,j = |ρi,j+1 − ρi,j|,

δxyi,j = |ρi−1,j+1 − ρi,j|,
δyxi,j = |ρi+1,j+1 − ρi,j|,

(20)

where ρi+Mx(j−1) = ρi,j. The finite differences in (20) are illustrated in figure 4b. To
include the elements on the edges of the design domain when the perimeter is esti-
mated, TV4 must be computed in an extended domain Ω∗. The extended domain,
illustrated in figure 4a, consists of the design domain Ω in grey, with a surrounding
layer of elements with zero density in white.

(a) (b)

Figure 4: a) The design domain Ω (grey), discretized into Mx×My = 8× 8 elements,
and the extended domain Ω∗ (white + grey). b) Finite differences at index (i, j) =
(2, 2) in the four directions.

As seen in figure 4a, the extended domain has 2 more elements in the x and y-direction,
respectively. Subsequently, if the same indexing (i, j) is used, starting at the bottom
left corner of Ω and Ω∗ respectively, ρi,j = ρ∗i+1,j+1, where ρ∗ is the extended density
vector containing the element densities in the extended domain Ω∗. The total variation
is calculated in the extended domain as

TV4(ρ
∗) = TV x

4 (ρ
∗) + TV y

4 (ρ
∗) + TV xy

4 (ρ∗) + TV yx
4 (ρ∗) =

(
√
2− 1)h

(
Mx+1∑
i=1

My+1∑
j=2

δxi,j +
Mx+1∑
i=2

My+1∑
j=1

δyi,j)

)

+

√
2− 1√
2

h

(
Mx+2∑
i=2

My+1∑
j=1

δxyi,j +
Mx+1∑
i=1

My+1∑
j=1

δyxi,j

)
.

(21)

Since |x|, in expression (20), is not differentiable at x = 0, and the solution algorithm
(MMA) requires the sensitivities to be calculated, a smooth approximation of the
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absolute value function is needed. The first smooth approximation that is considered
is

|x| ≈ f1(x) = (x2 + ϵ2)1/2 − ϵ, (22)

where ϵ > 0, which was used by Beckers [15]. The approximation (22) satisfies
f1(0; ϵ) = 0 and f1(x; ϵ) −→ |x| when ϵ −→ 0. The second smooth approximation
that is considered is

|x| ≈ f2(x) = [(1 + 2ϵ)x2 + ϵ2]1/2 − ϵ, (23)

used by Haber et al. [9]. The advantage of approximation (23) compared to approxi-
mation (22) is that not only f2(0; ϵ) = 0 and f2(x; ϵ) −→ |x| when ϵ −→ 0 hold, but
also f2(1; ϵ) = 1 holds, meaning that the approximation is exact when ρ is binary.

(a) (b)

Figure 5: Comparison of smooth approximations with different values of ϵ. a) f1 b)
f2

As can be seen in figure 5, the smooth approximations in (22) and (23) are under-
estimating the absolute function at a large part of the interval which leads to an
underestimation of the total variation. This is illustrated by computing the one-
dimensional total variation of a transition from ρ = 1 to ρ = 0 over a set of elements
where the finite differences δi = ρi − ρi+1 = δρ are equally sized as in figure 6.

Figure 6: Transition from ρ = 1 to ρ = 0 over 11 elements, with 10 equally sized finite
differences δρ = ρi − ρi+1 = 0.1.

The one-dimensional total variation is calculated as
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TV1 =

1/δρ∑
i=1

fn(δρ) =
1

δρ
fn(δρ), (24)

where δρ = ρi − ρi+1 is the step size and 1/δρ is the number of finite differences used
to discretize the transition from ρ = 1 to ρ = 0. If the absolute function is used
TV1 = 1, for δρ > 0. Equation (24) is illustrated in figure 7 where f1 is used in figure
7a and f2 in 7b. Since equation (24) is a growing function on 0 < δρ < 1 for any
0 < ϵ < 1, while the ”true” total variation is 1 for any δρ > 0. It can be concluded
that the underestimation of the total variation increases as the finite difference size
δρ decreases, TV1 −→ 0 as δρ −→ 0, which holds for both f1 and f2.

(a) (b)

Figure 7: Total variation dependence of step size δρ for a transition from ρi = 1 to
ρi+n = 0 for three different values of ϵ. a) f1 b) f2

Accuracy and anisotropic properties

Due to the inherent anisotropy of the finite element discretization, TV4 is an anisotropic
measure of the perimeter that is only accurate for a design with crisp edges that are
parallel to the coordinate axis or at 45◦ angle to the coordinate axis. For other angles,
the perimeter is overestimated with a maximum of 8 percent at 22.5◦ angle, according
to Borrvall [23].

To evaluate the accuracy of TV4 for designs with blurred edges, the perimeter is
calculated on a set of black discs with blurred edges, that are discretized into 256×256
elements with element-wise constant density, and compared to the ”area”. More
precisely, a normalized ratio between TV4 and the ”area” of the discs is computed as

Q(ρ) = TV4(ρ)/(2
√
πA(ρ)), (25)

where Q = 1 is the ratio if the measurements of the perimeter and the ”area” are
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exact. The discs are defined by an inner radius (Ri) and an outer radius (Ro)

ρi =


1 r < Ri

gn(r) Ri ≤ r ≤ Ro

0 r > Ro , (26)

where gn(r) is a decreasing function of the distance from the center of the design
domain to the element center r. The following functions where used

g1(r) =

√
(Ro − r)√
(Ro −Ri)

,

g2(r) =
Ro − r

Ro −Ri

,

g3(r) =
(Ro − r)2

(Ro −Ri)2
.

(27)

To evaluate TV4 and not the smooth approximations fn, TV4 is calculated using the
absolute values instead of a smooth approximation.

(a) (b)

Figure 8: Results from the geometric analysis. a) Normalized ratio (25) between TV4

and A(ρ). b) Graphic illustration of the calculated perimeter TV4 = 1.767 (red) of a
circle with blurred edges (g2(Ri = 1.257;Ro = 2.094)).
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4.3 Sensitivty analysis

To compute derivatives of TV4 with respect to the density, we consider (21) and
conclude that

∂TV4

∂ρ∗i,j
=

∂TV x
4

∂ρ∗i,j
+

∂TV y
4

∂ρ∗i,j
+

∂TV xy
4

∂ρ∗i,j
+

∂TV yx
4

∂ρ∗i,j
. (28)

We focus the analysis on the first term, since the same approach may then be used
for the remaining terms in (28). Equation (21) yields

∂TV x
4

∂ρ∗i,j
= (

√
2− 1)h

Mx+1∑
k=1

My+1∑
l=2

∂δxk,l
∂ρ∗i,j

. (29)

From (20) we get

∂δxk,l
∂ρ∗i,j

= f ′
n(ρ

∗
k+1,l − ρ∗k,l)(δk,iδl,j + δk+1,iδl,j), (30)

where δi,j is the Kronecker delta with the properties that δm,n = 1, if m = n, otherwise
δm,n = 0. Insertion of (30) into (29) gives

∂TV x
4

∂ρ∗i,j
= (

√
2− 1)h(

∂δxi,j
∂ρ∗i,j

+
∂δxi−1,j

∂ρ∗i,j
)

= (
√
2− 1)(h)f ′

n(ρ
∗
k+1,l − ρ∗k,l)(δk,iδl,j + δk+1,iδl,j).

(31)

Treating the remaining terms in expression (28) analogously, we obtain

∂TV y
4

∂ρ∗i,j
= (

√
2− 1)(h)f ′

n(ρ
∗
k,l+1 − ρk,l)(δk,iδl,j + δk,iδl+1,j), (32)

∂TV xy
4

∂ρ∗i,j
=

√
2− 1√
2

(h)f ′
n(ρ

∗
k−1,l+1 − ρ∗k,l)(δk,iδl,j + δk−1,iδl+1,j), (33)

∂TV yx
4

∂ρ∗i,j
= (

√
2− 1)(h)f ′

n(ρ
∗
k+1,l+1 − ρ∗k,l)(δk,iδl,j + δk+1,iδl+1,j). (34)

The derivatives of the two smooth approximations defined in expression (22) and
expression (23) are

f ′
1(x) =

x√
x2 + ϵ2

=
x

f1(x) + ϵ
, (35)

and
f ′
2(x) = (1 + 2ϵ)

x√
x2 + ϵ2

= (1 + 2ϵ)
x

f2(x) + ϵ
, (36)

respectively.
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To derive the sensitivity with respect to the design variable ρ, we recall that ρi,j =
ρ∗i+1,j+1, thus

∂TV4

∂ρi,j
=

∂TV4

∂ρ∗i+1,j+1

, (37)

for (i, j) = (1, 1) to (i, j) = (Mx,My).
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5 PDE-filter

In the first part of this chapter, a PDE-filter with nodal based filtered densities is
implemented. In the second part, a PDE-filter is implemented, where the filtered
density is element-wise constant.

5.1 Nodal based PDE-filter

The PDE-filter [14] relies on minimizing the potential functional

Π(ρ̃) =
1

2

∫
Ω

l20|∇ρ̃|2 dA+
1

2

∫
Ω

(ρ− ρ̃)2 dA, (38)

where ρ is the nominal design variable density, ρ̃ is the filtered density and the constant
length scale parameter l0 is related to the minimum radius of any material or void
section in the solution as r = 2

√
3l0 [3]. The first term is dependent on the spatial

variation of ρ̃ and the second term is dependent on the difference between ρ and ρ̃.
The filtered density, ρ̃, is obtained by minimizing the potential function with respect
to ρ̃. The minimizer of functional (38) satisfies

−l20∆ρ̃+ ρ̃ = ρ in Ω,

n · ∇ρ̃ = 0 on ∂Ω,
(39)

which is a partial differential equation (PDE) that can be solved numerically. The
PDE-filter is area conserving, which is proved by integrating the density over the
entire domain,

A =

∫
Ω

ρ dA =

∫
Ω

l20∆ρ̃dA+

∫
Ω

ρ̃ dA. (40)

Applying Gauss divergence theorem to the first term on the right hand side yields∫
Ω

ρ dA =

∫
∂Ω

l20∇ρ̃ · n dS +

∫
Ω

ρ̃ dA =

∫
Ω

ρ̃ dA, (41)

where the last equality follows from ∇ρ̃ · n = 0 on ∂Ω.

The PDE (39) is solved using the Finite Element Method on the same mesh as for the
state problem. The unfiltered density ρ is element-wise constant and is represented by
the vector ρ while the filtered density is interpolated using the element shape functions
ρ̃ = Nρ̃, where the vector ρ̃ contains the nodal values of the filtered density.

In analogy with the approach used for the heat equation (see appendix B) and applying
homogeneus Neumann boundary conditions on ∂Ω, the discrete formulation becomes

l20

∫
∂Ω

BTB dA ρ̃+

∫
Ω

NTN dA ρ̃ =

∫
Ω

NT dA ρ. (42)
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Introducing the filter operator K̂ = l20
∫
Ω

BTB dA +
∫
Ω
NTN dA and T =∫

Ω
NT dA, expression (42) may be written as a system of linear equations on the

form
K̂ρ̃ = Tρ. (43)

Since the filtered design variable is represented as a density field that varies within the
elements, expression (7) must be used when calculating the stiffness matrix for the
finite element equation. To compute the element stiffness matrices Gauss quadrature
with 4 Gauss points is used.

5.2 Element based PDE-filter

To construct a filter where the filtered density is element-wise constant, the nodal
based PDE-filter is modified with a mapping from node values to element-wise con-
stant values for the filtered density. The filtered element-wise constant density is
represented by the vector ρ̂ where each element density is approximated as the aver-
age value of the four node densities

ρ̂i =
1

4

4∑
j=1

ρ̃ei,j, (44)

where i is the element index and ρ̃e
i is a vector containing the node densities for

element i. This can be expressed as a linear equation

ρ̂ = T̂ ρ̃, (45)

where T̂ is the averaging operator. The stiffness matrix in the finite element equation
(5) is now evaluated with respect to ρ̂ using expression (8).

5.3 Sensitivity analysis

Nodal based PDE-filter

To derive the derivative of the objective function with respect to the design variable
ρ, we make use of the chain rule, that is,

∂g0
∂ρ

=
∂g0
∂ρ̃

∂ρ̃

∂ρ
. (46)

The first term on the right hand side in (46) we write

∂g0
∂ρ̃

= sf =
∑∑

sf,i, (47)
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where sf is a vector containing the derivatives of the objective function with respect

to the filtered density field,
∑∑

is the assembly operator and sf,i is the contribution
to sf of each element

sf,i = −q(1− p)

(∫
Ωe

i

N eρ̃q−1
i ueTBeTDBeue dA

)
, (48)

since P (ρ̃i) = p + (1 − p)ρ̃qi , and ρ̃i is the approximation of the filtered density field
in element i, evaluated using Gauss quadrature with 4 Gauss points. The derivation
of expression (48) can be found in Sigmund and Lazarov [14]. From equation (43),

ρ̃ = K̂
−1
Tρ, which implies that

∂ρ̃

∂ρ
= T TK̂

−1
. (49)

Finally, insertion of (49) and (47) into (46) yields the sensitivity of g0 with respect to
the design variable ρ as

∂g0
∂ρ

= T TK̂
−1
sf . (50)

Element based PDE-filter

The sensitivity of the objective function with respect to the design variable ρ, can be
written as

∂g0
∂ρ

=
∂g0
∂ρ̂

∂ρ̂

∂ρ
. (51)

For the first term we can use expression (6) and expression (15) to conclude that

∂g0
∂ρ̂

=
Me∑
j=1

∂g0
∂ρ̂j

δj =
Me∑
j=1

(
ueT

j

∂P (ρ̂j)

∂ρ̂j
Ke

0,ju
e
j

)
ej

T

=
Me∑
j=1

(
q(1− p)ρ̂q−1

j ueT
j Ke

0,ju
e
j

)
ej

T ,

(52)

where ej denotes a vector with length Me with a 1 in the j:th coordinate and 0
elsewhere. By using the chain rule and combining (45) and (49) we have

∂ρ̂

∂ρ
= T T K̂−1T̂ T . (53)

Combining (53) and (52) provides the sensitivity of g0 with respect to the design
variable ρ as

∂g0
∂ρ

=
∂g0
∂ρ̂

∂ρ̂

∂ρ
= T T K̂−1T̂ T

(
Me∑
j=1

(
q(1− p)ρ̂q−1

j ueT
j Ke

0,ju
e
j

)
ej

T

)
. (54)
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6 Filtering using total variation

In this chapter, a TV-regularizing filter is presented. The goal of the filter is as with
any other filter to avoid unwanted solutions, such as checker-boarding, but also to
keep the total variation of the design variable at a controlled level.

6.1 TV-filter

By reformulating the potential functional (38) of the PDE-filter to

Π(ρ̃) =

∫
Ω

l0|∇ρ̃| dA+
1

2

∫
Ω

|ρ− ρ̃|2 dA, (55)

a PDE-filter with total variation regularization is created, where |∇ρ̃| is approximated
by the smooth approximation f1, defined in expression (22),

Π(ρ̃) =

∫
Ω

l0f1(∇ρ) +
1

2

∫
Ω

|ρ− ρ̃|2 dA. (56)

Minimization of the potential functional allows the filter equation to be expressed as

−l0∇ · (f ′
1(∇ρ̃)) + ρ̃ = ρ in Ω,

n · f ′
1(∇ρ̃) = 0 on ∂Ω.

(57)

Insertion of expression (35) into expression (57) yields

−l0∇ ·

(
∇ρ̃√

(∇ρ̃)2 + ϵ2)

)
+ ρ̃ = ρ in Ω,

n ·

(
∇ρ̃√

(∇ρ̃)2 + ϵ2)

)
= 0 <=> n · ∇ρ̃ = 0 on ∂Ω.

(58)

The same approach as for the nodal based PDE-filter is used to solve the filter equation
for the TV-filter by the finite element method, where the discrete form of the TV-filter
equation is

l0

∫
Ω

BTDρ(ρ̃)B dV ρ̃+

∫
Ω

NTN dV ρ̃ =

∫
Ω

NT dV ρ. (59)

Analogously to the PDE-filter, we obtain a system on the form Kρρ̃ = Tρ. The dif-
ference from the PDE-filter is that the filter operator Kρ = Kρ(Dρ(ρ̃)) is dependent
on the filtered density, resulting in the non-linear filter equation for the TV-filter

Kρ(Dρ(ρ̃))ρ̃ = Tρ, (60)

where the filter operator is calculated element-wise as

Ke
ρ(D

e
ρ) = l0

∫
Ω

BeTDe
ρ(ρ̃)B

e dV, (61)
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with

De
ρ(ρ̃

e) = I
1

((∇ρ̃e)T∇ρ̃e + ϵ2)1/2
, (62)

and ∇ρ̃e is a numerical approximation of ∇ρ̃ evaluated in the center of the element.
Since symmetric four node bi-linear elements are used

∇ρ̃e =
1

2h

[
−ρ̃e1 + ρ̃e2 + ρ̃e3 − ρ̃e4

−ρ̃e1 − ρ̃e2 + ρ̃e3 + ρ̃e4

]
, (63)

where ρ̃e contains the filtered density node values, with local node indexing, for
element e. Since 0 ≤ ρ̃i ≤ 1 it follows that 0 ≤ ∇ρ̃e ≤ 1

h
[1 1]T and ϵ must be chosen

such that ϵ << 1
h
. Analogously with the element based PDE-filter, the element-wise

constant filtered density vector is computed as

ρ̂ = T̂ (Kρ(Dρ(ρ̃)))
−1Tρ. (64)

The non-linear filter equation (60) is solved using a modified version of Newton’s
method, described in box 2, where the approximation ∂rρ

∂ρ̃
= Kρ+

∂Kρ

∂ρ̃
ρ̃ ≈ Kρ is used

to avoid calculation of ∂Kρ

∂ρ̃
. The approximation causes the algorithm to converge

slowly and is not recommended for a final implementation, but may be used for
performing numerical experiments with a model mesh at low resolution.

Iterative solution algorithm:
- Calculate initial guess ρ̃ = Tρ
- Calculate Kρ(ρ̃)
- Calculate residual rρ = Kρ(ρ̃)ρ̃− Tρ

• Loop while ||rρ||2 > rtol :
- Calculate ∆ρ̃ = K−1

ρ (−rρ)
- Update ρ̃ = ρ̃ + ∆ρ̃
- Calculate new Kρ(ρ̃)
- compute rρ = Kρ(ρ̃)ρ̃− Tρ
• end loop

Box 2: Pseudo code for the algorithm used to solve equation 60.

6.2 Implementation in topology optimziation

An unsuccessful attempt to use the TV-filter to control the perimeter for the optimiza-
tion problem was done. It was found that the perimeter is not constant for a given
length scale l0, but dependent on the filtered variable ρ̃. Due to time limitations, the
relation between l0 and the perimeter of the design was not further investigated.
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7 Results

The results displayed are solutions to the ”heat compliance” optimization problem
with a mesh resolution of 256×256 elements unless otherwise specified. All derivatives
that are calculated have been verified using the finite difference method, detailed in
Appendix B, and all results are presented without post-processing.

7.1 Total variation constraint

The smooth approximation f2 in (23) is used together with ϵ = 0.5; a relatively large
value of ϵ is needed to avoid oscillations in the design updates. The area fraction
is limited to ω = 0.2 and the upper bound on total variation, τ , is given in the
tables below. The results are presented for both of the two penalization methods
described in section 3.3. Due to oscillations in the design updates, the problem does
not completely converge and the KKT-conditions, the standard convergence criteria
in the MMA-solver, are not fulfilled. Therefore, the solution is accepted when a
stagnation criteria is fulfilled, ||ρn − ρn−1||2 < rt, where rt is a tolerance and n the
current iteration number. The designs shown in figure 9 are obtained with the modified
SIMP-scheme in expression (10). The ”combined penalization strategy”, described in
section 3.3, was used to achieve the results in figure 10. The development during the
optimization of the designs C1 and C6 in figure 10 are shown in figure 11 and figure
12. Characteristics of the designs presented in figure 12 are tabulated in appendix
A. Due to the inaccuracy of TV4 as a measure of the perimeter when intermediate
elements are included in the design, a more accurate measure of the perimeter, TV abs

4 ,
that is calculated using ϵ = 0, is presented with the tabulated data and figures below.

Table 1: Characteristics for the designs in figure 9.

Figure τ Compliance Area TV4 TV abs
4 Mnd

S1 1 189.8 0.2 1.000 6.745 0.2412
S2 2 111.3 0.2 2.001 8,907 0.1871
S3 4 78.4 0.2 4.001 12.013 0.1577
S4 8 57.1 0.2 8.000 16.079 0.1255
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S1 S2

S3 S4

Figure 9: Solutions to the ”heat compliance” optimization problem with a TV con-
straint, obtained with ”modified SIMP” penalization.

Table 2: Characteristics for the designs in figure 10.

Figure τ Compliance Area TV4 TV abs
4 Mnd

C1 3 339.5569 0.17529 4.2852 4.2852 4.6195e-08
C2 4 298.2005 0.18452 4.5855 4.5862 7.2163e-06
C3 5 215.5380 0.19386 5.6343 5.6354 1.0057e-05
C4 6 172.0613 0.19327 6.6675 6.6675 4.5499e-08
C5 7 154.3565 0.19264 7.1861 7.1861 4.5529e-08
C6 8 142.3174 0.18988 7.9879 7.9879 4.5571e-08
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C1 C2

C3 C4

C5 C6

Figure 10: Solutions to the ”heat compliance” optimization problem with a TV con-
straint, obtained with ”combined penalization”.
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(a)

(b)

Figure 11: a) Evolution of C1 with the designs for the penalization parameter n =
1, 5, 9 in (11) marked as C1

1 , C
5
1 and C9

1 in the graph and are displayed in figure 12.
b) Evolution of C6 with the designs for the penalization parameter n = 1, 5, 9 in (11)
marked as C1

6 , C
5
6 and C9

6 in the graph and are displayed in figure 12.
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C1
1 C1

6

C5
1 C5

6

C9
1 C9

6

Figure 12: Design evolution for C1 (left) and C6 (right).
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7.2 PDE-filter

The ”modified SIMP-scheme” in expression (10) was used to obtain all numerical
results in this section. The results P1 − P2, presented in figure 13, are included for
comparing the nodal based PDE-filter with the element based PDE-filter and is solved
with the volume constraint parameter ω = 0.5. The computation time for the nodal
based PDE-filter was approximately 14 times that of the element based PDE-filter.
The results P3 −P6, presented in figure 14, was solved using the element based PDE-
filter with the volume constraint parameter ω = 0.2.

P1 P2

Figure 13: Comparison of numerical results obtained with the nodal based PDE-filter,
P1, and the element based PDE-filter, P2.

Table 3: Characteristics for the designs in figure 13.

Figure ω l0 Compliance Area Mnd

P1 0.5 0.01m 21.44 0.5 0.0086
P2 0.5 0.01m 20.33 0.5 0.0195

Table 4: Characteristics for the designs in figure 14.

Figure ω l0 Compliance Area Mnd

P3 0.2 0.01m 164.2 0.2 0.0003
P4 0.2 0.005m 93.8 0.2 0.0001
P5 0.2 0.0025m 66.7 0.2 0.0005
P6 0.2 0.00125m 53.7 0.2 0.0011
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P3 P4

P5 P6

Figure 14: Designs obtained with the element based PDE-filter.
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7.3 TV-filter

The TV-filter of section 6.1 is evaluated by filtering the binary ”test image” in fig-
ure 15 with a resolution of 128× 128 elements. The non-linear filter equation (60) is
solved using the algorithm described in box 2, with the residual tolerance rtol = 10−4.

Figure 15: Binary image used to evaluate the TV-PDE-filter.

(a)

(b)

Figure 16: Binary test image filtered with the element based PDE-filter. a) l0 = 0.001
b) l0 = 0.002
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(a) (b)

Figure 17: Binary test image filtered with the TV-filter, ϵ = 10−4. a) l0 = 0.001 b)
l0 = 0.002

(a) (b)

Figure 18: Binary test image filtered with the TV-filter, ϵ = 10. a) l0 = 0.001 b)
l0 = 0.002
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8 Discussion

8.1 Total variation constraint

It appears to be difficult to obtain a crisp black and white solution with the modified
SIMP-scheme. The results S1 to S4, illustrated in figure 9, have blurred edges and
the measure of non discreteness, Mnd, is relatively high, as seen in table 1. Since
the total variation is underestimated for designs with blurred edges, as was discussed
in section 4.2, the actual perimeters of the designs are significantly larger than the
perimeter constraints, as seen in table 1 where TV abs

4 is a more accurate approximation
of the perimeter than TV4. This underestimation of the perimeter could be limited by
choosing a smaller ϵ in the smooth approximation. However, the optimization problem
is observed to be numerically unstable due to oscillations in the design updates when
ϵ < b ≈ 0.01, detailed in section 8.1.1, and a discrete solution is difficult to obtain
while ϵ > b ≈ 0.01.

The results C1 to C6, presented in figure 10, shows designs with various perimeters
although the perimeter constraint is only fulfilled for C6. In figure 12, it can be see that
designs with blurred edges occurs early in the solution process that lowers the total
variation TV4. The estimated perimeter TV4 = 3.01 compared to the more accurate
measure TV abs

4 = 10.56 for C1
1 . For C

1
6 the estimated perimeter TV4 = 7.96 while the

more accurate estimation TV abs
4 = 14.31. It can be concluded that the constraint on

TV4 is fulfilled early in the solution process, while the perimeter is underestimated
due to the smooth edges. As the penalization is increased, the underestimation of TV4

decreases since the edges becomes crisper, leading to a more accurate estimation of the
perimeter, as shown in figure 11. The cost for adding material in the void sections are
increasing with increased penalization. As the penalisation parameter c1 is increased,
it eventually dominates the objective function causing elements where ρi < 0.5 to be
forced to 0 by the optimization algorithm, while elements where 0.5 < ρi are forced to
1. This leads to the total variation constraint being violated since it is too costly to add
material in the void areas to decrease the perimeter at this stage in the optimization
process. This can be seen in figure 11 where the total variation constraint is violated
in figure 11a after around 150 iterations while in 11b TV4 converges to TV abs

4 .

The total variation constraint makes long thin arms costly due to their large circum-
ference although there is no explicit penalty or constraint on the thickness of the
arms. This allows for tapered arms to be formed, as can be seen in result C6, illus-
trated in figure 10, which can be compared to result P3, illustrated in figure 14, where
the thickness of the arms are limited by the minimum radius r = 2

√
3l0. For larger

perimeter constraints τ , element-sized structures occurs in the solution. The design
is then limited by the mesh and the refinement of the mesh allows for finer ”arms” to
be formed.
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8.1.1 Blurring and numerical instabilities

The blurring of the edges of the designs can be explained by analysing the sensitivities
of TV4 with respect to ρ. For simplicity, only the first term in expression (21), TV x

4 (ρ),
is considered. It can be seen from expression (31) that the sensitivity of TV x

4 with
respect to one element density depends on the element itself and its two nearest
neighbours, that is,

∂TV x
4

∂ρ̃i
= C (f ′

n(∆ρi)− f ′
n(∆ρi−1)) = C

(
∆ρi√

(∆ρi)2 + ϵ2
− ∆ρi−1√

(∆ρi−1)2 + ϵ2

)
, (65)

where ∆ρi = ρi − ρi+1 and C is a constant. If ϵ → 0, the derivative depends only on
the ”sign” of ∆ρi and ∆ρi−1 and not on the magnitude,

lim
ϵ→0

C(
∆ρi√

(∆ρi)2 + ϵ2
− ∆ρi−1√

(∆ρi−1)2 + ϵ2
) = C(sgn(∆ρi)− sgn(∆ρi−1)), (66)

which holds for both approximation f1 and f2. If ρi−1, ρi and ρi+1 are given such that
∆ρi−1 >> ∆ρi > 0, as illustrated in figure 19a, and

∂TV x
4

∂ρi
is evaluated, equation (66)

gives f ′
n(∆ρi−1) ≈ f ′

n(∆ρi) → ∂TV4

∂ρi
≈ 0, if ϵ is chosen so small that 0 < ϵ << ∆ρi.

Note that ∂TV4

∂ρi
= 0 if the absolute value function is used when calculating TV4. If ϵ

is instead chosen as a large number, e.g. ϵ = 0.1, equation (65) yields, f ′
n(∆ρi−1) >

f ′
n(∆ρi) → ∂TV4

∂ρi
≈ −C . Supposing that TV x

4 is minimized using a gradient based
solution algorithm, ρi will be increased, leading to a smoother transition from ρi−1 to
ρi+1.

(a) (b)

Figure 19: Illustration of element densities.

To explain the numerical instabilities observed when ϵ < 0.01, a case where ∆ρi =
−∆ρi+1, 0 < ∆ρi << 1, as in figure 19b, is considered. If ϵ << 1, expression (66)
shows that the derivative only depends on the signs of ∆ρi and ∆ρi−1. More precisely,
the derivative

∂TV x
4

∂ρ̃i
= −C for all ∆ρi > 0 and

∂TV x
4

∂ρ̃i
= C for all ∆ρ < 0. Thus

∂TV x
4

∂ρ̃i
= 0

only when ∆ρ is exactly 0. The solution does not converge unless ρi−1 = ρi = ρi+1,
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which is not guaranteed since
∂TV x

4

∂ρ̃i
does not approach 0 as ρi −→ ρi−1 = ρi+1.

Furthermore, as the density of the element ρi is increased in an update, the density
of its neighbouring elements may be decreased, resulting in oscillations in the design
updates.

8.2 PDE- and TV-filter

The element-based PDE-filter is significantly faster than the nodal-based PDE-filter
while providing solutions with similar performance. With the nodal-based PDE-filter,
l0 has to be chosen with respect to the element side length h for the optimization
problem to be numerically stable. The element-based PDE-filter was observed to be
less sensitive to the relation between l0 and h.

When comparing the filtered binary images in figures 16 to 18, the TV-filter seems to
smear small structures in the image globally, rather than locally, as with the PDE-
filter. It can also be seen that the TV-filter is edge-preserving, where the parameter
l0 seems to be related to a minimum dimension of any structure that is preserved, as
seen by comparing figures 18b and figure 17b, where the element-sized structures are
removed from the image, with figures 18a and 17a where element-sized structures can
still be observed. The effect of ϵ is seen by comparing figure 17 and figure 18, where
some local smearing of the structures can be seen in figure 18, where ϵ = 10, that
does not exist in figure 17, where ϵ = 10−4.
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9 Conclusion and further work

The ”TV constraint” method provides unsatisfying results due to the underestimation
of the total variation as a result of the use of a smooth approximation of the absolute
value function. A more exact approximation could be made, but increased complexity
of the approximation increases computational costs. Also, the smooth approximations
used in this thesis are convex functions that are easier to minimize than non-convex
functions. Using a different solution method, or tweaking the MMA-solver in order
to mitigate the numerical instabilities occurring when ϵ << 1, could be investigated.
Haber, et al. [9] report the need of fine tuning the solution parameters to achieve
convergence, while Duysinx [19] successfully solves the optimization problem using
the ”dual method” with an internal loop procedure to approximate the perimeter
constraint. The latter has not been investigated due to time limitations, and only
minor experiments with adjusting the MMA-parameters have been performed.

Although the method does not allow exact control of the perimeter, some use in
engineering may be found. With a carefully chosen penalization strategy and some
tuning of the parameters in the solution algorithm, the method may provide useful
results, where a trial and error approach could be used to find the sought perimeter.

The element based PDE-filter provides a more computationally efficient alternative
to the nodal based PDE-filter, while no drawbacks has been observed. The TV-filter
has not been successfully implemented to bound the perimeter of the designs in this
thesis. Methods where the length scale parameter in (59) is updated at each iteration
according to the current state, might be a way to control the perimeter of the design
but has not been investigated due to time limitations.

An alternative approach to total variation regularization of a topology optimization
problem, which has not been investigated in this thesis, is to use the proximal gradient
method [20, 24] to solve the topology optimization problem. The proximal gradient
method is designed for solving optimization problems on the form

min
x

{F (x) = f(x) + g(x)}, (67)

where f(x) is differentiable and g(x) is convex. The updates used to solve optimiza-
tion problem (67) using the proximal gradient method are described in box 3.

Proximal gradient method:
- Initiate x0

- for k = 0, 1, ..., n
• choose step size tk
• update xk+1 = proxtkg(x

k − tk∇f(xk))

Box 3: Proximal gradient method algorithm to solve the minimization problem (67).
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The proximal operator proxg, that appears in the update, is defined as

proxg(y) = argmin
ŷ

g(ŷ) +
1

2
||ŷ − y||22. (68)

Since the objective in the optimization problem (9) is differentiable and the total
variation of a smooth density field (18) is a convex function [24], future investigations
could apply the proximal gradient method to solve the optimization problem

min
ρ

fTu(ρ)+ βTV (ρ). (69)
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Appendix A Data tables

Table 5: Characteristics for the designs in figure 12

.

Figure c1 Compliance Area TV4 TV abs
4 Mnd

C1
1 0.001 61.2751 0.19988 3.0052 10.5599 0.1908

C1
6 0.001 72.6355 0.19992 7.9599 14.3063 0.1009

C5
1 0.025 68.1222 0.19312 2.9523 8.8820 0.1196

C5
6 0.025 77.6393 0.19977 7.9400 11.0950 0.04043

C9
1 0.589 207.4114 0.18142 3.0270 5.1865 0.02639

C9
6 0.589 126.5289 0.19026 8.0466 8.1886 0.001428

Appendix B Accuracy of derivatives

To ensure that the correct derivatives are used in the optimization algorithm, the
calculated values must be controlled in some way. This is done by comparing the
computed analytical derivatives to numerically approximated derivatives. The nu-
merical approximations are calculated using finite differences

∂g0
∂ρi

≈ g0(ρ+ hδi)− g0(ρ)

h
, (70)

where δi = [δi,1 δi,2 ... δi,n]
T and h is a step size. Expression (70) is only an accurate

approximation around the point go(ρ), thus if h is too large, the approximation is
inaccurate. On the other hand, if h is chosen too small, the effects of round-off errors
increase. There is in general no easy way to determine the correct step size h. A trial
and error approach is used, where, if a reasonable h is found where the derivatives
coincide with the analytical values for a number of randomly chosen indices i, the
derivatives are assumed to be correctly calculated. Analogously, if no h is found where
the numerical and analytical values agree, the analytical derivatives are assumed to
be miscalculated values.
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Appendix C Finite Element Formulation

The finite element formulation is presented for the solution of the heat equation in a
2-dimensional setting. The results are used directly for solving the heat flow problem
in the ”heat compliance” optimization problem but also to solve the PDE-filter and
the TV-filter equations. For a more thorough explanation the reader can consult
chapters 4, 6 and 10 in Introduction to the Finite Element Method [18].

C.1 Heat equation formulation for two-dimensional heat flow

Fourier’s law for two-dimensional heat flow in a body with homogeneous material
reads

q = −D∇T. (71)

Where q = [qx qy]
T is the heat flux vector [W/m2],∇T = [∂T

∂x
∂T
∂y
]T is the temperature

gradient and D =

[
kxx kxy
kyx kyy

]
is the constitutive matrix containing the directional

heat transfer properties of the material. Matrix D is symmetric and positive definite.
D is constant within a body with homogeneous material, and for a homogeneous
isotropic material D = αI, where α > 0 is constant.

Figure 20: Illustration of an arbitrary 2-dimensional region Ω with boundary ∂Ω =
∂ΩN ∪ ∂ΩD.

We consider a 2-dimensional region Ω as in figure 20, occupied with a homogeneous
material with boundary ∂Ω = ∂ΩD ∪ ∂ΩN and being in thermal equilibrium. If we
let Q be the amount of heat supplied to the body per area unit and time [W/m2], we
may establish an energy balance equation given that the amount of added heat, per
time unit, must equal the net flux of heat through the boundary in any part of Ω.
The energy balance equation for V ⊂ Ω reads∫

V

Q dA =

∮
∂V

qTn dL, (72)
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where n is the outward-directed normal vector at the boundary and V is an arbitrary
region that belongs to Ω. Applying Gauss divergence theorem to equation (72) gives∫

V

Q dA =

∫
V

∇ · (q) dA ⇒
∫
V

[Q−∇ · q] dA = 0 (73)

and since V is arbitrary we may conclude that

∇ · (q) = Q (74)

which together with (71) gives us

∇ · (D∇T ) +Q = 0 , in Ω . (75)

Boundary conditions are needed to solve equation (75) and may be on the form{
n · D∇T = hN , on ∂ΩN

T = tD, on ∂ΩD
(76)

for the region in figure 20, if the temperature T is known on ∂ΩD.

C.2 Variational (weak) form of heat flow in a two-dimensional
body

To solve equation (75) using the finite element method, we rewrite the equation on
the variational (weak) form. By multiplying with the arbitary function v(x, y), that
vanishes on ∂ΩD, and integrating over the domain Ω we get∫

Ω

v ∇ · q dA−
∫
Ω

vQ dA = 0. (77)

Applying Green-Gauss theorem to the first term in (77) and using integration by parts
yields ∫

Ω

(∇v)Tq dA =

∮
∂Ω

vqTn dL−
∫
Ω

vQ dA. (78)

Insertion into expression (77) gives∫
Ω

(∇v)TD∇T dA = −
∮
∂Ω

vqTn dL+

∫
Ω

vQ dA. (79)

Which is the variational form of heat flow in a two-dimensional body. If we use the
typical boundary conditions specified in expression (76) and insert qn = qTn, we have∫

Ω

(∇v)TD∇T dA = −
∮
∂ΩN

vhN dL−
∮
∂ΩD

vqn dL+

∫
Ω

vQ dA

= −
∮
∂ΩN

vhN dL+

∫
Ω

vQ dA

with T = tD on ∂ΩD ,

(80)

since v = 0 on ∂ΩD.
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C.3 Discretization

The region is discretized into a Cartesian mesh withMe = Mx×My number of elements
each having n number of nodes resulting in a total Mn number of nodes. The number
of degrees of freedom equals the number of nodes for the heat flow problem. The
temperature field in the body is interpolated using the element shape functions

T = Nu (81)

where u = [u1u2...uMn ]
T is the node temperature vector containing the unknown node

temperatures, N = [N 1N 2...NMn ] is the global shape function matrix containing the
element shape function vectors Ni = [N e

1N
e
2 ...N

e
n]

T , where N e
1N

e
2 ...N

e
n are the element

shape functions. The element shape functions are functions of the global coordinates
(x,y) with the properties that Ne

i = 1, in node i and 0 in all other nodes of the
element. ∇T is described as

∇T = ∇(Nu) = Bu (82)

where B = ∇N . Insertion into (80) yields(∫
Ω

(∇v)TDB dA

)
u = −

∮
∂ΩN

vhN dL+

∫
Ω

vQ dA (83)

and since v is arbitrary we may choose v freely. The Galerkin method is used where
v = Nc ⇒ ∇v = Bc is chosen where c is arbitrary andNc = cTNT holds. Insertion
into (83) gives(∫

Ω

cTBTDB dA

)
u = −

∮
∂ΩN

cTNThN dL+

∫
Ω

cTNTQ dA. (84)

Since c is arbitrary(∫
Ω

BTDB dA

)
u = −

∮
∂ΩN

NThN dL+

∫
Ω

NTQ dA, (85)

which is the discrete form of the variational formulation of the 2-dimensional heat
flow problem.
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C.4 Finite element equation

Equation (85) can be written as

Ku = fb + fl (86)

with K =
∫
Ω
BTDB dA is the stiffness matrix, fb = −

∮
∂ΩN

NThN dL is the bound-

ary vector and fl =
∫
Ω
NTQ dA is the load vector. We may also combine the

boundary vector and the load vector to rewrite equation (86) on the more compact
form

Ku = f , (87)

which is a linear system of equations that may be solved using the boundary conditions
given in expression (76).

C.5 Four node bilinear elements

Figure 21: 4-node square element with side length h.

For a four node bilinear element with node coordinates [(x1, y1); (x2, y2); (x3, y3); (x4, y4)],
the element shape functions are

N e
1 (x, y) =

x− x2

x1 − x2

y − y4
y1 − y4

,

N e
2 (x, y) =

x− x1

x2 − x1

y − y3
y2 − y3

,

N e
3 (x, y) =

x− x4

x3 − x4

y − y2
y3 − y2

,

N e
4 (x, y) =

x− x3

x4 − x3

y − y1
y4 − y1

.

(88)

If the elements are squares, with the edges parallel to the coordinate axes, as in figure
21, the element shape functions are simplified since x1 = x4, x2 = x3 , y1 = y2 and
y3 = y4 which gives x1 − x2 = x4 − x3 = h and y1 − y4 = y2 − y3 = h, where h is the
element side length. The element shape functions for a square element, illustrated in
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figure 22a, are

N e
1 (x, y) =

1

h2
(x− x2)(y − y4),

N e
2 (x, y) =

−1

h2
(x− x1)(y − y3),

N e
3 (x, y) =

1

h2
(x− x4)(y − y2),

N e
4 (x, y) =

−1

h2
(x− x3)(y − y1).

(89)

For one element the B-matrix can be computed as

Be = ∇Ne =

[
∂Ne

∂x

∂Ne

∂y

]
=

[∂Ne
1

∂x

∂Ne
2

∂x
... ∂Ne

n

∂x

∂Ne
1

∂y

∂Ne
2

∂y
... ∂Ne

n

∂y

]
. (90)

Computation of ∇Ne from expression (88) or (89) is straightforward and therefore
left to the reader.

(a) (b)

Figure 22: a) Element shape functions for an element with side length h = 1. b)
Temperature distribution with node temperature 1 at node 3, and 0 at the other
three nodes.
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