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Abstract

Recent decades have seen a staggering increase in the presence of open source
in modern software. Once approached with structured evaluation and selection
processes in the form of quality assessment models that saw little adoption, con-
temporary methods have been observed to employ a more automated and data-
driven philosophy. In alignment with this trend, this paper aims to explore the
subjectivity involved in ad hoc open source assessment processes. Five develop-
ers were asked to rank twenty projects on the social coding platform GitHub
in terms of two aspects: popularity and quality of contributors. In each aspect,
the developers were subsequently instructed to list and order the most impor-
tant metrics used in their evaluation. This data was used to examine how well
their subjective opinion could be represented using a metric based linear model
using data from the GitHub API. 22 metrics were defined and systematically
tested in di�erent combinations, with 10 000 randomized sets of weights tested
for each combination. By applying Spearman’s rank correlation coe�cient, the
combinations of metrics and their weights with the highest statistically signifi-
cant correlation to each developer’s ranking of each aspect were chosen for anal-
ysis. In total, ten sets of weighted metrics were generated (two sets for each
of the five developers) and qualitatively compared against the developers’ own
narrative about which metrics were important in their evaluation. Although a
high average Spearman correlation coe�cient of 0.84 was achieved, the weighted
metrics generated by the model showed very little resemblance to developers’ re-
ported metrics and order of importance. It was concluded that the implemented
model was not successful in representing the developers’ opinion, but discussion
did not rule out the possibility of better results in potential future work.

Keywords: case study, open source software, GitHub, component assessment and selec-
tion, open source metrics, component based software development
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Chapter 1

Introduction

The field of software engineering has long been pursuing ways to define quality in prod-
ucts and its source code in the ongoing information revolution. Once focused on addressing
factors such as the six quality criteria of the ISO 9126 standard (functionality, reliability, us-
ability, e�ciency, maintainability, portability) [15], the rise of open source and an increase in
component based software development has resulted in increased complexity of what defines
quality in software.

Since the birth of theOpen SourceDefinition, the prevalence ofOpen Source Software (OSS)
has been rapidly increasing. In its infancy, OSS was approached with doubt and skepticism
by many organizations due to concerns regarding security and competitor advantage [25].
Today, OSS is a cornerstone of modern software development. Black Duck, an organization
dealing with logistics and legal matters surrounding OSS, revealed in a 2015 report that 66%
of companies surveyed provide software for their customers that is built on OSS [10].

In addition, large platforms such as GitHub has facilitated the use of OSS, as well as the reuse
of, and contribution to, its code. Even distinguished OSS projects predating GitHub such as
the Linux kernel has opted to deploy mirror repositories on the platform to increase exposure
[11]. With the current development paradigm characterized by reuse and component based
software development (CBSD), OSS projects continue to grow in numbers and engagement.
GitHub is as of writing home to the code of over 200 million publicly accessible software
projects [7].

Despite the enormous presence of OSS in today’s software, stakeholders are still trying to
figure out how to optimize the selection process. This has been proven di�cult for several
reasons [26]. Many of these reasons have their root in the same cause, which is that met-
rics in OSS di�er in importance depending on what is being evaluated and who is using it.
Plainly, companies prioritize di�erent key metrics and these metrics also vary depending on
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1. Introduction

the domain in which the OSS component resides. A start-up may focus on metrics resulting
in decreased time to market, while a company in banking has strict requirements on security
metrics. Likewise, an encryption library is likely to have di�erent metrics of relevance than
a machine learning library.

Thus, the nature of this selection process optimization has in recent times shifted focus,
fromfinding the best alternative following rigorous evaluation in proposed qualitymodels, to
acknowledging the constraints and subjectivity in practitioners’ unique situations by instead
providing automated tools for analyzing relevant metrics. However, the subjectivity involved
in themainly experience oriented approach taken by software developers when assessingOSS
is poorly covered in literature.

In an e�ort to begin filling this gap, this thesis explores the subjective nature of ad hoc OSS
assessment. More specifically, we look into similarities and di�erences between the opinion
of five surveyed developers and a simple metric based model, when ranking a set of open
source projects. All chosen projects are from the social coding platform GitHub, and the
participants of the survey are asked to rank them by popularity and quality of contributors.
The model utilizes Spearman’s rank correlation coe�cient to deduce which combination of
metrics and weights best correlate to the surveyed developers’ ranking in each aspect. We
then evaluate potential similarities by comparing the resulting metrics and weights to the
reported metrics of the survey. Results are presented and discussed in the final chapters.

This paper is structured into the following chapters, in order:

1. Introduction - General intro of the subject.

2. Background - Related context and literature.

3. Research questions - The research questions are presented.

4. Methodology - Overview of the approach taken to answer those questions.

5. Subjective data collection - Data collected from the developer survey is presented and
discussed.

6. Objective data collection - Implementation details of the GitHub data collecting soft-
ware and definition of metrics used.

7. Analysis - Comparison of the subjective and objective data.

8. Discussion - Findings and threats to validity are discussed.

9. Conclusion - Paper is summarized and concluded.
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Chapter 2

Background

This chapter provides the reader with the necessary background for the following chapters.
Following sections inform on OSS, Git, GitHub, models currently used to evaluate open-
source software, and other related works.

2.1 Spearman’s and Pearson’s correlation co-
efficients

Correlation coe�cients are heavily used in this paper and it is useful to cover the application
and di�erences of the two used in upcoming chapters, namely Spearman’s rank correlation
coe�cient and Pearson’s correlation coe�cient. Pearsons’s correlation coe�cient is a mea-
sure of the linear correlation of two sets of data, while Spearman’s correlation coe�cient
measures the degree to which the relationship between two sets of data can be described
using a monotonic function [17]. Spearman’s coe�cient is calculated by calculating the Pear-
son correlation of the rank values of the data sets, meaning a set of values {13,2,7} would have
the ranks {3,1,2} in the same order. In essence, this means that the Pearson correlation be-
tween two sets of data could be closer to 0 if the relationship is non-linear, but the Spearman
correlation between the same sets of data could be high as long as they rank similarly.

Since the method used in this paper mainly revolves around ranking of data, Spearman’ coef-
ficient is the main tool for measuring correlation in following chapters. Pearson correlation
is utilized in cases where ranking is irrelevant.
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2. Background

2.2 Open Source
The term “open source” emerged in the late 1990’s with the birth of the Open Source Initia-
tive (OSI), with its underlying philosophy tracing back to the beginning of software devel-
opment itself [9]. One of OSI’s fundamental interests is facilitating developer collaboration
by allowing software and its source code to be freely used, modified and shared. To this end,
the Open Source Definition (OSD) was created as a guideline which software licenses must
comply with in order to be certified as an OSI approved license [13]. Software with such a
license is thereby labeled as open source.

Two of the most popular OSI approved licenses are the GNU General Public License (GPL)
and the MIT license (as in Massachusetts Institute of Technology) [8, 12]. These two licenses
both adhere to the OSD but have very di�erent legal and practical implications. GPL is a so
called copyleft license which aims to restrict derived works from becoming proprietary (and
therefore not open-source). In contrast, the MIT license is a permissive license which places
no such restrictions on derived works. In simplified terms, MIT licensed software can be used
freely in proprietary software without placing it under open source requirements while GPL
licensed software cannot. With many other open source licenses having di�erent positions
on the copyleft-permissive scale, the license plays an important role when evaluating the
potential use of an open source component in your software.

2.2.1 Free/libre versus open source
Open source is often included in an acronym, FLOSS, short for “Free/Libre Open Source
Software”. This is an umbrella term for two types of software with arguably minuscule prac-
tical di�erences [6]. Free/Libre1 software puts emphasis on the freedom to use the program
and code, including distributing copies of modified or unmodified code. The name open
source is meant to reflect collaboration and community-driven development.

The acronym for open source software (OSS) is used exclusively in this paper, not because
the software discussed is never classified as Free/Libre, but because the collaborative nature
of open source better aligns with the context of discussed topics.

2.3 Git
Git is a version control system (VCS) that provides the tools needed for developers to track
changes made in their code [18]. This enables software communities to e�ciently collabo-
rate on projects and organize their code. The directory which git is initialized in is called a
“repository” and usually contains the source code and information necessary for contribution
to the project it represents. Developers submit new code to the repository through “commits”
which contain the changes made to the code with respect to the previous commit of a�ected
code lines. Di�erent development states can also be separated into “branches” with each
branch tracking its own history of commits. A branch can in turn be merged into another

1Free does not imply free of charge. Libre is meant to emphasize this since it roughly translates to “state of
liberty” in many Romance languages

10



2.4 GitHub

branch to reflect the changes made in each branch respectively. Most Git repositories has a
main/master branch which contains the current development state of the source code, while
other branches contain work in progress. Finally, the local repositories existing individually
on each developer’s machine are separate from the remote repository called “origin” which is
usually hosted by a distributed version control provider such as GitHub. Local and remote
repositories are synchronized by processes called “pushing” and “pulling”.

2.4 GitHub
In its core, GitHub is a distributed version control provider where you can store your Git
version controlled code, but has since its launch in 2008 become much more than this [7].
As organizations have transitioned into open source, developers have recognized the impor-
tance of contributing to open source projects from a career standpoint. Developers active
on GitHub can refer to their profile in their CV:s which neatly displays the projects and
technologies they are familiar with. Furthermore, the collaborative environment of GitHub
allows developers to expand their professional networks. Not unlike some social media plat-
forms, GitHub users can “follow” fellow developers and be kept updated on their activity on
the platform.

As of writing, GitHub hosts over 200 million repositories, with over 65 million users, and is
often the choice of remote Git repository hosting for both hobby projects and large corpo-
rations alike.

In the context of this thesis, GitHub repositories share a bit of common terminology that is
important to clarify:

• Stars: A user can “star” a repository. This action signifies interest from a user and
increments the star count for the repository. A user who stars a repository does not
receive notifications or news about the repository. It is mostly like a bookmark which
is publicly visible to visitors of the user’s profile. A “stargazer” is a term used for a
specific user who has stared a specific repository.

• Watchers: Like the stars feature, when a user “watches” a repository it increments the
watchers count for the repository. In addition, watching a repository notifies the user
of activity on the repository.

• Forks: Users can chose to fork a repository which creates a copy of the code at that
point in time, hosted in its own remote repository on GitHub. Any changes made
to the source repository is not reflected in the forked repository and vice versa. The
number of forks for a repository is simply the total number of forked repositories made
at any point in time.

• Contributors: A contributor is quite broadly defined by GitHub as someone “who has
contributed something back to the project” [1]. Generally, this can mean a person who
creates pull requests, posts issues, or carries out code reviews. In the metrics used in
this thesis, the term “contributor” is limited to users who contribute code by creating
pull requests. The term “developer” is often used as a synonym.

• Issues: One of themain ways developers interact with each other onGitHub is through
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2. Background

issues. An issue is written by a user, and despite its name, does not necessarily describe
an anomaly in the project such as a bug or an error. It could also be ideas for new
features or improvement/refactoring of code. Similar to a thread in an online forum,
other users can comment on an issue.

• Pull requests: A pull request is a change made to the repository by a contributor which
needs to be reviewed and approved by a maintainer in order to be “pulled” into the
main branch of the repository. The state of a pull request can either be open, closed,
or merged depending on if it is waiting for review, has been declined by a maintainer,
or has been merged into the main branch.

• Maintainer: A maintainer is a key person within the project that has the authority
to merge and approve pull requests to the main branch. Many projects have multiple
maintainers and these are collectively referred to as the core team in this paper.

2.5 OSS selection in practice and literature
A number of instruments have been created to help navigate the jungle of available OSS
components, either comparatively or individually. This section will give an overview of the
main methods that existing assessment models, tools, and services employ to aid in OSS
selection.

2.5.1 Quality models
There exists an abundance of models that have been created for facilitating the selection
process of OSS components, and comparisons between di�erent quality models have been
researched extensively in literature [16, 19, 24, 22]. The majority of models follow a similar
process where candidates are identified by following a hierarchical structure to estimate pro-
posed quality characteristics based onmetrics. They di�er mainly in the degree to which they
are either rigid or customizable. Both sides of this spectrum have their shortcomings, since
rigid models lack the ability to adapt to the practitioner’s needs, and customizable models
tend to be very time-consuming in their application.

Haaland et. al. presents certain di�erences in quality models that allows them to be catego-
rized into three generations [20]:

• Traditional software quality models: Unsurprisingly, mostly revolves around assessing
the quality of the product itself by evaluating factors such as maintainability, reliabil-
ity, e�ciency and usability to name a few.

• First generation OSS quality models: With a focus on OSS, these models add to the
traditional ones by including community aspects of the assessed software.

• Second generation OSS quality models: Utilizes aforementioned methodologies, but
provides tool support to automate parts of the evaluation process.

A trend noticed by Haaland et. al. is that quality models increased in level of automation
and number of metrics used. However, the paper is from 2010 and since then there has
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2.5 OSS selection in practice and literature

been a noticeable absence of newer quality models in literature. One possible explanation
for this is that established OSS quality models have seen little or no adoption [21]. Software
developers in search of OSS components often pick the first alternative that suits their needs
and requirements, rather than spending the time and resources to find the best alternative.
Experience and opinion of colleagues also seem to play a role. Furthermore, the constraints
specific to the situation are usually more important than the criteria proposed by a quality
model.

Additional challenges of using quality models include the abundance of alternatives and the
lack of time to evaluate them all [26]. This aligns well with the increased granularity of com-
ponents in today’s software. Synopsys, a software management firm writing yearly reports
on open source security and risks, stated in their 2021 edition that the average number of
open source components used by the audited repositories was 528, which has almost doubled
compared to their 2018 report [27]. Applying OSS quality models in this context would not
be practical from a business standpoint, as this analysis would require a considerable amount
of resources to do for hundreds of OSS components with potentially dozens of alternatives
each.

2.5.2 Tools and services
Aside from the numerous quality models established in literature, there exist a few notable
practical examples of tools and services that assist practitioners in selecting OSS.

OSS PESTO
One of the more recent contributions to literature regarding OSS selection is OSS PESTO
[23], a selection tool with support for collecting GitHub project data and presenting metrics
and factors selected by the user. It aims towards providing the means to apply factors and
metrics defined by a model of choice, as well as any additional metrics, to real project data.
In its current state, the problem regarding customizability discussed in Section 2.5.1 is also
relevant here. Setting up the specific parameters for each specific case of OSS selection could
be considered tedious by users. It also fails to draw any conclusion about the result (such as a
ranking of alternatives). Furthermore, the tool is currently not hosted on a publicly accessible
website, which hinders adoption.

Open hub
Maintained by Synopsys, Open hub is a web tool for evaluating and comparing OSS projects
existing on various platforms on the internet [14]. Each project is summarized and accom-
panied with a wide range of metrics such as security vulnerabilities per version, lines of code
over time, commits over time, contributors over time, programming languages used, and
more.

CHAOSS
CHAOSS, short for “Community Health Analytics Open Source Software”, is a Linux Foun-
dation project which defines implementation-agnostic metrics to measure health within the

13



2. Background

open source space [4]. The definition of metrics are complemented with data collection
strategies where data sources are suggested. These are usually in the form of either tech-
nical sources such as project/repository data and source code, or in the form of interview
templates and questions that can be applied when collecting data about the organization
behind a specific project.

The CHAOSS community has developed a few open source tools revolving around data col-
lection and analysis of their defined metrics [3, 2]:

• GrimoireLab: Best described as a collection of tools that can be used for OSS analytics.
These tools serve specific purposes such as data retrieval, enrichment, and visualiza-
tion, and may be used individually or as a complete system. The data is gathered from
a multitude of sources such as GitHub, Jira, Bugzilla, Confluence and StackOverflow.
Most components of GrimoireLab seem to be actively developed as of writing and
multiple projects and services has been built on top of its technology.

• Augur: Augur collects data and measures project metrics regarding commits, contrib-
utors, issues, pull requests, and more. Unlike GrimoireLab, it focuses on analyzing
data available on GitHub, i.e the source code and its GitHub community. It is actively
developed.

• Cregit: A framework for facilitating analysis and visualization of source code evolu-
tion2. Inactive since 2019.

• Prospector: A tool for aggregating data of open source projects to facilitate unbiased
analysis by decision-makers. Initiated by Redhat in 2012 and became part of CHAOSS
in 2017 but has been inactive since 2019.

The focus of CHAOSS’s actively developed projects, GrimoireLab and Augur, seems to be
informing OSS stakeholders and providing versatile means of analyzing relevant data. There
is no intention of drawing an absolute opinion based on an OSS project’s data. In the FAQ
section of the CHAOSS whitepaper, it is stated that a single index for project health is not
something they strive to develop due to the many di�erences between OSS projects, and that
they instead focus on defining metrics to aid in forming personal opinion [5].

2Source code evolution explains how the source code of a project changes over time, e.g in terms of number
of lines, number of changes/commits, or number of authors/contributors.
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Chapter 3

Research questions

With respect to the findings discussed in the previous chapter, finding ways to automate parts
of the selection process is of increasing relevance to OSS users. Existing tools for evaluating
OSS are still in need of human intervention to make sense of the data and make a decision.
Current literature and research are yet to explore the possibilities to reduce this human in-
tervention by representing subjectivity with a metric based model. If developer opinion can
be represented with such a model, then it points toward an opportunity to automate the
ranking of potential OSS candidates with less risk of including wrong or irrelevant metrics.

As a first step into this exploration, we will focus on targeting the answers to a few key
research questions, namely:

1. How similar do developers rank projects within the same aspect? (e.g. do developers
rank popularity more or less the same?)

2. How similar do developers rank in each aspect for the same project? (e.g. are popularity
and contributors ranked similarly?)

3. Which degree of statistically significant correlation can be achieved by comparing the
developers’ rankings to rankings generated by a weighted metric-based, linear model?

4. What similarities can be found between reported metrics used by the surveyed devel-
opers in their evaluation and the resulting metrics chosen by the model?

The following chapter will delve deeper into the method applied to answer these questions.
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Chapter 4

Methodology

This chapter discusses the overarching design choices and covers an overview of the method
of this thesis. Details and specifics of the two data collections and their analysis (Chapters 5,
6, and 7) are discussed in their respective chapters.

4.1 Debricked
This thesis was carried out at Debricked, a cybersecurity start-up founded in 2018 and sit-
uated in Malmö, Sweden. They specialize in open source security and o�er SaaS solutions
such as tools for dependency vulnerability management and license compliance.

As part of the data science team of Debricked for the duration of the thesis, the author had
access to their internal tool for mining GitHub data and was provided with a database of
requested project data.

4.2 The projects
Before the chapters regarding data collection and analysis are presented, it is useful to get an
overview of the open source projects involved. GitHub was chosen as the common platform
for these projects since it is currently the largest development platform and due to its widely
accessible API [7]. The metrics of each project were saved onto a read-only database dump
which remained static throughout the course of the data collection process. As such, they
represent a snapshot of the projects’ states the week the developer survey was carried out.

Due to the author’s dependence on Debricked’s GitHub mining tool, certain parameters had
to be put in place to limit the amount of projects and data collected in the mining process.

17



4. Methodology

The GitHub projects shared the following characteristics. They all had:

• Python as their primary programming language (>80%).

• less than 2000 total issues.

• between 15 000 and 26 000 stars.

Python was chosen as the primary language of these projects because the developers who were
surveyed primarily used it in their daily work and were accustomed to its ecosystem. When it
comes to the number of issues, 2000 was chosen as the cuto� because the size of the projects
remain manageable below this point. Above 2000 issues, the amount of data for each project
began to surpass what was feasible to collect in terms of both storage and number of API
calls. With these two constraints, the top 50 projects with the most stars were selected as
candidates. Many of these projects were not proper open-source projects, but rather books,
tutorials, or they were not written in English and were therefore excluded. Ultimately, 20
projects remained which were between 15 000 and 26 000 stars. The number of projects was
set to 20 in order for the survey to be completed within a reasonable time frame, while still
providing enough data for enabling statistical significance.

Table 4.1 is a list of the twenty projects and their respective URL to GitHub for the reader’s
convenience. Each link follows the convention of https://github.com/<owner>/<name> where
owner is the person or organization behind the project, followed by the name of the project.
In future references, the shorthand <owner>/<name> format will be used for concision.

For a more detailed overview, Table 4.2 contains some general statistics of each project at the
time they were mined from the GitHub API.

4.3 Data collection and analysis
The data collected for this thesis is divided into two categories: subjective and objective. An
illustrative flowchart of the process of collecting and analyzing these two sets of data can be
seen in figure 4.1

The subjective data is in the form of answers to a survey (“Developer survey” in 4.1) that five
developers employed at Debricked took part in on separate occasions within a few days time
span. In this survey, each developer is individually asked to rank the aforementioned projects
in terms of how popular they think the projects are, and how proficient the contributors
of the projects are (“Ranking” in 4.1). Popularity and contributors are referred to as aspects
throughout this paper. The two aspects were chosen because of the nature of the available
data and their fundamental relationship to project community. Stars, forks, contributors,
issues, etc. were readily available via the GitHub API and present in all twenty projects.
Other potential aspects such as security and code quality were considered but scoped out
because of the relatively high complexity of defining and measuring suitable metrics.

Finally, they are asked to list the most important metrics they used in their evaluation, as
free text, for each aspect respectively (“Reported metrics” in 4.1). This data is presented in
Chapter 5.

18



4.3 Data collection and analysis

Table 4.1: Projects included in the study and ranked by the respon-
dents in the survey.

# Project
1 https://github.com/chubin/cheat.sh
2 https://github.com/facebookresearch/Detectron
3 https://github.com/localstack/localstack
4 https://github.com/nicolargo/glances
5 https://github.com/apache/airflow
6 https://github.com/tornadoweb/tornado
7 https://github.com/google-research/bert
8 https://github.com/openai/gym
9 https://github.com/donnemartin/interactive-coding-challenges
10 https://github.com/sebastianruder/NLP-progress
11 https://github.com/StevenBlack/hosts
12 https://github.com/CorentinJ/Real-Time-Voice-Cloning
13 https://github.com/matterport/Mask_RCNN
14 https://github.com/magenta/magenta
15 https://github.com/3b1b/manim
16 https://github.com/satwikkansal/wtfpython
17 https://github.com/HelloZeroNet/ZeroNet
18 https://github.com/google/python-fire
19 https://github.com/trailofbits/algo
20 https://github.com/psf/black
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Table 4.2: General statistics of the projects listed in table 4.1.

# Stars Watchers Forks Contributors Total issues Total commits
1 19258 468 926 35 138 737
2 23606 998 5045 33 891 140
3 26091 464 1914 274 1786 1432
4 16605 518 1068 109 1248 3855
5 17913 700 6749 1258 1675 9859
6 19378 1053 4915 318 1589 4457
7 24582 962 661 26 970 111
8 21976 1017 5819 245 1180 1220
9 20611 923 3039 42 54 798
10 16547 1282 2699 209 82 676
11 15979 561 1416 92 957 2417
12 19139 550 3620 12 434 268
13 17612 578 7773 41 2107 203
14 15512 816 3087 130 741 1362
15 24803 672 3090 83 689 3039
16 21236 670 1874 52 120 441
17 16001 847 1922 101 2000 3040
18 17609 386 1051 36 183 234
19 19072 444 1559 144 1310 1059
20 17290 166 1028 182 1115 811
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4.3 Data collection and analysis

Figure 4.1: Flowchart of the data collecting and analysis process. Ar-
rows indicate chronological order.

The objective data is in the form of measured metrics from each project (“Measured met-
rics” in 4.1). These metrics are defined with respect to the available data provided by the
GitHub API, mostly revolving around the community of each project. Section 2.4 provides
an overview of the community elements used to collect data and construct metrics from.

22 metrics were defined in total with the intention of capturing most of the metrics re-
ported by the respondents in the survey. Some metrics takes inspiration from CHAOSS and
literature[4]. Ultimately, a large variety of di�erent metrics were included in order to achieve
a more diverse analysis. A common denominator for all metrics is that they focus on the cur-
rent project state, with some metrics taking into account recent history and calculating an
average.

The subjective data is subsequently compared to the objective data using Spearman’s rank
correlation coe�cient. At first, one metric at a time (“Single metric comparison” in 4.1) and
then multiple metrics (“Multi-metric comparison” in 4.1) where the combination of metrics
used and their respective weight in the final scoring is determined by a Python script written
by the author. The script was implemented mainly using the libraries NumPy and Pandas. In
order to determine the increase in correlation resulting from the multi-metric comparison,
it is compared against the single metric comparison (“Benchmark” in 4.1).

By systematically trying out several thousand combinations of metrics, and for each combi-
nation testing thousands of random weights, we find the combination of metrics and their
weights that results in the highest statistically significant Spearman coe�cient (“Most cor-
relating weighted metrics” in 4.1). Finally, these resulting metrics and the order implicated
by their weights are compared to the respondents’ reported metrics in order to confirm or
dismiss any resemblance (“Determine similarities” in 4.1).

Spearman’s rank correlation coe�cient is used in this paper where the correlation between
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two rankings needs to be calculated. This gives us a suitable unit of measurement for deter-
mining how similar two rankings are, and the accompanying p-value enables us to confirm
or dismiss statistical significance. Pearson’s correlation coe�cient, the most widely used for-
mula to measure the strength of the relationship between two variables, is also used but to a
much lesser extent. Therefore, Spearman’s is implied whenever the term “correlation coe�-
cent” is mentioned without specifying otherwise.

4.4 Scope and delimitations
It is important to note that this paper does not propose another assessment model for OSS.
Rather, it is an experimental study to explore if subjective assessment of OSS can be rep-
resented by a naive model. Necessary delimitations to retain this scope has thereby been
established:

• The number of aspects explored was bound to two (popularity and contributors) in
order to reduce the complexity of the data collection and analysis, while still providing
variety in the opinion and metrics used by the surveyed developers.

• Likewise, the number of developers surveyed was limited to five to limit complexity.

• Only projects from GitHub and the data available via the GitHub API has been used.

• The mathematical definition of the model and its components such as normalization,
distributions, and weights, was kept simple. That is, normalization was done linearly,
and weights were randomized on a uniform distribution.
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Chapter 5

Collection of subjective data

The subjective data set was collected by surveying five di�erent developers working for De-
bricked, all accustomed to the open-source space and with experience in evaluating open-
source projects. Theywere individually instructed to rank 20 di�erent repositories onGitHub
based on two aspects:

1. Popularity - How popular is the repository?

2. Contributors - What is the quality of its contributors?

These aspects were chosen for two main reasons.

Firstly, they represent arguably positive traits of OSS with respect to selection. Adopters
prefer the OSS component they choose to be popular rather than unpopular, and they prefer
the contributors of the project to be proficient rather than inactive and uncoordinated.

Secondly, because of data availability. Most of the data was collected via the GitHub API
which due to the social nature of GitHub revolves around the users and their contributions
to a large extent.

Information was intentionally left out of the formulation of the survey questions as well.
Since the purpose of the survey was to replicate and capture the human evaluation of open
source and its subsequent subjectivity, the respondents were free to choose their own strategy
for ranking the repositories. Thismeans that they could use whichever information they came
across at their own discretion, and were not necessarily limited to only look at GitHub.

The survey itself was made using Google Forms and the ranking process was in the shape
of one multi-column question for each aspect, contributors and popularity. Each row had
a link to the project on GitHub and the columns had radio-buttons labeled 1 to 201. The

1The respondents were instructed before participating that a rank of 1 represented the best repository in
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5. Collection of subjective data

respondents were recommended to keep track of their evaluation separately, in a spreadsheet
for example, since the format of the question was not particularly suitable for frequent re-
ordering of the rankings.

These are the formulation of the questions in the survey in verbatim:

• “Rank popularity”

• “Rank the contributors”

• “What metrics were important to you when determining popularity? List them from
most important to least important.”

• “What metrics were important to you when determining quality of contributors? List
them from most important to least important.”

The two latter questions are referred to as the free text part of the survey.

After ranking the repositories with respect to contributors and popularity, the respondents
moved on to the free text section of the survey. This is where they were asked to list the most
important metrics they took into consideration during their assessment, ordered from most
to least important.

All in all, the survey took approximately four hours for the respondents to complete, with
breaks included.

5.1 Result
Table 5.1 shows the result of the rankings made by the respondents which are labeled A
through E. Tables 5.2 and 5.3 contain the answers to the free text question.

5.2 Analysis
This section will present the analysis and insights gathered from the data presented in the
previous section. There are two particular questions of interest that will be answered here
and those are:

1. How much do the rankings di�er between the aspects for the same respondent?

2. How much do the rankings di�er between the respondents?

The first question’s answer will show us how similar the respondents rank the two aspects.
If there is no di�erence in ranking, i.e popularity and contributors are ranked the same by
a certain respondent, then the same metrics are probably used in both assessments and the
free text answer should reflect this. In the opposite case, if the aspect-wise ranking is very
di�erent then it points toward di�erent priorities of metrics used by the respondent in their
assessment.

that aspect, and a rank of 20 represented the worst.
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Table 5.1: Ranking results of each aspect made by the respondents.
Lower rank means that the respondent perceives the project as bet-
ter in that aspect.

Respondent Popularity Contributors
A B C D E A B C D E

chubin/cheat.sh 12 14 14 12 12 13 6 17 9 18
facebookresearch/Detectron 20 18 4 6 4 20 7 3 19 2
localstack/localstack 2 1 6 7 6 2 10 7 3 16
nicolargo/glances 3 12 12 14 19 3 14 11 5 17
apache/airflow 1 4 3 8 2 1 3 1 1 3
tornadoweb/tornado 13 3 7 1 5 10 4 8 6 14
google-research/bert 15 9 2 4 1 15 19 6 18 4
openai/gym 5 2 8 3 3 11 12 2 8 1
donnemartin/interactive-coding-challenges 18 19 13 9 13 19 1 13 17 15
sebastianruder/NLP-progress 11 20 19 19 15 12 13 14 15 5
StevenBlack/hosts 9 10 20 20 18 4 2 19 4 9
CorentinJ/Real-Time-Voice-Cloning 16 15 17 13 9 14 15 18 13 20
matterport/Mask_RCNN 17 17 1 16 8 16 20 5 20 19
magenta/magenta 10 11 11 17 7 6 9 4 2 6
3b1b/manim 7 8 5 18 10 8 16 15 12 7
satwikkansal/wtfpython 19 16 16 11 20 18 17 20 16 10
HelloZeroNet/ZeroNet 8 7 10 10 17 5 18 16 10 13
google/python-fire 14 13 18 5 14 17 8 9 14 11
trailo�its/algo 6 6 15 15 16 9 11 12 11 12
psf/black 4 5 9 2 11 7 5 10 7 8

The answer to the second questionwill give us an estimate of any subjectivity present between
the respondents. If all respondents made the exact same rankings then there would be no sign
of subjectivity in the data. Likewise, a very varied ranking between the respondents would
tell us that there is subjectivity at play.

Figure 5.1 aims to visualize the answer to the first question. It shows a scatter plot where
each data point is a project-respondent pair and its position corresponds to its ranking in
the two aspects made by the respondent. With the same example as previously mentioned, if
there would be no di�erence in the way the two aspects were ranked, then the scatters would
form a diagonal line from (0,0) to (20,20). This is obviously not the case; the data points
yield a Pearson correlation coe�cient of 0.359 which indicates that di�erent metrics and
priorities of metrics are used by the respondents. Intuitively, one could reason that a popular
project recruits better contributors and vice versa, proficient contributors make a project
more popular. The modest correlation present could be a product of this, but a significantly
larger set of data is required to draw such a conclusion with any degree of certainty.

Figures 5.2 and 5.3 show us the rankings for popularity and contributors respectively, sorted
by the arithmetic mean rank of each project. With respect to our second question, it is clear
that the respondents are not unanimous in their rankings. Tables 5.4 and 5.5 reinforces this
statement. These tables present the Spearman rank correlation matrices for each aspect,
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Table 5.2: Free text answers for the popularity aspect.

Respondent What metrics were important to you when determining popularity? List
them from most important to least important.

A * Recent issues
* Stars
* Forks

B * Longlivity - If the repo has survived for long time and if there is a “main
guy”
* Activity - How has the recent activity been in the project. (Checking
contributors activeness)
* Community - Community rated by OpenHub
* If there are more than one person active in the project.
* If recent trends point towards the project’s dying.
* Active issues and PRs from the recent week (checking pulse)
* Issues - Amount of issues
* Used by - Amount of people having the project marked as used by
* Backed by famous company - A famous company behind the project
* Personal bias - If I knew about them before and if the project seemed
interesting

C * Issues
* Forks
* Stars
* PRs
* “seriousness” (if it’s actually useful or just something cool)
* Owner (recognized organization or not)
* License (permissive as more popular)

D * Stars
* Forks
* Watchers
* Downloads

E * Google Trends (this was sometimes di�cult because terms are sensitive)
* Watchers
* Stars
* Forks
* Personal exposure (bias towards repositories I knew about, which I think
would also naturally be more popular)

which carries out pairwise calculations of how much two respondents’ rankings correlate to
each other (hence the symmetry).

Interestingly, the similarities seen in the free text answers is not clearly reflected in these
correlation coe�cients. For example, in the popularity aspect the respondents reported using
stars, watchers, and forks to a large extent. Nonetheless the mean value of the correlation
coe�cients for popularity is approximately 0.3639. Even when looking at the pairs of A-B
andC-Ewhere the correlation is over 0.74, there is nothing conclusive to support this number
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Table 5.3: Free text answers for the contributors aspect.

Respondent What metrics were important to you when determining quality of con-
tributors? List them from most important to least important.

A * Number of commits
* Number of high volume contributors
* Language in responding to issues

Made exceptions for mature projects.
B * How active the most active contributors are in general

* How many followers they have
* If they are associated with a famous company
* How many popular projects they are active in (I assume if they seem to
be a factor to the project success, I rate a repo higher even if the repo seems
to be dying and the developer has abandoned it)
* If they have been a developer of the project for a long time
* No activity the recent 6months get penalized hard

C * Numbers of contributors with many commits
* Recognized organization/company of the developers
* “seriousness” (if it’s actually useful or just something cool)
* Popularity of the project

D * Recent activity
* Is the maintainer active?
* Did only one person do it all?
* Company backed
* General feel of main contributor (active in other projects?)

E * Semi-recent code commits and other contributions
* Existence of and quality of Contribution policy
* Merge/reject rate of pull requests
* Extent of allowed contributions (some only allow bug fixes and documen-
tation, while keeping the sensitive work to their smaller elite force, which
I deemed positive)
* Professionalism (some PRs and issues had weird people swearing at de-
velopers etc.. This should be moderated. Lack of moderation may be a sign
of lack of contributor quality)

in the corresponding free text answers. However, considering the ambiguity in the answers to
the free text questions, it proves di�cult to explain the correlations (or lack thereof) that do
exist. The primary takeaway is that subjectivity is indeed present in this set of subjective data.
On a final note, the mean correlation coe�cient of the contributors aspect approximates to
0.2573 and the aforementioned reasoning regarding the popularity aspect is applicable here
as well.
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5. Collection of subjective data

Figure 5.1: A scatter plot of all rankings. Di�erent scatter shapes are
di�erent respondents. The x value represents what the respondent
ranked that project in terms of popularity, and the y value represents
the rank in terms of contributors.
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Figure 5.2: The popu-
larity rankings.

Figure 5.3: The con-
tributors rankings.

Table 5.4: Spearman rank correlation between the respondents pop-
ularity ranking.

Respondent A B C D E
A 1.000000 0.742857 0.111278 -0.007519 0.027068
B 0.742857 1.000000 0.353383 0.425564 0.351880
C 0.111278 0.353383 1.000000 0.392481 0.741353
D -0.007519 0.425564 0.392481 1.000000 0.500752
E 0.027068 0.351880 0.741353 0.500752 1.000000

Table 5.5: Spearman rank correlation between the respondents con-
tributors ranking.

Respondent A B C D E
A 1.000000 0.144361 0.081203 0.879699 0.028571
B 0.144361 1.000000 0.114286 0.439098 0.114286
C 0.081203 0.114286 1.000000 0.136842 0.448120
D 0.879699 0.439098 0.136842 1.000000 0.043609
E 0.028571 0.114286 0.448120 0.043609 1.000000
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Chapter 6

Collection of objective data

This chapter covers the process of collecting the objective data of the twenty repositories
presented in 4.2.

6.1 GitHub data
In order to implement metrics and measure data from GitHub repositories, one could call
the GitHub API directly and immediately process the data. However, this is impractical
for several reasons. It requires a consistent internet connection, it causes considerably longer
execution time, andmost importantly, the number of API calls per hour is limited. Therefore
it is better to store the data gathered from API calls in a local database. This also allows for
a more consistent comparison against the subjective data since the metrics can be measured
and persisted at the same point in time as the developers carried out their evaluation.

Debricked constructed and provided the author with such a database shortly after the re-
spondents were surveyed. The database contained the raw data needed to implement each
metric for each repository. The structure of this database is illustrated in Appendix A.1.

6.2 Metrics
The metrics were defined with inspiration from literature, the CHAOSS initiative, and the
reported metrics in the free text answers from the developer survey. The delimitation of only
using data available on GitHub dismissed the possibility to use any external metrics but did
not prove to be a significant impediment.
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Another delimitation made for the sake of simplicity is that only positive metrics are in-
cluded. That is, each metric fulfills a hypothesis that it would prove useful in the context of
open source health: if measured metric ‘x’ increases, then so does the ‘y’ aspect of the project”.
One example of such a hypothesis is the “Total contributors” metric. This metric is calculated
as the total number of unique developers on GitHub who has their name in the commits his-
tory of the main branch. An increase of this metric would then hypothetically result in an
increase in the contributors aspect of open source health. A hypothesis for a metric is always
backed by an argument to underline its plausibility. In this case, said argument would be
that more total contributors is better because it means more people have inspected the code
and bugs are less likely to remain compared to if only a few developers had contributed to
the project.

In total 22 metrics were defined and chosen for comparison against the subjective data. A
full descriptive list is found in the following subsection, where each metric is documented
with a short description, a motivation for its usefulness, and how it is calculated.

It is important to note that no single metric is expected to correlate universally with the sub-
jective data. The simplistic approach to the metric design process is meant to favor quantity
with the purpose of maximizing the chance of matching any of the metrics to the surveyed
developers’ opinion. Limiting this collection to a handful of carefully defined metrics would
result in a less diverse comparison.

6.2.1 List of metrics
The following metrics were defined for this thesis. Each metric is documented with a de-
scription, why it is useful, and how it is calculated.

Recent core team commits
Ametric tomeasure the number of recent commits on themain branch, created by core team
members. This is useful because the core developers’ activity is key for progress. Measuring
their commits is a good indicator of how involved they are in the project. Calculated as the
number of commits created by users who can merge pull requests, the past 10 weeks.

Contributor influence
Ametric to measure the influence the contributors have, meaning how much attention they
draw to the project. This is useful because influential contributors highlights the repository
to their followers on Github by notifying them whenever they make a pull request to that
repository, which in turn could lead to an increase in contributors and the overall community.
Calculated as the number of pull requests a certain developer has made the past 10 weeks,
multiplied with their follower count and summing over all developers.

Total stargazers
A metric to measure the total amount of stars the repository has. This is useful because
Github users often star a repository to bookmark it as interesting. Thus, by looking at the
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total amount of stars one could estimate the accumulated interest a repository has. Calcu-
lated as the total star count.

Core team issue closing
A metric to measure the number of issues the core team has recently closed. This is useful
because the core developers’ activity is key for progress. Measuring their responsiveness to
issues is a good indicator of how involved they are in the project. Calculated as the number
of issues closed by users who can merge pull requests, the past 10 weeks.

Company involvement
A metric to measure how much involvement in the project there is from a company. This
is useful because projects with a clear representation of committers from the same company
might indicate that said company is investing resources into the project. Calculated as the
highest ratio of unique committers from the same company the past 21 weeks.

Developer velocity
A metric to measure how much code the average developer produces. This is useful because
too much lines of code added per week may result in flawed and buggy software, while too
little could be a sign of inactivity. Calculated as the total di� of commits (additions - dele-
tions) each week divided by the number of developers of those commits, averaged between
the past 10 weeks.

Loyal developer commits
A metric to measure the number of commits loyal (long-term) contributors have recently
made. This is useful because it tells us if long-term contributors are still active or have moved
on to other projects. Calculated as the number of commits past 21 weeks, made by contrib-
utors who have made at least 50 commits before the lookback period.

New contributors
A metric to measure the number of new contributors, who have at least one merged pull
request. This is useful because new contributors is a sign that the project is attractive to de-
velopers and leads to a more diverse community with more eyes on the code base. Calculated
as the number of contributors who had their first merged pull request the past 52 weeks.

Recent pull requests
A metric to measure the number of recent pull requests made. This is useful because pull
requests is the standard way for developers to contribute to a repository. Thus, measuring
the number of pull requests made is a good indicator of how active the contributors are.
Calculated as the number of pull requests created the past 10 weeks.

33



6. Collection of objective data

Total watchers
A metric to measure the total amount of watchers the repository has. This is useful because
when a Github user watch a repository, they get notifications about its activity. Since most
users are unlikely to watch repositories they aren’t interested in, the total watchers count is a
good indicator of the current interest of a repository. Calculated as the total watchers count.

Recent issues
A metric to measure the number of recently posted issues. This is useful because issues are
a sign of an active community. A lot of issues does not necessarily mean a defect software,
but rather that the users are engaged in improving the project. Calculated as the number of
issues created the past 10 weeks.

Developers per commit
A metric to measure the arithmetic mean of developers per commit over the lifetime of the
project. This is useful because a healthy and diverse project should have many developers
looking over the code base which is good for collective ownership and a sign of maintainabil-
ity. Calculated as the total number of contributors divided by the total number of commits.

Closed issues per developer
A metric to measure the number of issues the developers have recently closed. This is useful
because it gauges how responsive the developers are to its users’ feedback. Calculated as the
number of closed issues past 52 weeks, divided by the number of unique developers who
closed those issues.

Recent merges
Ametric to measure the number of recently merged pull requests. This is useful because nor-
mally, the core team members are the only developers who can merge pull requests. Without
anyone merging pull requests, no changes can be made to the main branch. This is why it is
important to keep track of the number of recent merges made. Calculated as the number of
pull requests merged past 10 weeks.

Recent commits
A metric to measure the number of recent commits present on the main branch. This is
useful because commits play a central role in estimating the activity of a project. Lack of
recent commits to the main branch may be a symptom of an inactive community, absent
maintainers, deprecation, etc. Calculated as the number of commits in the main branch
created in the past 10 weeks.
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Contribution skew
A metric to measure the skewness contributions between the developers, meaning how the
volume of pull requests are divided between the contributors. A highly positive skew means
that the pull requests are evenly distributed between the contributors, while a highly nega-
tive skew means that a handful of contributors are responsible for most of the pull requests.
This is useful because a high number of contributors is good for many reasons, but may be
misinterpreted if a few contributors are doing all the work. The contribution skew metric is
a practical method of validating if the contributions are productively distributed. Calculated
as the statistical skewness of the number of pull requests each contributor made.

External pull requests
A metric to measure the arithmetic mean of the contributors’ merged pull requests made to
other repositories. This is useful because an accepted pull request is usually a sign that the
contribution is deemed useful to a repository. By measuring the average number of merged
pull requests the contributors have in other repositories, you could estimate the overall expe-
rience the average contributor has. However, this metric does not take into consideration the
relevance or age that experience. Calculated as the average number of merged pull requests
the contributors has made to other repositories.

Total contributors
Ametric tomeasure the total amount of contributors of the repository. This is useful because
a high number of total contributors is a sign of a diverse community. Calculated as the
number of unique developers in the main branch commit history.

Developer lifetime
A metric to measure how long the developers, on average, are actively contributing to the
project. This is useful because two developers who have contributed actively for ten months
have probably done more for the project than ten developers who have contributed to the
project for two months. Calculated as the consecutive weeks of activity of a moving window,
averaged between all contributors. Thewindow has a length of 8weeks where the contributor
is marked as active if at least 3 weeks of that window includes at least one commit.

Total forks
Ametric to measure the total amount repositories that has been forked from this repository.
This is useful because a high fork count is a sign of interest from the developer community.
Calculated as the total fork count.

Pull requests merged per developer
Ametric tomeasure the arithmeticmean ofmerged pull requests per developer. This is useful
because it gauges the productivity of the contributors. However, a low score on this metric
may also mean that the core team is not merging the pull requests that the contributors are
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producing. Calculated as the number of pull requests which were merged within the past 52
weeks, divided by the number of distinct developers of those pull requests.

Recently closed issues
A metric to measure the number of recently closed issues. This is useful because closed
issues is important to measure since it tells you if upcoming bugs, ideas and problems are
being addressed by the maintainers. Calculated as the number of issues closed the past 10
weeks.
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Chapter 7

Analysis

With the two collections of data in place, it was time to make sense of the information. This
chapter covers the comparative analysis between the subjective data, described in Chapter 5,
and the objective data described in Chapter 6.

This chapter is comprised of two sections. The first section looks at the comparison between
each single metric and the subjective data. The second section presents the comparison of
multiple metrics to the subjective data.

In both methods, the comparison makes use of Spearman’s rank correlation coe�cient. This
coe�cient is bound between -1 and 1 and represents how similar two rankings are. Along
with the correlation coe�cient itself, the calculation also outputs a p-value which in statis-
tical terms represents the probability that the given correlation happened by chance if the
null hypothesis were to be true. In our case, the null hypothesis is as follows:

H0: There is no monotonic association between the respondents’ ranking and the ranking
derived from the objective data.

In this thesis, we only consider correlation coe�cients with p-values below 0.05. This means
that there is less than a 5% chance that the calculated correlation coe�cient happened spon-
taneously if there is no monotonic association between the rankings.

7.1 Single metric comparison
In this section, we compare the ranking of a single metric to the subjective data collected.

The purpose of looking at the comparison between a single metric and the responses of the
survey is twofold. Firstly, we want to find out if there is a naive evaluation method present
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in any of the respondents’ ranking, e.g only looking at the number of stars of a project when
rating popularity. Secondly, the results will give us a benchmark to compare against in the
following section where multiple metrics will be taken into consideration.

The results of the single metric comparison is presented in Table 7.1 and Table 7.2 for pop-
ularity and contributors respectively. Each value shows the Spearman coe�cient between
the ranking made by a respondent and the ranking derived from the metric. For example,
the ranking of the “Total Stargazers” metric is simply made by sorting the resulting scores of
each project from high to low, where the project with the most stars is on rank one, and the
project with the least stars is on rank twenty.

Table 7.1: Popularity: Spearman coe�cient between ranking from
a single metric and a respondent ranking of the popularity aspect.
Bold coe�cients have a p-value below 0.05.

A B C D E avg
Recent Issues 0.54 0.57 0.39 -0.02 0.34 0.364
Recently Closed Issues 0.51 0.62 0.28 0.05 0.32 0.356
Total Contributors 0.73 0.65 0.11 0.13 0.10 0.344
Recent Pull Requests 0.58 0.49 0.08 -0.05 0.33 0.286
Total Forks -0.22 0.04 0.67 0.14 0.73 0.272
Total Stargazers -0.18 0.17 0.46 0.42 0.48 0.270
Recent Merges 0.57 0.52 -0.06 0.14 0.16 0.266
Contributor Influence 0.36 0.39 -0.04 0.12 0.22 0.210
New Contributors 0.75 0.52 -0.12 -0.05 -0.05 0.210
Recent Commits 0.56 0.40 -0.16 0.04 0.05 0.178
Developers per Commit -0.17 -0.09 0.30 0.36 0.46 0.172
Core Team Issue Closing 0.50 0.51 -0.23 0.03 -0.05 0.152
Developer Velocity 0.44 0.20 -0.05 0.04 0.11 0.148
Recent Core Team Commits 0.53 0.40 -0.18 -0.05 -0.05 0.130
Loyal Developer Commits 0.50 0.34 -0.12 -0.16 -0.03 0.106
Pull Requests Merged 0.40 0.35 -0.18 -0.02 -0.03 0.104
Closed issues per developer 0.49 0.46 -0.29 0.01 -0.29 0.076
Total Watchers -0.29 -0.14 0.26 0.09 0.38 0.060
Contribution Skew -0.11 -0.00 0.22 0.11 -0.04 0.036
Company Involvement -0.15 -0.03 -0.18 0.00 -0.11 -0.094
External Pull Requests Merged -0.10 0.02 -0.47 0.11 -0.42 -0.172
Developer Lifetime -0.05 -0.18 -0.25 -0.44 -0.26 -0.236

As we can see, most computed correlation coe�cients around 0 have a p-value larger than
0.05, while correlation coe�cients closer to 1 or -1 have p-values below 0.05. This is to be
expected since higher correlations (or inverse correlations) are intuitively less likely to happen
by chance. That is not to say, however, that higher correlations with low p-values are evidence
of the respondents using that specific metric in their evaluation. Only in contrast to the free
text answers can such conclusions be discussed, and will be discussed in Chapter 8.

Overall, there is no clear indication that any of the respondents relied on any singular metric
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7.2 Multi-metric comparison

Table 7.2: Contributors: Spearman coe�cient between ranking
from a single metric and a respondent ranking of the contributors
aspect. Bold coe�cients have a p-value below 0.05.

A B C D E avg
Total Contributors 0.68 0.30 0.32 0.69 0.25 0.448
New Contributors 0.71 0.21 0.07 0.72 0.35 0.412
Loyal Developer Commits 0.61 0.62 -0.03 0.80 -0.12 0.376
Contributor Influence 0.33 0.72 0.19 0.51 0.08 0.366
Recent Commits 0.55 0.60 0.00 0.74 -0.12 0.354
Recent Pull Requests 0.55 0.34 0.15 0.57 0.08 0.338
Recent Merges 0.52 0.46 0.10 0.64 -0.08 0.328
Recent Core Team Commits 0.63 0.53 -0.17 0.77 -0.23 0.306
Core Team Issue Closing 0.60 0.20 -0.12 0.73 -0.13 0.256
Recently Closed Issues 0.58 -0.08 0.15 0.49 -0.04 0.220
Recent Issues 0.61 -0.11 0.21 0.48 -0.10 0.218
Closed issues per developer 0.63 0.14 -0.25 0.65 -0.17 0.200
Developer Velocity 0.31 0.08 0.16 0.42 -0.08 0.178
Pull Requests Merged 0.43 0.47 -0.25 0.49 -0.32 0.164
Developers per Commit -0.35 -0.06 0.57 -0.36 0.45 0.050
Total Watchers -0.22 -0.07 0.26 -0.22 0.48 0.046
Total Forks -0.17 -0.26 0.58 -0.25 0.32 0.044
Company Involvement -0.13 0.48 -0.17 0.05 -0.14 0.018
Developer Lifetime 0.17 0.07 -0.32 0.20 -0.34 -0.044
Contribution Skew -0.17 -0.17 0.05 -0.25 0.04 -0.100
Total Stargazers -0.34 -0.12 0.16 -0.31 0.09 -0.104
External Pull Requests Merged -0.05 0.18 -0.52 0.07 -0.58 -0.180

when ranking either popularity nor contributors. The largest correlation coe�cient with a
p-value below 0.05 for each respondent will be used to benchmark the performance of the
ensuing results from the multi-metric comparison.

7.2 Multi-metric comparison
The purpose of the multi-metric comparison is to compare the best combination of metrics
and weights to the result of each respondent in the survey. If the derived metrics and weights
show resemblance to a respondent’s free text answer in the survey, then the respondents rank-
ing can be represented by themodel with an accuracy proportional to the correlation between
the two (given that the p-value suggests statistical significance).

In broad strokes, this is done by finding the linear combination of weights and metrics that
yields the highest Spearman coe�cientwith a p-value below 0.05 for a particular respondent’s
aspect ranking. As we do not wish to speculate on which metrics are of relevance for each
aspect, all metrics will be used as potential candidates for both aspects.

We will begin by introducing and motivating the implementation of the multi-metric com-
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parison program, followed by the results and the insights gained from them.

7.2.1 Implementation
Following subsections will sequentially explain how the multi-metric comparison is imple-
mented. The author’s implementation used a vectorized approach using the linear algebra
library NumPy to increase performance, but with respect to reproducibility it is easier to
both explain and understand if it is divided into bite-sized subsections, with each subsequent
subsection relying on the data provided by its predecessor.

Normalization
Since we start o� with the raw measurements of each metric from the previous chapter, we
first need to normalize this data to a common scale. Otherwise, metrics with higher score
will be over-represented in the final result, and vice versa for lower scoring metrics. The scale
is set to be linear between 1 and 20, similar to the scale used by the respondents in Chapter
5 when ranking the projects, but reversed, and continuous instead of discrete. It is reversed
since the normalized score of 20 is assigned to the top scoring project, and 1 is assigned to the
lowest scoring project. After the weights have been applied we will reverse the result again
to correspond to the respondents ranking. It is continuous since the remaining repositories
are assigned real values between 1 and 20. The normalization formula is as follows:

snorm =
sraw −min sraw

max (sraw −min sraw)
∗ 19 + 1

Where sraw is the raw score vector and snorm is the resulting normalized score vector.

After normalizing all metrics we end up with a 2-dimensional matrix consisting of the nor-
malized scores for each project-metric pair.

Metric combinations
It is not desirable to include all 22 metrics in every weight generation, since we want to vali-
date the result against the respondents free text answers which mostly consist of 4-5 metrics
that can be mapped to the defined metrics. We also do not need to include singleton sets,
since this analysis was carried out in section 7.1. Therefore, we will create all combinations
of 2-4 metrics, without repetition. That gives us

(
22
4

)
+

(
22
3

)
+

(
22
2

)
= 9086

di�erent combinations to generate weights for. By comparison, choosing an upper limit
of five would result in 35420 metric combinations which takes almost four times longer to
execute. Opting for a lower upper limit also allows us to put more resources into generating
weights. This balancing act between metric combinations and number of generated weights
will be further discussed in the next step.
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7.2 Multi-metric comparison

For each of our 9086 metric combinations, we use the normalized score matrix to construct
new matrices, one for each combination which consists of only the project-metric pairs re-
sulting from that combination of metrics.

Weight generation
The next step is to generate the weights that yield the highest correlation when compared
to the subjective data. This step and the next should be iterated for each metric combina-
tion, since we only need to store the best performing sets of weights for each combination,
respondent, and aspect.

Each weight is a real value between 0 and 1, and the sum of weights for a given combination
of metrics should add up to 1, such that

{wm ∈ R, 0 < wm < 1,
∑
m∈M

wm = 1}

For a each metric m and its weight wm in the given set of metrics M .

This means that there are infinite possible sets of weights, so for practical purposes, we will
simply randomize the weights on a uniform distribution n times to get n sets of weights
wm,m ∈ M . The chance to find a higher correlation increases as n increases, but improve-
ments are virtually unnoticeable for values above n = 10000 so this is the number used in the
results presented in Section 7.2.2. This is also why the number of metrics per combination
was limited to four. At higher limits, the number of generated weights needed to be lowered
in order for the program to be executed within a reasonable time frame, even though a higher
correlation could be achieved.

After generating n di�erent sets of weights, we multiply the weights with our normalized
scores to get our weighted scores, and sum the weighted scores for each metric to get the
final score for each project. What we end up with are n di�erent sets of scores for all twenty
projects, for the current combination of metrics in our iteration. Lastly, the scores are con-
verted into rankings in order to compare them to the subjective data. The lowest scoring
project gets rank 20, and the highest scoring project gets rank 1.

Finding the best-case weights
The last step is to see which of our n rankings, and thus their associated weights, yield the
highest statistically significant correlation when compared to the subjective data. For each of
the ten rankings made in the survey, we store the underlying weights of the rankings made by
the program that best fit that data, i.e the ones with the highest Spearman coe�cient (where
p < 0.05). This results in ten sets of weights for each metric combination after the iteration
is complete.

In the following subsection, the bestmetric combinations andweights for each aspect-respondent
pair will be presented.
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7.2.2 Result
Table 7.3 shows the result from the multi-metric comparison with the highest statistically
significant correlation compared to the single metric with the highest statistically signifi-
cant correlation, for popularity and contributors respectively. As mentioned in Section 7.1,
the results from the multi-metric comparison would not be very interesting to look at if the
correlation coe�cient was lower than the “best” single metric for each respondent. In all
cases, the multi-metric comparison resulted in a higher Spearman coe�cent with the excep-
tion of respondent D in the popularity aspect where none of the single metric correlations
were statistically significant. Therefore, a comparison to the multi-metric result would be
unjustified.

Table 7.3: Spearman correlation coe�cients of best single metric
versus best multi-metric result, for each respondent.

Popularity
Resp. Single metric Multi-metric
A 0.75 0.87
B 0.65 0.79
C 0.67 0.82
D - 0.72
E 0.73 0.92

Contributors
Resp. Single metric Multi-metric
A 0.71 0.90
B 0.72 0.89
C 0.58 0.81
D 0.80 0.96
E 0.48 0.7

Table 7.4 shows the actual weights and metrics that resulted in the correlation coe�cients
listed in table 7.3. If the highest correlating metric from the single metric comparison in
section 7.1 is present, it is marked in boldface.

By qualitatively comparing this data to the free text answers given by the respondents in
Chapter 5, we can determine if there is any resemblance.

Comparison to free text answers
The comparison done per aspect and per respondent. Only a short summary of the author’s
findings is given for each respondent and should provide enough insight to determine if best-
case weights from the multi-metric comparison were accurate or not. This will be discussed
in Chapter 8.

Popularity

Respondent A: Reported valuing recent issues, stars and forks. Multi-metric result mostly
revolved around contributors. No similarities found.

Respondent B:Reported many metrics used in their evaluation, most of them related to con-
tributors. Arguably some overlap between the respondent’s second most important metric
“Recent activity” and the second most weighted metric from the multi-metric result “Recent
commits”. Few similarities found.
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7.2 Multi-metric comparison

Table 7.4: Best case weights and metrics for each respondent for
popularity (left) and contributors (right) respectively. Best metric
from the single metric comparison are bold.

Resp. Metric Weight

A

New Contributors 0.68
Total Contributors 0.15
Developer Lifetime 0.11
Developer Velocity 0.05

B

Total Contributors 0.45
Recent Commits 0.24

Closed issues per developer 0.19
Total Stargazers 0.12

C

Loyal Developer Commits 0.58
Developer Velocity 0.30

Total Forks 0.08
Total Stargazers 0.04

D

External Pull Requests Merged 0.37
Total Stargazers 0.26

Developers per Commit 0.19
Total Contributors 0.18

E

Developer Velocity 0.74
Loyal Developer Commits 0.11

Total Forks 0.11
External Pull Requests Merged 0.04

Resp. Metric Weight

A

Total Contributors 0.49
Loyal Developer Commits 0.38

Developer Lifetime 0.07
Closed issues per developer 0.06

B

Loyal Developer Commits 0.49
Contributor Influence 0.46
Company Involvement 0.03
Developers per Commit 0.02

C

Total Contributors 0.39
Total Forks 0.34

Developers per Commit 0.18
Company Involvement 0.09

D

Loyal Developer Commits 0.55
Recent Merges 0.27

Total Contributors 0.15
Developer Lifetime 0.03

E
New Contributors 0.59

Total Watchers 0.28
Developers per Commit 0.13

Respondent C: Only similarities found with “Total forks” and “Total Stargazers”. However,
the generated weights for these metrics are too small to match the reported importance by
the respondent. Very few similarities found.

Respondent D: Stars reported as most important and “Total Stargazers” ended up being the
second most weighted metric by the program. No other metric matches free text. Very few
similarities found.

Respondent E: Barely any resemblance other than to “Total forks” which was weighted very
low. Very few similarities found.

Contributors

Respondent A: Reported vague or subjective metrics used in their evaluation. Weak over-
lap between “Loyal Developer Commits” and reported most important metric “Number of
commits”. Very few similarities found.

Respondent B:Top three reportedmetrics can arguably bemapped to the threemostweighted
metrics from multi-metric result. However, most important reported metric “How active
the most active contributors are in general” is not exactly the definition of “Loyal Developer
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Commits”. Some similarities found.

Respondent C: Overall, reported metrics are vague and di�cult to map to defined metrics.
Only connection found is between reported metric “Company backed” and defined metric
“Company involvement”, however the weight is relatively low. Very few similarities found.

Respondent D: Top reported metrics “Recent activity” and “Is the maintainer active?” are
related to top weighted metrics “Loyal Developer Commits” and “Recent Merges”, though
the definition of activity is itself subjective. Third most important reported metric “Did
only one person do it all?” is ambiguous but could be tied to “Total Contributors” if the
respondent mean more contributors is better. Some similarities found.

Respondent E: Mostly very unspecific/subjective reported metrics in the free text answer
which makes it di�cult to link to defined metrics. No similarities found.
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Chapter 8

Discussion

To summarize themulti-metric comparison, the similarities were largely few and far between.
Many of the reported metrics in the free text answers were to some degree implemented into
the model as well. Despite this, they were not weighted accordingly by the program. There
are many potential explanations for this which we will continue to delve into.

A big di�erence between the reportedmetrics in the free text answers and the definedmetrics
is that the defined metrics, for the sake of simplicity, are very specific as they return a simple
scalar/number for a certain project. For example, respondent A reported that “Recent issues”
was the most important metric when they were determining the popularity of the projects. A
definedmetric exists with that exact name, and is defined “as the number of issues created the
past 10 weeks”. What if the respondent only looked at the past two weeks, or past six months?
Maybe the respondent looked at the number of comments posted on the most recent issues
as well? Even if the defined metrics were tailored to the respondents reported metrics, a lot
of guesswork would be needed to account for all possible variables.

Another interesting design alternative to consider is using other normalization functions
than the linear normalization used in this paper. Using a linear normalization function im-
plies thatmeasurements of a certainmetric di�er in importance linearly between the projects.
One could argue that this is not always the case. To give an example, consider the “Total
Stargazers” metric. Using linear normalization, the di�erence in normalized score between
two projects with 20 and 3020 stars respectively would be the same as for two projects with
30 000 and 33 000 stars. However, a person assessing these projects might see the latter
di�erence as much less significant than the first. Put simply, measurements are compared
di�erently depending on the metric. Thus, the choice of normalization function is arguably
also dependent on the metric.

A constraint that would be useful in hindsight is to set a lower limit for the generated weights
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to remove the risk of generating vanishingly small weights. As an example, the metric “De-
velopers per Commit” was given a weight of 0.02 by the multi-metric comparison program
for respondent B in the contributors aspect. Intuitively, respondents are not likely to in-
clude metrics of such low relative importance in their reported metrics, and the resulting
correlation would likely not have su�ered.

On a positive side note, the resulting statistically significant Spearman coe�cients from the
single metric comparison were almost all above zero. This strengthens the hypothesis that
the defined metrics indeed measure positive traits of a project, rather than the opposite.

8.1 Threats to validity
The following section will discuss potential threats to internal and external validity. The list
of threats summarized by Wohlin et. al will be used as a checklist where applicable [28].

Internal validity reflects how well a study is designed and conducted. The following threats
to internal validation are identified:

• The five developers were surveyed within a short enough timeframe for the state of the
projects to remain relatively unchanged. However, the specific time each developer
carried out their evaluation could have an impact on their results due to factors such
as current workload and other distractions.

• Both the design of the survey, the software used for data collection and analysis, and
the definition of metrics are prone to human error and oversight.

• The developers selected for the survey may have varied accuracy of representing reality,
i.e. how well their evaluation methods in the survey corresponds to the evaluation
methods they apply in real life situations.

External validity explains how well the results of the study can be used to represent the real
world. The following threats to external validation has been identified:

• The surveyed developers are likely to not be perfectly representative of the larger popu-
lation of OSS practitioners since they are employees at the same company with similar
age and experience.

• The chosen projects were not limited to a certain domain which may impact the set
of metrics the respondents used. If all projects were seen as alternatives to the same
desired functionality, a di�erent outcome may have been observed in the results.

8.2 Implications
It is important to recognize that even if the linear model would be accurate in representing
the survey respondents’ opinion, it would unlikely be enough to prove or disprove that the
model actually works. A set of five developers is simply not enough to reach a statistically
significant conclusion about the performance of the model. On the other hand, the bleak
results given by the multi-metric comparison and analysis in this paper does not entirely rule
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8.2 Implications

out the possibility that the model would perform better on a larger set of surveyed developers
where outliers could be more easily identified. To this end, the method of deriving a metric
based model presented in this paper may prove useful in future work, and the result signals
a need for larger sets of data to be used as input.
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Chapter 9

Conclusion

The result of this thesis suggests that a simple linear model consisting of 22 community-
centeredmetrics can not su�ciently represent the five developers’ subjective evaluationmeth-
ods, even after an intensive survey as input.

Looking back at the four research questions stated in Chapter 4, we can conclude the follow-
ing:

• The developers do not seem to rank the projects convincingly similar to each other
within the same aspect. The mean Spearman coe�cient when pairwise comparing
their rankings is 0.364 and 0.257 for popularity and contributors respectively.

• The developers rank the same project di�erently depending on which aspect is being
evaluated. Figure 5.1 visualizes this finding, and the data points yield a Pearson cor-
relation coe�cient of 0.359 which is indicative of di�erent metrics being used by the
developers when evaluating each aspect.

• The model achieved a mean Spearman correlation of 0.838 when averaging the ten
statistically significant values of the multi-metric comparison.

• The metrics reported by the respondents and the metrics resulting from the multi-
metric comparison showed very little resemblance in the author’s qualitative compar-
ison.

With an exponentially increasing number of options within OSS, and literature describing
and comparing the cumbersome models for manually assessing and selecting OSS compo-
nents, further research into ways of automating this process is warranted. Paradoxically, the
reason behind why most assessment models take time and e�ort to adopt is because of the
need for human interaction to account for subjectivity.
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9. Conclusion

Alternative angles to the approach taken in this paper are encouraged, such as:

• Limiting the dataset to domain-specific projects, such as only comparing front-end
frameworks such as React, Vue and Angular.

• Exploring larger sets of developer opinion.

• Testing non-linear models and normalization methods.

• Including metrics from other sources such as code quality metrics.
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Appendix A

Database

Figure A.1: Structure of the database where the raw GitHub data
was stored.
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EXAMENSARBETE Exploring subjectivity in ad hoc assessment of open source software
STUDENT Jonathan Skogeby
HANDLEDARE Martin Höst (LTH)
EXAMINATOR Ulf Asklund (LTH)

Representera subjektiva
kvalitetsbedömningar av GitHub-projekt
med en linjärviktad modell

POPULÄRVETENSKAPLIG SAMMANFATTNING Jonathan Skogeby

Kvalitetsbedömning av projekt med öppen källkod sker ofta på improviserat vis med
hög nivå av subjektivitet beroende på vem som utvärderar och vilka omständigheter
projektet utvärderas för. I detta arbete har en enkel modell utvecklats och testats med
syftet att försöka identifiera de mätvärden som använts under kvalitetsbedömningen.

GitHub är i särklass dagens mest använda plat-
tform för att lagra kod och samarbeta på mjuk-
varuprojekt med andra utvecklare. Många an-
vändbara mätvärden kan överskådas på GitHub-
sidan för ett projekt: Antalet bokmärkningar, föl-
jare, utvecklare och rapporterade buggar, senast
tillagt kod, vilken licens som används, med mera.
Oftast använder sig utvecklare av dessa mätvär-
den för att fastställa kvaliteten hos projektet, och
jämför sedan med andra alternativ för att dra slut-
satsen om vilket projekt som ska användas för att
uppnå önskad funktionalitet.

Att välja fel mjukvarukomponent kan bli kost-
samt. Bristande säkerhet, nedläggning av pro-
jektet och buggar utgör några av de risker som
kommer med mjukvara med öppen källkod. Där-
för vill man se till att välja rätt redan från bör-
jan. Dagens mjukvara innehåller ofta flera hundra
komponenter med öppen källkod och att manuellt
utvärdera alla alternativ är inte hållbart. För att
utforska hur processen kan automatiseras måste
det först avgöras vilka delar av processen som går
att uttrycka i kod. I detta examensarbete har
en modell utvecklats för att utforska möjligheten

att kartlägga vilka mätvärden på GitHub som an-
vänts av en viss utvecklare i sin kvalitetsbedömn-
ing. Baserat på data insamlad från GitHub och
en utvecklares rangordning av en samling projekt
kan den kombination av mätvärden som bäst ko-
rrelerar till rangordningen härledas av modellen.
Följande figur ger en förenklad bild över modellens
funktion.

Rangordningen av 20 projekt gjord av fem
olika utvecklare samlades in tillsammans med
mätvärdesdatan från samma projekt på GitHub.
Resultatet pekade på att modellen ej lyck-
ades fastställa vilka mätvärden som användes av
utvecklarna när de rangordnade projekten trots
att korrelationen mellan utvecklarnas och model-
lens rangordning var hög. Dock ger resultatet ej
någon tydlig inblick i hur modellen hade presterat
med en större datamängd.
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