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Abstract

In this thesis we employ the non-equilibrium Green’s function (NEGF)
method to study both finite and infinite systems. We develop a codebase
capable of computing the steady state interacting NEGF in open systems,
i.e. tight-binding leads contacting a central region, in both Hartree-Fock
(HF) and second Born (2B) approximations of particle-particle interactions.
Furthermore, we use the exact interacting Green’s function on finite re-
gions to assess a method we found to compute any pair-correlation function.
The method utilizes the Hellman-Feynman theorem applied to the Galitskii-
Migdal formula for the total energy of a system. We find that it works well
for finite systems, with and without currents, whereas for open (infinite)
systems the method requires more care. Lastly, we briefly investigate a non-
perturbative G1-G2 scheme; whether computing the two-particle Green’s
function in a subsystem approximates the full two-particle Green’s function
well. We find that the considered G1-G2 scheme provides results of variable
accuracy, suggesting that our investigation is not exhaustive, and that the
roles of system geometry and particle density should be further assessed.
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Chapter 1

Introduction and Motivation

Non-equilibrium quantum dynamics has recently become the subject of
vast interest [1], largely due to great strides in experimental realizations of
nanoscale devices utilizing quantum effects and experimental tools able to
probe dynamics on short time scales [2]. Modern integrated circuits are sus-
ceptible to strong correlations and quantum effects, and their nature implies
that they stay out-of-equilibrium when driven by an electrical bias. For ex-
ample, modern day transistors that are on the scale of nanometers are small
enough for the probability of quantum tunneling to be non-negligible and as
such crucial components such as different types of memory can potentially
leak charge and corrupt the information they hold. Studying the geome-
try and dynamics of such devices is useful in order to develop devices that
can better withstand the unwanted effects of quantum mechanics. At the
same time, with a better understanding of the quantum mechanical effects
one might imagine that the effects could be exploited in new technological
applications that were previously not possible.

Out-of-equilibrium many-body systems are vastly more complex than
their equilibrium counterpart in that the possibilities are endless for how
a system responds to a perturbation. Practically all real systems are both
connected to an open environment and out of equilibrium.

Furthermore, out-of-equilibrium effects can result in exotic materials ex-
hibiting strange phenomena and effects, see e.g. [3–5]. Other well-known
phenomena include superconductivity [6] and ultra-cold atoms forming droplets
[7]. Not only is this useful from purely scientific exploration perspective;
rather, it can have a significant impact on technology, as in the case of
superconductivity [8].

On a fundamental level, these exotic phenomena are the result of quan-
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tum correlations, that is the quantum extension of the concept of correlation
that stems from statistics. Specifically, in quantum mechanics this effect is
most often referred to as quantum entanglement. It has its own name be-
cause correlations as predicted, and confirmed [9–11], by quantum mechanics
are very different from correlations in classical physics.

The consequences of quantum entanglement (or just entanglement) on in-
formation theory have stimulated the emergence of a specific field of physics
called quantum information theory [12]. The field is dedicated to studying
how information is contained in quantum systems and how quantum infor-
mation can be manipulated to form quantum computing circuits. This has
resulted in new ways to encrypt and communicate information and even
provides a method by which information can be teleported [12]. The ex-
otic behavior of non-equilibrium systems is now accessible by experiments
allowing for theoretical models and tools to be tested. Furthermore, strong
correlations can be probed and manipulated with ultra-fast lasers [13, 14]
allowing for experimental realizations of simple quantum computers [15].
The complementarity of experiments and theory ultimately rewards us with
greater understanding and better technology.

Naturally, describing nano systems and their dynamics requires a quan-
tum mechanical description. Typically, physical systems are much too com-
plicated and/or large which makes first principles treatments very difficult
(if not impossible), and as such theoreticians often refer to model systems
to simplify the description. Although a simplified description, model sys-
tems can still capture much of the exciting physics of real materials. The
starting point in quantum mechanics is the Hamiltonian, the operator fully
describing the system. If the system is “small” enough (which seldom is the
case), one can simply diagonalize the Hamiltonian and gain the full knowl-
edge of the systems eigenstates. If the system is initially in its ground state
it will remain there so long as it is not perturbed, and nothing extraordi-
narily interesting (by today’s standards) occurs. This approach is called
Exact Diagonalization (ED) and can even be applied to systems driven out
of equilibrium by thermal/electrical bias or by interacting directly with an
EM-field, again provided the system is small. Generally this approach scales
poorly with system size and as such is typically used for small isolated sys-
tems, but since the method is exact, it provides a natural benchmark for
other methods.

Open systems belong to a different category altogether; they typically
consist of a nanostructure connected to an environment. The latter is usu-
ally very large or in fact (for mathematical convenience) infinite. In this
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case, appropriate methods include Density functional Theory (DFT) [16],
Dynamical Mean Field Theory (DFMT) [17] and correlator based methods.
Common among these methods is that one works with some other quantity
rather than the many-body wave function as in ED. This typically results in
more favorable scaling with system size despite still allowing one to compute
the observable of interest. Another powerful tool of this class, and of central
importance to this thesis, is the Green’s Function [18].

There are a few flavors of Green’s function formalism; the zero-temperature,
finite temperature and non-equilibrium Green’s function (NEGF), with the
latter being the more general of the three. The NEGF method is a very
appropriate tool for studying transport geometries. A generic quantum
transport system consists of some finite system, the device system (e.g. a
molecule), attached to leads (e.g. wires) acting as baths with which the
device system can exchange particles and heat, see figure 1.1.

Figure 1.1: Depiction of generic transport system.
”L”: Left lead, ”M/C”: Molecule/Center, ”R”: Right lead
”VLC”: Hopping from L to M/C, ”VRC”: Hopping from R to M/C
”TCC”: Hopping between sites in Molecule/Center.

By applying a voltage bias over the device system, one can generate a
current through it and study the non-equilibrium dynamics of the device sys-
tem, typically associated with open systems, and can perturbatively include
Coulomb interactions.

Furthermore, in the steady state regime, it is possible to have a descrip-
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tion in frequency space, as opposed to the time-domain. Despite not being
time-dependent, the system can be subject to electrical and thermal biases,
however the dynamics of the transient region is lost.

This work will build upon previous research [19], where a chain of two
coupled dots connected to one-dimensional non-interacting leads was stud-
ied. Said work aimed to study the interdot entanglement as a result of
thermal and chemical biases, and within a fully analytical approach. In or-
der to keep the approach entirely analytical, some approximations had to be
introduced in the treatment, such as considering only non-interacting quan-
tum dots, using the wide-band limit (WBL), and assuming the Fermi-Dirac
distribution to be constant in the region of interest. We instead employ a
numerical approach, which allows us to discard the aforementioned approx-
imations as well as also treat electron-electron interactions.

The drastic effects that can arise from correlations necessitate an accu-
rate description of the Coulomb interaction in theoretical models. In the
Green’s functions method, one defines a so-called self-energy which contains
the effect of the interactions between particles. Typically, it is much too
difficult (or even impossible) to calculate the self-energy exactly and one
has to resort to approximating it. From a theoretical point of view, the
self-energy approximation in terms of Feynman diagrams, provides a conve-
nient perturbative expansion of the self-energy, however the aforementioned
perturbative nature does not provide a complete description, see e.g. [20].

An important problem in current research with NEGF (and even with
Green’s functions in equilibrium) is how to deal with strong correlations.

In an attempt to study correlations in a transport geometry such as the
one described above, via concurrence [21], we developed the skeleton of a new
method for computing correlation functions (see Sec. 6.1.2). The method
utilizes the Hellman-Feynman theorem applied to the Galitskii-Migdal for-
mula for the total energy. The method was then tested on both infinite and
finite systems (see Sec. 6.2.2).

Finally, we performed a very preliminary investigation into a possible new
route around the partial sum approximation for diagrams. We investigate
whether the self-energy can be computed directly from a two-particle Green’s
function of a finite system and adjusted to match the original system. In
this way, the method is no longer perturbative. When computing the self-
energy perturbatively, one needs to choose what diagrams to include. This
means that the approximation used only works well for a small set of systems
and parameters, thus the approximation must be chosen appropriately. This
significant drawback, would be eliminated with a non-perturbative technique
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such as this two-particle Green’s function approach preliminarily explored
here.
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Chapter 2

Theoretical Background A

2.1 Time Evolution

The Shrödinger equation is the fundamental equation of motion in non-
relativistic quantum mechanics:

iℏ
d

dt
|Ψ(t)⟩ = Ĥ(t) |Ψ(t)⟩ , (2.1)

where Ĥ is the Hamiltonian corresponding to the system in question. Pro-
vided the Hamiltonian is time-independent, i.e. Ĥ(t) = Ĥ, equation 2.1 is
straightforwardly solved by:

|Ψ(t)⟩ = e−iĤ(t−t0)/ℏ |Ψ(t0)⟩ . (2.2)

Solving this numerically by inserting a complete set of eigenstates of Ĥ is
known as Exact Diagonalization (ED) [22], and can in principle provide the
exact solution to any time-independent problem. However, in practice this
involves diagonalizing the Hamiltonian in a basis of the Hilbert space whose
dimension scales exponentially with system size. Thus, ED is more suitable
for small systems where the cardinality of the Hilbert space is manageable.

For time-dependent Hamiltonians, the integrating factor that solves the
differential equation in 2.1 becomes more general and is referred to as the
time-evolution operator [23]:

Û(t, t0) = T
{
e
−i

∫ t
t0

dt′Ĥ(t′)
}
, (2.3)

where the time-evolution operator in equation 2.2 is a particular case when
Ĥ(t) ≡ Ĥ. Here, T is the time ordering operator which orders the time
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arguments chronologically.
Then, in general, the solution to the Shrödinger equation is given by:

|Ψ(t)⟩ = Û(t, t0) |Ψ(t0)⟩ . (2.4)

With the time-dependent wave function we can compute time-dependent
expectation values:

O(t) = ⟨Ψ(t)| Ô |Ψ(t)⟩ = ⟨Ψ(t0)| Û(t0, t)ÔÛ(t, t0) |Ψ(t0)⟩ . (2.5)

This brings us to the definition of the Heisenberg operator, where in equation
2.5 one lets the evolution operators act on the operator transferring the time-
dependence, from the wave function, to it:

ÔH(t) = Û(t0, t)ÔÛ(t, t0). (2.6)

Furthermore, in a grand canonical ensemble the expectation value is
calculated as:

⟨ÔH(t)⟩ = Tr
{
ρ̂ÔH(t)

}
, (2.7)

where ρ̂ is the density matrix:

ρ̂ =
e−β(Ĥ−µN̂)

Tr
{
e−β(Ĥ−µN̂)

} . (2.8)

2.2 Exact Diagonalization (ED)

Exact diagonalization is the method of exactly finding the eigenstates and
energies of the relevant Hamiltonian. This makes it a very powerful method
in that it is exact, however much of the information obtained is superfluous
and as such much of the effort is wasted.

We start from the time-evolved wave function:

|Ψ(t)⟩ = Û(t, t0) |Ψ(t0)⟩ . (2.9)

The initial state is chosen by the user and can be taken to be either the
ground state of the system before some perturbation, or a specific state.
If the initial state is an eigenstate of a time-independent Hamiltonian, the
evolution of the initial state amounts to a phase shift:

|Ψ(t)⟩ = e−iĤ(t−t0) |Ψ(t0)⟩ = e−iE0(t−t0) |Ψ(t0)⟩ . (2.10)
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Conversely, for an arbitrary initial state, that is not an eigenstate of the
Hamiltonian, the system exhibits dynamics:

|Ψ(t)⟩ = e−iĤ(t−t0) |Ψ(t0)⟩ =
∑
λ

e−iEλ(t−t0) |λ⟩ ⟨λ|Ψ(t0)⟩

=
∑
λ

cλe
−iEλ(t−t0) |λ⟩ . (2.11)

The set of eigenvectors of the Hamiltonian {|λ⟩} spans the Hilbert space
and so the initial state can in principle evolve into any conceivable state.

For a time-dependent Hamiltonian, a numerical approach is further com-
plicated:

|Ψ(t)⟩ = Û(t, t0) |Ψ(t0)⟩ = e
−i

∫ t
t0

dt′Ĥ(t′) |Ψ(t0)⟩ . (2.12)

In equation 2.12 the integral can be decomposed into its Riemann sum with
the midpoint rule:

e
−i

∫ t
t0

dt′Ĥ(t′) |Ψ(t0)⟩ ≈
N∏
k=1

e−iĤ(t0+k∆t)∆t |Ψ(t0)⟩ . (2.13)

The Hamiltonian will then need to be diagonalized on every time-step
(t0 + k∆t).

To see the downfall of this method, consider the studying a system of
50 one-particle states, occupied by 4 electrons (2 spin-up and 2 spin-down).

The size of the Hamiltonian is then
(
50
2

)2
= 1500625. Furthermore, say

the system is time-dependent, then the numerical solution is obtained after
diagonalizing a 1500625× 1500625 matrix, (often) thousands of times.1

1For a more detailed study using ED see e.g. [24]
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2.3 Keldysh Contour

The exponential in the density matrix e−βĤ0 can be interpreted as an imaginary-
time time evolution so that we can write the expectation value:

⟨ÔH(t)⟩ =
Tr

{
Û(t0 − iβ, t0)Û(t0, t)ÔÛ(t, t0)

}
Tr{Û t0 − iβ, t0)}

. (2.14)

This interpretation allows for an extension of the real-time evolution to the
complex plane, specifically the expression in the numerator of equation 2.14
follows the path in figure 2.1.

Figure 2.1: t-dependent time contour.

We can extend the contour, so that its length is no longer dependent on
t:

⟨ÔH(t)⟩ =
Tr

{
Û(t0 − iβ, t0)Û(t0, t)ÔÛ(t,∞)Û(∞, t0)

}
Tr{Û{t0 − iβ, t0)}

, (2.15)

where now the expression follows the contour in figure 2.2
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Figure 2.2: The Keldysh contour.

The extended contour in figure 2.2 is the Keldysh contour [25]. We define
the forward branch to be the track from t0 to ∞, and the backward branch
the track from ∞ to t0. We denote times on the forward (backward) branch
by t−(t+) [26]. We can then write the expectation value in equation 2.15 in
a more compact way:

O(z) =
Tr

[
T
{
e−i

∫
γ dz̄ Ĥ(z̄)Ô(z̄)

}]
Tr

[
T
{
e−i

∫
γ dz̄ Ĥ(z̄)

}] . (2.16)

The
∫
γ
in equation 2.16 means that z̄ takes values on the contour in figure

2.2, where now z̄ ∈ C, and T orders its arguments in chronological order:

T a(t)b(t′) =

{
a(t)b(t′), t > t′

b(t′)a(t), t < t′.
(2.17)

Note that times on the forward branch (t−) are always earlier than times on
the backward branch(t+).
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2.3.1 Langreth Rules

As we will see, in the NEGF formalism we utilize the Keldysh contour in
order to compactify the description, and in the formalism we find expressions
that involve convolutions or products of functions on the contour. In order
to work with these expressions either analytically or numerically we need
to convert them to real-time. This is the purpose of this section, and of
Langreth rules [27], namely to determine identities that convert functions
with arguments on the contour to functions with real-time arguments. We
will focus on two-point operator correlators since they are the ones that
make up the one-particle Green’s function, however, the identities can be
derived for more general n-point correlators, see, e.g., [28].

We can define a template for a Keldysh function, i.e. a function with
arguments on the Keldysh contour:

k(z, z′) = kδ(z)δ(z, z′) + θ(z, z′)k>(z, z′) + θ(z′, z)k<(z, z′), (2.18)

where δ(z − z′) is the delta function and θ(z, z′) is the heaviside function.
In equation 2.18, kδ satisfies kδ(t+) = kδ(t−) with t− lying on the forward
branch and t+ on the backwards, in figure 2.2. The superscripts < / >
(lesser/greater) indicate the relationship between the arguments.

As we saw when constructing the contour, the vertical axis contains
physical information as well, hence in order to extract that from k(z, z′) we
need all combinations of arguments on the contour and their definition in
terms of real-time arguments.

We define the lesser/greater Keldysh components with both arguments
belonging to the real-time axis:

k<(t, t′) = k(t−, t
′
+) (2.19)

k>(t, t′) = k(t+, t
′
−). (2.20)

We also define the Keldysh components with one real-time argument and
one imaginary-time:

k⌈(τ, t) = k(t0 − iτ, t±) (2.21)

k⌉(t, τ) = k(t±, t0 − iτ), (2.22)

where the symbols ⌈/⌉ refers to the relative positions of the arguments, left
indicating the first argument is imaginary and right the second. Finally,
the Keldysh component with arguments that both lie on the imaginary, or
vertical, axis:

kM(τ, τ ′) = k(t0 − iτ, t0 − iτ ′). (2.23)
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Equipped with the different Keldysh components of k(z, z′), we now turn
to more combinations of Keldysh functions and how to decompose them into
their constituents’ Keldysh components. Consider, e.g., the convolution of
two Keldysh functions:

c(z, z′) =

∫
γ

dz̄ a(z, z̄)b(z̄, z′), (2.24)

where the subscript γ indicates the integral variable z̄ takes values on the
contour.

Let us start with the lesser component of c(z, z′). Expanding a(z, z̄) and
b(z̄, z′) into their templates:

c<(t, t′) = c(t−, t
′
+) = aδ(t−)b(t−, t

′
+) + a(t−, t

′
+)b

δ(t′+)+∫
γ

dz̄
[
θ(t−, z̄)θ(t

′
+, z̄)a

>(t−, z̄)b
<(z̄, t′+)+

+ θ(z̄, t−)θ(z̄, t
′
+)a

<(t−, z̄)b
>(z̄, t′+)+

+ θ(t′+, z̄)θ(z̄, t−)a
<(t−, z̄)b

<(z̄, t′+)
]
,

(2.25)

where the terms that are prefixed by something equivalent to θ(z, z′) are
removed since they belong to the greater component of c(z, z′).

In equation 2.25 we can utilize the Heaviside functions to write the inte-
grals with explicit limits:

c<(t, t′) = aδ(t)b<(t, t′) + a<(t, t′)bδ(t′)+∫ t−

t0−

dz̄ a>(t−, z̄)b
<(z̄, t′+) +

∫ t′+

t−

dz̄ a<(t−, z̄)b
<(z̄, t′+)+

+

∫ t0−iβ

t′+

dz̄ a<(t−, z̄)b
>(z̄, t′+).

(2.26)
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We can then cast equation 2.26 onto a real-time axis and an imaginary-
time axis separately:

c<(t, t′) = aδ(t)b<(t, t′) + a<(t, t′)bδ(t′) +

∫ t

t0

dt̄ a>(t, t̄)b<(t̄, t′)+

+

∫ t′

t

dt̄ a<(t, t̄)b<(t̄, t′) +

∫ t0

t′
dt̄ a<(t, t̄)b>(t̄, t′)+

−i
∫ β

0

dτ̄ a⌉(t, τ̄)b⌈(τ̄ , t′).

(2.27)

We can split the first integral in the second line,
∫ t′

t
=

∫ t0
t

+
∫ t′

t0
:

c<(t, t′) = aδ(t)b<(t, t′) + a<(t, t′)bδ(t′)+

+

∫ t

t0

dt̄ [a>(t, t̄)− a<(t, t̄)]b<(t̄, t′)−
∫ t′

t0

dt̄ a<(t, t̄)[b>(t̄, t′)− b<(t̄, t′)]

−i
∫ β

0

dτ̄ a⌉(t, τ̄)b⌈(τ̄ , t′).

(2.28)
At this point it is convenient to define two new Keldysh components:

kR(t, t′) = kδ(t)δ(t, t′) + θ(t, t′)[k>(t, t′)− k<(t, t′)] (2.29)

kA(t, t′) = kδ(t)δ(t, t′)− θ(t′, t)[k>(t, t′)− k<(t, t′)], (2.30)

with which we can rewrite the lesser component of c(z, z′) as:

c<(t, t′) =

∫ ∞

t0

dt̄[a<(t, t̄)bA(t̄, t′) + aR(t, t̄)b<(t̄, t′)]

− i

∫ β

0

dτ̄a⌉(t, τ̄)b⌈(τ̄ , t′). (2.31)

We can compactify it by using shorthand notations for convolutions on
the real-time axis and imaginary-time axis respectively:

f · g =
∫ ∞

t0

dt̄f(t̄)g(t̄)

f ⋆ g = −i
∫ β

0

dτ̄f(τ̄)g(τ̄).
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With this notation, the lesser component of c(z, z′) can be written as:

c< = a< · bA + aR · b< + a⌉ ⋆ b⌈. (2.32)

In a very similar manner, the greater component can be found to be:

c> = a> · bA + aR · b> + a⌉ ⋆ b⌈. (2.33)

From the lesser and greater decomposition, the retarded and advanced
can be obtained. The left/right and Matsubara components can be found
by the same logic used to determine the lesser/greater.

It is worth noting that to obtain the Langreth rules in the frequency do-
main, we simply take an identity in the time-domain and Fourier transform
it. To see how to Fourier transform convolutions, consider the convolution
in the long-time limit:

c(t− t′) =

∫ ∞

t0

dt̄ a(t− t̄)b(t̄− t′) ⇔ c(t) =

∫ t−t0

−∞
dt̄ a(t)b(t− (̄t)), (2.34)

which in the limit t→ ∞ becomes:

c(t) =

∫ ∞

−∞
dt̄ a(t)b(t− t̄). (2.35)

Equation 2.35 describes a typical convolution for which the Fourier trans-
form is known:

c(ω) = a(ω)b(ω). (2.36)
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2.4 Green’s functions

Equipped with the notion of the Keldysh contour and the Langreth rules,
we are ready to define the one-particle non-equilibrium Green’s function in
a grand canonical ensemble:

G(1, 2) ≡ −i ⟨T {ψ̂(1)ψ̂†(2)}⟩ = −i
Tr

[
T
{
e−i

∫
γ dz̄ Ĥ(z̄)ψ̂(1)ψ̂†(2)

}]
Tr

[
T
{
e−i

∫
γ dz̄ Ĥ(z̄)

}] , (2.37)

where the arguments (1, 2) are shorthand notation for (x1σ1; z1, x2σ2; z2)
[26]. The power of the contour becomes apparent here; by discarding all
but the imaginary track of the contour the NEGF formalism reduces to the
Matsubara formalism, by extending the contour to the left in figure 2.2 and
including the equilibrium Hamiltonian up until t0 an adiabatic switching
off the interaction can be treated and of course the exact non-equilibrium
Green’s function on the contour in figure 2.2 can be calculated. That is to
say, this definition of the Green’s function contains all other flavors [26].

To acquire some intuition for the Green’s function we can expand the
time-ordering [29]:

G(1, 2) = θ(t1 − t2)G
>(1, 2) + θ(t2 − t1)G

<(1, 2). (2.38)

As we saw in section 2.3, G(1, 2) meets the requirements for a Keldysh
function with Gδ = 0. From the definition of greater/lesser, we can write:

G>(1, 2) = G(x1t1+, x2t2−) = −i ⟨ψ̂(1)ψ̂†(2)⟩ (2.39)

G<(1, 2) = G(x1t1−, x2t2+) = i ⟨ψ̂†(2)ψ̂(1)⟩. (2.40)

Here we can see that the greater Green’s function, in equation 2.39, is the
correlation function corresponding to injecting a particle at position x2 with
spin σ2 at time z2 and removing it at x1σ1; z1 [29]. Similarly, the lesser
Green’s function describes the propagation of a hole. Furthermore, at equal
times the lesser Green’s function is exactly the one-particle density matrix,
bar the i. It is precisely from this that one can calculate observables since a
general one particle expectation value has the form:
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⟨Ô(x1, x2; t)⟩ =
∫
dx1dx2 ⟨ψ̂†(x1t) ⟨x1| Ô(t) |x2⟩ ψ̂(x2t)⟩ =

= −i
∫
dx1dx2 O(x1, x2; t)G

<(x1t, x2t).

(2.41)

2.4.1 Equation of Motion for G

The one-particle Green’s function consists of time-ordered field operators in
the Heisenberg picture, so it is natural to start with the Heisenberg equation
of motion for the field operators ψ̂(1) and ψ̂†(2):

∂zψ̂(xz) = i[Ĥ(z), ψ̂(xz)] = iÛ(t0−, z)[Ĥ, ψ̂(x)]Û(z, t0−) (2.42)

∂z′ψ̂
†(x′z′) = i[Ĥ(z′), ψ̂†(x′z′)] = iÛ(t0−, z

′)[Ĥ, ψ̂†(x′)]Û(z′, t0−). (2.43)

The general type of Hamiltonian treated in this thesis can be written as:

Ĥ(z) =

∫
dx ψ̂†(x)h0(xz)ψ̂(x)+

+
1

2

∫
dxdx′ v(x, x′; z)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x).

(2.44)

For the equation of motions of the field operators we need compute the
commutator of the Hamiltonian with the respective field operator, in the
Schrödinger picture:

[Ĥ, ψ̂(x)] =

∫
dx′ h0(x

′)[ψ̂†(x′)ψ̂(x′), ψ̂(x)]+

+
1

2

∫
dx′dx′′ v(x′, x′′)[ψ̂†(x′)ψ̂†(x′′)ψ̂(x′′)ψ̂(x′), ψ̂(x)] =

= −h0(x)ψ̂(x)−
∫
dx′v(x, x′)ψ̂†(x′)ψ̂(x′)ψ̂(x).

(2.45)

The equation of motion of the annihilation operator then becomes:

i∂zψ̂(xz) = h0(xz)ψ̂(xz)

+

∫
dx′dz′ v(xz, x′z′)δ(z − z′)ψ̂†(x′z′)ψ̂(x′z′)ψ̂(xz).

(2.46)
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If we compare equation 2.46 to the derivative of the Green’s function:

i∂zG(xz, x
′z′) = ∂z ⟨T

[
ψ̂(xz)ψ̂†(x′z′)

]
⟩ =

= ∂z

[
θ(z − z′) ⟨ψ̂(xz)ψ̂†(x′z′)⟩ − θ(z′ − z) ⟨ψ̂†(x′z′)ψ̂(xz)⟩

]
=

= δ(z − z′)(⟨ψ̂(xz)ψ̂†(x′z′)⟩+ ⟨ψ̂†(x′z′)ψ̂(xz)⟩)+
+θ(z − z′)∂z ⟨ψ̂(xz)ψ̂†(x′z′)⟩ − θ(z′ − z)∂z ⟨ψ̂†(x′z′)ψ̂(xz)⟩ =

= δ(z − z′)δ(x− x′)+

+θ(z − z′)∂z ⟨ψ̂(xz)ψ̂†(x′z′)⟩ − θ(z′ − z)∂z ⟨ψ̂†(x′z′)ψ̂(xz)⟩ .

(2.47)

By inspection, we can see that if we multiply equation 2.46 from the right
with −iθ(z−z′)ψ̂†(x′z′) and from the left with iθ(z′−z)ψ̂†(x′z′) respectively,
and take their expectation values in the grand canonical ensemble we have
exactly the two terms from equation 2.47.

i∂zG(xz, x
′z′) = δ(z − z′)δ(x− x′) + h(xz)G(xz, x′z′)+∫

dx̄dz̄ v(xz, x̄z̄)
[
θ(z − z′) ⟨ψ̂†(x̄z̄)ψ̂(x̄z̄)ψ̂(xz)ψ̂†(x′z′)⟩

−θ(z′ − z) ⟨ψ̂†(x′z′)ψ̂†(x̄z̄)ψ̂(x̄z̄)ψ̂(xz)⟩
]
=

= δ(z − z′)δ(x− x′) + h(xz)G(xz, x′z′)

+

∫
dx̄dz̄ v(xz, x̄z̄)G(2)(xz, x̄z̄;x′z′, x̄z̄+),

(2.48)

where we have defined the interaction to contain the delta function in time,
i.e. it is time-local: v(xz, x̄z̄) = v(x, x̄)δ(z−z′), and defined the two-particle
Green’s function as:

G(2)(1, 2; 3, 4) =
1

i2
⟨T ψ̂(1)ψ̂(2)ψ̂†(4)ψ̂†(3)⟩ . (2.49)

Then we can write the equation of motion more compactly [26,29]:

[i∂z − h(1)]G(1, 2) = δ(1− 2) +

∫
d3 v(1, 3)G(2)(1, 3; 2, 3+). (2.50)

Here, the ”+” sign in 3+ means that z+3 is infinitesimally later than z3 and
ensures the field operators are ordered correctly after the time-ordering.
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The one-particle Green’s function thus depends on the two-particle Green’s
function, in turn the two-particle Green’s function depends on the three-
particle Green’s function and so on; this is the Martin-Schwinger hierar-
chy [26].

2.4.2 Lehmann Representation

The definition of the Green’s function G(1, 2) in equation 2.37 makes no
assumptions on the structure of the Hamiltonian. If, on the other hand,
we restrict ourselves to time-independent Hamiltonians we can write the
Green’s function as:

iG(1, 2) =
∑
k

ρk ⟨Ψk| T
{
ψ̂(1)ψ̂†(2)

}
|Ψk⟩ . (2.51)

The operators in equation 2.51 are in the Heisenberg picture, so we can
write out their evolution explicitly.

iG(x1t1, x2t2) =
∑
k

ρk [

θ(t1 − t2) ⟨Ψk| eiĤ(t1−t0)ψ̂(x1)e
−iĤ(t1−t2)ψ̂†(x2)e

−iĤ(t2−t0) |Ψk⟩

−θ(t2 − t1) ⟨Ψk| eiĤ(t2−t0)ψ̂†(x2)e
−iĤ(t2−t1)ψ̂(x1)e

−iĤ(t1−t0) |Ψk⟩
]
.

(2.52)

We can insert a complete set of eigenstates of Ĥ:

iG(x1t, x2t2) =
∑
k

ρk
∑
λ

[

θ(t1 − t2)e
iEk(t1−t2) ⟨Ψk| ψ̂(x1)e−iEλ(t1−t2) |λ⟩ ⟨λ| ψ̂†(x2) |Ψk⟩

−θ(t2 − t1)e
−iEk(t1−t2) ⟨Ψk| ψ̂†(x2)e

iEλ(t2−t1) |λ⟩ ⟨λ| ψ̂(x1) |Ψk⟩
]
=

=
∑
kλ

ρk [

θ(t1 − t2)e
−i(Eλ−Ek)(t1−t2) ⟨Ψk| ψ̂(x1) |λ⟩ ⟨λ| ψ̂†(x2) |Ψk⟩

−θ(t2 − t1)e
i(Eλ−Ek)(t1−t2) ⟨Ψk| ψ̂†(x2) |λ⟩ ⟨λ| ψ̂(x1) |Ψk⟩

]
.

(2.53)

Note here that in equation 2.53, if the states |Ψk⟩ have N particles, the
states |λ⟩ have N + 1 in the second to last line and N − 1 in the last line.

18



The Green’s function now depends only on the time-difference t = t1−t2,
so we can Fourier transform it. We then have to compute:∫ ∞

−∞
dt eiωtθ(±t)e±i(Eλ−Ek)t =

∫ ∞

0

dt eiωtθ(±t)e±i(Eλ−Ek)t. (2.54)

The frequency representation of the Heaviside function is:

θ(t− t′) = i

∫ ∞

−∞

e−iω(t−t′)

w + iδ
. (2.55)

The integral in equation 2.55 is a contour integral over the complex plane.
If we insert equation 2.55 into equation 2.54:

∫ ∞

0

dt

∫ ∞

−∞

dw′

2π

e∓iω′tei(ω±(Eλ−Ek))

ω′ + iδ
=

i

ω ± (Eλ − Ek)∓ iδ
. (2.56)

Then, the Green’s function in the frequency domain can be written as:

G(x1, x2;ω) =
∑
kλ

[
Φkλ(x1)Φ

∗
λk(x2)

ω + (Eλ − Ek)− iδ
+

Φ∗
kλ(x2)Φλk(x1)

ω − (Eλ − Ek) + iδ

]
, (2.57)

where Φkλ(x) = ⟨Ψk| ψ̂(x) |λ⟩. Equation 2.57 describes the Lehmann repre-
sentation of the one-particle Green’s function. [30]

2.4.3 Observables

Total Energy: Galitskii-Migdal formula

The total energy is in general a two-body operator and should in principle
not be calculable from the one-particle Green’s function, but the total energy
is an exception to the rule as we will see. We can write down a general
expression for the total energy:

E(z1) = ⟨Ψ| Û(t0−, z1)
[∫

dx1dx2 ψ̂
†(x1) ⟨x1| ĥ(z1) |x2⟩ ψ̂(x2)

+
1

2

∫
dx1dx2 v(x1, x2)ψ̂

†(x1)ψ̂
†(x2)ψ̂(x2)ψ̂(x1)

]
Û(z1, t0−) |Ψ⟩ .

(2.58)
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Equation 2.58 describes the kinetic energy plus potential energy, in that
order. The time-argument on the contour is simply there so that in the
next step we can identify the one- and two-particle Green’s function. The
Hamiltonian has, if any, a real-time dependence.

By definition of the delta function we have

f(z1) =

∫
dz2f(z1, z2)δ(z1 − z2),

and inserting the unit operators Û(z1, t0−)Û(t0−, z2) and Û(z2, t0−)U(t0−, z2)
in the first term in equation 2.58, we have:

⟨Ψ|
[∫

dx1d2 δ(z1 − z2)Û(t0−, z1)ψ̂
†(x1)Û(z1, t0−)×

×Û(t0−, z2)h(1)Û(z2, t0−)Û(t0−, z2)ψ̂(x2)Û(z2, t0−)
]
|Ψ⟩ =

=

∫
dx1d2 h(1, 2) ⟨Ψ| ψ̂†(x1z1)ψ̂(x2z2) |Ψ⟩ =

= −i
∫
dx1d2 h(1, 2)G(2, 1

+),

(2.59)

where we find precisely the definition of the lesser Green’s function G(2, 1+),
similarly the second term can be written in terms of G(1, 2; 1+, 2+):

E(z1) = −i
∫
dx1d2 h(1, 2)G(2, 1

+)− 1

2

∫
dx1d2 v(1, 2)G(1, 2; 1

++, 2+).

(2.60)
The particular form of the arguments in the two-particle Green’s function

in equation 2.60 also shows up in the equation of motion for the one-particle
Green’s function, and it is this fact that will allow us to find an expression
for the total energy in terms of G(1, 2) only. If we combine the equation of
motion for G(1, 2) and its adjoint, and set 2 = 1+:(

i
d

dz1
− i

d

dz2

)
G(1, 2)

∣∣∣∣
2=1+

−
∫
d3

[
h(1, 3)G(3, 1+) +G(1, 3+)h(3, 1)

]
−

= −2i

∫
d3 v(1, 3)G(1, 3; 1++, 3+). (2.61)

From equation 2.61 we have then found a way to write G(1, 2; 1++, 2+) in
terms of G(1, 2), where z++

1 now is infinitesimally later than z+1 . If we then
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insert this into equation 2.60 we find the Galitskii-Migdal [31] formula for
the total energy in terms of only the one-particle Green’s function:

E(t) = − i

4

∫
dxdx′

(
i
d

dt
δ(x, x′)− i

d

dt′
δ(x, x′) + 2h(x, x′; t)

)
G(x′t, xt′)

∣∣∣∣
t′=t

(2.62)

When the Hamiltonian is time-independent (in a steady state), i.e. ĥ(t) ≡
ĥ, the scenario discussed in this thesis, the Green’s function depends only on
the difference of times t− t′, and we can write the equation in the frequency
domain:

E = − i

2

∫
dω

2π

∫
dxdx′

(
ωδ(x, x′) + h(x, x′)

)
G(x′, x;ω). (2.63)

Meir-Wingreen formula: Current

In order to study out of equilibrium dynamics of an open system (see figure
1.1), one can apply a voltage difference over the system. Then, e.g., the
left lead has a bias VL(t) and the right lead is unbiased. The Hamiltonian
corresponding to this perturbation is then:

Ĥ(t) = Ĥ0 + Ĥint + ĤV (t), ĤV (t) =
∑
k∈Lσ

qVL(t)n̂kσ. (2.64)

We can then compute the current as the change in the number of particles
in the left lead:

ÎLσ(t) = q
d

dt
N̂Lσ(t), N̂Lσ(t) =

∑
k∈L

n̂kσ(t). (2.65)

The number operators here are in the Heisenberg picture, so we can compute
the derivative using the Heisenberg equation of motion:

d

dt
N̂L(t) = i

[
Ĥ(t), N̂L(t)

]
. (2.66)

For tight-binding leads and contact region and with an interaction of
the type νσσ

′
ij n̂iσn̂jσ′ , the number operator N̂L commutes with everything in

Ĥ(t) except the term connecting the left lead to the central region:
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i
[
Ĥ(t), N̂L

]
= i

∑
k∈L

[
VLC ĉ

†
Lĉ1 + V ∗

LC ĉ
†
1ĉL, n̂k

]
=

= i
∑
k

[
−VLC ĉ†Lĉ1 + V ∗

LC ĉ
†
1ĉL

]
,

(2.67)

where VLC is the hopping matrix element between the left lead and the
device system.

If we then take the ensemble average of ÎLσ(t):

⟨ÎLσ(t)⟩ = −iqVLC ⟨ĉ†L(t)ĉ1(t)⟩+ iqV ∗
LC ⟨ĉ†1(t)ĉL(t)⟩ = 2qℜ{VLCG<

L1(t, t)}.
(2.68)

It is possible to express the quantity G<
L1 entirely in terms quantities

from the central region, MM , and after some algebra [29] we find the Meir-
Wingreen formula [32] for the current:

ILσ(t) = 2qℜ{(Σ<
L,emb ·GA

CC + ΣR
L,emb ·G<

CC + Σ
⌉
L,emb ⋆ G

⌈
CC)(t, t)}, (2.69)

where ΣL,emb is the so-called embedding self-energy which will be described
in detail in section 3.1.1.

In a steady state, we can Fourier transform equation 2.69 for a description
in the frequency domain:

ILσ = 2iq

∫
dw

2π
(Σ<

L,emb(ω)ACC(ω)− ΓL,emb(ω)G
<
CC(ω)). (2.70)
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Chapter 3

Theoretical Background B

3.1 Self-Energies

As we saw previously, the equation of motion for the one-particle Green’s
function constitutes a hierarchy of equations. The typical way to close the
equation is by introducing the so-called self energy:∫

d3 Σ(1, 3)G(3, 2) = −i
∫
d3 v(1, 3)G(1, 3; 2, 3+). (3.1)

The self energy is a functional of the Green’s function containing the
non-local properties of the two-particle Green’s function. We will encounter
two different types of self energy below, an embedding self energy and a
many body self energy.

3.1.1 Embedding Self Energy

Consider a system consisting of a molecule connected to non-interacting
one-dimensional reservoirs, or leads, on either side in a manner similar to a
chain. If we consider the equation of motion:[

i
d

dz
1− h(z)

]
G(z, z′) = δ(z, z′)1+

∫
γ

Σ(z, z̄)G(z̄, z′). (3.2)

The boldface quantities are now block matrices where each of the blocks
are the projection onto the subspace corresponding to the reservoirs, α =
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L,R, or to the molecule. For example:

h =

hLL hLC 0
hCL hCC hCR

0 hRC hRR

 , (3.3)

where the components are again matrices in the respective site basis of the
region.

It is important to note that since the leads are non-interacting, the only
non-vanishing block of Σ(z, z′) is that of the central molecule, ΣCC(z, z

′).
Furthermore, the equation of motion for the Green’s function of an isolated
lead has the simple form:[

i
d

dz
− hαα(z)

]
gαα(z, z

′) = δ(z, z′). (3.4)

If we write out the remaining projections of the equation 3.2, namely the
CC and αC components:

[
i
d

dz
− hCC(z)

]
GCC(z, z

′) = δ(z, z′) +

∫
γ

ΣCC(z, z̄)GCC(z̄, z
′)+

+
∑
α

hCα(z)GαC(z, z
′), (3.5)

[
i
d

dz
− hαα(z)

]
GαC(z, z

′) = hαC(z)GCC(z, z
′). (3.6)

Equation 3.6 can be solved for GαC(z, z
′) by relabeling z → z̄, multiply-

ing from the left by gαα(z, z̄) and integrating over z̄.

GαC(z, z
′) =

∫
dz̄gαα(z, z̄)hαC(z̄)GCC(z̄, z

′). (3.7)

Plugging this result back into 3.5:[
i
d

dz
− hCC(z)

]
G(z, z′) = δ(z, z′) +

∫
γ

ΣCC(z, z̄)GCC(z̄, z
′)+

+
∑
α

∫
γ

hCα(z)gαα(z, z̄)hαC(z̄)GCC(z̄, z
′), (3.8)
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where we can now define [26]:

Σemb(z, z
′) =

∑
α

hCα(z)gαα(z, z
′)hαC(z

′). (3.9)

Then we can work with the Green’s function solely in the projection on
the molecule:

[i∂z − h(1)]GCC(z, z
′) = δ(z, z′) +

∫
γ

dz̄ (ΣCC(z, z̄) +Σemb(z, z̄))GCC(z̄, z
′).

(3.10)

3.2 Many Body Self Energy

The self-energy approach to treating interactions is a perturbative method.
The method is based on Feynman diagrams, of which there are infinitely
many, and consciously choosing to neglect all but a few typically corre-
sponding to a class of interactions of interest. Feynman diagrams [33] are
pictorial representations of, typically, interactions between particles. The
diagrams are drawn and interpreted according to the Feynman rules.

In this thesis, we treat two types of interactions; Hartree-Fock (HF), a
mean-field interaction linear in the interaction strength, and Second Born
(2B), the self-energy up to second order in the bare interaction. Indeed,
there are many more classes of interactions such as e.g. GW [34] and T-
matrix [35], but they are not considered here.

3.2.1 Hartree-Fock

The HF approximation for the self-energy is the simplest type of interaction,
namely mean field. In this approximation, the two-particle Green’s function
describing the interactions between particles decouples into a product of two
one-particle Green’s functions:

G(1, 3; 2, 3+) = G(1, 2)G(3, 3+)−G(1, 3+)G(3, 2). (3.11)

This then becomes a description of non-interacting quasi-particles mov-
ing in a potential generated by the rest of the particles. If we insert this into
the equation of motion for the Green’s function:
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[
i
d

dt1
− h(1)

]
G(1, 2) = δ(1, 2)

− i

∫
d3 ν(1, 3)(G(1, 2)G(3, 3+)−G(1, 3+)G(3, 2)), (3.12)

we can identify the self-energy:

ΣHF (1, 2) = −iδ(1− 2)

∫
d3 ν(1, 3)G(3, 3+) + iν(1, 2)G(1, 2+). (3.13)

Remembering that the interaction is time-local: ν(1, 2) = δ(z1−z2)ν(x1, x2)
we can write the Hartree-Fock self energy as:

ΣHF (x1z1, x2z2) = δ(x1, x2)δ(z1, z2)

∫
dx3ν(x1, x3)G(x3z1, x3z

+
1 )

− ν(x1, x2)G(x1z1, x2z
+
1 ). (3.14)

We can use the Langreth rules find the retarded and lesser components
of ΣHF :

ΣR
HF (x1t1, x2t2) = δ(x1, x2)δ(t1 − t2)

∫
dx3 ν(x1, x3)G

<(x3t1, x3t
+
1 )

−ν(x1, x2)G<(x1t1, x2t
+
1 ),

(3.15)

Σ<
HF ≡ 0. (3.16)

Equation 3.15 makes it clear that in the Hartree-Fock approximation parti-
cles interact with the potential generated by all the other particles. From a
diagrammatic point of view, the Hartree-Fock approximation is the partial
sum of the two non-reducible diagrams of first order in the interaction, see
figure 3.1.

Figure 3.1: The Feynamn diagrams corresponding to the HF approximation.
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3.2.2 Second Born

Unlike the Hartree-Fock approximation, the 2B approximation includes
particle-particle scatterings to first order. The simplest direct scattering
that can occur is the process where two particles are injected at 1′ and 2′,
interact (scatter) at 1̄ and 2̄ respectively, and are removed at 1 and 2. This
corresponds to approximating the two-particle Green’s function as:

Gdirect(1, 2; 2
′, 1′) =

∫
d1̄d2̄ ν(1̄, 2̄)G(1, 1̄)(1̄, 1′)G(2, 2̄)G(2̄, 2′). (3.17)

We must also include the exchange term, to comply with the anti-symmetry
of G(2), which corresponds to 1′ ↔ 2′:

G(1, 2; 2′, 1′) = GHF (1, 2, 2
′, 1)+

∫
d1̄d2̄ ν(1̄, 2̄) [G(1, 1̄)(1̄, 1′)G(2, 2̄)G(2̄, 2′)

−G(1, 1̄)G(1̄, 2′)G(2, 2̄)G(2̄, 1′)] . (3.18)

Again, plugging this into the equation of motion:

[
i
d

dt1
− h(1)

]
G(1, 2) = δ(1, 2) +

∫
d3

{
ΣHF (1, 3+)G(3, 2)

−iν(1, 3)
∫
d4d5 ν(4, 5)

[
G(1, 4)G(4, 2)G(3, 5)G(5, 3+)

−G(1, 4)G(4, 3+)G(3, 5)G(5, 2)
]}
. (3.19)

From equation 3.19 it is not at all obvious, unlike in HF, what form the
self-energy has. For more complicated interactions than HF, this process
becomes very tedious and unsystematic. Instead, we turn to Feynman dia-
grams. They allow us to systematically find the self-energy for in principle
arbitrary interaction. We find their root in the expansion of the one-particle
Green’s function in powers of the interaction ν(1, 2) [26]:
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G(a, b) =

∑∞
k=0

1
k!

(
i
2

)2 ∫
d1d1′..dkdk′v(1, 1′)..v(k, k′)

∣∣∣∣∣∣∣∣∣
G0(a, b) G0(a, 1

+) ... G0(a, k
′+)

G0(1, b) G0(1, 1
+) ... G0(1, k

′+)
...

...
. . .

...
G0(k, b) G0(k, 1

+) ... G0(k, k
′+)

∣∣∣∣∣∣∣∣∣
∑∞

k=0
1
k!

(
i
2

)2 ∫
d1d1′..dkdk′v(1, 1′)..v(k, k′)

∣∣∣∣∣∣∣∣∣
G0(1, 1

+) G0(1, 1
+) ... G0(1, k

′+)
G0(1

′, 1+) G0(1
′, 1′+) ... G0(1

′, k′+)
...

...
. . .

...
G0(k, 1

+) G0(k, 1
′+) ... G0(k, k

′+)

∣∣∣∣∣∣∣∣∣

.

(3.20)
The Feynman rules then dictate how to convert between graphical di-

agrams and terms appearing in equation 3.20. For a detailed discussion
on Feynman diagrams and their rules, see e.g. [33]. We will mention the
relevant rules for our purposes here:

1. An oriented line represents the bare propagator G0(1, 2)

2. A wiggly line represents an interaction v(1, 2)

3. Disconnected diagrams, i.e. diagrams with open-ended propagators,
do not contribute

4. Topologically equivalent diagrams have the same self-energy

5. Internal vertices are integrated over

To that end, the diagrams that are needed to construct the many-body self-
energy are the irreducible diagrams, i.e. connected inequivalent diagrams.
The second born approximation for the self-energy includes all diagrams up
to second order in the interaction, which are the four in figure 3.2.
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Figure 3.2: The Feynman diagrams corresponding to the 2B approximation.

To convert the diagrams in figure 3.2 to an analytical expression, we con-
vert oriented lines to propagators, wiggly lines to interactions and integrate
over the internal vertices:

Σ2B(1, 2) = ΣHF (1, 2) +

∫
d3d4 [G(1, 2)ν(2, 3)G(3, 4)G(4, 3)ν(4, 1)

−G(1, 4)G(4, 3)ν(4, 2)G(3, 2)ν(3, 1)] .
(3.21)

Again, the interactions are time-local:

Σ2B(x1z1, x2z2) = ΣHF (x1z2, x2z2)

+

∫
dx3dx4 [G(x1z1, x2z2)ν(x2, x3)G(x4z2, x3z1)G(x3z1, x4z2)ν(x4, x1)

−G(x1z1, x4z2)G(x4z2, x3t1)ν(x4, x2)G(x3t1, x2z2)ν(x3, x1)] .
(3.22)

We can then use the Langreth rules to find the retarded and lesser com-
ponents of Σ2B:
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ΣR
2B(x1t1, x2t2) = ΣR

HF (x1t1, x2t2)

+

∫
dx3dx4 {

ν(x4, x1)ν(x2, x3)
[
GR(x1t1, x2t2)G

<(x4t2, x3t1)G
>(x3t1, x4t2)

+G<(x1t1, x2t2)G
A(x4t2, x3t1)G

<(x3t1, x4t2)

+G<(x1t1, x2t2)G
<(x4t2, x3t1)G

R(x3t1, x4t2)
]

−ν(x4, x2)ν(x3, x1)
[
GR(x1t1, x4t2)G

<(x4t2, x3t1)G
>(x3t1, x2t2)

+G<(x1t1, x4t2)G
A(x4t2, x3t1)G

<(x3t1, x2t2)

+G<(x1t1, x4t2)G
<(x4t2, x3t1)G

R(x3t1, x2t2)
]}
.

(3.23)

In a steady state, all quantities in equation 3.23 depend on the time-
difference t = t1 − t2. We can then Fourier transform the ΣR

2B:

ΣR
2B(x1, x2;ω) = ΣR

HF (x1, x2;ω)

+

∫
dx3dx4

∫
dω′dω′′

(2π)2
{

ν(x4, x1)ν(x2, x3)
[
GR(x1, x2;ω

′)G<(x4, x3;ω
′′)G>(x3, x4;ω − ω′ + ω′′)

+G<(x1, x2;ω
′)GA(x4, x3;ω

′′)G<(x3, x4;ω − ω′ + ω′′)

+G<(x1, x2;ω
′)G<(x4, x3;ω

′′)GR(x3, x4;ω − ω′ + ω′′)
]

−ν(x4, x2)ν(x3, x1)
[
GR(x1, x4;ω

′)G<(x4, x3;ω
′′)G>(x3, x2;ω − ω′ + ω′′)

+G<(x1, x4;ω
′)GA(x4, x3;ω

′′)G<(x3, x2;ω − ω′ + ω′′)

+G<(x1, x4;ω
′)G<(x4, x3;ω

′′)GR(x3, x2;ω − ω′ + ω′′)
]}
.

(3.24)
By a similar process we can find the lesser component:

Σ<
2B(x1, x2;ω) =

∫
dx3dx4

∫
dω′dω′′

(2π)2
[

ν(x1, x4)ν(x2, x3)G
<(x1, x2;ω

′)G>(x4, x3;ω
′′)G<(x3, x4;ω − ω′ + ω′′)

−ν(x2, x4)ν(x1, x3)G<(x1, x4;ω
′)G>(x4, x3;ω

′′)G<(x3, x2;ω − ω′ + ω′′)] .
(3.25)

3.2.3 Non-perturbative Self-Energy

We can make some observations about the self-energy, notably that the exact
self-energy can be readily obtained from the exact one- and two-particle
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Green’s function:

Σ(ω) = G−1
0 (ω)−G−1(ω), (3.26)

Σ(1, 4) = −i
∫
d2d3 v(1, 3)G(1, 3; 2, 3+)G−1(2, 4), (3.27)

Σ(x1, x4;ω) = −i
∫
dx2dx3G(x1, x3;x2, x3;ω)G

−1(x2, x4;ω), (3.28)

where G0 is the non-interacting Green’s function, and equation 3.28 is the
Fourier transform of equation 3.27 keeping in mind that v(1, 3) is time-local,
reducing the time-dependence of the two-particle Green’s function to only
t1, t2. Note that equation 3.26 is not necessarily true out of equilibrium,
however we will apply it to equilibrium systems.
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Chapter 4

Method

4.1 Numerical implementation

A large portion of the outcome of this thesis was dedicated to implementing
a codebase for performing simulations using the NEGF method in a steady
state. The codebase for performing calculations in open systems was written
in FORTRAN, whereas the calculation of the non-perturbative self-energy
was written in Julia.

Below we outline crucial aspects of the codebase.

• Numerically calculate non-equilibrium Green’s function in
open (infinite) systems.

In a non-interacting scenario, this amounts to calculating the embed-
ding self-energy and solve the Dyson equation, by inversion, in the
frequency space. For interacting particles, the calculation needs to be
self-consistent:

1. Calculate embedding self-energy and non-interacting G(ω)
↓

2. Calculate one-particle density matrix and perform the Fourier
integrals for Σ2B

↓
3. Recalculate the Green’s function with the new ΣMB

↓
4. Compare new Green’s function to previous, if not close repeat

from 2.
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• Fourier transforms for Σ2B

As we saw in section 3.2.2, the second born approximation for the
self-energy, in frequency space, involves computing convolutions and
cross-correlation, at each iteration. We employ the FFTW [36] frame-
work which provides straightforward routines to compute Fast Fourier
Transforms. A typical size of the ω-grid is 215, and the number of
Fourier integrals required to compute Σ2B is 16N2

cc where Ncc is the
size of the interacting region.

• Optimizing functions

The method in section 3.2.3 was implemented in Julia and the mini-
mizer we used utilized the Nelder-Maed algorithm [37], which is based
on a simplex algorithm.

All in all, the codebase consists of roughly 2500 lines of code, and what
effectively amounts to a library for computing NEGF’s in steady state.

The code has been tested, and verified, by comparing results to existing
results in the literature [38,39] and existing code.
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Chapter 5

The models

5.1 Tight-binding chain

The system that will primarily be studied here is one of a chain consisting
of an interacting two-site molecule coupled to non-interacting tight-binding
leads on either side, see figure 5.1.

Figure 5.1: Depiction of generic transport system.
”L”: Left lead, ”M/C”: Molecule/Center, ”R”: Right lead
”VLC”: Hopping from L to M/C, ”VRC”: Hopping from R to M/C,
”TCC”: Hopping between sites in Molecule/Center.
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The Hamiltonian describing the system is:

Ĥ(t) =
∑
iσ

ϵiσn̂iσ +
∑
kασ

(ϵkασ + Uα(t))n̂kασ + TCC

∑
<ij>σ

(ĉ†iσ ĉjσ +H.c.)

+ Tαα
∑

<mn>ασ

(ĉ†mασ ĉnασ +H.c.) +
∑
ikασ

(Viσ,kασ ĉ
†
iσ ĉkασ + Vkασ,iσ ĉ

†
kασ ĉiσ)

+
1

2

∑
ijkl;σσ′

wσσ′

ijkl ĉ
†
iσ ĉ

†
kσ′ ĉjσ′ ĉlσ, (5.1)

where the indices ijkl belong the central molecule, α indicates either left or
right lead and m,n belonging to the corresponding lead,

5.2 Interacting Ring

This system serves the purpose of a testing grounds for two different scenar-
ios. We use it to study the effect of currents on the Galitskii-Migdal formula
and its relationship to correlation functions as well as to test whether the
two-particle Green’s function computed in a subsystem can be used to con-
struct the self-energy.

5.2.1 Flux threaded ring

The method of calculating the correlation function from the Galitskii-Migdal
formula involves computing the total energy of a system possibly affected by
an electron current, and its numerical derivative. When studying a system
connected to infinite leads, any small change of parameters in the contacted
system (as needed by the numerical derivative) could potentially be spread
far into the leads by the current. By studying a finite system instead, we
can make observations as to how a parameter perturbation at an impurity
might be affect by currents. One such finite system that can still contain
currents is a tight-binding ring threaded by a magnetic flux. Such a system
will sustain persistent currents through the ring. [40, 41] We can write the
Hamiltonian of a length L tight-binding ring with a magnetic flux through
it and an impurity at site L/2. We expect to find discrepancies even at the
HF level of interaction and hence for computational sake we will use the HF
approximation here:
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Ĥ =
∑
iσ

ϵiσn̂iσ + t
∑
<ij>σ

(eiθc†iσcjσ +H.c.) + Un̂L/2σ ⟨n̂L/2σ̄⟩ . (5.2)

The complex phase on the hopping term contains the effect of the mag-
netic flux. For a detailed discussion of how the Hamiltonian in equation 5.2
is obtained, see [41]. The important thing here is that we can work with a
finite system with currents.

To calculate the current flowing through site k:

ĵk(t) = q
d

dt
n̂k(t) = iq

[
Ĥ, n̂k(t)

]
= 2iqt

∑
<ij>

(eiθĉ†iδkj ĉj + e−iθĉ†kδkj ĉi), (5.3)

where the factor 2 comes from summing over spin, q is the charge of the
occupying particles and t the hopping. The current is then the ground
state, |g⟩, average of the operator in equation 5.3:

jk(t) = 2qt
∑
<ij>

∑
λ∈Nocc

δkj(ie
iθ ⟨g| ĉ†i (t) |λ⟩ ⟨λ| ĉk(t) |g⟩

+ie−iθ ⟨g| ĉ†k(t) |λ⟩ ⟨λ| ĉi(t) |g⟩) = 2qt
∑

λ∈Nocc

ℑ ⟨g| (ĉ†k+1 + ĉ†k−1 |λ⟩ ⟨λ| ĉk |g⟩ .

(5.4)

36



Chapter 6

Results

We divide the presentation of the original results of this thesis into two parts:
formal developments and numerical results.

6.1 Formal Results

6.1.1 Exact Self-Energy

From the definition of the self-energy we saw that with an exact one- and
two-particle Green’s function we can compute the self-energy. Of course,
with the exact one- and two-particle Green’s function we already have the
complete knowledge of the system, however consider the case of the infinite
tight-binding chain with a contacted region in the center. Here it is clearly
not possible to compute the exact one- and two-particle Green’s function
but perhaps computing the two-particle Green’s function in a mimicked
subsystem provides a good approximation.

In this section, we study a finite interacting ring in order to determine
whether a two-particle Green’s function on a subsystem containing an im-
purity can accurately represent the full system.

The Hamiltonian here is:

Ĥ =
∑
iσ

ϵin̂iσ + t
∑
<ij>σ

(c†iσcjσ +H.c.) +
∑
iσ

Uin̂iσn̂iσ̄. (6.1)

The system is in equilibrium and time-independent, so we can easily
compute the one-particle Green’s function in the Lehmann representation
and site basis:
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Gij(ω) =
∑
λ

⟨Ψ0| ĉi |λ⟩ ⟨λ| ĉ†j |Ψ0⟩
ω − (ϵλ − ϵ0) + iη

+
∑
λ

⟨Ψ0| ĉ†j |λ⟩ ⟨λ| ĉi |Ψ0⟩
ω + (ϵλ − ϵ0)− iη

. (6.2)

The two-particle Green’s function that is needed in equation 2.50 is
G(1, 3; 2, 3+), however we can note that the interaction v(1, 3) is time-local
so in fact the two-particle Green’s function only depends on t and t′:

G(x1t, x3t;x2t
′, x3t

+) = −⟨Ψ0| T [ψ̂(x1t)ψ̂(x3t)ψ̂
†(x3t

+)ψ̂†(x2t
′)] |Ψ0⟩ =

= θ(t− t′) ⟨Ψ0| ψ̂†(x3t
+)ψ̂(x3t)ψ̂(x1t)ψ̂

†(x2t
′) |Ψ0⟩

−θ(t′ − t) ⟨Ψ0| ψ̂†(x2t
′)ψ̂†(x3t

+)ψ̂(x3t)ψ̂(x1t) |Ψ0⟩ .
(6.3)

Now, here we can expand the Heisenberg operators in much the same way
as for the one-particle Green’s function, and to connect to G we will write
G(2) in the site basis too:

Gikjk(t, t
′) = θ(t− t′)eiϵ0(t−t′) ⟨Ψ0| ĉiĉkĉ†ke

−iĤ(t−t′)ĉ†j |Ψ0⟩

−θ(t′ − t)e−iϵ0(t−t′) ⟨Ψ0| ĉ†jeiĤ(t−t′)ĉ†kĉkĉi |Ψ0⟩ .
(6.4)

The structure here is very similar to that of the one-particle Green’s
function, and we can use the same Fourier transform:

Gikjk(ω) = i
∑
λ

⟨Ψ0| ĉ†kĉkĉi |λ⟩ ⟨λ| ĉ
†
j |Ψ0⟩

ω − (ϵλ − ϵ0) + iη
+ i

∑
λ

⟨Ψ0| ĉ†j |λ⟩ ⟨λ| ĉ
†
kĉkĉi |Ψ0⟩

ω + (ϵλ − ϵ0)− iη
.

(6.5)
The purpose of this section is then to see if it is feasible to compute the

two-particle Green’s function in some subsystem around an impurity and use
it to compute a self-energy and in turn the one-particle Green’s function.

To be more explicit, consider a ring of 8 sites with an impurity at site 4,
occupied by two particles of opposite spin. The one-particle Hamiltonian in
the site basis of the ring is then:
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h =



0 −1 0 0 0 0 0 −1
−1 0 −1 0 0 0 0 0
0 −1 0 −1 0 0 0 0
0 0 −1 U −1 0 0 0
0 0 0 −1 0 −1 0 0
0 0 0 0 −1 0 −1 0
0 0 0 0 0 −1 0 −1
−1 0 0 0 0 0 −1 0


. (6.6)

We can compute the exact interacting and non-interacting one-particle
Green’s function from equation 6.2 and hence also the exact self-energy. We
know from the diagrammatic expansion of the self-energy that the interac-
tion lines start and end on interacting sites, i.e. only combinations of sites
that interact have corresponding non-zero elements of the self-energy in the
site basis. In this particular example, the only interacting site is site 4 with
a Hubbard interaction, hence the only non-zero element of the self-energy is
Σ4,4.

If we were to compute the two-particle Green’s function in a system
consisting only of the impurity and use equation 3.28 with the appropriately
sized G the resulting self-energy would be an approximation of the true self-
energy, however poor. Perhaps a subsystem of three sites with one impurity
is a better approximation, or five.

The purpose here is to numerically test the feasibility of this method; to
quantify how “poor” of an approximation the subsystem self-energy is we
define a norm function:

f(S) =
∑
ij

∫
dω|Σtrue

ij (S;ω)− Σapprox
ij (S;ω)|2. (6.7)

For a given system, the function f is then to be minimized over some
parameter space S.

6.1.2 Two-body correlation functions

From the equation of motion of the Green’s function, it is possible to con-
struct a density-density correlation function in the special case where the
interaction is purely local, i.e. v(1, 2) = v(1, 1)δ(1− 2).
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[
i
d

dz1
− h(1)

]
G(1, 2) = δ(1, 2)− i

∫
d3 v(1, 3)G(2)(1, 3, 2, 3+). (6.8)

The typical way of closing these equations is to introduce the self-energy,
a quantity which contains all the two-particle interactions otherwise de-
scribed by the two-particle Green’s function:∫

d3 Σ(1, 3)G(3+, 2) = −i
∫
d3 v(1, 3)G(2)(1, 3, 2, 3+). (6.9)

Writing out the arguments explicitly and taking into account that the
interaction is time-local: v(x1t1, x2t2) = v(x1, x2)δ(t1 − t2)∫

dx3dt3 Σ(x1t1, x3, t3)G(x3t
+
3 , x2t2) =

= −i
∫
dx3 v(x1, x3)G

(2)(x1t1, x3t1, x2t2, x3t
+
1 ).

(6.10)

With a quick look at the definition of the two-particle Green’s function:

G(2)(1, 2, 3, 4) =
1

i2
⟨T ψ̂(1)ψ̂(2)ψ̂†(4)ψ̂†(3)⟩ , (6.11)

one can see that if x3t3 = x1t
+
1 and x4t4 = x2t

+
2 then we have

precisely, less a minus sign, the two-particle correlation function: ⟨n̂(1)n̂(2)⟩.

To illustrate both the usefulness and downfall of this approach, consider
a two-site molecule:

H =
∑
iσ

ϵin̂iσ + t
∑
<ij>σ

(â†iσâjσ +H.c.) +
∑
ijσσ′

vσσ
′

ij n̂iσn̂jσ′ . (6.12)

With no assumptions on the structure of vσσ
′

ij one would have:

∑
kσ′′

∫
dt3 Σσσ′′

ik (t1, t3)G
σ′′σ′

kj (t+3 , t2) =
∑
kσ′′

−ivσσ′′

ik Gσσ′′σ′σ′′

ikjk (t1, t1, t2, t
+
1 ).

(6.13)
It is clear that no useful information can be extracted from equation

6.13 due to the ambiguity of vσσ
′′

ik . However, when considering a purely local
interaction, i.e. allowing only local on-site interactions, vσσ

′
ij = vσσ

′
ij δijδσ′σ̄:
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∑
kσ′′

∫
dt3 Σσσ′′

ik (t1, t3)G
σ′′σ′

kj (t+3 , t2) = −ivσσ̄ii Gσσ̄σ′σ̄
iiji (t1, t1, t2, t

+
1 ). (6.14)

Now if we set j = i, σ′ = σ and t2 = t+1 , we have on the right-hand side of
equation 6.14 the correlation function:

⟨niσniσ̄⟩ =
i

vσσ̄ii

∑
kσ′′

∫
dt3 Σσσ′′

ik (t1, t3)G
σ′′σ
ki (t+3 , t

+
1 ). (6.15)

This can be a powerful tool when considering systems with strong local
interaction and weak non-local interaction where the non-local part can be
neglected, however for more general types of interactions a different approach
is needed.

An alternative and novel, approach we have found is to use the Hellman-
Feynman theorem in combination with the Galitskii-Migdal formula for the
total energy.

The Hellman-Feynman theorem states that:

dEλ

dλ
= ⟨ψλ|

dĤλ

dλ
|ψλ⟩ , (6.16)

where λ is some parameter that appears in the Hamiltonian. In the case of
the interacting two-site molecule, the Hamiltonian is:

ĤC = t
∑
<ij>σ

(â†iσâjσ +H.c.) +
∑
ijσσ′

vσσ
′

ij n̂iσn̂jσ′ . (6.17)

If we substitute the Hamiltonian in equation 6.16 and let λ be anyone
of the matrix elements of vσσ

′
ij , the derivative will pick up the corresponding

term. For example, if we let λ = v+−
11 then:

dE

dv+−
11

= ⟨n1+n1−⟩ . (6.18)

Then, depending on the correlation function of interest one performs a nu-
merical derivative with respect to the specific interaction matrix element.
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An example:
Choose parameters→ Self consistency→ Compute total energy E1 → v+−

11 =
v+−
11 + δv
→ Self consistency → Compute total energy E2, then:

⟨n̂1+n̂1−⟩ =
E2 − E1

δv
. (6.19)

While this new procedure to find correlations is rather simple on paper,
its numerical implementation introduces significant complications, since now
one must in principle adopt a spinor formulation. Furthermore, additional
care is needed when studying a system consisting of a “molecule” connected
to semi-infinite leads. In this case the subtraction of the two energies per-
tains to two infinite systems (each of them with a lead-device-lead structure.)

6.2 Numerical Results

6.2.1 Non-Interacting Concurrence

This section serves as a means of verifying our code with analytical results
[19]. Furthermore, with a numerical solution we can test the approximations
made in order to obtain the analytical results. We, like the study in [19],
examine the generic quantum transport system in 1.1, with a hamiltonian
as in equation 5.1. The parameters used here are: ϵ = 1, TCC = 0.002,
ωijkl ≡ 0. We employ the wide-band limit: ΣR

α,emb → −iΓ
2
, with Γ = 0.01.

Figure 6.1: The numerical equivalent of the calculation done in figure a)
of [19], with and without the approximation f(ω) ≡ f(ϵ) respectively.

1) Constant fL/R(ω) 2) Exact fL/R(ω)
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Figure 1) in 6.1 represents the result obtained by our numerical im-
plementation of NEGF and perfectly reproduces the analytical results in
figure a) from [19]. Figure 2) in 6.1 shows the result from a near identi-
cal calculation except where the exact Fermi-Dirac distribution is used. The
concurrences in the different scenarios are similar, with 2) displaying a slight
overall decrease in concurrence between the quantum dots, indicating that
the approximation f(ω) ≡ f(ϵ) is appropriate.

Figure 6.2: Numerical equivalent
of figure b) in [19].

Figure 6.3: Numerical equivalent
of figure c) in [19].

Figures 6.1, 6.2 and 6.3 show that our implementation of the NEGF
method works as intended.

6.2.2 Galitskii-Migdal; effect of current

We saw in section 6.1.2 that we can compute two-body correlation functions
by use of the Galitskii-Migdal formula. Here we investigate what effect a
current has on this method.

We will work with the setup in section 5.2.1 which allows us to study a
finite system with currents present. We choose vanishing on-site energies,
i.e. ϵi = 0 ∀i and the nearest-neighbor hopping integral is taken to be -1.
The concerns lifted in section 6.1.2, with open systems are not present here.

We work in equilibrium, so that all the ensemble averages are over the
ground state. This allows us to easily verify what the exact correlation
function is: by diagonalizing Ĥ in the basis {|ψm⟩ = ĉ†i+ĉ

†
j− |0⟩}. If we, for

example, are computing the ⟨n̂4+n̂4−⟩ then the exact correlation function

43



is the coefficient of the basis state |ψp⟩ = ĉ†4+ĉ
†
4− |0⟩ in the ground state,

squared.
We start from a non-interacting ring of length L = 10, with the Hamil-

tonian from section 5.2.1 occupied by two electrons with opposite spin. In
the non-interacting case, the system is uniform and as such the density at
each site is just niσ = Nσ/L, where Nσ is the number of particles in the
system with spin σ. The correlation function ⟨n̂i+n̂j−⟩ factorizes, when non-
interacting, into ⟨n̂i+⟩ ⟨n̂j−⟩ ≡ N2

σ/L
2 = 12/102 = 0.01.

Figure 6.4: The dependence of the interacting and non-interacting correla-
tion functions with ϕ = θ/2π in a 10-site ring with an impurity at site 4.
The exact ground state average (blue) behind the results from GM method
(orange)

In figure 6.4 we display the different correlation functions computed ex-
actly and via the GM formula. For values of ϕ ∈ (−1, 1)\0, the system
exhibits currents. To compute the derivative, we used the forward difference
with a step size of h = 10−6. The discontinuities at ϕ = ±1

2
in figure a) in

6.4 are the result of a cusp in the total energy at that point, see figure 6.5
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Figure 6.5: The dependence of the total energy with ϕ = θ/2π

The main result here is that the method for obtaining correlation function
by means of applying the Hellman-Feynman theorem to the Galitskii-Migdal
formula works very well with and without currents present, it even works
reasonably well at the discontinuity. It is worth noting that this was only
tested in the presence of two electrons, and that one should in principle try
different configurations of the number of electrons and their spins.

If we look at table 6.1, where we compare the correlation function ⟨n̂4+n̂5−⟩
computed exactly in the ground state and via the GM formula, we see that
the results agree down to the 8th decimal place, exceeding the expected error
of O(h).

θ ⟨Ψ0| n̂4+n̂5− |Ψ0⟩ (d/dv+−
45 )E(vσσ̄ij )

0 0.00444333876596324 0.0044433376977792705
0.1(2π) 0.0043605484711364455 0.0043605483668329725
0.2(2π) 0.00408488336522125 0.004084881322086176
.3(2π) 0.003508679478010966 0.0035086780147963736
.4(2π) 0.0023371176286958936 0.0023371138357930477
π 1.7677036158870474e-32 6.661338147750939e-10

Table 6.1: Table comparing the exact correlation (from E.D.) and the cor-
relation function obtained by the GM method.
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Our new way to compute static particle-particle correlation functions
via derivatives of the GM total energy formula successfully applies to the
case of finite systems, and also in the presence of currents. However, it
is quite important to see if the method can be used for infinite system
such as those encountered in quantum transport. This would allow one to
compute correlation functions in the device region, and thus concurrence
and entanglement as well.

A lead-device-lead system is infinite in size and aperiodic, with a total
energy that is also infinite; hence a direct application of the GM formula
is not possible. Instead, one could imagine a limiting procedure where the
derivative of the GM formula is applied to larger and larger regions incorpo-
rating the device, to attain convergence when reaching far deep in the leads.
This amounts to assuming that a slight variation of an interaction term in
the central region (to perform the numerical derivative) produces a differ-
ence between a system with a given interaction and another with a slightly
varied one, and that such a difference vanishes deep in the leads. Thus, in
practice, the contributions coming from outside the considered region are
neglected altogether.

We have numerically tested this approach, and noted that convergence
is not really reached for quite large, albeit finite regions. Indeed, additional
tests for finite rings showed that the value of the correlation function ob-
tained in this way oscillates around the exact value on extending the region
and that, only when the entire ring is considered in the GM formula, the
value of the correlation function is always and obviously correct.

The Green’s function in the leads can be shown to be expressible in
terms of inbedding self-energies [42], where the latter in turn depend on the
fully interacting Green’s function in the device. This can be directly seen
by applying a folding procedure similar to the one used to determine the
embedding self-energy. If it is true that changing an interaction term in the
device region produces changes that vanish very deep in the leads, one could
incorporate the contribution of the entire leads by estimating analytically
the aforementioned difference.
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6.2.3 A possible non-perturbative G1-G2 scheme

Here we have investigated the plausibility of computing an exact two-particle
Green’s function in a subsystem and then using it to compute the self-energy
in the original system. The investigation is by no means exhaustive, but
rather represents a brief glimpse of what a G1G2-scheme [43] might have to
offer.

We chose an interacting ring, of length L = 8, as the testing grounds for
this idea, with the Hamiltonian in equation 6.1. We choose ϵi = 0, t = −1
and U4 = 3, i.e. the on-site energies are vanishing, the hopping strength
between neighboring sites is −1 and the Hubbard interaction at site 4 has
strength 3. For convenience of computation, we let the system contain 2

electrons with opposite spins. The Hilbert space then has size
(
8
1

)2
= 64.

From the Lehmann representation we can compute the exact non-interacting,
g, and interacting one-particle, G, Green’s functions:

Figure 6.6: Displayed here are the non-interacting and interacting Green’s
function of a ring of length L = 8.

From G0 and G we can compute the exact self-energy of the system:

Σ = G−1
0 −G−1. (6.20)
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Figure 6.7: Self-energy computed by equation 3.26.

The self-energy shown in figure 6.7 is then what we will refer to here
as the true self-energy of the system. As a sanity check we also show the
self-energy obtained from:

Σij =
∑
kl

vikGiklk(G
−1)lj, (6.21)

which, with exact G and G(2), should result in the exact self-energy as well,
see figure 6.8.

Figure 6.8: Self-energy computed by equation 3.28.

To approximate the true self-energy, we chose the subsystem to be a chain
of length LC with the impurity in the center. We then test three different
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lengths, LC of the subsystem, and compare the approximate self-energy in
the subsystems to the true self-energy.

The Hamiltonian of the subsystem becomes:

ĤC =
∑
i∈C,σ

ϵ̃iσn̂iσ + t
∑

<ij>∈C,σ

(ĉ†iσ ĉjσ +H.c.) + U4n̂imp+n̂imp−. (6.22)

The parameter space, S, over which we want to minimize the norm
function f(S) in equation 6.7, we take to be that spanned by ϵ̃1 and ϵ̃2,
where the former is the on-site energy of the non-interacting sites in the
subsystem and the latter the on-site energy of the impurity. The hopping
and interaction strength were kept true to the original system.

We used a built-in minimizer in the Julia programming language, which
utilized the Nelder-Maed algorithm.

Next, we present the result for different sizes of the subsystem.

Figure 6.9: Chain of length LC = 3 Figure 6.10: Chain of length LC = 5

Figure 6.11: Chain of length LC = 7
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LC ϵ̃1 ϵ̃2 min(f(S)) max(|Gtrue −Gapprox|)
3 -10.413321 0.66882 5.983312 0.8399
5 -4.965882 -1.71791 4.339877 0.8388
6 -2.420706 -0.73211 2.516465 1.51446

Table 6.2: The results of minimizing f(S) over {ϵ̃1, ϵ̃2}.

ϵi ̸=4 ϵ4 max(|Gtrue −GHF|)
0 8.90051E-02 0.8153

Table 6.3: On-site energies and deviation from exact Green’s functions in
the HF approximation.

We can see by visual inspection in figures 6.9-6.11 and confirmed by
table 6.2 that the LC = 3 and LC = 5 give better approximations to the
true Green’s function, with the LC = 7 subsystem performing significantly
worse despite a producing a smaller f(S). When comparing directly to the
HF approximation, we find that the LC = 3 and LC = 5 are of similar
accuracy. The reason for the LC = 7 discrepancy could possibly be due to
the norm function, f(S), not being a particularly suitable choice for this type
of optimization. Perhaps, since the carved subsystem is a chain, with open
boundary conditions, and the original system a ring, a more likely reason
is that the LC = 7 chain may not reasonably represent a region around the
impurity from the original system whereas the smaller chains might.

Our simple proposal appears to exhibit some attractive features which
could prove useful in order to establish a systematic non-perturbative G1-
G2 scheme. On the other hand, our analysis and conclusions rely on rather
limited numerical evidence and benchmarks. More specifically; one should
consider different geometries and electron configurations, and gain a more in
depth understanding regarding the convergence with respect to the number
of sites in the “carved” region.
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Chapter 7

Summary & Outlook

To summarize, the non-equilibrium Green’s function formalism was used to
study transport geometries. The NEGF’s are defined on the Keldysh con-
tour and they encompass the other flavors of Green’s function. The equation
of motion of the one-particle Green’s function which depends on higher or-
der Green’s functions. This leads to the introduction of the self-energy,
the quantity describing particle-particle interactions. Two different levels
of approximation for the self-energy were treated, HF and 2B. We briefly
discussed the Feynman diagram technique of perturbatively expanding the
self-energy in powers of the interaction. Ultimately the goal was to use the
Green’s functions in steady state, where we show that the equation of mo-
tion and the Green’s function can be written in a simplified form.
We considered two different systems; an open tight-binding chain and a
tight-binding ring. Open systems are in principle infinite, which obviously
is unfeasible to work with, thus an embedding self-energy approach was
used. The embedding energy maps the effect of the leads on to a finite
region allowing one to work with a “central” region along with embedding
self-energies. The finite ring was used as a testing grounds for two theoreti-
cal methods; a method for calculating two-body correlation functions and a
non-perturbative G1-G2 scheme.

We found that applying the Hellman-Feynman theorem to the Galitskii-
Migdal formula for the total energy, allows one to find any two-body cor-
relation function. This prescription was tested by applying it to quantum
ring geometries, where comparison with exact benchmarks showed that our
method works very well both in the equilibrium regime and in the presence
of steady state currents. Based on these results, and the mathematical na-
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ture of the procedure involved., it is our guess that our prescription should
also work well for transient currents for finite geometries (e.g. in rings or
for AC fields). Applying this method to open systems should in principle
also work; however, we found that a direct numerical implementation of our
protocol to a lead-device-lead setup (but where contributions far deep in
the leads were neglected) fails to reproduce the correct correlation function.
We thus concluded that an accurate (and largely analytical) inclusion of the
asymptotic contributions from the lead is a necessary ingredient to properly
assess the scope of the method and, if viable, to implement it numerically.

A preliminary investigation was performed into a possible non-perturbative
G1-G2 scheme. We investigate whether an exact two-particle Green’s func-
tion computed in a subsystem can to any degree approximate the two-
particle Green’s function of the full system. We applied this method to
a ring of 8 sites, with one impurity where subsystem was chosen to be a
chain “cut out” of the ring.

Despite being a short investigation, we find promising results in a finite
geometry. We expect better agreement between the approximate Green’s
function and the exact Green’s function if one were to expand the parameter
space S over which one optimizes the f(S). Furthermore, we are currently
developing a protocol to carry to this approximation in open geometries,
where access to the exact Green’s function is not available.
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