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Abstract

The Planes of Satellites Problem is an open question within the field of galaxy formation.
It is based on the observations that the Milky Way’s satellites, as well as those around the
Andromeda (M31) galaxy, align in planes. This applies both to the satellites’ positions
lying close to the plane of best fit, and to the satellites’ orbital planes aligning within a
narrow angle. Such planar structures are not predicted by the standard model of cosmology,
Λ Cold Dark Matter (ΛCDM). Simulations based on this model only very rarely reproduce
planes as thin and orbitally aligned as those we observe.

In this project, we worked with five hydrodynamical simulations to study the planarity
of each host-satellites system using both a spatial (plane height) and a kinematic metric
(orbital dispersion). Two of the five simulations represent general cosmological simulations,
while the remaining three form a set specifically modified to include a major merger of a
given mass ratio. This allowed me to test whether the size of past mergers influence the
formation of satellite planes. In all cases, we compared the five simulations to each other
and the observed systems, as well as to isotropic realizations, both with randomized radial
distributions and radial values corresponding to each simulation’s satellite distribution.
While the analysis focused on a single instance near z = 0 from each simulation, we
considered a longer time span in one simulation to obtain an impression of the longevity
of a plane.

From our results, we argue that all five simulations can be considered significantly pla-
nar, at least if the number of member galaxies belonging to the planes is kept variable.
The small sample size makes it impossible to make generalizations concerning how com-
mon planes are in ΛCDM overall, but the presented cases certainly show that systems
comparable to the Milky Way or M31 are possible within the standard theory. We further
found a plane that was nearly static in both spatial and kinematic metrics across 341 Myr,
although further analysis would be needed to establish how long-lived the plane is and
how common such stable planes are in the ΛCDM framework. Lastly, the modified suite
of simulations displayed a monotonic trend in which a larger major merger corresponded
to a thinner and more orbitally aligned plane in the resulting system.





Populärvetenskaplig beskrivning

The planes of satellite galaxies problem is a hotly debated topic in the research field of
galaxy formation. This problem is concerned with small, so-called dwarf galaxies. They
often contain only a few thousand stars and are 10 to 1000 times smaller than the Milky
Way, but they are much more common than large spiral galaxies. The Milky Way is
surrounded by at least 60 such galaxies, orbiting their large host as satellites. A similar
system is seen around the nearby Andromeda (M31) galaxy, which has at least 27 satellites.

The interesting detail about this host-satellite system is that many of the satellites
in each system align in a plane. At fist glance, this might not come as a surprise: The
planets in the solar system all orbit in a single plane, and even the Milky Way spiral arms
lie within the thin galactic disk. However, these two examples can be explained with our
current understanding of physics – the planes of satellites cannot. The standard model
of cosmology does not explicitly predict such planes to form, and simulations that were
developed to recreate similar systems only rarely produce thin planes.

This tension between theory and observation has created a vivid debate around the
topic of planes of satellite galaxies. Some claim that it is a failure of our standard model,
suggesting instead theories like "Modified Newtonian Gravity" to replace the assumption
of dark matter. Others suggest that the observed systems may have formed this way due
to specific factors, like several satellites joining as a group. With limited evidence for any
given theory, the question of why planes of satellites form remains unanswered.

This project works with two different sets of simulations to explore the discrepancy
between our theory’s predictions and the observed reality. One pair of simulations provides
a general impression of the results from cosmological simulations. The other set of three
simulations is modified to include specific formation events in which the host galaxy merges
with another galaxy. This allows us to explore large mergers as a possible explanation for
the formation of planes.
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Chapter 1

Introduction

The Λ Cold Dark Matter (ΛCDM) model of cosmology has been widely accepted as the
standard model thanks to its successes in predicting large-scale structures in the Universe.
On a scale much smaller than it was designed for, however, several challenges have been
discussed in the study of galactic formation. Specifically, these challenges focus on the
dwarf galaxies that are satellites of larger galaxies like the Milky Way or Andromeda.
Dwarf galaxies generally have stellar masses in the range of 103−7M⊙ and extend across
tens of parsecs to a few thousand parsecs (McConnachie, 2012). For comparison, the Milky
Way contains roughly 1011 stars and has a radius of about 15 kpc (Sparke and Gallagher,
2010).

Some challenges to the ΛCDM model are concerned with the mass and number of dwarf
galaxies around larger host galaxies. For example, the "missing satellite problem" relates
to the discrepancies between the large number of satellite galaxies predicted by ΛCDM
simulations and the relatively small number observed. Somewhat related, the "too big
to fail" problem concerns the large number of satellites in dark matter simulations which
have such high (dark matter) masses that they would be expected to form stars, with
only comparatively few luminous satellites being observed. There is also the "core-cusp
problem" in which many simulations predict a steeper increase in dark matter density at
the center of galaxies compared to observations (Bullock and Boylan-Kolchin, 2017). These
issues have been largely alleviated in recent years by moving from dark-matter-only (DM
only) simulations to simulations that also consider baryonic feedback (Garrison-Kimmel
et al., 2019). Baryonic feedback refers to processes through which regular, baryonic matter
influences galaxy formation. An important example is explosions of massive stars, so-called
supernovae. Supernovae drastically change the density and temperature of matter in the
surrounding regions and as a result they can lower the efficiency of galactic formation
as well as influencing the gravitational potential in dwarf galaxies (Hopkins et al., 2014).
When accounting for these feedback effects, simulations more commonly reproduce both the
number and mass-density-distribution of the observed satellite galaxies (Garrison-Kimmel
et al., 2019).

A more persistent challenge to ΛCDM, however, is the Planes of Satellite Galaxies
problem. Our Galaxy, the Milky Way, is surrounded by many small galaxies that are
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CHAPTER 1. INTRODUCTION

Figure 1.1: The Milky Way and M31 planes of satellites, taken from figure 1 in Pawlowski
(2018). The MW system is shown edge-on, M31 as seen from the sun. Red color indicates receding
velocities while blue indicates approaching velocities; crosses mark satellites without well-known
motion. Non-colored triangles show satellites that are not considered part of the respective plane
of satellites. The grey area in the Milky Way image marks the region that is difficult to observe
due to being obscured by the galactic disk. In the image for M31, the grey region is the region
outside the PAndS survey which provided much of the data.

considered our satellite galaxies, as they are gravitationally bound to the Milky Way. By
the 1990’s, only 11 such satellites had been discovered – these are now called the "classical
satellites". With better observational technology, that number has risen in the past two
decades and is currently at around 60 dwarf galaxies (Simon, 2019). When accounting
for observational incompleteness, the estimate rises to a total of up to 100-150 satellites
(Newton et al., 2018). The most luminous of these seem to align in a planar structure
with a root mean square (rms) thickness of 20-30 kpc (Pawlowski, 2018). This is very
thin considering that the distances from the center of the Milky Way reach out to around
300 kpc (Metz et al., 2006). The plane is visualized edge-on in the left part of figure 1.1.
Furthermore, there appears to be some degree of orbital alignment in the motions of the
satellites (Pawlowski, 2018): On average, the angular momentum vectors of the satellites
fall within ∼ 60◦ of the mean angular momentum vector.

Andromeda (M31), too, is surrounded by small satellite galaxies. A subset of 15 out of
the observed 27 dwarf galaxies forms a thin plane with rms thickness of 12.6 kpc, extending
outwards over 400 kpc. This subset and the plane formed by it is shown in the right part
of figure 1.1. The subset of 15 satellites was chosen after observing that smaller subsets
have a similar plane height but larger subsets appear much less planar (Cautun et al.,
2015) – specifically, defining the plane to have 16 members results in a much larger plane
height of 50 kpc (Samuel et al., 2021). Thus, this subset was intentionally chosen for
forming a thin plane and no other characteristics (such as luminosity or mass) differentiate
plane members from non-plane members. Still, the alignment of 15 satellites in such a
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CHAPTER 1. INTRODUCTION

thin plane is striking. Furthermore, the alignment of the orbital motions is even more
noticeable around M31 than in the set of Milky Way Satellites: 13 out of the 15 considered
satellites around Andromeda share the same sense of rotation (that is, counter clockwise or
clockwise) (Pawlowski, 2018). An isotropic system would have roughly half of the satellites
moving one way or the other. The sense of rotation is visible in the right part of figure 1.1,
where most of the satellites above M31 appear to recede, and most below it to approach
us.

Many studies have used simulations to test the likelihood of such planes forming.
Pawlowski et al. (2014) found that only around 0.2% of dark-matter-only simulations re-
produce constellations with similar spatial thinness or orbital coherence as the observed
Milky Way. These numbers become even smaller when requiring both aspects simultane-
ously. Another study, by Samuel et al. (2021), used hydrodynamical simulations (including
baryonic feedback) and found comparably thin or orbitally-aligned planes with a notice-
ably higher frequency of 1 − 5% of simulation snapshots. Still, it seems that ΛCDM
simulations, with or without baryonic effects considered, predict a much more isotropic
distribution of nearby dwarf galaxies than the one we observe. This discrepancy between
a typical simulation result and the observed planes around the Milky Way or Andromeda
is what constitutes the "Planes of Satellite Galaxies Problem".

Interpretations of the mentioned simulation results differ. Pawlowski (2018) sees it as a
critical flaw in ΛCDM theory that it neither explicitly explains why planes would form, nor
typically reproduces observed metrics in simulations. They propose instead a "tidal dwarf
theory". In this scenario, the satellites would have been created from tidal interactions of
two large galaxies. In a fly-by or collision of two galaxies, the tidal forces can expel some
material into a "tidal tail" structure. The displaced gas might then cool and collapse into
dwarf galaxies, arranged like "beads on a string" along a tidal tail (Bournaud, 2010). If,
for example, the Milky Way collided with another galaxy oriented at a nearly 90◦ angle
to the Milky Way disk, models predict that the tidal tails might form a ring-like structure
around the Milky Way (Pawlowski et al., 2012). If regions of the tidal tails collapse into
tidal dwarf galaxies, those would then also be located along narrow bands in space. The
tidal dwarf theory can thus explain the formation of a highly anisotropic distribution
well. However, tidal dwarf galaxies are devoid of dark matter, while the observed satellite
galaxies are considered to contain dark matter (Pawlowski, 2018). This, of course, cannot
be resolved under the ΛCDM model. Other cosmological models without dark matter have
been proposed and support the tidal dwarf theory, such as Modified Newtonian Dynamics
(MOND) (Pawlowski et al., 2012).

Other approaches consider special factors that can increase the likelihood of plane for-
mation within ΛCDM cosmology. One explanation, called the group-infall theory, suggests
that if several dwarf galaxies were accreted together, it would be expected that they share
similar locations and orbital motion (Pawlowski, 2018). Specifically, Samuel et al. (2021)
have found that the presence of one particularly heavy satellite, which is often accom-
panied by more smaller satellites, can increase the likelihood of planes forming. In their
study, they found that generally only ∼ 0.3% of their simulations were simultaneously as
thin and orbitally coherent as the Milky Way, while ∼ 5% of simulations that include a
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satellite comparable to the Large Magellanic Cloud (LMC) fulfill both criteria. Still, in
these scenarios the typical number of satellites accreted as a group was between 2 and
4. This small-group-accretion does not fully explain why 14 or more of the Milky Way’s
satellite galaxies all align in the same plane (Pawlowski, 2018; Samuel et al., 2021). In-
stead of simply accreting a small group of dwarf galaxies, group-infall theory could also be
extended to major mergers in which the merging hosts each bring a number of satellites to
the combined system. Indeed, Smith et al. (2016) show that a merger with mass ratio 1:2
can lead to very thin (10-40 kpc) and very stable (over up to 6 Gyr) planes of satellites, if
the merger happens under the right conditions. For example, one of the conditions relates
to the position of satellites during the merger, as satellites far outside of the plane of the
merging event will not form a plane.

Yet another possibility is that the observed plane is merely a temporary alignment,
not a meaningful, orbitally stable constellation (Lipnicky and Chakrabarti, 2017). In this
interpretation, the rarity of planes in simulations simply means that they are a statistical
fluctuation from the more isotropic norm. Alternatively, it can be argued that the small
probability of finding Milky Way-like planes in simulations is due to the large variety of
planes: The number of satellites considered part of the plane, their orbital motion, and
their radial positions are all parameters that influence the plane metrics, thus potentially
making a simulated plane with the same height as the Milky Way plane of satellites appear
very different (Cautun et al., 2015). Considering this variety could redefine the notion of
"rarity" of a plane, as it might be quite common in simulations to find a plane that is
highly unlikely to be obtained from an isotropic distribution. By this line of reasoning,
many simulated systems are comparable to the observed planar systems of satellites.

All theories for the origins of planes, as well as the varying interpretations of statistics,
require further studies to be considered definitive. This project aims to provide additional
samples regarding the characteristics of satellite planes found in simulations. We also in-
vestigate the influence that the last major merger of the host galaxy may have on the
system of satellites. To study the presence or lack of satellite planes, the entire galaxy for-
mation process must be taken into account. Therefore, we use data from five cosmological
simulations based on hydrodynamic modelling and considering detailed physics of galaxy
formation, including baryonic feedback.
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Chapter 2

Method

In this chapter we introduce the five simulations we worked with. We then outline how
planes of satellites are quantified by a spatial and a kinematic metric, and how we chose
which satellites to consider from each simulation. Lastly, we explain the isotropic systems
that we used for comparison with found planar metrics.

2.1 Simulations
Cosmological simulations1 always start with some initial conditions for the density dis-
tribution of matter (sometimes only considering dark matter, sometimes both dark and
baryonic matter). Then, the physics defined in the code integrates the system forward in
time: All mass particles will exert a gravitational pull on each other and so change the
mass distribution, which in some regions leads to collapse of matter into bound structures
like galaxies. If baryonic physics is considered then parameters like density thresholds and
local temperature are defined to determine when, where, and how star formation and stel-
lar feedback happen. Typically, the initial conditions correspond to the universe at very
high redshift (with a near-homogeneous initial mass distribution) and run until around
z ∼ 0 which would correspond to the present time.

Specifically, this work uses a new suite of cosmological simulations, to be presented
in Agertz et al. (in prep). To find suitable initial conditions for each halo of interest, a
dark matter only simulation was run from z = 99 until z = 0. This DM only simulation
considers a box of size ∼ 73 Mpc. It assumes a flat ΛCDM cosmological model and
parameters compatible with Planck Collaboration et al. (2016): Ωm = 0.3139, H0 = 67.27,
σ8 = 0.8440, and ns = 0.9645.

The initial volume for this simulation was created using the genetIC software (Stopyra
et al., 2021). The time evolution was run using the adaptive mesh refinement (AMR)
code RAMSES (Teyssier, 2002). Details on this DM simulation can be found in Rey and
Starkenburg (2021).

1See for example Hopkins et al. (2014) for details on the simulations used in Samuel et al. (2021).
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2.1. SIMULATIONS CHAPTER 2. METHOD

From the results of the DM only simulations, the galactic halos of interest were selected
according to the following criteria:

• Milky Way-mass: The virial mass M200 contained within r200 is M200 ≈ 1012 M⊙ (e.g.
Cautun et al. 2020; Deason et al. 2021; see Wang et al. 2020 for a review). Here, r200
is the virial radius defined by the enclosed matter having density ρ = 200ρcrit, with
ρcrit being the critical density of the universe.

• Isolated: There are no other dark matter halos of comparable mass within 5 r200.

• Last major merger (LMM): The last major merger happens between 8-10 Gyr before
z = 0, corresponding to estimates for the Milky Way (Borre et al., 2021).

For each selected halo, a spherical region of radius 3 r200 at z = 0 was tracked back to
the simulation’s beginning at z = 99. Again using the genetIC software (Stopyra et al.,
2021), the corresponding initial conditions were found with an increased mass resolution2.
From these zoomed-in initial conditions, the halos of interest could then be resimulated in
more detail. This was done using hydrodynamic and N -body code RAMSES. Details on
the galaxy formation physics used can be found in Agertz et al. (2021).

The selected halos are named 599, 685, and 715 in the corresponding halo catalogue,
and these names will be used throughout this thesis. The snapshots near z = 0 that
were used from each simulation are shown in figure 2.1. 715 is an elliptical galaxy, 599 a
late-type galaxy with an extended disk, and 685 has a smaller and younger disk. They all
have stellar masses in the range 2− 4× 1010 M⊙, similar to the Milky Way (Licquia and
Newman, 2015).

Two "genetically modified" versions of halo 685 were also used: 685x09 and 685x12.
These differ from 685 in the mass of the last major merger (at z ∼ 2, or ∼ 10 Gyr ago),
which was modified to have mass ratio of 1:1, 1:3, and 1:8 for 685x12, 685, and 685x09
respectively. The progenitor to the main halo at the time of the merger has a dark matter
halo of mass 2 × 1011 M⊙, and the modified merging galaxies have masses in the range
∼ 5× 108 − 5× 109 M⊙. This agrees with estimates for the galaxy which merged with the
Milky Way to form the "Gaia-Enceladus-Sausage" structure (Feuillet et al., 2020).

From the simulations, a halo-finder extracted the positional and velocity data near
z = 0, which is what we used for our analysis. Usually, only a single snapshot’s data
was used, but in the case of simulation 715, the analysis was compiled from 11 different
snapshots (∆t ≈ 341 Gyr) near z = 0.

2to particle masses = 2.3 · 105 M⊙
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2.1. SIMULATIONS CHAPTER 2. METHOD

Figure 2.1: Simulation snapshots. The scale of the images is 500 kpc. The luminosity and dark
matter density are drawn with arbitrary units. The redshift for each snapshot is noted in the
leftmost image.
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2.2. PLANE METRICS CHAPTER 2. METHOD

2.2 Plane metrics
To quantify the planarity of a system with Nsat satellites, we use one spatial and one
kinematic metric, as is common in the literature. The spatial planarity is characterized by
the root mean square (rms) height:

∆h =

√∑Nsat

i=1 (d2⊥)

Nsat

(2.1)

This is the same formula as equation (1) in Samuel et al. (2021), with d⊥ giving the
orthogonal distance from satellite i to the plane. ∆h is calculated for 2·103 different planes3

with normal vectors evenly sampling the unit sphere. The plane with the smallest rms-
height is then considered the plane of best fit to the position sample, and this minimum of
∆h is cited as the system’s rms height. The reason for sampling a large number of planes
rather than taking a least-mean-square approach to plane-fitting is that the presented
method forces all planes to go through the origin, that is, through the center of the host
galaxy. The set of planes is created by choosing x, y, and z values (independently of each
other) from a normal distribution and then normalizing them to a unit normal vector4:

n̂ =
1√

x2 + y2 + z2

x
y
z

 (2.2)

Using a finite number of randomly generated plane normal vectors like this introduces an
uncertainty, since there is a slight fluctuation in the number of normal vectors per solid
angle. Thus, when calculating ∆h for one system using two different sets of 2000 planes,
the result will be slightly different. The variation in measurements for 2000 planes is of
the order of 10−1 kpc.

To measure how well the motions of satellites align with each other, rms orbital disper-
sion (∆orb) is often used. On average, the angular momentum vectors of all plane members
will fall within an angle ∆orb of the mean angular momentum vector. This quantity only
considers the direction rather than the magnitude of the angular momentum vector. Thus,
the vectors considered are the unit vectors for the position, n̂pos = r⃗/|r⃗|, and for the veloc-
ity, n̂vel = v⃗/|v⃗|. For each satellite i, the unit angular momentum vector is then calculated
as the cross product of position and velocity:

n̂orb,i = n̂pos,i × n̂vel,i (2.3)

3The choice of using 2000 planes comes from balancing the increased computational time of using a
large number of planes with the increased uncertainty of using fewer planes. Samuel et al. (2021) used
104 planes to calculate ∆h, while Cautun et al. (2015) state 103 planes in the appendix. Since ∆rms is
typically rounded to the nearest integer value in literature, we allowed for the uncertainty of < 0.5 kpc
that comes with our choice of 2000 planes.

4The code to do this was written with help of Eric Andersson.
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2.3. SATELLITE SELECTION CHAPTER 2. METHOD

(a) The unit vectors for position and ve-
locity, as well as the angular momentum
unit vector n̂orb.

(b) The n̂orb vectors of 14 satellites, as well as a
cone with half angle ∆orb ≈ 52◦ centered around
the mean orbital vector. This example is slightly
more aligned than the Milky Way system and
as such this system would be considered highly
orbitally aligned.

Figure 2.2: Illustration of the orbital dispersion

This is illustrated for a sample satellite in figure 2.2a. n̂orb can be seen as the normal vector
of the plane in which the satellite orbits the host.

From this set of vectors, the mean orbital vector n̂orb,avg is found by averaging component-
wise over all i satellites. The typical angle between the average and an individual vector
is calculated as follows:

∆orb =

√∑Nsat

i=1 (arccos n̂orb,avg · n̂orb,i)2

Nsat

(2.4)

This is analogous to equation (3) in Samuel et al. (2021). A dispersion of ∆orb = 0◦ would
mean that all orbital vectors perfectly align and all orbits lie in the same plane. Figure
2.2b pictures ∆orb for an example with 14 satellites.

2.3 Satellite selection
For each host galaxy, we consider only the satellites in a certain range of distances from
the host. To exclude any star cluster that lies within the host galaxy (which might be
misidentified by the halo finder), all objects within 25 kpc are discarded. This is comparable
to the distance from the Milky Way to its nearest satellite galaxy (Kroupa et al., 2005). Any
galaxies further than 300 kpc from their host are also discarded, following the parameters
used by Samuel et al. (2021). This selection function is similar to the selection of Milky
Way satellites (Garrison-Kimmel et al., 2019).

The number of satellites within this region differs between simulations, just as the
number of satellites around the Milky Way and around Andromeda are different. Figure
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2.3. SATELLITE SELECTION CHAPTER 2. METHOD

Figure 2.3: Cumulative mass function of the satellites within 25 kpc < d < 300 kpc of the host

2.3 shows the abundance of satellites of different masses in the simulations as well as the
two observed systems. The Milky Way and M31 data was adopted from Garrison-Kimmel
et al. (2019) and Torrealba et al. (2019).

All simulations have mass functions comparable to both observed systems, falling for the
most part in between the Milky Way and Andromeda mass functions. Our simulations are
thus realistic representations of a host-satellite system and provide a useful tool for better
understanding the systems in the local Universe. 685x12 is the biggest outlier in terms of
the mass function: It has a larger number of heavy satellites, meaning that its heaviest
27 satellites are all heavier than 4.5 · 106M⊙. Still, the number of very heavy satellites
(≥ 107M⊙) in 685x12 is similar to the other simulations and the observed systems. The
total number of satellites in the given region ranges from 11 (685x09) to 58 (685x12).
The Milky Way plane is generally considered to have 14 satellites in this thesis, while the
Andromeda system has 27 satellites.

Our analysis considers two ways to treat these different numbers of Nsat: In the first
part, Nsat is kept variable, testing many different subsets of satellites, while the second
part keeps Nsat fixed for a more detailed comparison of selected subsets.

The approach of keeping Nsat variable is informed by the fact that both the Milky Way
and M31 planes include only a subset of the total satellite population. Cautun et al. (2015)
raised the criticism that the Great Plane of Andromeda includes only 15 of 27 satellites,
and this subset of 15 is not characterized by mass or a similarly clear parameter. Therefore,
it is appropriate to consider all possible subsets within a satellite system when searching
for planes. This will elucidate the variety of planes that can be defined in any host-satellite
system, depending on which dwarf galaxies are considered part of the plane.

11



2.3. SATELLITE SELECTION CHAPTER 2. METHOD

(a) The 6 satellites nearest to a random sample
plane (seen edge-on) are marked.

(b) The plane of best fit to this set is calculated,
shifting the plane slightly from the one that was
used for subset-selection. This example had ∆h =
3 kpc.

(c) Using the same sample plane as before for sub-
set selection, Nsat is increased. Marked here are
the 14 satellites closest to the sample plane. This
set has ∆h = 7 kpc.

(d) For comparison, this figure shows an alter-
native method of selecting a subset. The marked
satellites are those with the largest mass. This
subset has ∆h = 21 kpc.

Figure 2.4: Subset selection illustration
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Similarly to the M31 system, we chose subsets from the list of the 27 heaviest satellites
in each system. If the total number of satellite galaxies within the given distance to the
host was smaller than 27, all possible satellites were considered.

The number of possible subsets with Nsat satellites is immense, especially when Nsat <<
27. To reduce the computational time, Cautun et al. (2015) suggest a method for selecting
subsets of satellite galaxies:

• Create a random plane and calculate the distance of each satellite to the plane.

• Order the satellites by distance and choose the Nsat = 6 satellites5 that lie closest to
the plane as the first subset. See figure 2.4a.

• Calculate the rms height ∆h and orbital dispersion ∆orb for this subset as described
above. See figure 2.4b.

• Increase Nsat to include more and more satellites in the subset, and calculate metrics
for each set. See figure 2.4c.

• Once Nsat = 27 is reached (including all considered satellites), create a new random
plane. Again, order the satellites by distance and choose subsets for each value of
Nsat. Repeat the whole process for 1000 random planes. 6

This method drastically reduces the number of subsets to test while still covering many
possibilities that result in thin planes. This bias towards searching for thin planes is
justified in the context of the Planes of Satellite Galaxies problem: For each system, only
statistically significant or "thin" planes are discussed. After all, it is possible to find less
statistically significant planes among subsets of the Milky Way or Andromeda satellites
than those that are considered "the" plane of satellite galaxies in each case. Still, while
the discussion will focus on the thin planes found, the results from an unbiased, random
selection of subsets is provided in the appendix for completeness (figures A.1 and A.2).

The number of satellites included in a plane will of course affect its thickness. In a first
step, we merely visualize the range of values obtained from the above method, plotting the
plane metrics calculated for each subset. For a more analytical comparison across different
values of Nsat, one can consider the likelihood to obtain a constellation of satellites with a
given ∆h or ∆orb from isotropic systems.

2.4 Comparison to isotropic distributions
When interpreting planar metrics found for different subsets and varying Nsat, it is useful
to have an isotropic baseline to compare to. For each subset size Nsat, isotropic systems

5Cautun et al. (2015) vary Nsat starting at 3, but to decrease computational cost, I started subset
sampling at Nsat = 6 instead.

6Cautun et al. (2015) stated that using 103 planes results in finding a large fraction (70%) of the subsets
that were found when using 104 planes for subset selection, but using 104 planes drastically increased
computational time.
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with the same number of members were created7. The isotropic realizations were generated
by randomizing the radial and angular coordinates separately from each other. The radial
value r was chosen from a linearly spaced list between 25 and 300 kpc (see the parameters
laid out for satellite selection). The direction was randomized by choosing the values for x,
y, and z from a normal distribution, then converting them to a unit vector n̂ according to
equation (2.2), similarly to how the random plane normal vectors were created. The result-
ing position vector is then simply r⃗ = r · n̂. Thus, both the angular and radial components
are fully randomized, but decoupled from each other. The fully randomized comparison
is helpful as we understand such statistical distributions better than distributions that
depend on simulated parameters.

The radial distribution of a fully randomized scenario will likely be different from the
radial values in a simulated or observed system. The radial distribution, of course, has
an effect on the planarity of a distribution: A more radially concentrated group of points
is more likely to have a small rms height compared to a group at larger radial distances
(Cautun et al., 2015). To account for the varying radial distributions, several authors com-
pare to what we will refer to as "semi-randomized distributions" of satellite halos (Samuel
et al., 2021). They are still isotropic, since the direction (n̂) in which any satellite is found
is determined randomly. However, the radial distances (r) are kept the same as in the
simulation, making these systems not fully random. Since this method uses the system’s
radial values, the semi-randomized distribution would have to be calculated for each indi-
vidual subset of satellites. This is computationally expensive. Therefore, we mainly use
this method when analyzing select subsets from each simulation. The probability relative
to a semi-randomized distribution is used by Cautun et al. (2015), who define the "promi-
nence" of a plane as the inverse of said probability. We will consider probabilities of < 5%
(or, equivalently, any prominence of > 20) to be statistically significant, in line with the
criteria set in Samuel et al. (2021).

The kinetic isotropic analysis randomizes both the position and velocity as described
above. Since ∆orb uses only unit vectors, the radial values are irrelevant and there is no
distinction between semi and fully randomized systems.

7When selecting subsets in simulations, we chose Nsat plane members from a total of up to 27 satellites.
For time reasons, this was not done in the isotropic scenarios. Instead, these directly consider Nsat satellites
with randomized positions.

14



Chapter 3

Results

This chapter presents the findings regarding both the spatial thickness and the orbital
dispersion of planes in the simulations. For both metrics, I first explore planes formed
from all subsets of satellites chosen via Cautun et al. (2015)’s method (selecting the Nsat

satellites closest to a test plane) and then the planes of a few specifically selected subsets.
The former method is useful both for direct comparison with the Andromeda system and
for the discussion of variety and rarity of planes. The more specific plane selection is mostly
used for direct comparison with the Milky Way and to examine a few interesting values
more closely. Lastly, I show how an example plane of 8 satellites behaves across a time
span of 341 Myr to study the longevity of planes.

3.1 Plane height

3.1.1 Variable subsets

We begin by studying the plane heights from all tested subsets in the different simulations.
As mentioned before, the Great Plane of Andromeda is often defined with a subset of 15
out of the total 27 satellites – a subset chosen to minimize the plane height (Cautun et al.,
2015). Figure 3.1 shows plane heights obtained from a large sample of subsets within
our simulations, with the minimal plane height for any given sample size Nsat marked by
the dotted line. The histograms are column-normalized, so that yellow corresponds to
the most common ∆h-value for each Nsat. This was done because the number of possible
subsets changes with the size of the subsets, giving each column a different total number
of entries. Note that the data for simulation 715 is compiled from 10 different snapshots
with a maximum of 14 satellites spanning 341 Myr in simulated time.

For comparison, each plot contains a white dashed line marking the mean value for fully
randomized distributions with each value of Nsat. While the actual statistical significance
was not computed for each subset, intuitively, any histogram entries far away from the
isotropic mean can be considered statistically unlikely.
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(a) 685-simulations

(b) Independent Simulations

Figure 3.1: Heights of the tested subsets in each simulation
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Also marked is a range of values for the Milky Way at Nsat = 14 with ∆h,MW = 20−30
kpc (Samuel et al., 2021). For the plane of satellites around the Andromeda galaxy, two
values are marked: ∆h,M31(a) = 12.5 kpc (Cautun et al., 2015) and ∆h,M31(b) = 50 kpc
(Samuel et al., 2021) from considering Nsat = 15 and 16 respectively. Each histogram
is further accompanied by a projection showing the probability of each rms height value
among the samples. This visualizes the range of plane heights when Nsat is kept variable.

Generally, all simulations contain a number of planes thinner than the isotropic mean
values. Simulation 685 and 685x12 contain planes comparable to the Milky Way and
Andromeda, with some subsets in the latter forming planes even thinner than ∆h,M31(a).
The other simulations contain notably fewer satellites in total. This decreases the spread
in possible rms heights and makes it less likely to find extremely thin subsets unless the
complete set is planar. The full sets from 685x09, 715, and 599 appear more comparable
to an isotropic system than to the Milky Way or Andromeda values. Still, it is possible to
select a subset with Nsat < Ntotal in each simulation that forms a thin plane (see the dotted
red lines reaching well below the isotropic mean). The existence of a single such subset is
enough to define "the" plane of the system, just as the Great Plane of Andromeda is taken
to be the thinnest subset with 15 members (Cautun et al., 2015).

As mentioned earlier, simulations 685x09, 685, and 685x12 form a progression from a
fairly small last merger to a heavy last merger. In this progression, is it apparent that
the systems become more and more anisotropic. The range of plane heights in system
685 for example extends well below the isotropic mean until higher values of Nsat than is
the case for 685x09. In 685x12, all planes found are thinner than expected from isotropic
distributions. The data levels out towards high values of Nsat, showing that the full set of
its 27 satellites lie in a single, thin plane. 685x12 is more planar than the Milky Way or
the Andromeda system when considering the thinnest subsets.

3.1.2 Fixed subsets

In the case of the Milky Way satellite system, the typically cited plane consists of the
Nsat = 14 heaviest satellites. For a more direct comparison with this scenario, this section
will focus on the fixed set of the heaviest 14 satellites in each simulation. To provide further
examples, we also discuss the sets with 14 and with 10 members that minimize plane height
(that is, the subsets corresponding to the lowest data entries in columns Nsat = 14 or 10
in figure 3.1).

Figure 3.2 shows the rms height as well as the fully and semi randomized distributions
created for each system of the 14 heaviest satellites. The vertical lines in the distributions
mark the mean values. 685x09 poses an exception in that it had a maximum of 11 satellites
and is compared to a fully randomized distribution with that number of galaxies instead.
The Milky Way range of values is again marked in all plots for comparison. We further
created a semi-randomized distribution for the Milky Way satellites, which is shown in
figure 3.2f. The radial distance data for this was taken from Garrison-Kimmel et al. (2019)
and Torrealba et al. (2019), similarly to Samuel et al. (2021).
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(a) Simulation 685x09 (with Nsat = 11) (b) Simulation 685

(c) Simulation 685x12 (d) Simulation 715

(e) Simulation 599 (f) Milky Way

Figure 3.2: The rms height determined for each simulation, shown with the semi-randomized
distribution created for that simulation as well as the isotropic distribution for the same parame-
ters.
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Heaviest Nsat = 14 Thinnest Nsat = 14 Thinnest Nsat = 10
Simulation ∆h Semi Fully ∆h Semi Fully ∆h Semi Fully
685x091 61 kpc 11% 42% - - - 50 kpc 3.9% 24%

685 84 kpc 51% 80% 37 kpc 0.07% 1.3% 24 kpc 0.05% 0.7%
685x12 22 kpc 0% 0.001% 7 kpc 0% 0% 5 kpc 0% 0%

715 86 kpc 20% 84% - - - 47 kpc 0.74% 19%
599 76 kpc 55% 62% - - - 32 kpc 0.3% 3.4%

Milky Way 25 kpc 0.2% 0.01% - - - - - -

Table 3.1: Percentage of semi-randomized or fully randomized isotropic realizations with thinner
or equally thin planes as each simulation. The first set of columns corresponds to the set of the
14 heaviest satellites in each simulation (or 11 in the case of 685x09). The second is the thinnest
plane with 14 satellites, if it is different from the first set. Lastly, the thinnest plane with 10
satellites. Subsets were chosen from up to 27 satellites, as in the previous section. Entries of
"0%” were approximated from results of < 10−4%.

Table 3.1 lists the percentage of planes in each random distribution that had an rms
height of less or equal to that found for the simulation. This computation was done for all
three mentioned sets (where applicable): The 14 (or 11, for 685x09) heaviest satellites, the
14 satellites minimizing plane height, and the 10 satellites minimizing plane height. Here,
a percentage of < 50% implies that the simulation is more planar than would be expected
from an isotropic distribution. Visually, this simply corresponds to the simulation value
lying to the left of the indicated mean values in figure 3.2. Following Samuel et al. (2021),
we will consider any plane with a fraction of < 5% to be significant. These values are
marked red in the table.

The only difference between the fully and semi-randomized methods is the radial distri-
bution. To better understand this effect, figure 3.3 shows the cumulative radial distribution
of the Milky Way as well as the simulations. The grey background is the spread of 1000
fully randomized realizations, with the black line marking the isotropic mean.

Clearly, the Milky Way satellites are more radially concentrated than most isotropic dis-
tributions. Generally, a more radially concentrated group of points will be expected to give
a smaller rms height, hence why the semi-randomized distribution in figure 3.2f is centered
around a lower mean than the fully randomized distribution. Meanwhile, simulation 715
for example has no satellites at distances below 100 kpc and is thus noticeably less radially
concentrated. This explains the shift towards higher rms heights in its semi-randomized
distribution.

As a result, while simulation 715 seems not very planar when judging purely by plane
height and is well within the expected values for an isotropic distribution, it turns out
that it is anisotropic when accounting for the radial distribution. This simply means
that a system with all satellites quite far away from the host galaxy is unlikely to be as
planar as simulation 715 is. Meanwhile, the fact that the Milky Way satellites are more
radially concentrated is not enough to explain the thinness of the observed plane, since the
statistical significance persists even when comparing to semi-randomized realizations.
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Figure 3.3: Number of satellites (of the 14 heaviest) within distance d of the host. The gray
background shows the spread of 1000 random realizations

Out of the sets of the heaviest satellites, only simulation 685x12 has a plane thin enough
to be considered statistically significant. It is thinner than the Milky Way plane and
even more prominent than the Milky Way plane when considering its radial distribution.
Simulations 685 and 599 match closely the expectation values (with probabilities near
50%). Simulations 685x09 and 715 appear insignificant relative to a fully randomized
distribution, but due to their radial distribution lying further out than the isotropic mean,
they are somewhat rare in semi-randomized scenarios.

When choosing subsets to minimize the plane height, every simulation contains a sta-
tistically significant plane. Among the set of 685-simulations, the plane height as well as
the isotropic probability decrease from 685x09 to 685x12 when considering 10 satellites.
This corresponds to the general trend observed in figure 3.1a.

It is important to keep in mind that detecting a single significant plane in any given
simulation is enough to consider that simulation planar, unless specific conditions are
imposed on the definition of satellite planes (such as only allowing subsets consisting of the
heaviest Nsat satellites in a system). Thus, each of our simulations can be seen as planar
and planar configurations of satellites appear to be common.

20



3.2. ORBITAL ALIGNMENT CHAPTER 3. RESULTS

(a) 685-simulations

(b) Independent Simulations

Figure 3.4: Orbital dispersion of the tested subsets in each simulation
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(a) All simulations with Nsat = 14
(b) Simulation 685x09 compared to isotropic real-
izations with Nsat = 11

Figure 3.5: Orbital dispersion of the 14 (or 11) heaviest satellites in each simulation

3.2 Orbital alignment

3.2.1 Variable subsets

Figure 3.4 shows the equivalent to figure 3.1 for orbital dispersion. Again, the dashed line
shows the mean value from isotropic distributions, the dotted line the measured minima,
and the orange marker shows the orbital dispersion of the Milky Way plane of satellites
at about ∆orb,MW = 54 − 66◦ (Samuel et al., 2021). Only line-of-sight velocity data is
available for the M31 satellites, so orbital dispersion cannot be calculated for that system.

Out of the shown systems, 599 and 685x09 appear the least orbitally aligned – generally
even less so than an average isotropic system, with only a few exceptions of more aligned
subsets. Simulation 685 and 715 lie below the isotropic mean and show values comparable
to the Milky Way system. Simulation 685x12 stands out as the only simulation with values
of ∆orb < 50◦, and ∆orb ≈ 50◦ even at large Nsat. This is more orbitally coherent than the
Milky Way satellites.

3.2.2 Fixed subsets

As before, we will also compare the orbital dispersion of the simulations to the Milky Way
under the condition of using the 14 heaviest satellites as a fixed set. Again, simulation
685x09 is compared to an isotropic distribution of 11 satellites instead. The orbital disper-
sion of each set, as well as that of the Milky Way, are shown in figure 3.5 over a background
of an isotropic distribution. Table 3.2 then lists the corresponding orbital dispersions and
the probability associated with each value relative to the isotropic distribution.

All simulations except 599 in figure 3.5a lie below the isotropic mean, implying that the
systems are somewhat orbitally aligned. However, the isotropic distribution is quite broad
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and both simulations 599 and 685 fall relatively close to the isotropic mean. Simulation
685x12, just as in the spatial metrics, lies towards the very tail of the random distribution,
even more so than the Milky Way values. Simulation 685x09 is again the least orbitally
coherent.

Heaviest Nsat = 14 Min. Nsat = 14 Min. Nsat = 10
System ∆orb Probability ∆orb Probability ∆orb Probability
685x09 88◦ 84% - - 83◦ 62%

685 74◦ 14% 55◦ 0.004% 52◦ 0.9%
685x12 52◦ 0.0001% 46◦ 0% 43◦ 0.1%

715 68◦ 3.8% - - 54◦ 1.2%
599 86◦ 70% - - 64◦ 7%
MW 60◦ 0.3% - - - -

Table 3.2: Orbital dispersion and the cumulative likelihood of obtaining each value from an
isotropic system. The first results describe the subsets of the 14 (or 11, for 685x09) heaviest
satellites; then the most orbitally aligned with Nsat = 14 and 10 respectively.

Table 3.2 further lists the orbital dispersion and associated isotropic probability for the
sets minimizing ∆orb in each simulation, given Nsat = 14 and Nsat = 10. As expected from
the distributions in figure 3.4, all simulations except for 685x09 have subsets that are much
more orbitally aligned than expected from an isotropic distribution. Still, only simulations
685 and 685x12 contain subsets that are as statistically significant as the Milky Way plane
(for the chosen values of Nsat, at least).

3.3 Time-variance of planes
To explore the development of planes over time, we considered 11 different snapshots of
simulation 715. This covers a time span of around 341 Myr. The most obvious development
across these snapshots is that the number of satellites in the region between 25 and 300 kpc
varies. Snapshots 0-3 have between 12 and 14, while snapshots 4-7 only have 9 satellites
in total. Later, in snapshots 8-10, the number increases to 11 again. With one exception,
this appears to be due to the halo finder not always identifying all of the smaller galaxies.
The exception is from snapshots 3 to 4, where one satellite crosses the distance of 300
kpc to the host and is subsequently no longer considered in our analysis. In future work,
improved halo finding will be prioritized.

The movement of the satellites is visualized in figure 3.6a. Satellites that disappeared
between snapshots are recognizable as pale points without direct trace to a clearly visible
point. The velocities of the satellites range from around 55 to 110 km/s. In 340 Myr, this
corresponds to a movement of around 20-40 to kpc.

The movement of the satellites will of course affect the planarity of the system. For a
direct comparison across snapshots, we selected a subset of 8 satellites that were present
in all snapshots, traced through time via position, approximate mass, and a continuous
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(a) Visualization of the movement of satellites
(b) Plane height ∆h

Figure 3.6: Development of simulation 715 across 11 snapshots spanning 341 Myr: (a) shows the
movement across the 11 snapshots. The palest markers are the positions in the earliest snapshot,
the clearest markers from the last snapshot. Blue color indicates satellites that are at a radial
distance beyond 300 kpc from the host and thus not considered in the analysis. The black dot
marks the host galaxy. (b) shows the plane height of a subset that was traced throughout all
snapshots.

change in each satellite’s speed. The rms height corresponding to this subset is shown in
figure 3.6b. Since the variation in ∆h is of the order of 0.1 kpc, we increased the number
of planes used to determine the plane of best fit in order to decrease the uncertainty in
our calculated rms height to be of the order of 0.01 kpc. The plotted error bars are a high
estimate of the uncertainties. There appears to be no monotonic trend. The maximum
variance in the plane height here is around 0.6 kpc.

The isotropic mean height for 8 satellites lies at 57 kpc, the semi-isotropic mean cal-
culated at one of the snapshots is 93 kpc (as simulation 715 generally is less radially
concentrated than an average system, see figures 3.3 and 3.2d). The semi-isotropic prob-
ability lies around 14 %, making the considered system not statistically significant by our
previous definition, but certainly more planar than an isotropic system.

The orbital dispersion across these snapshots is constantly near 61◦. This is about
as aligned as the Milky Way system, although of course Nsat = 8 in this case, making a
higher alignment more statistically likely than in the case of the Milky Way. Intuitively,
the approximate motion of 20-40 kpc over the considered time would be expected to have a
stronger impact on the plane height than the measured variance of 0.6 kpc, although a more
detailed analysis would be needed to better understand the degree of orbital alignment.

From these results, it can be said that the given plane persists over 341 Myr. This is
less time than it would typically take for a satellite to complete an orbit, as orbital periods
range from 1 to ∼4 Gyr depending on the radial distance to the host (Samuel et al., 2021).
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However, with no clear trend indicating that the plane is beginning to dissolve during the
considered time interval, the plane is likely not "transient". Samuel et al. (2021) define
constellations lasting less than 500 Myr as transient, and those over 1 Gyr as "long-lived".
More snapshots would need to be considered to make a statement about how long-lived
the plane in simulation 715 is, which we leave for a future investigation.

25



Chapter 4

Conclusion

In this chapter, we discuss our results in the context of other studies. We also interpret the
trends observed in the set of modified simulations (685x09, 685, and 685x12) with regards
to the mergers in the formation history of each system. At this point, we compare to
previous findings pertaining to merger processes, the tidal dwarf theory, and group infall.

4.1 Variety and rareness of planes
As shown in figures 3.1 and 3.4, the considered simulations contain a large variety of
planes, with each data point representing a different combination of number of satellites,
radial distribution, plane height, and orbital alignment. Tables 3.1 and 3.2 show that every
simulation contains some plane that is highly statistically unlikely compared to isotropic
distributions. This aligns with the findings from Cautun et al. (2015) stating that statis-
tically unlikely planes are not rare in simulations. Some of our simulations even contain
planes that are more statistically significant than the Milky Way plane. This is despite
the fact that all simulations also contain planes that appear not unlike isotropic systems,
supporting the importance of evaluating the prominence (or statistical likelihood) of planes.

When a more rigid method of selecting subsets is applied, our simulation results gener-
ally appear less planar than the Milky Way system. Specifically, we selected the heaviest
14 satellites in each simulation to agree with a common definition of plane-members among
the Milky Way satellites (Samuel et al., 2021). Out of the five simulations we analyzed,
only 685x12 was notably planar when considering this specific selection. This agrees with
common findings stating that only around 1− 5 percent simulation snapshots appear very
planar (Pawlowski, 2018; Samuel et al., 2021). Similarly, 685x12 is the only system where
this fixed subset is more orbitally aligned than the Milky Way satellites. However, the
situation is not as extreme in this metric as in the spatial metric: System 715 for example
has an orbital dispersion only slightly higher than the maximum value cited for the Milky
Way. Again, this is in agreement with previous findings. For example, Samuel et al. (2021)
show in figure 2 that, while only around 5% of their simulations were more aligned than
the Milky Way system, the number quickly rises at only slightly higher values of ∆orb, with
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quite a few simulations having nearly as small values as the Milky Way.
Simulation 685x12 is special in that it contains a number of planes that are both thinner

and more statistically significant than the Milky Way plane (see table 3.1). Samuel et al.
(2021) noted that some of their simulated systems had plane thicknesses comparable to
the Milky Way, but none were as statistically significant. Furthermore, simulation 685x12
simultaneously has ∆h < ∆h,MW and ∆orb < ∆orb,MW , which other studies have found in
only around 0.2% − 0.3% of their simulations (Pawlowski, 2018; Samuel et al., 2021). It
remains to be seen what is the cause for this discrepancy.

4.2 Lifetime of planes
Only one of the simulation was analyzed across several snapshots. This example plane
had plane height ∆h ≈ 73 kpc and orbital dispersion of 61◦. Its statistical significance
compared to a semi-randomized system lies at ∼ 14%, classifying it as somewhat but not
extremely planar. Both the spatial and orbital metrics stayed fairly constant across 11
snapshots, spanning a time of approximately 340 Myr, with no clear indicator that the
plane height will change drastically just outside of this time span.

Other studies have considered the lifetime of planes over a much longer time span. Bahl
and Baumgardt (2014) for example show that the lifetimes of the planes found in their
dark matter simulations are short (< 1 Gyr), making thin planes a momentary alignment
rather than a stable orbital structure. Two factors make it difficult to compare their results
directly with ours: The rms height of their short-lived plane is much smaller than that of
simulation 715, and their plot of ∆h(t) only plots data points at approximately 0.5 Gyr
intervals. The simulations considered by Bahl and Baumgardt (2014) typically had rms
heights from 20-100 kpc across ∼ 10 Gyr, except for a span of ∼ 1 Gyr where the heights
drop below 14 kpc. Simulation 715 never reaches such small values of ∆h in the given
snapshots. Here it would be useful to know the statistical significance of the planes in
Bahl and Baumgardt (2014) – the radial distribution of 715 specifically makes thin planes
less likely than in the other simulations, so the semi-randomized probability would be
useful in judging whether system 715 is comparable to those in the study and would be
expected to behave similarly over time. In their figure 10 it appears quite obvious that such
extremely thin planes are only temporary alignments. Due to the limited number of data
points plotted, however, it is unclear how the slope of ∆h

t
looks in detail, that is, whether

their systems show periods of strong alignment that look as constant as figure 3.6b. This
makes it difficult to estimate whether the shown state of 715 would be expected to change
drastically in a time span beyond the considered snapshots.

Samuel et al. (2021) also considered the lifetime of planes by comparing simulation
snapshots across ∼ 5 Gyr. Similarly to Bahl and Baumgardt (2014), this study considered
the life time of a plane to be the time span for which a system has a height below a certain
threshold (∆h < 28 kpc for "Milky-Way like" planes and ∆h < 48 kpc for "generic" planes).
By this definition, many of their simulations only show such thin planes in one snapshot
(corresponding to a lifetime of < 25 Myr) and only very few have life times longer than
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1 Gyr. Among their longest-lived planes are the systems containing an LMC-analogue.
Again, the plane considered for simulation 715 does not fall under the given rms height
threshold and would not be counted as a relevant plane in this study, despite being more
statistically significant than some of the systems considered in Samuel et al. (2021).

All this is to say that several studies show that thin planes only rarely have long
lifetimes, but these studies typically only consider planes selected by means of ∆h. As
discussed above, the fact that statistically significant planes come in a wide variety (with
different values of Nsat, ∆h, ∆orb, and radial distributions) can be used to argue that even
planes with a large absolute plane thickness (a large value of ∆h) should be considered
as relevant examples of planes in simulations, if they are unlikely to be obtained from
semi-randomized realizations. Therefore, it would be interesting to consider snapshots of
simulation 715, as well as the other simulations, across a longer time window to see if
statistically unlikely formations will persist across longer times than those found by the
aforementioned studies. From the limited amount of data we analyzed, it seems possible
that the relevant plane in simulation 715 might be longer lived than the planes typically
found in other studies, but this is purely a guess based off a small number of snapshots.

4.3 Major mergers as an origin of planes
When considering simulations 685x09, 685, and 685x12, there is a clear trend in both
spatial and kinematic metrics: System 685x09 is the least planar, 685x12 is significantly
planar, and 685 falls between the two. This is clear both from the absolute values of ∆h

and ∆orb, as well as from the statistical significance of selected subsets (see tables 3.1 and
3.2).

The order from least to most planar corresponds to the order of the mass ratio in the
last major merger. When creating the simulations, halo 685x09 was modified to have a
mass ratio of 1:8 for its last major merger; the ratios were 1:3 for 685 and 1:1 for 685x12.
Thus, a larger merger appears to correlate to a thinner plane of satellites.

There is another trend, independently of plane metrics: The total number of satellites
in the considered region is smallest in 685x09 and largest in 685x12. Since the satellites
were not tracked throughout the formation history of the systems, it is impossible to say
how many of the satellites were brought in by the merging galaxy. It is further unknown
where the different satellites were located at the time of the merger, which might be an
important factor for plane formation according to Smith et al. (2016). As a first guess,
Smith et al. (2016)’s findings suggest that the large merger and the additional satellites
that come with it are likely to be the main reason for the strong alignment seen in 685x12.
It would be interesting to explore the parameters Smith et al. (2016) identified as making
systems more planar, such as the positions of satellites relative to the plane of the merger.

By the Tidal Dwarf Theory advocated by Pawlowski et al. (2012) it would also be
possible that a larger merger, with stronger tidal forces, could create more tidal dwarfs.
However, figure 2.1 seems to show that the considered satellites in our simulations also
contain dark matter and can therefore not be tidal dwarfs. A more detailed analysis of the
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dark-matter content as well as the formation history of the satellites would be needed to
make a definitive statement on this.

Furthermore, simulation 685x12 also contains more heavy satellites than the other
simulations, as seen in figure 2.3. This might relate to Samuel et al. (2021)’s findings that
the presence of a very heavy satellite (an LMC-analogue) makes thin planes much more
likely than they are in systems without such a satellite. No direct comparison between our
systems and their findings is possible: They only considered galaxies with M⋆ > 109M⊙ to
be LMC-analogues, which none of our simulations’ satellites fulfills. Interestingly, the most
massive satellite in simulation 685x09 is heavier (2.4 · 108M⊙) than the heaviest satellite
in simulations 685 or 685x12 (∼ 1 · 108M⊙). Still, the presence of a larger number of
heavy satellites in 685x12 might have a similar gravitational effect to the single extremely
heavy LMC-analogue in Samuel et al. (2021)’s study. The stronger gravitational pull could
possibly have a stabilizing effect on the plane. Again, due to the limited data used in our
analysis, this is merely a guess.

With regards to group infall, a detailed analysis of the number of dwarfs accreted in
groups is given in Shao et al. (2018). They find from hydrodynamical simulations that
massive satellites are singly accreted in ∼ 75% of cases, and about 14% in pairs. Samuel
et al. (2021) generally agree with these findings but point out LMC-analogues as special
cases: They state that the main reason why systems including an LMC are more planar
than others is because the LMC-analogue is typically accompanied by several other dwarfs.
Based on these studies, with 685x12 having no LMC-analogue but many heavy satellites,
plane members would be expected to be individually or pair-accreted, with larger groups
being highly unlikely. Additionally, even systems with LMC-group accretion typically only
bring 2-4 additional dwarfs to the system, which can only account for a part of the final set
of plane members (Samuel et al., 2021). Therefore, group accretion outside of the major
merger probably cannot fully explain the extreme planarity of 685x12, although further
investigation is needed.

4.4 Summary and outlook
This project worked with five MW-mass systems from cosmological simulations, which
were run considering detailed galaxy-formation physics. Three of the simulations were
modified to include mergers of set mass ratios at look-back time ∼ 10 Gyr, comparable
to estimates for the Milky Way formation history. The findings regarding planarity of the
satellite systems can be summarized as follows:

• Planar structures show a large diversity regarding the number of plane members
Nsat, their radial distribution, plane height, and orbital dispersion. The statistical
likelihood of obtaining a given plane from a semi-randomized distribution is a highly
relevant metric when interpreting simulation results, as it makes different systems
more comparable.

• All simulations contain statistically significant planes (compared to semi-randomized
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systems), showing that statistically unlikely planes are not uncommon in simulations.
Some of the considered planes are more statistically significant than the Milky Way
system. While only a fraction of all the planes we identified fall into this category,
it is sufficient to find a single such plane in any system to consider it "the" plane of
the system.

• Simulation 685 contains planes comparable in Nsat and ∆h to the thicker of the
values used for the Andromeda system (with ∆h ≈ 50 kpc at Nsat = 16). Simulation
685x12 contained planes that were thinner than the Milky Way or Andromeda planes
of satellites at the same value of Nsat. Essentially all planes in 685x12 are more
orbitally aligned than the Milky Way system.

• An exemplary plane was found to have a near-static plane height and orbital dis-
persion across 341 Myr. While this could possibly point towards a longer lifetime of
the plane, it is difficult to compare to findings in other studies due to the different
selection criteria used for planes.

• Among the suite of modified simulations, a heavier last major merger corresponded
to a more planar system. Furthermore, the system with the heaviest merger had
more and more heavy satellites than the other systems.

The findings regarding the last major merger need to be backed up by a larger sample
size, but point towards a possible causation. The details of the processes causing thinner
planes can only be speculated about at this point. More work needs to be done to pin-
point the origins of the planes, including studying the dynamics of the merger, large-scale
accretion, and whether the plane members differ from any off-plane satellites.

Our method has limitations and can not be seen as a perfect representation of the
Universe. The simulations have limited resolutions and work with simplified physics (such
as ignoring black hole feedback). The halo finder is also not entirely reliable in identifying
satellite galaxies, as became clear when comparing different snapshots of the same sim-
ulation. Moreover, our methods for selecting subsets of satellites as well as plane-fitting
should be run with more repetitions to increase the accuracy. Most importantly, the anal-
ysis should be performed on a much larger sample of simulations and more snapshots from
each simulation. This would both make the results more reliable, as outliers due to halo-
finding issues would have a smaller effect, and make our results statistically representative.
From the small number of simulations considered, we can not estimate how common such
planes are in simulations in general, merely that they exist in a few cases.

Based purely on my samples, we do not find a strong tension between the observed MW
and M31 systems and ΛCDM simulations. However, we do identify many possibilities for
future work, including analyzing more simulations and tracking them over a longer time
span, as well as investigating the details of how the last major merger influences plane
formation.

30



Bibliography

Agertz, O., Renaud, F., Feltzing, S., Read, J. I., Ryde, N., Andersson, E. P., Rey, M. P.,
Bensby, T., and Feuillet, D. K. (2021). VINTERGATAN - I. The origins of chemically,
kinematically, and structurally distinct discs in a simulated Milky Way-mass galaxy.
MNRAS, 503(4):5826–5845.

Bahl, H. and Baumgardt, H. (2014). A comparison of the distribution of satellite galaxies
around Andromeda and the results of ΛCDM simulations. MNRAS, 438(4):2916–2923.

Borre, C. C., Aguirre Børsen-Koch, V., Helmi, A., Koppelman, H. H., Nielsen, M. B.,
Rørsted, J. L., Stello, D., Stokholm, A., Winther, M. L., Davies, G. R., Hon, M., Krui-
jssen, J. M. D., Laporte, C., Reyes, C., and Yu, J. (2021). Age Determination of Galaxy
Merger Remnant Stars using Asteroseismology. arXiv e-prints, page arXiv:2111.01669.

Bournaud, F. (2010). Tidal dwarf galaxies and missing baryons. Advances in Astronomy,
2010:1–7.

Bullock, J. S. and Boylan-Kolchin, M. (2017). Small-Scale Challenges to the ΛCDM
Paradigm. ARA&A, 55(1):343–387.

Cautun, M., Benítez-Llambay, A., Deason, A. J., Frenk, C. S., Fattahi, A., Gómez, F. A.,
Grand, R. J. J., Oman, K. A., Navarro, J. F., and Simpson, C. M. (2020). The milky
way total mass profile as inferred from Gaia DR2. MNRAS, 494:4291–4313.

Cautun, M., Bose, S., Frenk, C. S., Guo, Q., Han, J., Hellwing, W. A., Sawala, T., and
Wang, W. (2015). Planes of satellite galaxies: when exceptions are the rule. MNRAS,
452(4):3838–3852.

Deason, A. J., Erkal, D., Belokurov, V., Fattahi, A., Gómez, F. A., Grand, R. J. J.,
Pakmor, R., Xue, X.-X., Liu, C., Yang, C., Zhang, L., and Zhao, G. (2021). The mass
of the Milky Way out to 100 kpc using halo stars. MNRAS, 501(4):5964–5972.

Feuillet, D. K., Feltzing, S., Sahlholdt, C. L., and Casagrande, L. (2020). The SkyMapper-
Gaia RVS view of the Gaia-Enceladus-Sausage - an investigation of the metallicity and
mass of the Milky Way’s last major merger. MNRAS, 497(1):109–124.

31



BIBLIOGRAPHY BIBLIOGRAPHY

Garrison-Kimmel, S., Hopkins, P. F., Wetzel, A., Bullock, J. S., Boylan-Kolchin, M., Kereš,
D., Faucher-Giguère, C.-A., El-Badry, K., Lamberts, A., Quataert, E., and Sanderson,
R. (2019). The Local Group on FIRE: dwarf galaxy populations across a suite of hydro-
dynamic simulations. MNRAS, 487(1):1380–1399.

Hopkins, P. F., Kereš, D., Oñorbe, J., Faucher-Giguère, C.-A., Quataert, E., Murray, N.,
and Bullock, J. S. (2014). Galaxies on FIRE (Feedback In Realistic Environments):
stellar feedback explains cosmologically inefficient star formation. MNRAS, 445(1):581–
603.

Kroupa, P., Theis, C., and Boily, C. M. (2005). The great disk of Milky-Way satellites and
cosmological sub-structures. A&A, 431:517–521.

Licquia, T. C. and Newman, J. A. (2015). Improved estimates of the milky way’s stellar
mass and star formation rate from hierarchical bayesian meta-analysis. The Astrophysical
Journal, 806(1):96.

Lipnicky, A. and Chakrabarti, S. (2017). Is the vast polar structure of dwarf galaxies a
serious problem for Λ cold dark matter? MNRAS, 468(2):1671–1682.

McConnachie, A. W. (2012). The Observed Properties of Dwarf Galaxies in and around
the Local Group. AJ, 144(1):4.

Metz, M., Kroupa, P., and Jerjen, H. (2006). The spatial distribution of the Milky Way
and Andromeda satellite galaxies. Monthly Notices of the Royal Astronomical Society,
374(3):1125–1145.

Newton, O., Cautun, M., Jenkins, A., Frenk, C. S., and Helly, J. C. (2018). The total
satellite population of the Milky Way. MNRAS, 479(3):2853–2870.

Pawlowski, M. S. (2018). The planes of satellite galaxies problem, suggested solutions, and
open questions. Modern Physics Letters A, 33(6):1830004.

Pawlowski, M. S., Famaey, B., Jerjen, H., Merritt, D., Kroupa, P., Dabringhausen, J.,
Lüghausen, F., Forbes, D. A., Hensler, G., Hammer, F., and et al. (2014). Co-orbiting
satellite galaxy structures are still in conflict with the distribution of primordial dwarf
galaxies. Monthly Notices of the Royal Astronomical Society, 442(3):2362–2380.

Pawlowski, M. S., Pflamm-Altenburg, J., and Kroupa, P. (2012). The VPOS: a vast polar
structure of satellite galaxies, globular clusters and streams around the Milky Way.
MNRAS, 423(2):1109–1126.

Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont,
J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartlett, J. G., Bartolo, N., Battaner,
E., Battye, R., Benabed, K., Benoît, A., Benoit-Lévy, A., Bernard, J.-P., Bersanelli, M.,
Bielewicz, P., Bock, J. J., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet,

32



BIBLIOGRAPHY BIBLIOGRAPHY

F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso,
J.-F., Catalano, A., Challinor, A., Chamballu, A., Chary, R.-R., Chiang, H. C., Chluba,
J., Christensen, P. R., Church, S., Clements, D. L., Colombi, S., Colombo, L. P. L.,
Combet, C., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D.,
Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F.-
X., Di Valentino, E., Dickinson, C., Diego, J. M., Dolag, K., Dole, H., Donzelli, S.,
Doré, O., Douspis, M., Ducout, A., Dunkley, J., Dupac, X., Efstathiou, G., Elsner,
F., Enßlin, T. A., Eriksen, H. K., Farhang, M., Fergusson, J., Finelli, F., Forni, O.,
Frailis, M., Fraisse, A. A., Franceschi, E., Frejsel, A., Galeotta, S., Galli, S., Ganga, K.,
Gauthier, C., Gerbino, M., Ghosh, T., Giard, M., Giraud-Héraud, Y., Giusarma, E.,
Gjerløw, E., González-Nuevo, J., Górski, K. M., Gratton, S., Gregorio, A., Gruppuso,
A., Gudmundsson, J. E., Hamann, J., Hansen, F. K., Hanson, D., Harrison, D. L.,
Helou, G., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt,
S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huang, Z.,
Huffenberger, K. M., Hurier, G., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M.,
Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Knox, L., Kunz, M.,
Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J.-M., Lasenby, A., Lattanzi,
M., Lawrence, C. R., Leahy, J. P., Leonardi, R., Lesgourgues, J., Levrier, F., Lewis, A.,
Liguori, M., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Macías-
Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marchini, A., Maris, M.,
Martin, P. G., Martinelli, M., Martínez-González, E., Masi, S., Matarrese, S., McGehee,
P., Meinhold, P. R., Melchiorri, A., Melin, J.-B., Mendes, L., Mennella, A., Migliaccio,
M., Millea, M., Mitra, S., Miville-Deschênes, M.-A., Moneti, A., Montier, L., Morgante,
G., Mortlock, D., Moss, A., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli,
P., Netterfield, C. B., Nørgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I.,
Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paladini, R., Paoletti, D., Partridge,
B., Pasian, F., Patanchon, G., Pearson, T. J., Perdereau, O., Perotto, L., Perrotta,
F., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski,
S., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W., Prézeau, G., Prunet, S.,
Puget, J.-L., Rachen, J. P., Reach, W. T., Rebolo, R., Reinecke, M., Remazeilles, M.,
Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G.,
Rouillé d’Orfeuil, B., Rowan-Robinson, M., Rubiño-Martín, J. A., Rusholme, B., Said,
N., Salvatelli, V., Salvati, L., Sandri, M., Santos, D., Savelainen, M., Savini, G., Scott,
D., Seiffert, M. D., Serra, P., Shellard, E. P. S., Spencer, L. D., Spinelli, M., Stolyarov,
V., Stompor, R., Sudiwala, R., Sunyaev, R., Sutton, D., Suur-Uski, A.-S., Sygnet, J.-F.,
Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Tucci,
M., Tuovinen, J., Türler, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, F.,
Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., White, M., White, S.
D. M., Wilkinson, A., Yvon, D., Zacchei, A., and Zonca, A. (2016). Planck 2015 results.
XIII. Cosmological parameters. A&A, 594:A13.

Rey, M. P. and Starkenburg, T. K. (2021). How cosmological merger histories shape the
diversity of stellar haloes. arXiv e-prints, page arXiv:2106.09729.

33



BIBLIOGRAPHY BIBLIOGRAPHY

Samuel, J., Wetzel, A., Chapman, S., Tollerud, E., Hopkins, P. F., Boylan-Kolchin,
M., Bailin, J., and Faucher-Giguère, C.-A. (2021). Planes of satellites around Milky
Way/M31-mass galaxies in the FIRE simulations and comparisons with the Local Group.
MNRAS, 504(1):1379–1397.

Shao, S., Cautun, M., Frenk, C. S., Grand, R. J. J., Gómez, F. A., Marinacci, F., and
Simpson, C. M. (2018). The multiplicity and anisotropy of galactic satellite accretion.
MNRAS, 476(2):1796–1810.

Simon, J. D. (2019). The Faintest Dwarf Galaxies. ARA&A, 57:375–415.

Smith, R., Duc, P. A., Bournaud, F., and Yi, S. K. (2016). A Formation Scenario for the
Disk of Satellites: Accretion of Satellites during Mergers. ApJ, 818(1):11.

Sparke, L. S. and Gallagher, J. S. (2010). Galaxies in the universe: an introduction.
Cambridge Univ. Press.

Stopyra, S., Pontzen, A., Peiris, H., Roth, N., and Rey, M. P. (2021). GenetIC—A New
Initial Conditions Generator to Support Genetically Modified Zoom Simulations. ApJS,
252(2):28.

Teyssier, R. (2002). Cosmological hydrodynamics with adaptive mesh refinement. A new
high resolution code called RAMSES. A&A, 385:337–364.

Torrealba, G., Belokurov, V., Koposov, S. E., Li, T. S., Walker, M. G., Sanders, J. L.,
Geringer-Sameth, A., Zucker, D. B., Kuehn, K., Evans, N. W., and Dehnen, W. (2019).
The hidden giant: discovery of an enormous Galactic dwarf satellite in Gaia DR2. MN-
RAS, 488(2):2743–2766.

Wang, H. F., López-Corredoira, M., Huang, Y., Carlin, J. L., Chen, B. Q., Wang, C.,
Chang, J., Zhang, H. W., Xiang, M. S., Yuan, H. B., Sun, W. X., Li, X. Y., Yang,
Y., and Deng, L. C. (2020). Mapping the Galactic disc with the LAMOST and Gaia
red clump sample: II. 3D asymmetrical kinematics of mono-age populations in the disc
between 6-14 kpc. MNRAS, 491(2):2104–2118.

34



Appendix A

Random subset sampling

Throughout the thesis, subsets of satellites were selected using the method suggested by
Cautun et al. (2015). This introduces a bias towards thinner planes, which is desirable
when searching for significant planes. For completeness, the results from random subset
sampling are provided on the following pages. Notably, the bias towards thinner planes
does not always correspond to more orbitally aligned planes. Thus, the results from random
selection include some subsets that are more orbitally aligned than those found with Cautun
et al. (2015)’s method. The difference between the two methods is quite small, however,
so this was not further discussed in the thesis.

35



APPENDIX A. RANDOM SUBSET SAMPLING

(a) 685-simulations

(b) Independent Simulations

Figure A.1: Plane heights of a number of randomly selected subsets
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APPENDIX A. RANDOM SUBSET SAMPLING

(a) 685-simulations

(b) Independent Simulations

Figure A.2: Orbital dispersion of a number of randomly selected subsets
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