MSc Thesis Project

BCP Lithography Defined Arrays of InAs NWs Grown Using MOVPE with Au Seeds

APPENDIX

2015-11-30 Björn Landeke-Wilsmark

Supervisor: Ivan Maximov (ivan.maximov@ftf.lth.se) Co-supervisor: Nicklas Nilsson (nicklas.nilsson@ftf.lth.se) Examiner: Carina Fasth (carina.fasth@ftf.lth.se) APPENDIX A0 Polymer Characterization Data Supplied By *Polymer Source Inc.*

B82 Data Sheet – Directly From Polymer Source Inc.

Sample Name: Poly(styrene-b-methyl methacrylate) (polymethylmethacrylate rich in syndiotactic contents > 78%)

Sample #: P8269-SMMA Structure:

Composition:

Mn x 10 ³ S-b-MMA	PDI				
57.0-b-25.0	1.07				
Tg fot PS block: 106°C	Tg for PMMA block: 127°C				

Synthesis Procedure:

Poly(styrene-b-methyl methacrylate) is prepared by living anionic polymerization in THF at -78 °C using cumyl potassium initiator in the presence of LiCl. Polystyrene macroanions were end capped with a unit of diphenyl ethylene (DPE) before adding methylmethacrylate (MMA) monomer. For further details please see our published articles.¹⁻⁵

Characterization:

An aliquot of the anionic polystyrene block was terminated before addition of MMA and analyzed by size exclusion chromatography (SEC) to obtain the molecular weight and polydispersity index (PDI). The final block copolymer composition was calculated from ¹H-NMR spectroscopy by comparing the peak area of the poly(methyl methacrylate) protons (eg. –OCH₃ at 3.6ppm) with the of atomatic protons of polystyrene at 6.3-7.2 ppm. Copolymer PDI is determined by SEC.

Thermal analysis of the samples was carried out using a differential scanning calorimeter (TA Q100) at a heating rate of 15°C/min. The inflection glass transition temperature (T_g) of the sample has been considered.

Solubility:

Poly(styrene-b-methyl methacrylate) is soluble in THF, toluene, dioxane and CHCl₃. This polymer readily precipitates from methanol, ethanol, hexanes and water.

Block Copplymer: From composition from H NMR PS(57,000)-b-PMMA(25,000) Mw/Mn : 1.0; Thermogram for the sample

References for further information:

 S. K. Varshney, R. Fayt, Ph. Teyssie, and J.P. Hautekeer US Patent 5,264,527 (1993)

- Ph. Teyssie, Ph. Bayard, R. Jerome, S. K. Varshney, and J. S. Wang, 35th IUPAC International Union of Pure & Applied Chemistry International Sympasium on Macromolesules" 1994, 67.
- Ph. Teyssie, R. Fayt, J. P. Hautekeer, C. Jacobs, R. Jerome, L. Leemans and S. K. Vatshney Makromolekular Chemie, Maromal Symp., 1990, 32,61-73
- S. K. Varshney, J. P. Hautekeer, R. Fayt, R. Jerome, and Ph.Teyssie Macromolecules, 1990, 23, 2618-2622.
- R. Jetome, R. Fotte, S. K. Vatshney, R. Fayt, and Ph. Teyssie "The Anionic Polymeization of Alkylacrylates: A Challenge" in the Recent Advances in Mechanistic and Synthetic Aspects of Polymerization. M. Fontanaile and A. Guyot Ed., NATO ASI Series C 215,101 (1987), CA Vol. 108, 12, 094992.

B67 Data Sheet – Directly From Polymer Source Inc.

Sample Name: Poly(styrene-b-methyl methacrylate) (polymethylmethacrylate rich in syndiotactic contents > 80%)

Sample #: P2400-SMMA

Composition:

Mn x 10 ³ S-b-MMA	PDI				
46.1-Ъ-21.0	1.09				
Tg for PS block: 105C	Tg for PMMA block: 128°C				

Synthesis Procedure:

Poly(styrene-b-methyl methacrylate) is prepared by living anionic polymerization in THF at -78 °C using sec.BuLi initiator in the presence of LiCl. Polystyrene macroanions were end capped with a unit of diphenyl ethylene (DPE) before adding methylmethacrylate (MMA) monomer.

Characterization:

An aliquot of the anionic polystyrene block was terminated before addition of MMA and analyzed by size exclusion chromatography (SEC) to obtain the molecular weight and polydispersity index (PDI). The final block copolymer composition was calculated from 'H-NMR spectroscopy by comparing the peak area of the poly(methyl methacrylate) protons (eg. -OCH3 at 3.6ppm) with the of aromatic protons of polystyrene at 6.3-7.2 ppm. Copolymer PDI is determined by SEC.

Thermal analysis of the samples was carried out using a differential scanning calorimeter (TA Q100) at a heating rate of 15°C/min. The inflection glass transition temperature (T_g) of the sample has been considered.

Solubility:

Poly(methyl methacrylate) is soluble in THF, CHCl₃, toluene and dioxane. The polymer precipitates from hexanes, methanol and ethanol

¹H-NMR Spectrum of P2400-SMMA:

SEC of Sample P2400-SMMA:

Thermograms of sample

References for further information:

- S. K. Varshney, R. Fayt, Ph. Teyssie, and J.P. Hautekeer US Patent 5,264,527 (1993)
- 5.204,527 (1995) Ph. Teysic, Ph. Bayard, R. Jerome, S. K. Varshney, and J. S. Wang, 35th IUPAC International Union of Pure & Applied Chemistry International Symposium on Maxromolecules' 1994, 67. Ph. Teysis, R. Fayt, J. P. Hautekeer, C. Jacobs, R. Jerome, L. Leetnans and S. K. Varsiney Makromolekular Chemie, Macronol. Symp., 1990, 32,61-2011. 2
- 3.
- S. K. Varshney, J. P. Hautekeer, R. Fayt, R. Jerome, and Ph.Teyssie 4. Macromolecules, 1990, 23, 2618-2622. R. Jerome, R. Forte, S. K. Varshney, R. Fayt, and Ph. Teyssie 5
- "The Anionic Polymenization of Alkylacrylates:A Challenge" in the Recent Advances in Mechanistic and Synthetic Aspects of Polymerization: M. Fontanaille and A. Guyot Ed., NATO ASI Series C 215,101 (1987), CA Val. 108, 12, 094992.

R10.5 Data Sheet – Directly From Polymer Source Inc.

Sample Name:

Random Copolymer Poly(styrene-co-methyl methacrylate), α -Hydroxyl- ω -Tempo molety Terminated

Sample #: P18984B-SMMAranOHT

Structure:

Composition:

Mn x 10 ³ (Styrene content mol%)	Mw/Mn (PDI)				
10.5 (66 %)	1.15				

Synthesis Procedure:

Hydroxy terminated poly(styrene-co-methyl methacrylate) is prepared by stable free radical polymerization at 135°C. The reaction scheme is shown below:

Characterization:

Characterization: An aliquot of the copolymer was analyzed by size exclusion chromatography (SEC) to obtain the molecular weight and polydispersity index (PDI), the instrument calibrated by Polystyrene standards. The chemical composition was calculated from ¹H-NMR spectroscopy by comparing the peak area of the phenyl protons at 6.8-7.4 ppm with the peak area of methyl methacrylate at 2.6-3.6 ppm.

Solubility:

Poly(styrene-co-methyl methacrylate) is soluble in THF, DMF, Toluene and chloroform. Precipitate from methanol and Hexanes.

APPENDIX A1 R10.5 Grafting **A1.1** The influence of $h_{R10.5}$ on orientation and ordering of the subsequent B82 layer S20 (N-U) – $T_a = 250$ °C. $t_a = 1$ h. $h_{RCP} = 0.0$ nm; $h_{B82} = 46.6$ nm

C2 (N-U) $-T_a = 250^{\circ}$ C. $t_a = 1$ h. $h_{RCP} = 3.4$ nm; $h_{B82} = 46.5$ nm

C16 (N-U) $-T_a = 250^{\circ}$ C. $t_a = 1$ h. $h_{RCP} = 4.5$ nm; $h_{B82} = 47.6$ nm

W48C (N-U) – $T_a = 250^{\circ}$ C. $t_a = 1$ h. $h_{RCP} = 5.9$ nm; $h_{B82} = 47.9$ nm SU8000 1.0kV 3.2mm x11.0k SE(U) 8/1/2015

S3 (U) - $T_a = 250^{\circ}$ C; $t_a = 1$ h; $h_{RCP} = 7.0$ nm; $h_{B82} = 39.9$ nm – SB: None

8

W15E (U) – $T_a = 250$ °C. $t_a = 1$ h. $h_{RCP} = 8.1$ nm; $h_{B82} = 43.2$ nm

A1.3 Identification of RTP t_{Graft} and T_{Graft} combinations conducive to the grafting of R10.5

Piranha Treatment			RTP Graft		R10.5 Ellips.					
Sample #	t _{Piranha} /[min]	T _{Piranha} /[°C]	T _{Graft} /[°C]	t _{Graft} /[s]	MSE	h _{siox} /[Å]	h _{R10.5} /[nm]	Age1 /[days]	Age₂ /[days]	Comments
C13	40	80	250	50	4.259	15	6.2	0	1	
C14	40	80	250	100	3.948	15	6.5	0	1	
C12	40	80	250	200	4.113	15	6.3	1	0	
C15	40	80	250	400	4.532	15	6.6	1	0	
C17	40	80	250	600	3.992	15	6.4	1	0	
C16	40	80	250	900	3.808	15	6.5	1	0	
C11 (I)	40	80	280	50	3.365	15	6.1	3	3	
C10	40	80	280	100	3.428	15	7.0	2	3	
C9	40	80	280	200	3.37	15	7.2	2	3	
C8	40	80	280	400	3.309	15	7.4	1	4	
A1	30	80	280	600	4.364	15	6.4	1	0	Unfiltered R10.5; Patch (center)
A2	30	80	280	600	4.31	15	8.0	1	0	Unfiltered R10.5
A3	30	80	280	600	4.273	15	7.9	1	0	Unfiltered R10.5
A4	30	80	280	600	4.441	15	7.7	1	0	Unfiltered R10.5
B1	30	80	280	600	4.416	15	8.3	1	0	Unfiltered R10.5
B2	30	80	280	600	4.74	15	8.3	1	0	Unfiltered R10.5
В3	30	80	280	600	4.347	15	7.9	1	0	Unfiltered R10.5
B4	30	80	280	600	4.292	15	7.6	1	0	Unfiltered R10.5
C7	40	80	280	900	3.66	15	7.4	1	4	
C6	40	80	310	50	3.878	15	5.1	1	4	
C5	40	80	310	100	3.779	15	5.5	1	4	
C3	40	80	310	200	3.761	15	5.5	1	4	
C2	40	80	310	400	3.834	15	5.6	0	5	
C4	40	80	310	600	3.805	15	5.7	1	4	
C1	40	80	310	900	3.986	15	5.2	0	5	
D15	40	80	265	600	4.278	15	5.9	16	1	
D16	40	80	295	600	4.216	15	7.1	16	1	
D3	40	80	280	600	4.176	15	5.0	13	1	dT/dt = 10° C/s
D4	40	80	280	600	3.934	15	6.2	13	1	dT/dt = 5° C/s
D5	40	80	280	600	3.973	15	6.1	13	1	dT/dt = 5° C/s

A1.4 The efficacy of different surface activation treatments on Si(100) substrates

		Before	After	Diff.	R10.5 E	llips.				
Sample #	Treatment	h _{siox. 1} /[Å]	h _{siOx. 2} /[Å]	∆h _{siox} /[Å]	T _{Graft} /[°C]	t _{Graft} /[min]	h _{SiOx. used} /[Å]	h _{R10.5} /[nm]	Age1 /[days]	Age₂ /[days]
D1	None	NA	NA	NA	280	10	15	6.6	3	1
D2	None	NA	NA	NA	280	10	15	6.0	3	1
D10	Ozone	NA	NA	NA	280	10	14.56	7.4	0	0
D11	Ozone	NA	NA	NA	280	10	14.56	7.3	0	0
D14	Ozone	15.57	14.56	-1.01	280	10	14.56	6.7	0	0
D17	PP (FC)	14.92	13.88	-1.04	280	10	13.88	7.8	0	0
D18	PP (FC)	14.56	13.93	-0.63	280	10	13.93	8.0	0	0
D6	PP (No FC)	NA	NA	NA	280	10	15	7.8	2	1
D7	PP (No FC)	NA	NA	NA	280	10	15	7.6	2	1
D13	PP (No FC)	14.94	15.3	0.36	280	10	15.30	7.6	0	0
D8	RIE	NA	NA	NA	280	10	31.02	5.3	0	0
D9	RIE	NA	NA	NA	280	10	31.02	6.4	0	0
D12	RIE	14.71	31.02	16.31	280	10	31.02	5.8	0	0

APPENDIX A2 BCP Annealing

A2.1 DUV exposure dose test

E = cycle exposure time, W = cycle waiting (non-exposure) time, c = number of cycles

B3 (N-U) - $T_a = 250^{\circ}$ C; $t_a = 10$ min; $h_{R10.5} \le 7.9$ nm; $h_{B82} = 44.6$ – DUV: E 30s, W 60s, 20c

W26C-F: RTP: $T_a = 250^{\circ}$ C; $t_a = 30 \text{ min}$; $h_{RCP} = \text{NA}$ (Guess: 8 nm) (AW) W26C (N-U) - $h_{B32} \approx 44.4 \text{ nm} - \text{DUV}$: E 10s, W 20s, 24c (Standard)

W26D (N-U) - $h_{B82} \approx 44.3$ nm – DUV: E 10s, W 20s, 18c

W26E (N-U) - $h_{B82} \approx 44.4$ nm – DUV: E 10s, W 20s, 12c

W26F (N-U) - $h_{B82} \approx 44.5$ nm – DUV: E 10s, W 20s, 6c

W15E (U) – $T_a = 250^{\circ}$ C, $t_a = 1$ h; $h_{R10.5} = 8.1$ nm; $h_{B82} = 43.2$ nm

W40B (N-U) – $T_a = 280^{\circ}$ C, $t_a = 1$ h; $h_{R10.5} = 7.7$ nm; $h_{B82} = 45.5$ nm

W21E (U) – $T_a = 230^{\circ}$ C, $t_a = 15 \text{ min}$; $h_{R10.5} = 7.7 \text{ nm}$; $h_{B82} = 39.1 \text{ nm}$

W40B (N-U) - $T_a = 280^{\circ}$ C, $t_a = 1$ h; $h_{R10.5} = 7.7$ nm; $h_{B82} = 45.5$ nm

A2.8 Importance of h_{B82} on morphology orientation after RTP anneal of B82 samples

W24C (N-U) - $T_a = 250^{\circ}$ C; $t_a = 15 \text{ min}$; $h_{R10.5} = 8.4 \text{ nm}$ (AW); $h_{B82} = 27.6 \text{ nm}$

D18 (\approx U) - T_a = 250°C; t_a = 1 h; h_{R10.5} \leq 7.9 nm; h_{B82} = 31.7 nm CC = 1253 FT SUB000 1.0kV 4.2mm x50.0k SE(UL) 4/20/2015

W33D (N-U) - $T_a = 250^{\circ}$ C; $t_a = 1$ h; $h_{R10.5} = 8.7$ nm; $h_{B82} = 126.2$ nm (MSE = 8.1) – 14 s pre-dev. O₂ RIE

W33F (N-U) - $T_{a,RTP} = 250^{\circ}$ C; $t_{a,RTP} = 30 \text{ min}$; $T_{a,VA_C} = 190^{\circ}$ C; $t_{a,VA_C} = 2 \text{ h}$; $h_{R10.5} \le 8.7 \text{ nm}$; $h_{B82} = 41.7 \text{ nm}$

W33F (≈U) - $T_{a,RTP} = 250$ °C; $t_{a,RTP} = 30$ min; $T_{a,VA_C} = 190$ °C; $t_{a,VA_C} = 2$ h; $h_{R10.5} \le 8.7$ nm; $h_{B82} = 41.7$ nm; -12 s post-dev. O₂ RIE

W17C (U) - $T_a = 280^{\circ}$ C (5m) $\rightarrow 250^{\circ}$ C (25m) $\rightarrow 220^{\circ}$ C (10m) $\rightarrow 190^{\circ}$ C (10m);

A2.11 Graphite, instead of Si, carrier wafer in the RTP anneal of B82 sample W23C (N-U) – $T_a = 250^{\circ}$ C; $t_a = 15$ min; $h_{R10.5} = 8.0$ nm; $h_{B82} = 38.9$ nm

A2.12 Effects of heating rate $\left(\frac{dT}{dt}\right)$ during the ramp-up of the RTP anneal of B82 samples W23B (U) - $T_a = 250^{\circ}$ C; $t_a = 15$ min; $dT/dt = 5^{\circ}$ C/s; $h_{R10.5} = 8.0$ nm; $h_{B82} = 38.7$ nm (NB: Different scale in 1 µm image!)

W39C (U) - $T_a = 230$ °C; $t_a = 30$ min; dT/dt = 5°C/s; TOPHEAT during ramp-up;

A2.14 Effect of RTP chamber preconditioning prior to anneal of B82 samples

W29B (N-U) - $T_a = 250^{\circ}$ C; $t_a = 30$ min; $h_{R10.5} = 8.6$ nm; $h_{B82} = 43.1$ nm – Reference sample (Followed by RTP chamber pre-conditioning (800°C, 5 min + 2 x 60 s PP ASH (FC) of 4" Si carrier wafer))

W29C (N-U) - $T_a = 250$ °C; $t_a = 30$ min; $h_{R10.5} = 8.6$ nm; $h_{B82} = 44.3$ nm – After RTP chamber pre-conditioning

A2.15 Effect of alternative gas flow during RTP anneal of B82 samples

W27F (N-U) - $T_a = 250^{\circ}$ C; $t_a = 1$ h; $h_{R10.5} = 7.5$ nm; $h_{B82} = 44.3$ nm - Reference: Flow: 150 l/h N₂ (standard)

W27B (N-U) - $T_a = 250$ °C; $t_a = 30$ min; $h_{R10.5} = 7.5$ nm; $h_{B82} = 44.3$ nm - Flow: 150 l/h forming gas (80% N₂ + 20% H₂)

W27C (N-U) - $T_a = 250^{\circ}$ C; $t_a = 30 \text{ min}$; $h_{R10.5} = 7.5 \text{ nm}$; $h_{B82} = 44.2 \text{ nm} - \text{RTP}$ "Vacuum" option

W30C (U) - $T_{a,RTP} = 250^{\circ}$ C; $t_{a,RTP} = 1$ h; $h_{R10.5} = 8.7$ nm; $h_{B69} = 146.1$ nm – 15 s pre-dev. O₂ RIE

W30B (N-U) - $T_{a,Reg.0} = 190^{\circ}$ C; $t_{a,Reg.0} = 24$ h; $h_{R10.5} = 8.7$ nm; $h_{B82} = 37.3$ nm – 15 s pre-dev. O₂ RIE

W30D (N-U) - $T_{a,Reg.0} = 190$ °C; $t_{a,Reg.0} = 24$ h; $h_{R10.5} = 8.7$ nm; $h_{B69} = 145.7$ nm – 15 s pre-dev. O₂ RIE

S2 (U) - $T_a = 250^{\circ}$ C; $t_a = 1$ h; $h_{R10.5} = 7.3$ nm; $h_{B82} = 40.4$ nm – SB: 50°C, 3 min

A2.19 Extended vacuum anneal, in custom-built ovenproof chamber (v. 1.0), of B82 samples W34A (N-U) - $T_a = 190^{\circ}$ C; $t_a = 24$ h; $h_{R10.5} \le 8.5$ nm; $h_{B82} = 41.6$ nm (White discoloration of B82 film after VA_C; Potential welding residue re-deposited on B82 film)

W35C (≈U) - $T_a = 190^{\circ}$ C; $t_a = 2$ h; $h_{R10.5} \le 8.5$ nm; $h_{B82} = 42.4$ nm

W35F (U) - $T_a \approx 170^{\circ}$ C (Hotplate setpoint = 200°C); $t_a = 6$ h; $h_{R10.5} \leq 8.5$ nm; $h_{B82} = 42.1$ nm (Pumped-down chamber placed on hotplate whilst still attached to turbo vacuum pump)

W39E (N-U) - $T_a = 190^{\circ}$ C; $t_a = 24$ h; $h_{R10.5} = 7.8$ nm; $h_{B82} = 44.6$ nm (Pumped-down vacuum chamber placed inside vacuum oven and unloaded whilst the oven was still warm)

W22B (N-U) – Solvent: Toluene; $t_a = 24$ h; $h_{R10.5} = 8.1$ nm; $h_{B82} = 40.8$ nm

W22D (**\approxU**) – Solvent: Acetone; $t_a = 24$ h; $h_{R10.5} = 8.1$ nm; $h_{B82} = 39.6$ nm

W28B (N-U) – Solvent: Toluene; $t_a = 4$ h; $h_{R10.5} = 8.6$ nm; $h_{B82} = 44.0$ nm

W28C (N-U) – Solvent: Acetone; $t_a = 4$ h; $h_{R10.5} = 8.6$ nm; $h_{B82} = 44.8$ nm

W17E (≈U) - $T_{a,RTP} = 250^{\circ}$ C; $t_{a,RTP} = 1 \text{ h} \rightarrow T_{a,Reg.0} = 150^{\circ}$ C; $t_{a,Reg.0} = 18 \text{ h}$; $h_{R10.5} \le 7.9 \text{ nm}; h_{B82} = 37.7 \text{ nm}$

W33F (N-U) - $T_{a,RTP} = 250^{\circ}$ C; $t_{a,RTP} = 30 \text{ min} \rightarrow T_{a,VA_C} = 190^{\circ}$ C; $t_{a,VA_C} = 2 \text{ h}$; $h_{R10.5} \le 8.7 \text{ nm}$; $h_{B32} = 41.7 \text{ nm}$ CC = 795 FT SU8000 1.0kV 3.3mm x50.0k SE(U) 6/10/2015

W51E (U) - $T_a = 230^{\circ}C$; $t_a = 1$ h; $h_{R10.5} = 7.4$ nm; $h_{B67} = 35.0$ nm

W51C (N-U) - $T_a = 250^{\circ}C$; $t_a = 1$ h; $h_{R10.5} = 7.4$ nm; $h_{B67} = 35.0$ nm

W51D (N-U) - $T_a = 270^{\circ}C$; $t_a = 1$ h; $h_{R10.5} = 7.4$ nm; $h_{B67} = 35.0$ nm

W51H (N-U) - $T_a = 270^{\circ}$ C; $t_a = 10$ min; $h_{R10.5} = 7.4$ nm; $h_{B67} = 35.0$ nm

W50E (\approx U) - $T_a = 230^{\circ}C$; $t_a = 1$ h; $h_{R10.5} = 7.8$ nm; $h_{B67} = 73.0$ nm

W50H (~U) - $T_a = 270^{\circ}C$; $t_a = 10$ min; $h_{R10.5} = 7.8$ nm; $h_{B67} = 73.0$ nm

W51B (U) - $T_a = 170^{\circ}C$; $t_a = 25$ h; $h_{R10.5} = 7.4$ nm; $h_{B67} = 35.0$ nm

W50A (N-U) - $T_a = 190^{\circ}C$; $t_a = 24$ h; $h_{R10.5} = 7.8$ nm; $h_{B67} = 73.0$ nm

APPENDIX A3 Selective Block and Brush Removal Using RIE

CF₄ + O₂: Etch Rates

A3.2 CF_4/O_2 RIE Screening – Selectivity Plot

CF₄ + O₂: Selectivities

A3.3 CF₄/O₂ RIE Screening – Selectivities

Exp. #	Samples in run	Time /[s]	Power /[W] (Nom./Frwd./Ref.)	Pressure /[mTorr]	O₂ /[sccm]	CF₄ /[sccm]	Selectivity PMMA:PS-OH	Selectivity R10.5:PS-OH
1	W1A;W3A;W4A	15	30/18-19/0	100	20	0	1.53	1.09
2	W1B;W3B;W4B	15	30/18-19/3	100	15	5	1.44	1.07
3	W1C;W3C;W4C	15	30/19/3-5	100	10	10	2.32	1.34
4	W2A;W3E;W4E	15	30/18-19/2-7	100	5	15	3.17	1.47
5	W2B;W3F;W4F	15	30/18-19/0	100	0	20	4.83	1.83

A3.4 CF₄/O₂ RIE Screening – Etch Rates

Exp. #	Sample #	Material	Time /[s]	Power /[W] (Nom./Fwd./Ref.)	Pressure /[mTorr]	O ₂ /[sccm]	CF₄ /[sccm]	Before h1 /[nm]	After h₂ /[nm]	∆h /[nm]	Etch rate /[nm min ⁻¹]
1	W1A	PMMA	15	30/18-19/0	100	20	0	224.6	208.4	16.2	64.8
2	W1B	PMMA	15	30/18-19/3	100	15	5	224.9	194.1	30.8	123.2
3	W1C	PMMA	15	30/19/3-5	100	10	10	224.6	191.6	33	132
4	W2A	PMMA	15	30/18-19/2-7	100	5	15	224	205.3	18.7	74.8
5	W2B	PMMA	15	30/18-19/0	100	0	20	224.4	221.5	2.9	11.6
1	W3A	R10.5	15	30/18-19/0	100	20	0	38.5	26.9	11.6	46.4
2	W3B	R10.5	15	30/18-19/3	100	15	5	38.7	15.8	22.9	91.6
3	W3C	R10.5	15	30/19/3-5	100	10	10	37.7	18.7	19	76
4	W3E	R10.5	15	30/18-19/2-7	100	5	15	38	29.3	8.7	34.8
5	W3F	R10.5	15	30/18-19/0	100	0	20	37.6	36.5	1.1	4.4
1	W4A	PS-OH	15	30/18-19/0	100	20	0	37.2	26.6	10.6	42.4
2	W4B	PS-OH	15	30/18-19/3	100	15	5	36.6	15.2	21.4	85.6
3	W4C	PS-OH	15	30/19/3-5	100	10	10	36.9	22.7	14.2	56.8
4	W4E	PS-OH	15	30/18-19/2-7	100	5	15	36.7	30.8	5.9	23.6
5	W4F	PS-OH	15	30/18-19/0	100	0	20	37.1	36.5	0.6	2.4

SF₆ + O₂: PMMA Etch Rate

A3.7 SF₆/O₂ RIE Screening – Selectivities

Exp. #	Samples in run	Time /[s]	Power /[W] (Nom./Fwd./Ref.)	Pressure /[mTorr]	O2 /[sccm]	SF ₆ /[sccm]	Selectivity PMMA:PS-OH
1	W1A;W3A;W4A	15	30/18-19/0	100	20	0	1.53
2	W2C;W7A	15	30/19/1	100	15	5	3,44
3	W2D;W7B	15	30/18-19/1	100	5	15	3,96
4	W5A;W7C	15	30/19/1	100	0	20	7,25
5	W6C;W8E	90	30/19/1	100	5	15	2,82
6	W5C 2nd RIE;W7E 2nd RIE	90	30/19/1	100	5	15	2,71
7	W6D;W8F	20	30/18-19/1	100	10	10	3,27
8	W10C;W9E	15	75/64-65/1-4	100	15	5	2,59
9	W10D;W9F	15	30/19/1	75	15	5	3,40
10	W6D 2nd RIE; W8F 2nd RIE	15	75/64/5-8	75	15	5	2,77

A3.8 SF₆/O₂ RIE Screening – PMMA (50 kg/mol) Etch Rates

Exp. #	Sample #	Material	Time /[s]	Power /[W] (Nom./Frwd./Ref.)	Pressure /[mTorr]	O ₂ /[sccm]	SF ₆ /[sccm]	Before h1/[nm]	After h ₂ /[nm]	∆h /[nm]	Etch rate /[nm min ⁻¹]
2	W2C	PMMA	15	30/19/1	100	15	5	224,4	182,1	42,3	169,2
3	W2D	PMMA	15	30/18-19/1	100	5	15	225,5	215,6	9,9	39,6
4	W5A	PMMA	15	30/19/1	100	0	20	223	220,1	2,9	11,6
5	W6C	PMMA	90	30/19/1	100	5	15	221,7	171,5	50,2	33,5
6	W5C 2nd RIE	PMMA	90	30/19/1	100	5	15	197,4	150,8	46,6	31,1
7	W6D	PMMA	20	30/18-19/1	100	10	10	220,6	197,7	22,9	68,7
8	W10C	PMMA	15	75/64-65/1-4	100	15	5	216,1	147,5	68,6	274,4
9	W10D	PMMA	15	30/19/1	75	15	5	216,1	180,7	35,4	141,6
10	W6D 2nd RIE	PMMA	15	75/64/5-8	75	15	5	197,7	137,5	60,2	240,8

A3.9 SF₆/O₂ RIE Screening – PS-OH (1.2 kg/mol) Etch Rates

Exp. #	Sample #	Material	Time /[s]	Power /[W] (Nom./Frwd./Ref.)	Pressure /[mTorr]	O2 /[sccm]	SF₅ /[sccm]	Before h1/[nm]	After h₂ /[nm]	∆h /[nm]	Etch rate /[nm min ⁻¹]
2	W7A	PS-OH	15	30/19/1	100	15	5	36,4	24,1	12,3	49,2
3	W7B	PS-OH	15	30/18-19/1	100	5	15	36,5	34	2,5	10
4	W7C	PS-OH	15	30/19/1	100	0	20	36,4	36	0,4	1,6
5	W8E	PS-OH	90	30/19/1	100	5	15	37,2	19,4	17,8	11,9
6	W7E 2nd RIE	PS-OH	90	30/19/1	100	5	15	27,4	10,2	17,2	11,5
7	W8F	PS-OH	20	30/18-19/1	100	10	10	36,8	29,8	7	21
8	W9E	PS-OH	15	75/64-65/1-4	100	15	5	36,3	9,8	26,5	106
9	W9F	PS-OH	15	30/19/1	75	15	5	36,3	25,9	10,4	41,6
10	W8F 2nd RIE	PS-OH	15	75/64/5-8	75	15	5	29,8	8,1	21,7	86,8

A3.10 SF₆/O₂ RIE DOE – Selectivities

Exp #	Run Order	Samples in run	Time /[s]	Power /[W] (Nom./Fwd./Ref.)	Pressure /[mTorr]	O₂ /[sccm]	SF ₆ /[sccm]	Selectivity PMMA:PS-OH	Selectivity R10.5:PS-OH	
1	1	W12A;W18A;W14A	15	30/19/0	75	18	2	1.602	1.122	
11	2	W12B;W18B;W14B	20	30/19/1	100	15	5	3.547	1.460	
7	3	W12C;W18C;W14C	25	30/18-19/1	75	12	8	3.204	1.408	
2	4	W12D;W18D;W14D	15	30/19/0	125	18	2	1.639	1.120	
10	5	W12E;W18E;W14E	20	30/19/1	100	15	5	3.611	1.465	
2 (2 nd)	6	W12F;W18F;W14F	15	30/19/1	125	18	2	2.146	1.269	
8	7	W13A;W31A;W32A	25	30/18-19/2	125	12	8	3.289	1.430	
3	8	W13B;W31B;W32B	15	30/19/1	75	12	8	3.172	1.422	
9	9	W13C;W31C;W32C	20	30/19/1	100	15	5	3.486	1.450	
6	10	W13D;W31D;W32D	25	30/18-19/1	125	18	2	2.253	1.288	Excl. from DOE
5	11	W13E;W31E;W32E	25	30/18-19/0-1	75	18	2	2.449	1.346	Unreliable but In
4	12	W13F;W31F;W32F	15	30/19/1	125	12	8	3.413	1.453	
C17	13	W38A;W37A;W36A	20	30/19/1	100	15	5	3.541	1.486	
C16	14	W38B;W37B;W36B	25	30/18-19/1	100	15	5	3.649	1.526	
C15	15	W38C;W37C;W36C	15	30/18-19/1	100	15	5	3.418	1.445	
C13	16	W38D;W37D;W36D	20	30/18-19/0	100	18	2	2.297	1.336	
C14	17	W38E;W37E;W36E	20	30/19/1	100	12	8	3.292	1.438	
N18	18	W38F;W37F;W36F	12	30/19/1	75	13	7	3.269	1.358	
N19	19	W44A;W43A;W42A	9	30/19/1	75	13	7	3.551	1.449	
DUV1	20	W44B;W43B;W42B	15	30/19/1	100	15	5	3.213	1.451	
DUV2	21	W44C;W43C;W42C	20	30/19/1	100	15	5	3.237	1.450	
DUV3	22	W44D;W43D;W42D	20	30/19/1	100	12	8	3.034	1.432	
DUV4	23	W44E;W43E;W42E	9	30/18-19/1	75	13	7	3.096	1.519	
DUV5	24	W44F;W43F;W42F	6	30/19/1	75	14	6	3,367	1,462	

A3.11	SF ₆ /O ₂ R	IE DOE – No	on-DUV Ex	posed P	MMA (50 kg/mol)	Etch Data						
Exp #	Run Order	Sample #	Material	Time /[s]	Power /[W] (Nom./Fwd./Ref.)	Pressure /[mTorr]	O₂ /[sccm]	SF₅ /[sccm]	Before h1 /[nm]	After h₂ /[nm]	∆h /[nm]	Etch rate /[nm·min ⁻¹]
1	1	W12A	PMMA	15	30/19/0	75	18	2	222.2	202.5	19.7	78.8
11	2	W12B	PMMA	20	30/19/1	100	15	5	223.5	170.3	53.2	159.6
7	3	W12C	PMMA	25	30/18-19/1	75	12	8	223.1	190.1	33.0	79.2
2	4	W12D	PMMA	15	30/19/0	125	18	2	223.0	209.4	13.6	54.4
10	5	W12E	PMMA	20	30/19/1	100	15	5	222.7	170.7	52.0	156.0
2 (2 nd)	6	W12F	PMMA	15	30/19/1	125	18	2	222.9	186.2	36.7	146.8
8	7	W13A	PMMA	25	30/18-19/2	125	12	8	220.6	183.1	37.5	90.0
3	8	W13B	PMMA	15	30/19/1	75	12	8	220.0	199.7	20.3	81.2
9	9	W13C	PMMA	20	30/19/1	100	15	5	219.9	171.1	48.8	146.4
6	10	W13D	PMMA	25	30/18-19/1	125	18	2	220.0	150.6	69.4	166.6
5	11	W13E	PMMA	25	30/18-19/0-1	75	18	2	220.4	148.9	71.5	171.6
4	12	W13F	PMMA	15	30/19/1	125	12	8	220.1	194.5	25.6	102.4
C17	13	W38A	PMMA	20	30/19/1	100	15	5	229.2	176.8	52.4	157.2
C16	14	W38B	PMMA	25	30/18-19/1	100	15	5	230.1	173.9	56.2	134.9
C15	15	W38C	PMMA	15	30/18-19/1	100	15	5	229.5	191.9	37.6	150.4
C13	16	W38D	PMMA	20	30/18-19/0	100	18	2	230.9	177.6	53.3	159.9
C14	17	W38E	PMMA	20	30/19/1	100	12	8	230.1	200.8	29.3	87.9
N18	18	W38F	PMMA	12	30/19/1	75	13	7	230	208.1	21.9	109.5
N19	19	W44A	PMMA	9	30/19/1	75	13	7	222.8	205.4	17.4	116.0

A3.12 SF₆/O₂ RIE – DUV Exposed PMMA (50 kg/mol) Etch Data

Exp #	Run Order	Sample #	Material	Time /[s]	Power /[W] (Nom./Fwd./Ref.)	Pressure /[mTorr]	O₂ /[sccm]	SF ₆ /[sccm]	Before DUV h1 /[nm]	After DUV h₂ /[nm]	∆h _{⊳∪v} /[nm]	∆h _{⊳uv} /[%]	After RIE h₃ /[nm]	∆h _{RIE} /[nm]	Etch rate /[nm min ⁻¹]
DUV1	20	W44B	PMMA	15	30/19/1	100	15	5	222.6	206.7	NA	NA	167.5*	39.2	156.8
DUV2	21	W44C	PMMA	20	30/19/1	100	15	5	222.0	206.1	NA	NA	163.7*	42.4	127.2
DUV3	22	W44D	PMMA	20	30/19/1	100	12	8	222.5	206.6	NA	NA	179.9*	26.7	80.1
DUV4	23	W44E	PMMA	9	30/18-19/1	75	13	7	222.3	206.4	NA	NA	190.3*	16.1	107.3
DUV5	24	W44F	PMMA	6	30/19/1	75	14	6	222.6	206.7	15.9	7.14	190.1	16.6	166.2

A3.13 SF₆/O₂ RIE DOE – Non-DUV Exposed R10.5 Etch Data

Exp #	Run Order	Sample #	Material	Time /[s]	Power /[W] (Nom./Fwd./Ref.)	Pressure /[mTorr]	O₂ /[sccm]	SF₅ /[sccm]	Before h1 /[nm]	After h₂/[nm]	∆h /[nm]	Etch rate /[nm·min ⁻¹]	
1	1	W18A	P(S-r-MMA)	15	30/19/0	75	18	2	32.5	18.7	13.8	55.2	
11	2	W18B	P(S-r-MMA)	20	30/19/1	100	15	5	32.3	10.4	21.9	65.7	
7	3	W18C	P(S-r-MMA)	25	30/18-19/1	75	12	8	31.8	17.3	14.5	34.8	
2	4	W18D	P(S-r-MMA)	15	30/19/0	125	18	2	32.9	23.6	9.3	37.2	
10	5	W18E	P(S-r-MMA)	20	30/19/1	100	15	5	32.3	11.2	21.1	63.3	
2 (2 nd)	6	W18F	P(S-r-MMA)	15	30/19/1	125	18	2	32.7	11.0	21.7	86.8	
8	7	W31A	P(S-r-MMA)	25	30/18-19/2	125	12	8	39.7	23.4	16.3	39.1	
3	8	W31B	P(S-r-MMA)	15	30/19/1	75	12	8	39.6	30.5	9.1	36.4	
9	9	W31C	P(S-r-MMA)	20	30/19/1	100	15	5	40.3	20.0	20.3	60.9	
6	10	W31D	P(S-r-MMA)	25	30/18-19/1	125	18	2	39.8	0.1	39.7	95.2	Excl. from DO
E5	11	W31E	P(S-r-MMA)	25	30/18-19/0-1	75	18	2	40.7	1.4	39.3	94.3	Incl. in DOE
4	12	W31F	P(S-r-MMA)	15	30/19/1	125	12	8	40.0	29.1	10.9	43.6	
C17	13	W37A	P(S-r-MMA)	20	30/19/1	100	15	5	42.9	20.9	22.0	66.0	
C16	14	W37B	P(S-r-MMA)	25	30/18-19/1	100	15	5	42.3	18.8	23.5	56.4	
C15	15	W37C	P(S-r-MMA)	15	30/18-19/1	100	15	5	42.7	26.8	15.9	63.6	
C13	16	W37D	P(S-r-MMA)	20	30/18-19/0	100	18	2	42.8	11.8	31.0	93.0	
C14	17	W37E	P(S-r-MMA)	20	30/19/1	100	12	8	42.3	29.5	12.8	38.4	
N18	18	W37F	P(S-r-MMA)	12	30/19/1	75	13	7	42.7	33.6	9.1	45.5	
N19	19	W43A	P(S-r-MMA)	9	30/19/1	75	13	7	39.3	32.2	7.1	47.3	

A3.14 SF₆/O₂ RIE – DUV Exposed R10.5 Etch Data

Exp #	Run Order	Sample #	Material	Time /[s]	Power /[W] (Nom./Fwd./Ref.)	Pressure /[mTorr]	O₂ /[sccm]	SF ₆ /[sccm]	Before DUV h1 /[nm]	After DUV h₂ /[nm]	Δh _{DUV} /[nm]	∆h _{⊳∪v} /[%]	After RIE h₃ /[nm]	Δh _{RIE} /[nm]	Etch rate /[nm min ⁻¹]
DUV1	20	W43B	R10.5	15	30/19/1	100	15	5	39.6	37.4	NA	NA	19.7	17.7	70.8
DUV2	21	W43C	R10.5	20	30/19/1	100	15	5	38.9	36.7	NA	NA	17.7	19.0	57.0
DUV3	22	W43D	R10.5	20	30/19/1	100	12	8	39.1	36.9	NA	NA	24.3	12.6	37.8
DUV4	23	W43E	R10.5	9	30/18-19/1	75	13	7	39.5	37.3	NA	NA	29.4	7.9	52.7
DUV5	24	W43F	R10.5	6	30/19/1	75	14	6	39.5	37.5	2	5.06	30.3	7.2	72.2

10120	516/02			nposeu	15 011 (1.2 kg/ 110		•					
Exp #	Run Order	Sample #	Material	Time /[s]	Power /[W] (Nom./Fwd./Ref.)	Pressure /[mTorr]	O ² /[sccm]	SF ⁶ /[sccm]	Before h ¹ /[nm]	After h ² /[nm]	∆h /[nm]	Etch rate /[nm·min ⁻¹]
1	1	W14A	PS-OH	15	30/19/0	75	18	2	61.7	49.4	12.3	49.2
11	2	W14B	PS-OH	20	30/19/1	100	15	5	61.4	46.4	15.0	45.0
7	3	W14C	PS-OH	25	30/18-19/1	75	12	8	61.4	51.1	10.3	24.7
2	4	W14D	PS-OH	15	30/19/0	125	18	2	61.6	53.3	8.3	33.2
10	5	W14E	PS-OH	20	30/19/1	100	15	5	61.2	46.8	14.4	43.2
2 (2 nd)	6	W14F	PS-OH	15	30/19/1	125	18	2	61.4	44.3	17.1	68.4
8	7	W32A	PS-OH	25	30/18-19/2	125	12	8	63.6	52.2	11.4	27.4
3	8	W32B	PS-OH	15	30/19/1	75	12	8	63.7	57.3	6.4	25.6
9	9	W32C	PS-OH	20	30/19/1	100	15	5	63.5	49.5	14.0	42.0
6	10	W32D	PS-OH	25	30/18-19/1	125	18	2	63.5	32.7	30.8	73.9
5	11	W32E	PS-OH	25	30/18-19/0-1	75	18	2	63.5	34.3	29.2	70.1
4	12	W32F	PS-OH	15	30/19/1	125	12	8	63.4	55.9	7.5	30.0
C17	13	W36A	PS-OH	20	30/19/1	100	15	5	65.5	50.7	14.8	44.4
C16	14	W36B	PS-OH	25	30/18-19/1	100	15	5	65.5	50.1	15.4	37.0
C15	15	W36C	PS-OH	15	30/18-19/1	100	15	5	68.0	57.0	11.0	44.0
C13	16	W36D	PS-OH	20	30/18-19/0	100	18	2	66.1	42.9	23.2	69.6
C14	17	W36E	PS-OH	20	30/19/1	100	12	8	65.9	57.0	8.9	26.7
N18	18	W36F	PS-OH	12	30/19/1	75	13	7	67.6	60.9	6.7	33.5
N19	19	W42A	PS-OH	9	30/19/1	75	13	7	68.9	64.0	4.9	32.7

A3.15 SF_6/O_2 RIE DOE – Non-DUV Exposed PS-OH (1.2 kg/mol) Etch Data

A3.16 SF₆/O₂ RIE – DUV Exposed PS-OH (1.2 kg/mol) Etch Data

Exp #	Run Order	Sample #	Material	Time /[s]	Power /[W] (Nom./Fwd./Ref.)	Pressure /[mTorr]	O₂ /[sccm]	SF ₆ /[sccm]	Before DUV h1 /[nm]	After DUV h₂ /[nm]	∆h _{⊳∪v} /[nm]	∆h _{⊳uv} /[%]	After RIE h₃/[nm]	Δh _{RIE} /[nm]	Etch rate /[nm min ⁻¹]
DUV1	20	W42B	PS-OH	15	30/19/1	100	15	5	68.9	68.5	NA	NA	56.3	12.2	48.8
DUV2	21	W42C	PS-OH	20	30/19/1	100	15	5	69.4	69	NA	NA	55.9	13.1	39.3
DUV3	22	W42D	PS-OH	20	30/19/1	100	12	8	69.2	68.8	NA	NA	60.0	8.8	26.4
DUV4	23	W42E	PS-OH	9	30/18-19/1	75	13	7	68.9	68.5	NA	NA	63.3	5.2	34.7
DUV5	24	W42F	PS-OH	6	30/19/1	75	14	6	69.4	69	0.4	0.58	64.1	4.9	49.4

A3.18 SF₆ /O₂ RIE DOE – Coefficients (Centered and Scaled)

PMMA Etch Rate	Coeff. SC	Std. Err.	Ρ	Conf. int(±)	PS Etch Rate	Coeff. SC	Std. Err.	Р	Conf. int(±)
Constant	143,864	9,11097	7,32E-10	19,6831	Constant	1,59481	0,0167322	4,28E-21	0,0358874
SF6 Flow	-18,3121	5,84758	0,00794878	12,6329	SF6 Flow	-0,127739	0,0172191	3,26E-06	0,0369317
Time	11,9798	5,90553	0,063499	12,7581	Time	0,0227649	0,0180227	0,227176	0,0386551
SF6*SF6	-24,3826	7,7104	0,00749208	16,6573	SF6*t	-0,042549	0,0184324	0,0367594	0,0395339
SF6*t	-15,7852	6,15017	0,023443	13,2867					
N = 18	Q2 =	0,494	Cond. no. =	3,163	N = 18	Q2 =	0,73	Cond. no. =	1,358
DF = 13	R2 =	0,684	RSD =	23,18	DF = 14	R2 =	0,812	RSD =	0,07099
Comp. = 2	R2 adj. =	0,587			Comp. = 2	R2 adj. =	0,771		
			Conf. lev. =	0,95				Conf. lev. =	0,95

RCP Etch Rate	Coeff. SC	Std. Err.	Ρ	Conf. int(±)	RCP:PS Selectivity	Coeff. SC	Std. Err.	Р	Conf. int(±)
Constant	-1,62479	0,0708003	6,65E-12	0,152955	Constant	4,31913	0,0730575	3,43E-17	0,157831
SF6 Flow	-0,218497	0,0454408	0,00034167	0,098169	SF6 Flow	0,218386	0,0468895	0,00044842	0,101299
Time	0,122809	0,0458912	0,0190422	0,0991419	Time	0,132197	0,0473542	0,0152717	0,102303
SF6*SF6	0,0765118	0,0599166	0,223949	0,129442	SF6*SF6	-0,319256	0,0618268	0,00018225	0,133569
SF6*t	-0,174281	0,0477923	0,00295623	0,103249	SF6*t	-0,075879	0,0493159	0,147871	0,106541
N = 18	Q2 =	0,591	Cond. no. =	3,163	N = 18	Q2 =	0,783	Cond. no. =	3,163
DF = 13	R2 =	0,774	RSD =	0,1801	DF = 13	R2 =	0,861	RSD =	0,1858
Comp. = 2	R2 adj. =	0,705			Comp. = 2	R2 adj. =	0,818		
			Conf. lev. =	0,95				Conf. lev. =	0,95

MSc Thesis in Physics – Block-Copolymer Lithography – Appendix Björn Landeke-Wilsmark; N10

PMMA:PS Selectivity	Coeff. SC	Std. Err.	Р	Conf. int(±)	RCP Δh	Coeff. SC	Std. Err.	Ρ	Conf. int(±)
Constant	3,53445	0,0634503	7,41E-17	0,137076	Constant	-1,91284	0,0037318	2,55E-31	0,0080039
SF6 Flow	0,398883	0,0407234	2,29E-07	0,0879777	SF6 Flow	-0,028243	0,0038404	3,60E-06	0,0082368
Time	0,110355	0,0411271	0,0187831	0,0888497	Time	0,0342567	0,0040196	6,51E-07	0,0086212
SF6*SF6	-0,544357	0,0536964	1,53E-07	0,116004	SF6*t	-0,023428	0,004111	5,50E-05	0,0088172
SF6*t	-0,095188	0,0428308	0,044619	0,0925304					
N = 18	Q2 =	0,91	Cond. no. =	3,163	N = 18	Q2 =	0,723	Cond. no. =	1,358
DF = 13	R2 =	0,959	RSD =	0,1614	DF = 14	R2 =	0,908	RSD =	0,01583
Comp. = 2	R2 adj. =	0,946			Comp. = 2	R2 adj. =	0,888		
			Conf. lev. =	0,95				Conf. lev. =	0,95

ΡΜΜΑ <i>Δh</i>	Coeff. SC	Std. Err.	Ρ	Conf. int(±)	PS Δh	Coeff. SC	Std. Err.	Ρ	Conf. int(±)
Constant	-1,73273	0,0141125	2,61E-21	0,0304883	Constant	-1,9389	0,0027904	3,61E-33	0,0059849
SF6 Flow	-0,056811	0,0090577	2,87E-05	0,0195679	SF6 Flow	-0,022582	0,0028716	1,67E-06	0,0061591
Time	0,0992172	0,0091474	6,95E-08	0,0197618	Time	0,0217116	0,0030056	4,40E-06	0,0064465
SF6*SF6	-0,049732	0,0119431	0,00111164	0,0258015	SF6*t	-0,015026	0,003074	0,00023951	0,006593
SF6*t	-0,057509	0,0095264	4,19E-05	0,0205805					
N = 18	Q2 =	0,659	Cond. no. =	3,163	N = 18	Q2 =	0,669	Cond. no. =	1,358
DF = 13	R2 =	0,935	RSD =	0,0359	DF = 14	R2 =	0,897	RSD =	0,01184
Comp. = 2	R2 adj. =	0,915			Comp. = 2	R2 adj. =	0,875		
			Conf. lev. =	0,95				Conf. lev. =	0,95

A3.19 SF₆ /O₂ RIE MODDE DOE – Coefficients (Unscaled)

	PMMA Etch Rate	PS Etch Rate	RCP Etch Rate	RCP:PS Selectivity	PMMA:PS Selectivity	ΡΜΜΑ Δh	PS Δh	R10.5 Δ <i>h</i>
Constant	-111,335	1,42859	-2,71987	1,17121	-1,1608	-2,71128	-2,09943	-2,17991
SF6 Flow	62,3314	0,015055	0,049264	0,797251	1,31542	0,159743	0,014742	0,0259
Time	9,72359	0,024217	0,105377	0,0623528	0,0666105	0,047053	0,011413	0,017879
SF6*SF6	-4,26835	-	0,013394	-0,0558881	-0,0952935	-0,00871	-	-
SF6*t	-1,38195	-0,00373	-0,01526	-0,006643	-0,0083335	-0,00503	-0,00132	-0,00205

A3.20 SF₆ /O₂ RIE MODDE DOE – Plotted Scaled and Centered Coefficients

71

Time [s] Conf.=0,95 Average

A3.22 SF₆ /O₂ RIE MODDE DOE –Predictions of etched distances

A3.23 Effects of DUV and AA on grafted R10.5 blanket samples from Exp. I

Treatment			R10.5 Ellipsometer Measurement						
Sample #	Step 1 D _{DUV} /[J/cm ²]	Step 2 AA Bath /[min]	Before MSE ₁	h _{R10.5; 1} /[nm]	After MSE₂	h _{R10.5; 2} /[nm]	Diff. ∆h _{R10.5} /[nm]		
C9	2,28	8	3,37	7,2	3,742	3,178	4,022		
C10	2,28	8	3,428	7	3,739	3,283	3,717		
C11	2,28	8	3,365	6,1	3,476	3,013	3,087		
C12	2,28	8	4,113	6,3	3,632	2,923	3,377		
C1	0	8	3,986	5,2	2,777	3,291	1,909		
C3	0	8	3,761	5,5	3,057	3,259	2,241		
C4	0	8	3,805	5,7	3,321	3,58	2,120		

APPENDIX A4 Deposition of SiN_x/SiO₂ and Pattern Transfer

A4.1 SiN_x PECVD on samples WN1-5

"Deposition parameters:

200°C, gas flow 50 sccm Ar, 6 sccm SiH₄, 8 sccm NH₃ (samples 1, 4, 5) or 9 sccm NH₃ (samples 2, 3), process pressure 0.015mbar, RF bias voltage is set to 300V (RF load power 70-85W), ICP load power is set to 1000W, process time 20 sec. Process is based on quick start of the generators and getting flow of SiH₄ after plasma ignition." /Mariusz Graczyk

A4.2 Ellipsometer measurements of PECVD SiN_x on WN1-5

Model:	SiN _x /Si(2			
Sample #	MSE	h _{siNx} /[nm]	n 633 nm	Fitted
WN1	17.39	11.672	NA	h
WN1	7.117	12.939	2.5076	h. n
WN2	5.023	11.257	NA	h
WN2	3.649	11.376	1.8502	h. n
WN3	5.324	11.401	NA	h
WN3	3.693	11.525	1.8458	h. n
WN4	4.282	10.544	NA	h
WN4	3.458	10.642	2.0664	h. n
WN5	4.281	10.514	NA	h
WN5	3.369	10.609	1.8664	h. n

A4.3 Ellipsometer measurements of PECVD SiN_x before and after surface treatments

λ/[nm]: [370.44, 1239]

Model: SiN_x/Native oxide (15 Å)/Si(100) (Si3N4.mat/ntve.jaw/Si.jaw)

		Before Surface Activation Ellipsometer measurement 1			After Surface Activation Ellipsometer measurement 2					
Sample #	α _i /[°]	MSE	h _{siNx} /[Å]	n _{633 nm}	Fitted	MSE	h _{siNx} /[Å]	n _{633 nm}	Fitted	Surface Activation
WN1D	65-75	24.49	103.86	2.0211	h	15.5	109.13	2.0211	h	O₂ RIE (60s, 150 mTorr,
WN1D	65-75	9.159	116.10	2.5399	h, n	6.917	115.30	2.388	h, n	20 sccm O ₂ , 30W)
WN2	50-75	4.804	100.58	2.0211	h	5.655	101.27	2.0211	h	O ₂ RIE (80s, 150 mTorr,
WN2	50-75	3.637	101.72	1.8448	h, n	3.615	103.22	1.7953	h, n	20 sccm O ₂ , 30W)
WN3	50-75	4.021	102.09	2.0211	h	4.877	100.77	2.0211	h	$O_{-2} = (150\% - 10\%)$
WN3	50-75	2.963	103.27	2.0211	h, n	3.306	102.09	1.8467	h, n	Ozone (150 C, 10 min)
WN4A	50-75	3.78	94.06	2.0211	h	5.891	97.42	2.0211	h	O ₂ RIE (120s, 150 mTorr,
WN4A	50-75	3.036	95.26	2.1378	h, n	3.487	99.41	1.7975	h, n	40 sccm O ₂ , 50W)

WN1B (U) – $T_a = 250^{\circ}$ C; $t_a = 30$ min; $h_{R10.5} = 7.6$ nm; $h_{B82} = 41.9$ nm – No Surface Activation

WN1C (U) – $T_a = 250^{\circ}$ C; $t_a = 30$ min; $h_{R10.5} = 5.9$ nm; $h_{B82} = 39.4$ nm – RIE Surface Activation

A4.5 Extended grafts on PECVD SiN_x

WN1E (N-U) – $T_a = 250^{\circ}$ C; $t_a = 1$ h; $h_{R10.5} = 7.3$ nm; $h_{B82} = 43.6$ nm – 60s ASH (FC) + Graft: 1 h, 280°C

WN1F (N-U) – $T_a = 250^{\circ}$ C; $t_a = 1$ h; $h_{R10.5} = 5.9$ nm; $h_{B82} = 46.1$ nm – 60s ASH (FC) + Graft: 1 h, 250°C

WN4A (\approx U) – $T_a = 250^{\circ}$ C; $t_a = 60$ min; $h_{R10.5} = 2.3$ nm; $h_{B82} = 51.2$ nm – RIE: (50W, 40 sccm O₂, 150 mTorr, 120s)

WN3A (\approx U) – $T_a = 250^{\circ}$ C; $t_a = 30$ min; $h_{R10.5} = 5.2$ nm; $h_{B82} = 45.0$ nm – Ozone: (150°C, 10 min)

A4.7 SiO₂ and SiN_x ellipsometer data for WN5 and WHD1

λ/[nm]: [370.44, 1239]

Sample #	MSE	h _{sio2} /[Å]	h _{siNx} /[Å]	n _{siNx;633}	h _{siox} /[Å]	Fitted	α _i /[°]	Comments
WHD1	9.385	0	138.48	2.0211	0	h _{siNx}	[65,75]	After PECVD
WHD1	5.145	0	145.67	1.6803	0	h _{sinx} , n _{sinx}	[65,75]	After PECVD
WHD1	5.933	14.31	145.67	1.6803	0	h _{siO2}	[50,75]	After ALD
WN5	3.411	18.50	91.59	2.0683	15	h _{siO2}	[50,75]	After ALD
WHD1	5.669	14.17	145.67	1.6803	0	h _{siO2}	[50,75]	Before 2 nd Piranha
WN5	3.204	18.45	91.59	2.0683	15	h _{siO2}	[50,75]	Before 2 nd Piranha

WN5A (U) – $T_a = 250^{\circ}$ C; $t_a = 60$ min; $h_{R10.5} = 8.1$ nm; $h_{B82} = 45.9$ nm – Piranha

WHD1L (N-U) – $T_a = 250$ °C; $t_a = 60$ min; $h_{R10.5} = 6.8$ nm; $h_{B82} = 44.7$ nm – Piranha (Heavily Discolored)

A4.9 Pattern Transfer Calibration – After Step 0: Post-Development WN5A + B – Post development

WN5B (U) - Post 9s SF₆/O₂ RIE (30W, 7 sccm SF₆ + 13 sccm O₂, 75 mTorr)

A4.11 Pattern Transfer Calibration – After Step 2: CF_4/CHF_3 RIE WN5A (U) – 6s SF_6/O_2 RIE + 8s CF_4/CHF_3 RIE (75W, 5 sccm CF_4 + 5 sccm CHF_3 , 75 mTorr)

WN5B (U) - 9s SF₆/O₂ RIE + 8s CF₄/CHF₃ RIE (75W, 5 sccm CF₄ + 5 sccm CHF₃, 75 mTorr)

WN5D (U) – 9s SF₆/O₂ RIE + 11s CF₄/CHF₃ RIE (75W, 5 sccm CF₄ + 5 sccm CHF₃, 75 mTorr)

WN5C (U) - 6s SF₆/O₂ RIE + 11s CF₄/CHF₃ + 2x60s PP Ash (No FC)

WN5B (U) – 9s SF_6/O_2 RIE + 8s CF_4/CHF_3 + 2x60s PP Ash (No FC)

WN5D (U) - 9s SF₆/O₂ RIE + 11s CF₄/CHF₃ + 2x60s PP Ash (No FC)

A4.13 Higher quality SEM images and measurements taken post-electrodeposition $BL9777_01E - 9s SF_6/O_2 RIE + 13s CF_4/CHF_3 + PP Ash: 2x60s (FC) + 60s (No FC) + Electrodeposition$

BL9777_01J - 9s SF₆/O₂ RIE + 15s CF₄/CHF₃ + PP Ash: None + 90s (No FC) + Electrodeposition

A4.14 SiO₂, SiN_x and InAs ellipsometer data of BL9777_01, _02, _04

λ /[nm]:	[370.44, 1	L694.6]							
α _i /[°]:	50-75								
Sample #	MSE	h _{siO2} /[Å]	h _{siNx} ∕[Å]	n _{SiNx,633}	h _{inAs-OX} /[Å]	h _{inAs} /[nm]	n _{InAs, 633}	Fitted	Comments
BL9777_01	20.58	-	-	-	22.42	263.929	NA	h _{InAs-OX} , h _{InAs}	InAs/Si(111)
BL9777_02	17.77	-	-	-	17.11	275.304	NA	h _{InAs-OX} , h _{InAs}	InAs/Si(111)
BL9777_04	22.81	-	-	-	22.58	287.958	3.938	h _{inAs-OX} , h _{inAs}	InAs/Si(111)
BL9777_04	14.65	-	-	-	23.64	282.836	3.9141	h _{inAs-OX} , h _{inAs} , n _{inAs}	InAs/Si(111)
BL9777_01	20.47	-	85.12	2.0211	22.41	263.941	NA	h _{siNx}	After SiN _x PECVD
BL9777_01	10.05	-	102.74	1.5644	22.41	263.941	NA	h _{sinx} , n _{sinx}	After SiN _x PECVD
BL9777_02	29.97	-	86.81	2.0211	17.11	275.290	NA	h _{siNx}	After SiN _x PECVD
BL9777_02	13.83	-	106.84	1.5506	17.11	275.290	NA	h _{siNx} , n _{siNx}	After SiN _x PECVD
BL9777_01	24.36	15.33	85.12	2.0211	22.41	263.941	NA	h _{siO2}	After SiO ₂ ALD
BL9777_02	25.6	17.95	86.81	2.0211	17.11	275.290	NA	h _{siO2}	After SiO ₂ ALD
BL9777_04	21.11	86.04	0	NA	22.58	287.958	NA	h _{siO2}	After SiO ₂ ALD
BL9777_01	20.34	17.56	85.12	2.0211	22.41	263.941	NA	h _{siO2}	After failed Piranha

A4.15 Developed B82 pattern of BL9777_01 BL9777_01D - $T_a = 250^{\circ}$ C; $t_a = 60$ min; $h_{R10.5} = 6.8$ nm; $h_{B32} = 44.6$ nm - PP Ash: 3x60s (FC)

APPENDIX A5
Electrodeposition

A5.2 Etch, ash and electrodeposition data

#BL9777_01D

R10.5 RIE:	9 s
SiN _x RIE:	11 s
ASH, Front (FC):	2 x 60 s (No)
ASH, Backside (FC):	None
Electrodeposition	

Current:	
Time:	

350 mA 10 s

#BL9777_01E

R10.5 RIE:	9 s
SiNx RIE:	13 s
ASH, Front (FC):	2x60 s (Yes) + 60 s (No)
ASH, Backside (FC):	15 s (No)
Electrodeposition	
Current:	350 mA

#BL9777_01F

R10.5 RIE	9 s
SiNx RIE:	15 s
ASH, Front (FC):	20 s (No)
ASH, Backside (FC):	15 s (No)

Electrodeposition

Nom. Current:	350 mA
Nom. Time:	10 s
(Column I: Center of s	sample)

SU8000 15.0kV 8.3mm x250k SE(U) 8/16/2015

(Column II: Closer to sample edge)

#BL9777_01G

R10.5 RIE	9 s
SiNx RIE:	17 s
ASH, Front (FC):	20 s (No)
ASH, Backside (FC):	15 s (No)

Electrodeposition (Performed twice) Nom. Current: 450 mA Nom. Time: 10 s + 10 s NB: Current fluctuations first time!

SU8000 15.0kV 7.9mm x350k SE(U) 8/16/2015

#BL9777_01I

R10.5 RIE	9 s
SiNx RIE:	15 s
ASH, Front (FC):	60 s (No)
ASH, Backside (FC):	15 s (No)

Electrodeposition (Performed twice) 1st: 450 mA + 2nd: 240 mA Nom. Current: Nom. Time: ~10 s + 10 s NB: Timer died first time!

#BL9777_01J

9 s
15 s
None + 90 s (No)
15 s

Electrodeposition (Performed twice)Nom. Current:450 mANom. Time:10 s + 10 sNB: No ash first time (i.e. polymer still on)

#BL9777_01K

R10.5 RIE	9 s
SiNx RIE:	15 s
ASH, Front (FC):	2 x 60 s (No)
ASH, Backside (FC):	15 s
Electrodeposition	

Nom. Current:450 mANom. Time:10 s

SU8000 15.0kV 7.3mm x350k SE(U) 8/19/2015

#BL9777_01L

R10.5 RIE	9 s
SiNx RIE:	15 s
ASH, Front (FC):	2 x 60 s (No
ASH, Backside (FC):	15 s

Electrodeposition (Performed twice)Nom. Current:< 450 mA</td>Nom. Time:10 s + 5 sNB: Low current first time!

APPENDIX A6 Metal-Organic Vapour-Phase Epitaxy (MOVPE)

MOVPE RUN #10551 - Sample #BL9777_01K

Sample overview after MOVPE

Sample #BL9777_01K - Center

SU8000 15.0kV 7.7mm x110k SE(U) 8/21/2015

500nm

Sample #BL9777_01K - Edge

MOVPE RUN #10551 - Sample #BL9777_01I

After electrodeposition

Sample overview after MOVPE

Sample #BL9777_01I - Edge

MOVPE RUN #10551 - Sample #GT_10551

MOVPE RUN #10552 - Sample #BL9777_01L

After electrodeposition

Sample overview after MOVPE

Sample #BL9777_01L - Center

Sample #BL9777_01L - Edge

MOVPE RUN #10552 - Sample #BL9777_01J

After electrodeposition

Sample overview after MOVPE

Sample #BL9777_01J - Center

Sample #BL9777_01J - Edge

