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Preface

The Department of Automatic Control at Lund University annually gives a project course in Au-
tomatic Control (FRTN40). The course is given at the advanced level (7.5 ECTS credits), and the
students work in small teams to achieve a common goal. The projects typically involve a real-world
estimation or control problem with relevance to industrial or other applications. In this course, the
students get an opportunity to explore implementational aspects of concepts they have learned in pre-
vious control systems courses. With a faculty member or doctoral student as an advisor, the groups
independently formulate an objective and an associate time plan. Subsequent activities typically in-
volve modelling, controller design, implementation, documentation, and verification. The students
present their work through two feedback seminars, an oral presentation, a demonstration session, and
a written report. The reports of the 2021 edition of the course are presented in this booklet.

This year, the cohort consisted of 23 students, working in teams of 2-5 persons. The course in-
cluded 6 projects; Panda robot, Crazyflie quadrotor, Slimdog car, Bluelining robot, Brain computing
interface, and Ball balancing robot. Every single group managed to perform successful and satisfac-
tory real-time experiments to generate the final experimental results ready in time for the demonstra-
tion in January.

Doctoral students Martin Gemborn-Nilsson, Julian Salt, Zheng Jia have served the course as
project advisors, together with support from guest Tihomir Zilic and Professor Anders Robertsson.
We would also like to thank our research engineers Leif Andersson, Anders Blomdell and Anders
Nilsson who have supported the groups throughout their projects. Finally, we would like to thank
Mika Nishimura for her help with student registration and related matters.

To find out more about the course, please visit http://www.control.lth.se/course/FRTN40.

Lund, January 2022
Charlotta Johnsson, Course responsible FRTN40
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Abstract: The main objective of this project was to insert a piston into a hole using a collaborative
PANDA Robotic Arm, starting at an arbitrary position. The robot was controlled with model
predictive control (MPC) on a higher level and impedance control on the lower level. The hole was
detected using a camera for computer vision and so that the robot could position itself sufficiently
close to the hole. A search algorithm was then used to find the exact position of the hole and
insert the cylinder. The result was a program for the robot arm that allowed the robot to start in an
arbitrary position, except for some particularly difficult position or joint angles, and use MPC to
calculate a path to the desired position above the hole and move the tool tip point to that position.
In that position, the computer vision detects the circles and calculates the coordinates for the
circle in the x and y axis and the robot then moves to a point slightly above the found coordinates.
From that position, a search algorithm starts that makes the piston move in circles until the hole
is found and the piston is inserted. The whole program is performed with a working impedance
control. Further improvements and future applications are discussed as well as the choice of using
Cartesian coordinates and why ROS was not used as first intended.

1. Introduction
This project aimed to control a panda robotic arm safely with
impedance control while performing an insertion task. The
task was to insert a cylinder attached to the robot manipulator
in a cylindrical hole. The robot arm should be able to start
from any arbitrary position and move it above a box with a
cylindrical hole, identify and locate the hole with a search
algorithm and finally insert a cylinder attached to the robot
manipulator. Tasks like this are common in industrial settings.
By implementing impedance control this could increase safety
for tasks where human interaction with the robot is necessary.
The control of the robot was largely based on the results in the
paper “Model predictive control for real-time point-to-point
trajectory generation”[3].

2. Modeling
For this application, it was important to use a control method
that not only takes the current states into consideration, but also
anticipates future events. Without this feature, the robot might
collide with items in the room or itself. Generic PID controllers
were therefore deemed inadequate since they are unable to
represent the behavior of complex dynamical systems. Based
on the results in [3], it was instead deemed appropriate to
use model predictive control (MPC) to control the robot. The
main advantage of the MPC is that it can optimize a timeslot
while taking future slots into account. To use this method, it
was necessary to define a model of the system, an objective
function, as well as state and input constraints. Using a linear
model simplifies calculations, however, robot movements are
generally nonlinear. This trade-off was deemed reasonable for

Figure 1. Setup of workstation and panda robotic arm with cylinder
attached to the end effector.

the applications and tasks of this project.
The states of the system are defined as the Cartesian posi-

tions, velocities and accelerations

𝑥 = [𝑥, ¤𝑥, ¥𝑥, 𝑦, ¤𝑦, ¥𝑦, 𝑧, ¤𝑧, ¥𝑧]𝑇 .

The final state was defined as the final and desired Cartesian
position and zero velocity and acceleration: Z = Z 𝑓 , ¤Z = 0
and ¥Z = 0. The derivative of the acceleration, Z̈ , acted as the
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control output only for calculation purposes.

2.1 Discretization
In the MPC framework, the space-state kinematic system was
used to estimate future states. The continuous-time linear
model used is a double integrator, see equation 1 and 2, being
the matrices in equation 2 for each of the three axis. Since the
trajectory is set in the three axis the system will result in one
matrix for each one.

¤𝑥𝑐 (𝑡) = 𝐴𝑥𝑐 (𝑡) + 𝐵𝑢𝑐 (𝑡)
𝑦𝑐 (𝑡) = 𝐶𝑥𝑐 (𝑡)

(1)

The matrices 𝐴 and 𝐵 were defined as block diagonal
matrices and are calculated as 𝐴 = blkdiag([𝐴, 𝐴, 𝐴]) and
𝐵 = blkdiag([𝐵, 𝐵, 𝐵]), where 𝐴 ∈ R9×9 and 𝐵 ∈ R9×3. The
matrices were defined by the components,

𝐴 =


0 1 0
0 0 1
0 0 0

 , 𝐵 =


0
0
1

 . (2)

Assuming a sample period of ℎ, the discrete-time system
was obtained with the zero order hold (ZOH) sampling method
which means that the output is constant until the next obtained
sample, resulting in

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑢(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘)

. (3)

The matrices for the discretized model concerning the
controlled states can be calculated as block diagonal matrices
as above, resulting in equation 4,

Φ̃ =


1 ℎ ℎ2/2
0 1 ℎ

0 0 1

 , Γ̃ =


ℎ3/6
ℎ2/2
ℎ

 (4)

where Φ ∈ R9×9 and Γ ∈ R9×3.
These matrices was used to estimate future states from

each MPC calculation to decide which is the trajectory that
minimizes the cost function.

3. Electro-Mechanics
All required hardware and parts were already built before the
project start. The box as well as the piston had previously
been 3D-printed. The main gadget in this project was the
Panda robot, see Figure 1. The panda robot is a collaborative
robot with seven degrees of freedom and torque sensors in
all axes. It is specifically designed to assist humans but can
accomplish programmed tasks on its own too. The robot arm
has a path deviation that is less than 1.25 mm and has a
collision detection time that is less than 2 ms. The robot uses
positional encoders with 14 bit resolution and torque sensors
with 13 bit resolution. The joint electronics operates at 1 kHz.
The robot was already connected to a computer so no further
setup was required.[7]

Figure 2. RealSense camera mounted to the robot.

An Intel RealSense Depth Camera D435 was also used,
see Figure 2. The camera consists of two imagers, an IR pro-
jector and an RGB module. It has a relatively wide field of
view, making it suitable for robot navigation and object detec-
tion. One disadvantage with the camera is that the minimum
depth distance needed to accurately determine the distance is
approximately 28 cm. [1]

4. Control
For the initial movement, the robot was controlled by a
higher level Point-to-Point planning MPC and a lower level
impedance controller. The MPC produces the desired position
which is acted upon by the impedance controller to produce
the torques to the joints of the robotic arm, see Figure 3. In the
schematic, 𝑟𝑔𝑜𝑎𝑙 is reference signal of final position, 𝑟𝑑𝑒𝑠𝑖𝑟𝑒𝑑
is reference signal of next desired position, 𝑒 is the error be-
tween the next desired position and the current position, 𝑢 is
the control signal and 𝑦 is the output signal. This control struc-
ture takes advantage of the optimal path produced by the MPC
while allowing the robot to be designed as a mass-spring-
dampener system. The impedance controller therefore allows
for a safer interaction with the robot during operation from
both a human-robot interaction and a robot-object interaction.

This section describes the controllers further and the strat-
egy used for moving the cylinder into the hole of the box. The
impedance controller was present during all movements for
the reasons discussed above.

Figure 3. Schematic of point-to-point planning using MPC as
higher level control and impedance control as lower level control.

Agerman E, Kelbelova I A, Atlas M, Bringman J
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4.1 State machine
The task of moving the cylinder, from its starting position
into the hole of the box could be divided into a number of
subtasks. Therefore, a state machine is considered the best
solution for keeping track of each subtask, where each subtask
is represented by a state.

A benefit of the state machine is that the states are decou-
pled and can be individually developed and tested. A repre-
sentation of the state machine can be seen in Figure 4. The
state machine consists of five states, determining what control
strategy to be used. Impedance control is used as low-level
control in all states in combination with different high-level
controls.

The first state executes the combined MPC-impedance
controller, see Figure 3, to produce an optimal trajectory from
any starting position to a known position 𝑟𝑔𝑜𝑎𝑙 . Initially 𝑟𝑔𝑜𝑎𝑙
is a known position above the box. When this position is
reached, a transition to the Cam state is triggered.

The Cam state uses the camera to locate and calculate the
position of the hole. The reference signal 𝑟𝑔𝑜𝑎𝑙 is updated
and a transition back to the MPC-impedance control state is
triggered. When 𝑟𝑔𝑜𝑎𝑙 is once again reached, a transition to
the Approach state is triggered.

The cylinder should now be placed above the box, close
to the hole and is in this state lowered purely by impedance
control until contact with the box is registered. The cylinder
is considered being in contact with the box after a number
of iterations where contact has been detected. The desired z-
position is decreased in every iteration and therefore produces
an error 𝑒𝑧 along the z-axis.

The Search state is then transitioned into, where the search
algorithm is performed until the hole is located. The hole is
considered located when there is no contact with the box and
the error 𝑒𝑧 is bellow a threshold 𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . See Subsection
4.4 for an in-depth explanation of the algorithm used.

Once the hole has been located, a transition to the Insert
state is triggered where the cylinder, like in the Approach state,
is lowered with impedance control. If contact with the wall of
the hole is registered, a small circular movement in the global
xy-plane is also performed until there is no contact with the
wall. When the cylinder makes contact with the bottom of the
hole, the task is completed and the end state is triggered and
the program is finished.

4.2 MPC
The model predictive control was being used to generate a
Point-to-Point trajectory. In this case the MPC was used in
an offline configuration to avoid the use of multi-threading, a
method too complicated to implement when weighted against
expected benefits. For any initial given position the state is
read and the information is passed to the optimization solver
to get the next point of the trajectory. This operation is repeated
several times until the final fixed desired position is achieved.
The position calculated by the MPC will be used as an input to
the impedance control that will determine the values of each
joint torque.

As it is explained in the modeling subsection, the MPC was
working in Cartesian position coordinates (due to the increas-
ing difficulty the orientation will not be solved with the MPC).

Figure 4. Schematic of the state machine.

Therefore the optimization equation and the restrictions had
to be expressed regarding to this reference system.

Optimization The model predictive control is based on look-
ing for the solution to an optimization problem in a fixed time
horizon fulfilling a set of restrictions. A common form of the
optimization function is a first term penalizing both the posi-
tion error and the control signal for the first 𝑇 time steps and a
second term penalizing only the position error in the last steps
to minimize this final position error. Following this structure
the optimization problem has been structured as follows:

minimize
𝑇−𝑇 𝑓−1∑︁

𝑡=0
(𝑥𝑇𝑡 𝑄𝑥𝑡 + 𝑢𝑇𝑡 𝑅𝑢𝑡 ) +

𝑇∑︁
𝑡=𝑇−𝑇 𝑓

(𝑥𝑇𝑡 𝑄 𝑓 𝑖𝑛𝑎𝑙𝑥𝑡 )

subject to 𝑥𝑡+1 = Φ𝑥𝑡 + Γ𝑢𝑡 ,

|𝑢𝑡 | ≤ 𝑢𝑚𝑎𝑥 ,

|𝑢𝑡+1 − 𝑢𝑡 |∞ ≤ 𝑆,

|𝑥𝑡 (1) | ≤ 𝑥𝑚𝑎𝑥 ,

|𝑥𝑡 (4) | ≤ 𝑦𝑚𝑎𝑥 ,

|𝑥𝑡 (7) | ≤ 𝑧𝑚𝑎𝑥 ,

Being𝑄, 𝑅 and𝑄 𝑓 𝑖𝑛𝑎𝑙 weighting matrices;𝑇 and𝑇 𝑓 steps
intervals; 𝑥(1), 𝑥(4) and 𝑥(7), the values of the Cartesian
coordinates 𝑥, 𝑦 and 𝑧, respectively; 𝑆 the slew rate; and 𝑢𝑚𝑎𝑥 ,
𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 and 𝑧𝑚𝑎𝑥 , upper limits for the control action and
Cartesian coordinates.

Regarding to the parameters in the optimization expres-
sion most of them were fine tuned. The optimization was set
to 15 time steps in a fixed time of 4 seconds, between those
the initial 12 penalized both the control action and the posi-
tion error, and in the final three only the position error was
penalized. The weighting matrices 𝑄, 𝑅 and 𝑄 𝑓 𝑖𝑛𝑎𝑙; were fine
tuned experimentally trying to get a smooth movement over
the whole trajectory and a relatively small position error at the
desired final position.

Regarding to the constraints, the first one is set in order
to estimate the future next steps, this way the MPC is able to
estimate the best path to achieve the final position. The second
and third are restrictions to the control action maximum value
and its change for one steps to another. Since the actual me-
chanical descriptions should be set on the robot joint absolute

Object positioning with Panda Robotic Arm
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positions, velocities or accelerations limits; there is not ap-
parent accurate way to tune the second restriction. The same
occurs with the third one, the slew rate constrain is mostly
use to avoid discontinuities when applying completely differ-
ent control actions in a small period of time so in this case
is difficult to have a correlation between joint and Cartesian
parameters. That being said this parameters were tuned as the
ones in the minimizing expression, looking at the robot per-
formance over different situations. The last three restrictions
were set as spacial physical limits in the three axis 𝑥,𝑦 and 𝑧.
These restrictions avoid that the trajectory of the robot goes
out of a safety space delimited.

Constraints The use of Cartesian position was preferred be-
cause positional constraints are more straight forward to set. In
this case the trajectory should be constrained within the cubic
volume over the surface of the table. This is achieved as simple
restrictions over the different axes. By using Cartesian coor-
dinates, there is no way to constrain either the joint velocities
or accelerations, since the controller is designed in Cartesian
space. Another problem is restricting the robot from collid-
ing with itself, which is a non-convex restriction. The MPC
relies on quadratic convex optimization and these types of re-
strictions can therefore not be solved by the controller. The
generated points from the MPC that are within a radius 𝑟 from
the center of the robot, are therefore moved to the circular arc
around the robot in a perpendicular direction to the generated
path.

4.3 Impedance Controller
The impedance controller was used to give the arm responsive-
ness against external forces that can appear within the work
environment. In practice this means that impedance control
can help to avoid rigid collisions since it gives a flexible re-
sponse. This prevents collisions that could be dangerous for
both the robot and the users around it. The impedance con-
troller in the project has been set to calculate the desired joint
forces for any of the states in the state-machine.

As the dynamic model of the robot was not being modified,
using the software’s default dynamic model for the arm; the
cylinder attached to the hand is detected as an external force.
Then, the impedance controller is compliant with this force and
a precision error is being introduced. This error was solved by
the search algorithm in the last stage.

4.4 Search algorithm
The goal of the search algorithm was to locate the hole. A
simple spiraling movement was implemented, see Figure 5.
This ensures that the hole is located from any starting position
that is closer to the hole than the edges of the box. The spiraling
movement is defined by increasing the radius proportional to
the angle,

𝑟 = 𝑘\. (5)
While executing the movement the robot is continuously

pushing against the box by setting the desired position along
the z-axis below the surface of the box. The normal force from
the box is detected by the robot until the cylinder is placed
above the hole. This was used as a condition for finding the
hole.

Figure 5. Spiraling movement of the search algorithm.

Since the cylinder may occasionally lose contact with the
box due to the inaccuracy of the impedance control the posi-
tional error along the z-axis is also checked. When the calcu-
lated error is below a threshold and no contact with the box is
registered, the hole has been found.

5. Implementation
The implementation of the different control systems were done
separately and was intended to be put together using Robot Op-
erating System (ROS), but was instead integrated in one single
program due to ROS being too time consuming to initiate in
relative to the benefits of using ROS. The state machine and
impedance controller was implemented using the C++ library
libfranka [4] with methods for controlling the panda robot. To
avoid going back and forth between Cartesian and joint coor-
dinates, all programs solely use Cartesian coordinates as input
and output. The computer vision was written in Python and
then translated to C++ and the libraries used for the computer
vision were realsense and OpenCV.

5.1 MPC
The model predictive control returns a set 𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛 of 15
points. In order to obtain a smooth trajectory in between
points, linear interpolation was used to create multiple sub
points. Since the movement should be completed in a fixed
time𝑇𝑙𝑖𝑚𝑖𝑡 of 4 seconds, the time between each point is 0.267 s
and the number of sub points is calculated as

𝑛𝑠𝑡𝑒𝑝𝑠 = 𝑓𝑟𝑜𝑏𝑜𝑡 ∗
𝑇𝑙𝑖𝑚𝑖𝑡

𝑇ℎ𝑜𝑟𝑖𝑧𝑜𝑛
(6)

where 𝑓𝑟𝑜𝑏𝑜𝑡 is the 1 kHz frequency which the joint electronics
operates at.

This results in a total number of 267 sub points in between
each point generated by the MPC. The interpolation is calcu-
lated and stored offline after each call to the MPC for reduced
computation time in the control loop. These points were then
used as reference signals to the impedance control.

Agerman E, Kelbelova I A, Atlas M, Bringman J
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5.2 Impedance
The impedance controller was implemented using functions
provided in the libfranka library. Two main constants could be
modified in order to obtain the desired collision behavior, the
stiffness and the damping. The stiffness defines the input of
force needed to achieve a displacement of the robot, and the
damping is related to the variation of force needed depending
on the velocity of the disturbance.

To control the behaviour of the panda robot there are two
thresholds for collision behaviour: an "advice" threshold and
an "error" threshold. In this case the values were set to max
values in order to be responsive in a wider range of forces.
This is true except for one of the advice parameters that will
be used to detect the contact in the z-axis.

5.3 CVXGEN
The MPC was implemented in C using CVXGEN, a website
that generates code for small, QP-representable convex opti-
mization problems [2]. By inputting the estimated parameters,
variables and constraints, previously modelled in Section 2.
and defining the cost function as described in Section 4.2,
CVXGEN outputs a solver for the control problem. The C
code could then be linked to the main C++ code so that it
could be used as a high-level Point-to-Point planner.

5.4 Computer Vision
To find a suitable starting position for the search algorithm,
see Section 4.4, computer vision was used. Python was used
to write the script, which includes the pyrealsense2 library [6]
that handles the connection to the Intel RealSense D435 cam-
era used and Open CV library [5] that is a library for computer
vision. The depth and color stream from the camera was used
to identify circles in the frame. To achieve this, the method
Hough circle transform was used [8]. By applying the trans-
form to gradient information of edges in gray-scale pictures,
the circle parameters can be determined. To avoid incorrectly
identifying other circles than the desired hole, the radius was
limited so that only circles of the specified size would be de-
tected. The detected circle and its center point was drawn in
the image and can be seen in figure 6. The square shows the
measurement points which the average distance to the box is
based on. After identifying a hole, the coordinates for the hole
was calculated by translating the number of pixels to a dis-
tance. At first, the distance to the box’s surface was calculated
using the cameras depth functionality but due to the camera
being more inaccurate compared to the accuracy to the esti-
mated position of the robot and the lack of need to be exactly
on the surface of the box when starting the search algorithm, a
fix distance was used instead. With this information, the robot
should be able to position itself sufficiently close to the hole
for the search algorithm to succeed.

5.5 ROS
Since different programming languages were used for different
parts of the project, ROS was intended to be used for com-
munication between the robot and the computer vision. ROS
already includes software libraries and tools that aid in build-
ing robot applications. By building a package that included
the program for the state machine, the MPC and the computer

Figure 6. Image generated from the camera.

vision, it would not have been necessary to write all programs
in the same language. ROS works as a multi-threaded program
with built in communication since it can be used to launch a
number of different nodes where each node run a program
separately. The nodes can subscribe to each other and thus be
notified when a message is sent from another node. This makes
ROS a helpful tool when working on a project with different
parts that needs to work together. However, the work to learn
ROS and implement it was complicated and time consuming
and it was realized that an easier option would work and have
an equally good result due to the relatively low complexity
of the project and thus it was decided to not use ROS. The
option of using a Python C++ API to run the computer vision
code (Python) in the code for controlling the robot(C++) was
discussed but the choice was made to instead translate the
computer vision code from python to C++ and call it from the
controller code.

6. Results
Combining all of the control methods and implementations
resulted in a program for the robot arm that allowed the robot
to start in an arbitrary position, aside from some particularly
difficult position or joint angles which leads to error due to ex-
ceeded joint limitation. This limitation could be derived from
the use of Cartesian coordinates to control the robot, and the
work to solve this would most likely be quite excessive and
was thus excluded from the project. The program uses the de-
signed MPC to calculate a path to the desired position above
the hole and move the robot to that position. If the calculated
path is inside the vertical cylinder designed to represent the
robot body, the points within that cylinder is moved perpen-
dicular to the path until it is outside of the cylinder to avoid
the robot colliding with itself. This can be seen in Figure 7.

When the robot arm ends up in the end position of the MPC
path, which is a point well above the box that is chosen to be a
good position for the camera to be able to detect the hole, the
computer vision starts. The program for the computer vision
waits for a circle to be detected in the images from the camera,
and uses the detected circle to calculate the distance from the
robot to the circle in x and y coordinates. The robot is moved to
the detected coordinates and to a z coordinate a short distance

Object positioning with Panda Robotic Arm
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Figure 7. Points generated by the MPC in the xy-plane. Points
within the circle, representing the robot, are moved to the arc (red
points), perpendicular to the generated path.

above the box to ensure a good starting position for the search
algorithm. From that position, a search algorithm starts that
makes the piston move in circles until the hole is found and
the piston is inserted, see Figure 8. The whole program is
performed with a working impedance control which protects
the robot and the surroundings from harm due to collision.
The impedance control is also central in the search algorithm
to detect when the hole is found. Depending on the robot’s
starting position, the program will take slightly more than a
minute to execute, with the search algorithm being the most

Figure 8. Inserted piston.

time consuming task, see figure 9.

Figure 9. Time table of individual tasks.

7. Discussion
While the project was successful, some further improvements
could have been made. In the initial phase of the project it was
discussed whether to use Cartesian coordinates or joint coor-
dinates in the MPC. To simplify the setting of restrictions, the
Cartesian coordinates were chosen. It was then possible to for
example limit the movements in the z-direction to prohibit the
robot from moving beneath the table. However, this resulted
in complications regarding the joint limitation and when con-
trolling the orientation of the tool tip. Since joint limitations
were not considered when calculating the path using the MPC,
this resulted in the robot sometimes aborting due to exceeded
joint limitations. This could for example happen if the robot’s
joint angles in the start position were already close to their
limit, and the closest way to reach the end position was to
continue to rotate the joint until the limit was reached. This
problem would have been avoidable if joint coordinates were
used instead. Another disadvantage of the use of Cartesian
coordinates is that it is only the tool tip position and not the
tool tip rotation that is considered in the MPC. This limited
the possible starting positions of the robot to the ones with
an angle of the tool tip very close to the desired final tool
tip position, which is with the piston in a vertical downward
position. This was necessary to make sure the field of view of
the camera covered the circle and the box. Small deviations
from that rotational position could be fixed after the robot had
reached the end position but a better and more advanced algo-
rithm would be needed to be able to adjust larger deviations.
For future work this would be a suggested improvement.

Another possible area of improvement is the camera code
which is good enough for this project in a lab setting when the
position and field of view of the camera is known and there is
no other circles with similar size that can be detected by the
camera. To create a more robust code for the computer vision
that could handle more advanced environments, a number of
different frames could be used to get a mean value of the x
and y coordinates.

The initial thought was to use the depth sensor of the
camera, as well as the x and y coordinates detected by the
computer vision to calculate the distance from the tool tip to
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the circle in all three axes and move to that position. However,
since the depth value was not very exact and was not accurate
on a distance closer than 28 centimeter, the results were not
very reliable. Since using the depth sensor led to a worse
result than just using a fix distance based on the estimated end
position, it was decided that that was a simpler and more robust
solution. However, if a more exact depth sensor is used or if the
actual end position of the robot differs a lot from the estimated
position, one improvement could be to implement the usage
of the depth sensor instead of the fix value to calculate the
distance in the z-axis and not only the x- and y-axis.

Furthermore, to make the robot’s path following more ac-
curate, the specific robot parameters should have been modi-
fied in the code. For example, the weight of the camera was
added to the tool tip since the difference between the actual
and estimated torque needed for joint movements could oth-
erwise have led to deviation from the final position. However,
to get even more accurate results, the camera’s cord should
also have been taken into consideration, as well as the shifted
centre of mass after mounting the camera.

Further improvements could also have been made to lower
the time needed for calculations and movements. It was previ-
ously mentioned that a decision was made to avoid multi-
threading, which would have led to shorter computational
time. It is possible that a better trajectory might have been
generated if the MPC was allowed to run continuously.

Regardless of the possible improvements, the end goal was
achieved. Especially given the limited time and resources, the
project can be said to have been successful.
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Abstract:
Drones have a high variety of useful applications today. In this project the aim is to implement
collision avoidance for an autonomous flying drone while flying in a circle. The drone dynamic can
be divided into actuation system, which includes the motors and propellers, the motion system,
which includes dynamics equations and kinematics and the sensors. In order to do collision
avoidance while flying in a circle and a coordinate system was needed with the center of the circle
defined as (0,0). To get the drones position an embedded Kalman filter was used together with
a flow deck, and to detected obstacles a Multi-ranger deck was used. The collision avoidance
algorithm calculates the radius of the object by measuring the distance to it with the front sensor
and adds a safety margin to the estimated radius of the object and finally goes in a circle around
the object with this radius. After the avoidance the drone continuous it’s original circular path
again. The collision avoidance algorithm was implemented in python and is was tested for a 2 and
3 obstacle course while analysing the accuracy of the radius estimation and the placement of the
center of the obstacle.

1. Introduction
The applications for automated drones are evolving as tech-
nology improves. One application is to take photos to obtain
images of areas that are hard to reach for non-autonomous
vehicles. One example can be found in Japan, where they used
drones to map the structure of a volcano in order to run simu-
lations to calculate when the volcano would erupt[6]. Another
application is autonomous delivery. Amazon has published
that they are going to use automated drones to deliver pack-
ages up to 2.3 kg to their customers in near future[1]. In both
cases the drones need to fly autonomously, meaning that they
need some way of detecting obstacles and more importantly,
avoiding them.

The aim of the project is to try to implement autonomous
collision avoidance for a flying drone. The drone is pro-
grammed fly in a circular trajectory and be able to detect
and avoid static obstacles placed on the trajectory, as seen in
figure 1. After avoiding the obstacle it should also find it’s
way back to the circle trajectory. The drone that will be used
to accomplish this task is a Crazyflie, a very small and light
drone with user-friendly interfaces.

It is important to look at the applications of what you
make. Drones can be used for helpful things to humanity as for
example, helping to predict volcanic eruptions, but they can,
and have also been used frequently in warfare. Of course this is
a very small project, and will not create groundbreaking new
algorithms to be used for any such extreme applications, but
it is important to consider the ethical implications of potential
uses of technology, when developing new innovations.

Figure 1. Project Outcome - Crazyflie running in the obstacle path

2. Modeling
The drone is supposed to follow a pre-defined circular path
with a constant velocity, avoid obstacles and find its way back
to the circle again. For the purpose of this project, the velocity
used was 0.2𝑚/𝑠 due to the fact that it was the velocity used
in paper [3] which gave the best results without the drone
becoming unstable. For the drone to find its way back to the
same circle as before, a coordinate system is needed to keep
track of both the drone itself, as well as the obstacle it has to
avoid. In order to be able to do this, an estimate of the current
position of the drone on the coordinate system is needed.
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In addition to this we had to model the circular trajectory
reference and determine a method for detecting and avoiding
the obstacles.

2.1 Drone Dynamics
Before starting with the collision avoidance method we first
identified the dynamics of the quadcopter. It can be divided
into 3 subsystems [5]: the actuation system, the motion system
and the sensors.

Actuation system In this system, the model of each of the
four rotors consists of the motors, the propellers and the model
of the allocation of control. The combination of forces and mo-
ment exerted by each one of the four rotors results in the thrust
force, 𝐹𝑝 , and the thrust moment, 𝑀𝑝 , which are responsible
for the movement of the drone. In this way, we consider the
model of the system of actuation composed of:

Motors model: The motors are modeled as direct current
motors, being controlled by the supply voltage 𝑉𝑚. The motor
stator can be modeled as a circuit 𝑅𝐿 traversed by a current
𝐼, where the Joule losses are represented by the resistance
𝑅𝑚, the magnetic field losses are represented by the induc-
tance 𝐿𝑚, and the electromotive force produced is represented
by the multiplication of the angular velocity Ω by a counter-
electromotive constant 𝐾𝑒. The rotor (moving part of the mo-
tor) rotates at an angular velocity Ω and has a polar moment
of inertia 𝐽𝑚, the torque created is modeled as the product of
the angular velocity by a torque constant 𝐾𝑡 , and a friction
force is modeled by the product of the angular velocity and
a friction constant 𝐵𝑚. Thus, the equations that represent the
engine model, where𝑄 represents the moment associated with
the propeller, are:

¤𝐼𝑛 =
1
𝐿𝑚

(𝑉𝑚 − 𝑅𝑚𝐼 − 𝐾𝑒Ω𝑛) (1)

¤Ω𝑛 =
1
𝐽𝑚

(𝐾𝑡 𝐼 −𝑄 − 𝐵𝑚Ω𝑛) (2)

Assuming that the voltage received at each motor is equal to
𝑉𝑚, this can be related to the battery voltage, 𝑉𝑏𝑎𝑡 , by:

𝛿𝑛 =
𝑉𝑚𝑛

𝑉𝑏𝑎𝑡
(3)

Where 𝛿𝑛 is the normalized voltage received by each motor.
Since the movement of the motors is much faster than the
movement of the drone, they can be modeled as a static gain.
The normalized voltage will be used for modeling the motors
through the following linear relationship:

𝛿𝑛 = 𝐾ΩΩ𝑛 (4)

Propellers model: The system corresponding to each pro-
peller is modeled using the force and momentum coefficients,
𝐾𝑇 and 𝐾𝑄, which multiplied by the square of the angular
velocity of the propeller allow us to obtain the torque, 𝑇 , and
the momentum, 𝑄 , resulting from its rotational movement.
These coefficients depend on the characteristics of the pro-
peller used. Thus, with Ω𝑛 being the speed of rotation of the
propeller connected to the engine 𝑛, and 𝑇𝑛 and 𝑄𝑛 the torque

being the resulting momentum, respectively, the equations can
be written as:

𝑇𝑛 = 𝐾𝑇Ω
2
𝑛 (5)

𝑄𝑛 = 𝐾𝑄Ω
2
𝑛 (6)

Allocation of control model: Considering the configuration
in × of the quadcopter, and the different possible motion
manipulations previously described, the resulting propulsion
forces and moments can be obtained by the following equa-
tions:

𝐹𝑝 =


0
0

−∑4
𝑛=1 𝑇𝑛

 (7)

𝑀𝑝 =


[(𝑇1 + 𝑇4) − (𝑇2 + 𝑇3)]𝐿 cos 45
[(𝑇1 + 𝑇2) − (𝑇3 + 𝑇4)]𝐿 sin 45

−𝑄1 +𝑄2 −𝑄3 +𝑄4

 (8)

Motion system

Dynamics: The dynamics equations relate the forces exerted
on the body with its acceleration and inertia. The translational
dynamics, equation (9), and rotational dynamics, equation
(10), of the drone are described by the following equations:

𝑚 ¤𝑣 = −𝜔 × 𝑚𝑣 + 𝐹𝑝 + 𝐹𝑎 + 𝐹𝑔 (9)

𝐽 ¤𝜔 = −𝜔 × 𝐽𝜔 + 𝑀𝑝 (10)
Where 𝑚 and 𝐽 are, respectively, the drone’s mass and inertia
matrix, 𝑣 and 𝜔 are the linear and angular velocity vectors
of the local frame relative to the inertial frame, expressed in
the local frame. The external forces and moments acting on
the quadri-rotor come from propulsion (vectors 𝐹𝑝 and 𝑀𝑝

previously described in equations 7 and 8, from aerodynamics
(which include wind disturbances ), 𝐹𝑎, and of gravity, 𝐹𝑔.
There is also an aerodynamic moment 𝑀𝑎, however this is
negligible compared to the propulsion moment 𝑀𝑝 .

Kinematics: Kinematics equations relate the velocity of the
body to its position. The linear and angular velocities of the
quadcopter can be described in the inertial frame by:

¤𝑝 = 𝑅𝑣 (11)

¤Φ = 𝑆𝜔 (12)
where 𝑝 = [𝑝𝑁 , 𝑝𝐸 , 𝑝𝐷]𝑇 and Φ = [𝜙, \, 𝜓]𝑇 are the posi-
tion of the center of mass and the attitude of the quadri-rotor
relatively to the inertial frame, respectively. The matrix 𝑆 is
given by:

𝑆 =


1 𝑠𝜙𝑡\ 𝑐𝜙𝑡\
0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙/𝑐𝜙 𝑐𝜙/𝑐\

 (13)

Where 𝑠𝛼 = 𝑠𝑖𝑛(𝛼), 𝑐𝛼 = 𝑐𝑜𝑠(𝛼) e 𝑡𝛼 = 𝑡𝑎𝑛(𝛼).

2.2 Coordinate system
All position data comes from the drone’s sensors which means
that we do not have any external information. This needs to be
taken into account because the drone sensors do not give us
absolute position and they are subject to errors. Therefore, the
coordinate system and position of the drone has to be based
on initial values and estimations. To do that we use the pre-
defined Kalman filters that we obtained from the cflib which
is the crazyflie library for python.
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Figure 2. Kalman Filter Process [2]

2.3 Kalman Filter
The drone’s sensors give us a measurement of the position of
the drone. However, this one is subject to errors. Due to this,
we used a Kalman filter which has the objective of minimizing
the effect of the noise in the measurements by minimizing the
tracking error. The principle of the Kalman filter is to gather
information known about the system model with the informa-
tion received by the sensors, in a recursive process, and it is
verified that the value converges to the true value. The algo-
rithm consists of two steps: first, in the prediction step, the
Kalman filter estimates the states and its uncertainties, and in
the next step, after receiving the next corrupted sensor mea-
surement by noise, updates state estimates using a weighted
average, as we can see in figure 2.

2.4 Circular path reference
The circular reference can be described by the following equa-
tion:

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝑅2 (14)

where 𝑥0 and 𝑦0 are the center point of the circumference, 𝑥
and 𝑦 are the drone current position and 𝑅 is the radius of the
circumference.

2.5 Collision detection
To detect an object placed in the path we use the information
gathered from the Multi-ranger deck. We assume that the first
time the drone detect an object the edge is detected and that
the obstacle can be represented as a circumference with radius
𝑅𝑜𝑏 𝑗 and with the center placed on the trajectory of the drone.
With these assumption when an object is detected we will
have a situation as shown in figure 3, which can be seen as
two triangles, one consisting of the following three points: The
center point of the circular path the drone is taking, called C,
the drone current position called D and the point where the
obstacle is detected, called O. The other triangle is represented
by points C, O and the center point of the obstacle, called OC.
We want to determine 𝑅𝑜𝑏 𝑗 which is the distance from the
point OC to the point O.

We start with the first triangle. The angle at D is called
𝛼 and is calculated by 90 − (𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑦𝑎𝑤 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑦𝑎𝑤) The
angle at C is called \ and is calculated by first computing the
inverse of the tangent of the y position of O divided by the x
position of O, and then doing the same for D and taking the
difference between them. Finally the angle at O is called 𝜙 and
is equal to 180 − 𝛼 − \.

For the second triangle we first make use of our assump-
tions. The assumption that the object is circular with center on

Figure 3. Collision Detection

the path the drone is taking means that the distance the point
OC to the point C is R. The assumption that when we spot the
object it is the edge of it means that the angle to reach the cen-
ter is 90 degrees from the spotting angle, or if we in triangle
2 call the angle at O for 𝛽 then 𝜙 + 𝛽 = 90 <=> 𝛽 = 90 − 𝜙
With two distances and one angle know we can use the law of
cosines [4] to calculate the remaining side. We get the follow-
ing equation, where we call length OC,C for R and O,C for
𝑑𝑜𝑏 𝑗

𝑅2 = 𝑑2
𝑜𝑏 𝑗 + 𝑅

2
𝑜𝑏 𝑗 − 2 ∗ 𝑑𝑜𝑏 𝑗 ∗ 𝑅𝑜𝑏 𝑗 ∗ 𝑐𝑜𝑠(𝛽) (15)

𝑅𝑜𝑏 𝑗 =
𝑑2
𝑜𝑏 𝑗

− 𝑅2

2
±√︄

(
𝑑2
𝑜𝑏 𝑗

− 𝑅2

2
)2 + 2 ∗ 𝑑𝑜𝑏 𝑗 ∗ 𝑅𝑜𝑏 𝑗 ∗ 𝑐𝑜𝑠(𝛽)

(16)

The equation 16 can give 2 solutions, but in our case we
are only interested in the first, i.e. when the ± is negative. This
gives finally:

𝑅𝑜𝑏 𝑗 =
𝑑2
𝑜𝑏 𝑗

− 𝑅2

2
−√︄

(
𝑑2
𝑜𝑏 𝑗

− 𝑅2

2
)2 + 2 ∗ 𝑑𝑜𝑏 𝑗 ∗ 𝑅𝑜𝑏 𝑗 ∗ 𝑐𝑜𝑠(𝛽)

(17)

Once 𝑅𝑜𝑏 𝑗 is known, the center point of the obstacle, OC,
can be found by treating the line between OC and O as a vector.
Once the point is found the obstacle can finally be described
by the following equation:

(𝑥 −𝑂𝐶𝑥)2 + (𝑦 −𝑂𝐶𝑦)2 = 𝑅2
𝑜𝑏 𝑗 (18)

2.6 Collision avoidance
After detecting the obstacle we now have the equations 14 and
18 which are the equations of the trajectory and the obstacle.

Quadcopter collision avoidance algorithm
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Figure 4. Collision avoidance

Figure 5. Crazyflie

With these two equations we can calculate the points where
they intersect and we can avoid the obstacle by flying the drone
between these two points using another trajectory. However,
we need to have a bigger radius for the collision avoidance
trajectory because there is a risk of collision between the
drone and the object when it reaches the point where both
circumferences intersect. We defined the variable 𝑅𝑠𝑒𝑔 which
makes us able to define another circumference with the center
on the obstacle center:

(𝑥 − 𝑝1𝑥)2 + (𝑦 − 𝑝1𝑦)2 = 𝑅2
𝑠𝑒𝑔 (19)

When the drone reaches the point 𝑝1𝑖 it will start the new
trajectory given by the equation 19. When it reaches the point
𝑝2𝑖 it will return to the previous trajectory and with this we
can avoid the collision as we can see in figure 4.

3. Electro-Mechanics
The drone used in this project is a Crazyflie 2.1, seen in figure
5, along with different decks mounted on it. The Crazyflie
itself has an IMU with a three axis accelerometer and gyro-

scope. However, additional decks are needed for the collision
detection and avoidance.

3.1 Flow deck
The flow deck is mounted underneath the Crazyflie and has
optical sensors to both measure the distance to the ground as
well as detecting movement relative to the ground. This deck
is used to create an accurate model of the drone’s movements.
In practise it is used for the drone to keep a fixed distance
to the ground, this makes for a easy way to keep the drone
hovering in place, without too much configuration. Since the
deck also has an optical flow sensor that can detect horizontal
movement, the drone can, with just the flow deck, estimate
how far the drone has moved in any direction, just based on
data from the sensor.

3.2 Multi-ranger deck
The Multi-ranger deck, is mounted on top of the Crazyflie and
measures distances to obstacles in five directions, front, back,
right, left and up. Like the Flow deck the Multi-ranger deck
also uses optical sensors to accurately measure distances to
objects of up to 4 meters. The deck works by sending out laser
straight out in the five directions and measure the distance to
the point where the laser collides with an obstacle. Since the
deck works by using lasers, it can only detect a single point
in each direction, meaning that it has no field of view, and
two different points of collision can only be detected at two
different points in time. With this restriction we can not detect
the entire outline of the obstacle, but have to estimate the size
of the obstacle by only using a single point, and the distance
from the drone to that point.

3.3 Lighthouse Positioning deck
The lighthouse deck uses base stations to give absolute and
accurate positions of the drone while flying. Without the Light-
house deck the position of the Crazyflie is estimated using data
from the flow deck and a Kalman filter. However, the Light-
house positioning deck will not be used in this project since
the Multi-ranger deck is mounted in the same position, and
the two decks can not be used together. Since the Multi-ranger
deck is used to get the distance and direction to the obstacles,
which is crucial to actually follow a set path and avoid ob-
stacles. The position of the drone can be estimated in other
ways, for this project, the Multi-ranger deck is chosen over the
Lighthouse positioning deck.

4. Control
4.1 PI
Since the drone is supposed to fly in a circular trajectory,
we found a function within the crazyflie python library, cflib,
called circle_left. This gives the drone a constant velocity
and constant yaw rotation. However, this function does not
compensate for any kind of errors in the drone’s trajectory. In
order for the drone to be able to correct itself back to a given
trajectory, two simple PI controllers were implemented. Since
our trajectory is circular, there are only two variables that need
to be regulated. The first is the distance to the origin point,
denoted 𝑑𝑜, and the second is the drone’s current yaw angle,
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denoted 𝑦𝑐. The distance to the origin can be calculated using
our current X and Y coordinates according to equation 20

𝑑𝑜 =

√︃
𝑥2 + 𝑦2 (20)

Given this, and the radius of circular trajectory 𝑟𝑡 we sim-
ply calculate the radius error 𝑒𝑟 using equation 21

𝑒𝑟 = 𝑟𝑡 − 𝑑𝑜 (21)

The second variable that needs to be regulated is the yaw
of the drone, which is its rotation along the horizontal plane.
The current desired yaw 𝑦𝑑 can also be calculated using the X
and Y coordinates using equation 22

𝑦𝑑 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑦/𝑥) + 90 (22)

The yaw error 𝑒𝑦 is the calculated using the current yaw
value given by the drone 𝑦𝑐 using equation 23

𝑒𝑦 = 𝑦𝑑 − 𝑦𝑐 (23)

If the drone is now given a constant velocity in the x-axis
(in the forward direction), we can use the radius error 𝑒𝑟 and
a PI controller to regulate the distance to the origin to be
constant, using the drones lateral thrust, 𝑇𝑦 , along the y-axis.
If we then regulate the drone’s rotation along the horizontal
plane, 𝑅𝑦 (the drone’s yaw), using another PI controller and
the yaw error 𝑒𝑦 , we can have it match the current desired
yaw. These two controllers will allow the drone to fly along a
circular trajectory and keep the front of the drone facing along
the tangent line of the circle. This gives us the following two
controllers:

𝑇𝑦 (𝑡) = 𝐾𝑝𝑒𝑟 (𝑡) + 𝐾𝐼

∫ 𝑡

0
𝑒𝑟 (𝑡) (24)

𝑅𝑦 (𝑡) = 𝐾𝑝𝑒𝑦 (𝑡) + 𝐾𝐼

∫ 𝑡

0
𝑒𝑦 (𝑡) (25)

Integrating the error can be very complicated, so we sub-
stitute the integral with a Riemann sum of the error, 𝑅𝑒, which
we calculate during the flight, giving us the final controllers:

𝑇𝑦 (𝑡) = 𝐾𝑝𝑒𝑟 (𝑡) + 𝐾𝐼𝑅𝑒𝑟 (𝑡) (26)

𝑅𝑦 (𝑡) = 𝐾𝑝𝑒𝑦 (𝑡) + 𝐾𝐼𝑅𝑒𝑦 (𝑡) (27)

4.2 Program Loop
The collision avoidance algorithm was implemented in the
following fashion. When the drone takes of from the floor,
we hover in place for a little bit and normalize the drone’s
coordinates. We chose the starting position of (0,−1), with
the yaw value of 0 degrees, meaning that in our graphs the
drone will start at the very bottom of the circle facing right.

In the main loop we define a Boolean value keep_flying,
which is set to true as long as we wish the drone to continue
flying. This value can be set to false either by triggering the
drone’s top sensor, or by user input from the keyboard, in order
to terminate the program and land the drone, allowing us to

easily abort flight using the drone itself, instead of relying
on the computer. In the main loop of the program the drone
will continuously fly along it’s circular trajectory around the
origin, logging the data from it’s sensors and IMU so we can
keep track of it’s position using the Kalman filter. In each
iteration of this loop we first log the above mentioned data,
next we check if the front sensor has detected a value lower
than our tolerance limit, and thus detected an obstacle on the
path, and lastly if no obstacle was detected we keep flying
around the origin. The reason we use a tolerance limit is to
ensure that what we are detecting is an actual obstacle on the
drone’s trajectory and not simply the walls of the room.

If we have detected and obstacle we enter a method for
avoiding the obstacle. In this method the drone stops and uses
equations 15, 16, and 17 from section 2.5 to calculate the
radius of the obstacle. It then finds the obstacle’s center point
and describes the obstacle by using 18. Now we define a new
larger circular trajectory centered around the obstacle center
point, and calculate the intersections between this circle and
the original circular path using 14 and 18. Then we simply
tune the PI controllers to regulate the distance and yaw angle
to the center point of the obstacle in stead of the center of the
circle, let the drone rotate a little towards it’s new trajectory,
and finally avoid the obstacle using the new circle. When the
drone gets close to the second intersection point, it stops,
rotates towards the original trajectory, sets the center point of
the original circle as it’s reference and finally returns to the
main loop, moving along the original trajectory.

A code skeleton detailing the pseudo-code for the program
can be found i figure 6.

Figure 6. Pseudo-code describing the collision avoidance algo-
rithm
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Figure 7. 3 laps without controller

Figure 8. 3 laps with PI-controller

5. Results
5.1 Controller
Figure 7 and figure 8 shows the path the drone takes when
flying in a circle for 3 laps, where the red circle is the path it
is supposed to follow, and the blue line is the actual path the
drone took. Figure 7 shows the result when using the circle_left
function in the cflib library, and letting it runs undisturbed for
3 laps. In figure 8 the path is discretised, with correction to
both velocity and yaw at each point on the circle. Comparing
the two figures, it is clear that using a PI-controller with the
desired circle as reference will keep the drone more precise on
its path, in comparison to using the built-in circle function.

5.2 Obstacle Estimation
Radius Estimation An obstacle with a radius of 0.14 meters
was placed on the circle the drone was supposed to fly around.
The results in table 1 show the algorithm’s estimation of the
radius, based on the sensor data, of the obstacle for five differ-
ent runs, as well as the error and proportion of error compared
to the actual obstacle.

Position Estimation The position of the obstacle is also im-
portant for the drone to calculate a path around the obstacle

Estimated radius Error Error %
0.12018 meters 0.01982 14.1%
0.14958 meters 0.00985 6.8%
0.14139 meters 0.00139 1.0%
0.13527 meters 0.00473 3.4%
0.12769 meters 0.01231 8.8%

Table 1. Estimated radius of a 0.14 meter wide obstacle

Estimated position Error X Error Y
(0.17061, 0.975150) 0.17061 0.02485
(0.04476, 0.99602) 0.04476 0.00398
(0.12750, 0.98642) 0.12750 0.01358
(0.07869, 0.99563) 0.07869 0.00437
(-0.01392, 0.99570) 0.01392 0.0043

Table 2. Estimated positions of an obstacle placed at (0, 1)

without colliding with it. The table 2 shows the resulting esti-
mations of the position of an obstacle placed with its center at
the point (0, 1).

5.3 Obstacle Avoidance
Since the drone only estimates the radius, and has no way on
knowing how big the error is, a safety radius is also calculated
to make sure the drone does not collide with the obstacle.
In figure 9 two obstacles of different sizes were placed on
the path of the drone. The blue line shows the path that the
drone took, the red circles show the estimated circumference
of the two obstacles, the green circles show the desired path
of the drone around the obstacle, with the added safety radius,
and the orange line shows the desired path the drone should
follow in between avoiding obstacles. To test the accuracy of
the method we also ran another test with 3 obstacles placed
on the path, as we can see in figure 10.

6. Discussion
6.1 Project Results
After the analysis of the method and implementation, and
concerning the results we obtained, we can ascertain that we

Figure 9. Flight path of drone avoiding two obstacles
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Figure 10. Flight path of drone avoiding three obstacles

met the goal of this project successfully. With this approach
we can now detect and avoid obstacles with relatively good
precision.

As seen in the graphs and tables from section 5. the drone
can fly in a circular path, correct itself mid flight and avoid
obstacles. We tested the method using a 2 obstacle and a 3
obstacle course. In both of them the drone could detect and
avoid the obstacles and return to the previous path. It is clear
from comparing figure 7 and figure 8, that using the controller
implemented in this project keeps the drone more closely on
its path compared to letting the drone fly without a controller.

However, the radius estimation and placement of any ob-
stacle are based on a single measurement from the sensor on
the Multi-ranger deck, and the assumption that all obstacles
are placed with its center on the path. This makes it so that the
accuracy of the estimations will vary depending on the obsta-
cles shape and positions relative to the drone’s trajectory. The
fact that the drone does not follow exactly the circular path,
but instead constantly has to correct it’s velocity and angle,
is a problem as well because we work on the assumption that
the first time that we detect an obstacle it is on its edge and
if the drone is not placed correctly on the trajectory, it may
instead detect some other part of the obstacle, which in turn
will produce errors in the radius estimation. However, we can
see from table 1 and from the table 2 that we can estimate
the radius and place it in the trajectory with relatively good
precision. This approach was chosen since even though the
estimation of the radius will be prone to errors, it should, for
most shapes of obstacles, make it so that the drone calculates
a path that is big enough to avoid the obstacle. Although the
circle will sometimes be unnecessarily large, the drone would
still clear the obstacle by a good margin.

6.2 Project Setbacks
First, we had some hardware problems due to the fact that the
flow deck broke in one of the tests. We did not immediately
identify the cause this problem, but only the effect, namely
that the drone started to drift during all test flights. We per-
formed some hardware tests and then we could identify that

the flow deck was broken. Then we had to wait for it to be
repaired and after that we proceeded with the measurements
and the tests. This issue took us 1 week to solve and since we
only had 6 weeks to complete this project, we unfortunately
lost a substantial amount of time. However, we had taken into
account that this type of setback would likely occur during
the project, and had structured our project plan to include a
buffer week, to be used for fixing bugs and errors. Because of
this, we were still able to complete the project on time.

Another issue that we encountered is the flow deck sensor
does not provide an absolute coordinate measurement. This
made our task even more difficult due to the fact that our
method is based on a set of coordinate systems. However, the
Kalman filter measurements that were explained in section
2.3 were accurate enough that our approach still worked. The
accuracy of the project could consequently be improved using
an absolute position sensor such as the lighthouse position
deck explained in section 3.3.

6.3 Final Remarks
While working on this project we realized the various amount
of applications that quadcopters have and that it is a huge area
of research. The next steps to this project would be trajectory
optimization for following the circular path and then proceed
to implement a collision avoidance algorithm for every pos-
sible trajectory and design an optimal controller to make the
algorithm robust. Unfortunately, due to the limited time that
we had we could not go further in the experiments.
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Abstract: The goal of the project was to implement path tracking on a small model car using
model predictive control (MPC). Due to unexpected problems with the software to hardware com-
patibility this goal was not achieved. Instead, a less complex controller, one that does not require
complex computation on board was implemented, namely linear-quadratic regulator (LQR). As
the vehicle only has reliable data on position, a state estimator was used to extract directional data
needed for path tracking. The path to follow was created by interpolation between input points
using class Splinepath, which is also responsible for calculations of the error signals required by
the controller and curvature of the path which was later used for feedforwarding. The non-linear
system was linearised using Jacobian matrices around the linearisation point of straight path and
stationary velocity of 1,5 m/s. The vehicle was then run many times to experimentally determine
the tuning values for Q and R as well as for the feedforwarding term. The ultimate result is a ve-
hicle that can follow a predetermined path well, without oscillations or significant over-damping
or stationary error. The path tracking still works with velocities much higher than the 1,5 m/s in
linearisation point, although the reduction in performance is clearly notable.

1. Introduction
1.1 Background
Recently there has been a significant push towards autonomous
vehicles in the automotive industry and it is probably one of
the most impactful innovations to look forward in the near
future. The elimination of human error from traffic as well
as reduced reaction time is expected to significantly increase
safety. In fact, it is estimated than more than 95% of the road
accident are caused by human error [1].

Even with the safety benefits aside, autonomous vehicles
will allow an increase in efficiency as well. In fact, the majority
of the distribution networks are based primarily on trucks. Cur-
rently, there are limits on how many hours a driver can work
(for obvious safety reasons), which ultimately slows down
the network. Therefore, the automotive industry is particu-
larly well suited for automation as it would solve most of the
current problems.

In this project the authors will familiarize themselves with
one of the most important aspects of this upcoming automati-
sation, namely path tracking.

1.2 Project goal
The original goal was to model, develop and control a small
electric car, called Slimdog, to follow a predefined path. The
car can be seen in Figure 1. The initial controller wanted was
a Model Predictive Controller (MPC). However, like it will be
explained further on, the authors have used a Linear Quadratic
Regulator (LQR). The Slimdog should avoid overdamping,
oscillations, or even, significant constant error.

The car together with all the necessary hardware were all
provided as well as a lot of software groundwork like actuation
and hardware setup. The work left to be done was solely path
tracking related.

Figure 1. The Slimdog

2. Modeling
The model only has two states, the error in position (the dis-
tance between the car and the closest point on the path) d, and
the error in heading (difference between the heading of the car
and the tangential angle of the closest point on the path) \𝑒. In
this model the vehicle speed is assumed to be constant, only
the steering is controlled see Figure 2. The controller aims
to keep both states as close to 0 as possible, making the car
follow the path.
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Figure 2. An overview of the model [2]

As one can guess, the resulting system 1 is non-linear and
depends on external factors, like the curvature of the path at
the current position. The 𝑣 is the velocity of the car, the 𝑐(𝑠) is
the curvature of the path at point 𝑠 and u is the control signal.( ¤𝑑

¤\𝑒

)
= 𝑣

(
𝑠𝑖𝑛(\𝑒)

𝑢 − 𝑐 (𝑠)
1−𝑑𝑐 (𝑠)

)
(1)

The system was then linearised around the point \𝑒 = 0
and 𝑐(𝑠) = 0 using Jacobian matrixes. This linearisation point
assumes that the cars heading is at least close to the tangential
direction of the path, which is reasonable. It also assumes a
completely straight path which is perhaps less reasonable but,
as shown in the result section, does not seem to impair the
vehicles performance significantly. The linearised LTI system
can be seen in equation 2. The linearisation was done by hand,
while the discretization was carried out in matlab with 𝑇𝑠 =
0,1. ( ¤𝑑

¤\𝑒

)
= 𝑣

(
0 1
0 0

) (
𝑑

\𝑒

)
+ 𝑣

(
0
1

)
𝑢 (2)

Table 1. Variable look-up table

𝑑 = Distance to the nearest point on the path
\𝑒 = Heading error
𝑣 = Velocity (assumed constant)
𝑐(𝑠) = Curvature at point 𝑠 on the path
𝑢 = Control signal (only steering)

3. Electro-Mechanics
3.1 Hardware Setup
The car is already built seen in figure 1 by four wheels with
front-wheel steering, a Power bank that supplies the Raspberry
Pi and a lithium battery that supplies the VESC module.

The hardware consists of four modules:

• A GNSS receiver

• A compass – an Arduino microcontroller (not used)

• An Xbee RF communication device (not used)

• A VESC motor speed controller

The hardware setup can be seen in Figure 3.
The RF communication device isn’t used as it is simply not
useful for our application, while the compass isn’t used as
it provides very unreliable data. Heading direction is instead
extracted from the provided state estimator, using a Kalman
filter.

The car uses the GNSS technology to know its position on
the globe. In fact, the GNSS outputs are the latitude, longitude,
and height. Since the authors consider being on a flat surface,
the height won’t be considered in the control of the car.

Figure 3. Overview of hardware modules and their connections

3.2 Software Setup
In Figure 4 we see the structure of how the different software’s
work together. The telemetry part is not used in this project
as it handles the radio controlling hardware in the car. The
GNSS part is where data receives continuously position and
update it in the state_estimator were it store state information.
In the controller part it performs control algorithm based on
state_estimator and send the output to the VESC module. The
VESC module then Communicates the desired velocity and
steering position to the motor speed controller. The logger is a
fairly simple class that logg:s all interesting data from the car
to a separate file that later can be presented by a visualising
software for analysis.

4. Control
As previously mentioned, the original goal was to control
the vehicle using MPC. The plan was to use a library called
"CasADi" to quickly and efficiently solve the cost function
which is necessary for the MPC. Unfortunately the library
proved to be incompatible with the Raspberry Pi and, after
many attempts, we were ultimately unable to install it.

In order to still have working prototype a decision was
made to implement path tracking using a simpler controller.
An LQR controller was chosen, as it uses similar concepts as
the MPC but instead, the cost function is non-changing and
therefore only needs to be calculated once. This can then be
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Figure 4. The overlaying software structure of the Slimdog.

done externally outside the vehicle, removing any need of a
specialized library on board.

4.1 State Estimator
The estimator’s function is to provide us with a more reliable
state data such as our heading and position. It does that by
taking the raw data from the GNSS positioning hardware and
combining it with the output of the car to filter out noise in
our position signal.

Before the car starts to move, it initializes the coordinate
system. In practise, it means that it stands still for a number of
samples and then calculates the average.

Once the calibration is done, a local coordinate system is
created with the position calculated as its origin. Without this,
the path would have to be coded in global coordinates which
would introduce new problems and need to be recalculated for
every new test location.

It has to be noted that the estimator takes a short while
converge, meaning that the estimation of the heading is inac-
curate in the beginning. This will be clearly visible in the plots
in the result section of this report, as the error is noticeably
larger near the origin where the car starts.

The state estimator was already implemented and provided
to us, as the compass was shown to provide unreliable data.
All the control methods described use both, the positional and
the directional data, from the estimator.

4.2 Splinepath
The Splinepath class has a function that returns a 2-
dimensional coherent path. This 2- dimensional path will be
created from a Nx2 matrix containing x and y coordinates,
these coordinates can be collected by the cars GNSS receiver
and extracted from the log file, alternatively manually selected
to create the Nx2 matrix.

This class provides important input information to the con-
troller, such as the distance between the car and the path as
well as the normal and tangential angle for any point of the
path. Also, this class provide the curvature for any point of the
path, allowing for better control using feed-forwarding. These
functions allow us to calculate the d and the \𝑒 error signals
necessary for the controller.

4.3 LQR
Linear-quadratic regulator (LQR) is a controller where the
feedback constants are decided by minimizing a cost function.

𝐽 =

∞∑︁
𝑡=0

𝑥𝑇𝑡 𝑄𝑥𝑡 + 𝑢𝑇𝑡 𝑅𝑢𝑡 (3)

Where x is the state vector, u is the control signal vector
and Q and R are diagonal tuning matrices. The idea is that
the controller is trying to minimize both, the error (the states)
and the control signal (the steering). The Q and R matrices
are there to weigh the different states and control signals, the
higher the value the more aggressive the controller will be
in trying to minimize that state/control signal in relation to
others. In this case, there are only 2 states so the Q has a size
of 2x2 see 4. and, since we only control steering, R is a scalar.

𝑄 =

(
𝑞1 0
0 𝑞2

)
(4)

The system was then discretised and the feedback gains
were calculated with the Matlab function lqrd(A,B,Q,R,Ts)
where A and B matrices are from the linearised system in
equation 2. Ts was chosen to be 0.1 seconds.

Finally to determine adequate Q and R, the car was run
multiple times and the values were adjusted until the perfor-
mance of the car was satisfactory.

∞∑︁
𝑡=0

𝑞1𝑑
2
𝑡 + 𝑞2\

2
𝑒,𝑡 + 𝑅𝑢2

𝑡 (5)

4.4 Control law
The control law is calculated by the following equation:

𝑢 = 𝐾1𝑑 + 𝐾2\𝑒 + 𝑐1𝑐𝑢𝑟𝑣(𝑠). (6)

Where 𝐾1 and 𝐾2 are the feedback gains, 𝑐1 is a tuning
constant and curv(s) the curvature of the projected point s
on the path. The curvature term is added to control law as
feed-forwarding for better reference tracking. The constant
𝑐1 was determined experimentally. The 𝑢 is then sent to the
actuator class which translates the angle into a voltage for the
steering servos as well as saturates it for safety.

5. Results
5.1 LQR optimization
From extended testing of different values of Q and R yielding
different K values, an optimum was found at the values in
Table 2.

5.2 Test results
The result is based on a number of test runs on different pre-
defined paths, the position data is continuously stored during
the run to be presented in the following graphs as an orange
line, comparing it to the desired predefined path presented as
a blue line. The starting point for all tests is in the origin, (0,0).
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Table 2. Optimal values found from testing. This table shows all the
relevant values for our controller, including the curvature coefficient
𝑐1.

𝑄 = [1 0
0 4]

𝑅 = 5
𝑣 = 1,5 m/s
𝑐1 = 0,1
𝐾1 = 0,4062
𝐾2 = 1,2134

The result is a controller that has one output, steering angle. It
can only drive at a constant predefined speed optimized at 1.5
m/s, the handling of this controller will now be shown. First,
the authors tested two different LQR controller setup, one that
accounts for the curvature of the path closest to the Slimdog
and one that does not account for the curvature. These can be
seen in Figure 5 and 6.

Figure 5 shows the test run with the LQR controller and
curvature accounting, 𝑐1 is set to 0.1. The blue line is the
reference path and the orange line is the cars actual path. The
scale in both x- and y- direction is in meters. The speed is set
to 1.5 m/s.

Figure 6 shows the test run with the LQR controller without
curvature accounting, 𝑐1 is set to 0.1 The blue line is the
reference path and the orange line is the cars actual path. The
scale in both x- and y- direction is in meters. The speed is set
to 1.5 m/s.

Figure 5. Plotting of the reference path (blue line) and the followed
path (orange line). The LQR controller and the curvature have been
used. 𝑐1 is set to 0.1 and the speed to 1.5 m/s.

Figure 6. Plotting of the reference path (blue line) and the followed
path (orange line). The LQR controller without the curvature have
been used. 𝑐1 is set to 0.1 and the speed to 1.5 m/s.

By comparing the figures, a small improvements can be
seen when including the curvature into the controller. However
over adjusting the output based on the curvature leads to a
worse performing controller as seen in Figure 7.

The Figure 7 shows the test run with the LQR controller
that is over compensating for curvature, 𝑐1 is set to 0,3. The
blue line is the reference path and the orange line is the cars
actual path. The scale in both x- and y- direction is in meters.
The speed is set to 1.5 m/s.

Figure 7. Plotting of the reference path (blue line) and the followed
path (orange line). The LQR controller is over compensating for
curvature. 𝑐1 is set to 0.3 and the speed to 1.5 m/s.

A more complex path shows the Slimdog:s handling at
different speeds, although the LQR controller is optimized for
1.5 m/s at all the different speeds. This can be seen in Figure
8, 9 and 10.
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Figure 8. Slimdog’s handling at 1.5 m/s.

Figure 9. Slimdog’s handling at 2.5 m/s.

Figure 10. Slimdog’s handling at 4 m/s.

From these Figures, the conclusion that can be drawn is
that the Slimdog works best at the lowest speed in which the
controller where optimized, but is still functioning at greater
speeds although struggling to keep close to the path in the
narrow corners.

One undesirable feature of this controller which we en-
countered is that it only works in close proximity to the path,
if the distance is to great between the car and the path the
controller will make the car go in a circle, a solution to this
is therefore necessary to increase the robustness of this con-
troller.

To conclude the results, the Slimdog manage to meet the
updated project goals of a LQR controller. The goals were a
controller that could follow a predefined path while avoiding
overdamping, oscillations, and significant constant error.

6. Discussion
6.1 Preexisting code
The authors have really realised the importance of having
a well documented program code. The majority of the time
spent on this project was probably trying to understand what
happens in the provided code and how to manipulate it, as
it wasn’t very well commented. This led to a lot of software
troubleshooting that was quite time demanding, because every
time we would change something and wanted to test it, we
would have to take the car outside. This however also is a skill
that needs to be practiced and most likely will prove useful
future projects. Unfortunately, due to time constraints, the code
we wrote ourselves isn’t well structured but some comments
has been added.

6.2 Improvements to be made
There are some improvements that can be made to the current
controller, firstly the issue with the Slimdog driving in circles
when it is too far from the path. There are ways to solve
this, one such solution would be to switch controller when
the distance goes beyond a certain distance to direct pursuit
controller that simply would drive straight to the closes point
on the track. Another alternative could be to implement a non-
linear controller that would guarantee global stability, although
that would require switching the controlling method close to
the path as well. As the prototype was in a functioning state
only towards the very end of the schedule, we are confident
that the performance of the vehicle could still be improved by
better tuning.

Another improvement to the current controller could be to
actively control the speed, from Figure 8 to 10 we can see that
taking a corner slowly effectively decreases the distance error
to the path. Therefore, a speed that is dependent on the current
curvature could be appropriate. The reason for this outcome
could be a combination of factors, not only the fact that the
controller only is optimized at 1,5 m/s, but also the handling of
the Slimdog. Examples of factors that play into the handling is
the friction between the tires and the surface, ultimately setting
the limit for the maximum speed while maintaining a given
curvature. Since the Slimdog has a suspension setup, weight
transfer of the vehicle entering a corner is a highly relevant
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factor of the handling as well. Future investigation and testing
are necessary to optimise the speed control.

Also, currently the car stops by its own when it comes as
close to 0.5 meter from the finishing point. The problem by
doing this is that if the finish point is the starting one, the car
won’t start since it thinks it has arrived. This problem could
be address by stopping the car once Splinepaths orthogonal
projection places the car at the last point.

We had made a mistake by using a library that we were
not completely sure if it would work on the Raspberry Pi. We
believe though that we have a decent understanding of the code
and how the Slimdog operates now, so that the implementation
of MPC would not be too difficult but maybe given more time
for it. The work left to be done would be to write some code
that could predict future state of the system (possibly with a
Runge-Kutta method) and find a library that could effectively
solve multiple cost functions on board. These calculations will
most likely be the bottleneck in our sampling frequency which,
if made too low, could compromise the system stability.

6.3 Testing difficulties
Testing the car was very time consuming as it has to be done
outside. Indoor locations were either too small for a reason-
able path, or blocked the the GNSS signal. This was made even
worse by a lot of bad weather as the project was done under
November/December. Most of the hardware lays bare on top
of the Slimdog, so the testing was often cancelled or limited
to quick 2-3 minute sessions because of rain or snow. This oc-
curred very often, so we would strongly recommend on either
finding a suitable indoor testing location or weatherproofing
the vehicle (perhaps with a 3D printed case) if the project is
to be carried out during this time of the year. For the tuning of
the controller parameters, a simulation could be used instead
removing some outside testing requirements. This however
would heavily depend on the quality of the model and would
only reduce the tuning time.

6.4 Conclusion
When looking back to the starting point, we have made great
progress. The importance of having a clear project plan was
proven. The Gantt chart was updated during the whole ex-
tent of the project and was generally helpful for keeping the
deadlines. It was difficult to find a time where all the group
members could meet to work on the project, but with the dis-
tribution of the workload and division into smaller groups, it
worked out in the end. It was a lot of work, but with a lot of
time dedicated from everyone in the team, a working proto-
type was completed in time. An overview of the final Gantt
chart can be seen in Figure 11.

Figure 11. The final GANTT chart for the project
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Abstract: Brain-Computer-Interface (BCI) devices are an area of extensive research and potential
for future advancement. In order to make BCI more accessible for large scale applications, the time
and effort needed to get started using BCI needs to be lowered. One approach to solving this issue is
with so-called transfer learning (TL). In the case of BCI, data and previously trained models from
earlier sessions can be used, possibly also from different subjects and experiment setups. The goal
of this project is to implement a near-real-time process pipeline from an Electroencephalography
(EEG) device (the Muse-S headband) to a machine learning (ML) algorithm giving results from
the data. For this purpose, TL methods in ML based off a method known as Riemannian Procrustes
Analysis (RPA) [27] are to be used to minimize calibration time. Simulating the calibrations of
transfer learning on pre-recorded data shows promising results. An integrated Muse to experiment
to ML pipeline gives data that can be used for classification, with certain results giving around
60-70% accuracy. The best applied Riemannian methods finally gave an accuracy of 75-80 % on
any single dataset, proving a viable pathway to transfer learning.

1. Introduction
Brain-Computer-Interface (BCI) devices are, as the name sug-
gests, devices that allow humans to directly control or in some
other way interact with technology using only neurological
activity. One way to achieve this is with noninvasive electroen-
cephalography (EEG), the process in which surface electrodes
placed on the scalp are used to record electrical activities gen-
erated by the neurological system [28].

BCI devices have proven to be quite promising in many
areas [20, 17]. Cochlear implants are perhaps the most well
established BCI device. They are a type of auditory-sensory
neuroprosthetic that directly stimulates the auditory nerve to
provide a sense-of-sound for people who are either hard-of-
hearing or profoundly deaf [10]. Recently, invasive BCI de-
vices have even been used to record motor-cortex activity,
enabling the fine motor control of upper-limb prostheses -
with individual finger motion [13].

A large issue preventing the widespread commercial us-
age of EEG BCI devices in industry is poor reliability and
robustness [28, 20]. Even in ideal conditions within a single
measurement, EEG-based BCI devices suffer from nonstation-
ary signals, a low signal-to-noise ratio and a high sensitivity
to variations in environment factors e.g. location [20, 28, 12].
This is further compounded by variations when multiple mea-
surements are attempted or when the BCI device is generalized
to different individuals [6, 29, 20, 19]. An EEG-based BCI de-
vice must therefore be continuously re-calibrated to each new
session, either with the same or a new individual. This requires
minutes of calibration time before the BCI device is capable of

functioning optimally [20]. Therefore, prior EEG-based BCI
devices are mostly constrained to laboratory conditions.
One promising avenue to improve upon the inter-session data
variability issue is to utilize so-called Transfer-Learning (TL)
methods within the field of Machine-Learning (ML). TL en-
tails using some method that can leverage knowledge from
a related dataset to improve the performance or the speed of
convergence for a new dataset [22]. In essence, the ML algo-
rithm ’generalizes’ knowledge across a wider problem area to
enable robustness to context changes. Applied to EEG-based
BCI devices, TL principles can thus be used to enable reuse of
data recorded in past sessions or from sessions with different
individuals and sessions [20].
The overall goal of this project is to examine an imple-
mentation of a TL method called Riemannian Procrustes
Analysis (RPA) [27] in a real-time laboratory experiment to
demonstrate the possibility of minimizing calibration time. In
essence, to combine a commercially available EEG headband
with a practical experiment and TL, showcasing the possible
decrease in calibration time. For this purpose, we will be using
a Muse S EEG headband (Figure 1) combined with a real-time
experiment formulated to trigger the characteristic P300 neu-
ral response pattern, which will then be classified using a TL
method functioning in parallel and in near-real-time.
This project is based off a challenge hosted by NeurIPS known
as ’Beetl AI’: “this competition aims to stimulate the develop-
ment of transfer learning and meta-learning algorithms applied
to a prime example of what makes the use of biosignal data
hard, EEG data”[21].
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Figure 1. The EEG ’Muse S’ headband.

Figure 2. Detection example of a P300 response [3].

2. Neurological background
P300 stands for “Positive 300 millisecond response” and is
an event-related potential (ERP) which is a large waveform
that can be generated from an EEG using different paradigms
and stimuli. Furthermore, P300 utilizes one of the brain’s
reactions to surprising and unexpected stimuli [26]. A stimulus
might be, for example, a short beeping sound. This evokes
the P300 response in humans and even animals’ brains. The
brain always categorizes something new and unexpected as
something interesting, so if a random sound occurs, it initiates
a certain voltage/time pattern in the brain. This is also known
as the oddball paradigm. In summary, we expect that 300
milliseconds after an event the EEG headband would pick up
a positive peak in amplitude, see Figure 2.

3. Data acquisition and preparation
A big part of the project consists of obtaining the raw EEG
data from the band and processing it into a usable form; in our
case, making it compatible with the input data that the ML
algorithm expects.

Regardless of the final use of the EEG signal, data is to
be collected following specific steps. However, this is depen-
dant on the operating system and development environment to
which the headband is connected to, and with which the ex-
periment is meant to be performed. In this project, BlueMuse
[15] was installed and used together with Muse-LSL [18]. This
allowed the band to connect and set up a lab streaming layer
(LSL stream), see Figure 3, which is a system for the uni-
fied collection of measurement time series in research experi-
ments that handles both the networking, time-synchronization,
(near-) real-time access as well as optionally the centralized
collection, viewing and disk recording of the data [14].

As mentioned, raw EEG signals have a poor signal-to-
noise-ratio [20, 28, 12] and poor information density. In addi-
tion, we know that the P300 response is known to occur specif-
ically with a 300 <B latency after the stimulus. [26] It is thus
pertinent to focus attention into that appropriate time-interval
when searching for the characteristic EEG signal. Moreover,
filtering undesirable frequencies in the signal also helps in

Figure 3. Visualization of streaming data using Muse-LSL [18]

Figure 4. An example directed acyclic graph (DAG). Circles rep-
resent nodes, arrows are edges. The connection points between nodes
and edges are called ports. Information flows from left to right, at a
frequency defined by the graph rate. [7]

reducing noise. These and other tasks are possible to manage
using Timeflux [7], which is a free and open-source framework
for the acquisition and real-time processing of biosignals.

3.1 Timeflux implementation
The Timeflux framework works with .yaml files where one
or more directed acyclic graphs (DAG) are defined and may
interact with each other. This graphs independently execute a
certain process sequentially at a specific adjustable rate. Ev-
ery process consist of nodes and edges that connect them,
where information flows in a given direction, without any
loops. Some of these nodes are predefined in the Timeflux
environment that can be used directly, whereas others need to
be described or slightly modified from an existing implemen-
tation, depending on the specific goal at hand. Nodes expect
a data input in a specific format: either a numpy structure
or datetime-indexed Pandas DataFrame. The second option is
preferred as it easily handles timestamps that allow to keep
track of when data is generated, processed, and saved.

The experiment uses six graphs, each of them responsible
for a different task (see Figure 5).

• Broker: the only purpose of this graph is to allow ex-
change of information between any other two graphs.

• Reading EEG: makes the acquisition of data from the
Muse S band possible, using LSL protocol. There is
a series of nodes in the graph, dedicated to collecting
events in the same LSL protocol. These events are re-
lated to the presentation of stimuli on the screen and it
is necessary to keep track of them in this way to match
them with the real-time data from the headband. This
is done by comparing timestamps from the experiment
and the real-time data.

• Visualization: creates an interface to visualize real time
data on the screen. Uses a local server with a web GUI
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Figure 5. Visual representation of the .yaml file used in the Timeflux environment

incorporated to plot the specified data. It has been pro-
grammed to show the raw data (directly from the head-
band), as well as the filtered data and the presentation
of stimuli.

• Save data: this is the module responsible for saving
data on request. Upon a keyboard user input, it starts
recording the EEG data in to a csv file for later use and
analysis.

• EEG Processing: This graph prepares the data for the
ML and TL modules. The first node, Filtering, uses an
IIR band pass filter (see Figure 6) with cutoff frequen-
cies of 1 and 30 Hz to eliminate linear trends such as
signal drift or high frequency noise. The Epoching node
splits the data so that we end up only with a desired time
window. In relation to stimuli onset, this node must be
in sync with the presentation of the stimuli to the sub-
ject doing the experiment. Finally, the Trimming node
ensures that the epoched data has a constant size every-
time, as there might me small deviations otherwise.

• PsychoPy: [25] The PsychoPy graph is responsible for
the interaction between patient and experiment. There
is more information on this topic in a specific section
(see Psychopy: The experiment GUI in section 4.2).

The amount of information to be analyzed is defined in the
Epoching node described before, where the range property
refers to the amount of time before and after the exact time the
event triggering the node is detected. Since the P300 response
is found roughly 300 ms after the stimuli is presented to the
patient, it has been decided to collect 0.8 seconds of data as in
reality there might be some deviations from the theory.

4. Experiment setup
4.1 Experiment design
The experimental setup consists of the Muse S headband and
the experiment itself. In this experiment, it is desirable to
record the brain activities and analyse it when it reacts to

Figure 6. IIR filter example [7]. Visual explanation of how data
is filtered. The difference between the online (o.data) and offline
response is explained by the fact that the input is received in real
time, and hence the filter cannot use later data-points to construct the
response at the beginning of the filtering process.

something unexpected and surprising. (see Neurological back-
ground in section 2).

4.2 Psychopy: The experiment GUI
To implement the EEG experiment, Psychopy is used [25].
Psychopy is an open source software package which allows
you to run experiments in the behavioral sciences e.g. in neu-
roscience, psychology and linguistics. The experiment is based
on two different categories, animals and furniture. The reason-
ing for this choice of categories is to ensure that the brain is
presented with stimuli that are both easily distinguishable and
easily recognized [9]. The experiment starts with a welcome
text followed by the trial, where several pictures from the two
different categories are displayed for the user. The pictures
are displayed randomly for 5 seconds and the user is asked
to press space on the keyboard whenever a dog is displayed
on the screen. The experiment goes on for approximately 80
seconds. The structure of the experiment can be seen in figure
6. The experiment starts with a welcome screen, shortly pre-
senting the task to the tester and waiting until the tester gives
an input. Thereafter the experiment starts and loops through
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Figure 7. PsychoPy structure

Figure 8. Example of dog and chair images

images of either dogs or furniture for 70 seconds. The exper-
iment ends with a goodbye screen, thanking the tester for the
participation.

It is important to know precisely when the P300 response
was perceived by the patient, as it is key to perform a good
analysis in the Timeflux and ML modules. Therefore, as pre-
viously explained, the Psychopy python file needs to include
some instructions to send a signal using the LSL protocol with
basic metadata (True if dog, False if chair, and exact time of
presentation) to the Timeflux program, which it can read and
recognize.

5. Machine Learning
5.1 Theory
Riemannian geometry of SPD matrices
Covariance matrices are Symmetric Positive Definite (SPD),
and therefore have a number of constraints on what values
the matrix can have. We can therefore define a space of
SPD matrices of some dimensionality =, defined as P= :={
- ∈ R=G= |- = -) , - > 0

}
[30], composed of symmetric

strictly positive eigenvalued matrices. The manifold of possi-
ble =×= covariance matrices for a given EEG dataset recorded
on an EEG system with = sensors is thus on the manifold P=.
This manifold is Riemannian, and therefore we have a tangent
space T-P= in every point of this space [30].

Well-defined methods in the literature allow for various
metrics and algorithms to be utilized on Riemannian mani-
folds. This includes distance metrics such as the Affine Invari-
ant Riemannian Metric, and also allows for optimization on
the Riemannian manifold [29]. This enables the usage of ML
methods in combination with Riemannian geometry. Recently,
the family of signal processing methods based on these covari-
ance matrices on the Riemannian manifold of SPD matrices
and the Riemannian metrics applicable thereof have proven
promising as a basis for ML and TL in EEG devices [29, 8].

EEG decoding in Tangent space
One common method for using Riemannian geometry is to
project the data onto the tangent space located at the geometric
mean of a set of trials. The features are then the coordinates
of the data after projection onto the tangent space [4].

Figure 9. Tangent space of point % on the manifold " . (8 is a
vector in the tangent space of %. %8 is the projection of (8 from the
tangent space to the manifold " . Γ8(C) is the geodesic between % and
%8" [4, Fig. 1]

As an example, a 4x4 covariance matrix given by an EEG
headset with 4 sensors can be projected onto a tangent space,
with the feature vector having 10 parameters. As the tangent
space is a hyperplane, the use of classification algorithms that
are based on projections onto hyperplanes is possible.

A pipeline using Riemannian geometry for ML classifi-
cation for EEG signals could therefore consist of three steps:
first, the covariance matrix is estimated for each epoch corre-
sponding to an event. Next, the tangent space of the geometric
mean of the trials is obtained, and the covariance matrices of
the events are project onto it. Finally, the transformed feature
vectors are used with classical ML classifiers e.g., Gaussian
Process Classifiers (GPC), Support Vector Machine classifiers
(SVC), etc.

Riemannian Procrustes Analysis for TL
In this project, we implement a method for TL using the
Riemannian manifold of the covariance matrices: Rieman-
nian Procrustes Analysis (RPA) [27]. In essence, it fits
Riemannian-geometry-aware geometric transformations onto
a source dataset of covariance matrices to transform it to a tar-
get dataset, with the goal of obtaining a statistical distribution
as similar as possible between the two.

The advantage of this approach is twofold: geometric trans-
formations enable the usage of previously discovered ML
methods on P= manifolds, while geometric transformations
are not computationally intensive, and therefore can be used
in real-time BCI experiments.

5.2 Implementation
Packages, environment
Alongside the standard array of python packages useful for
scientific processing, there are a number of packages that are
used to implement the machine-learning pipeline;

• Scikit-learn, a highly general and versatile ML pack-
age, provides the general ML pipeline and the overall
codebase for data handling [24].

• EEG-notebooks [1], more of a development environ-
ment than a single package, it provides a general col-
lection of EEG experiments and packages that greatly
reduce the amount of package management work re-
quired. Built on brainflow, MNE and PsychoPy; all of
which are therefore used in the ML environment [23,
11, 25].
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• pyRiemann [2], a package built on MNE and Scikit-
learn that implements appropriate Riemannian geome-
try methods for SPD matrices; most relevantly, tangent-
space projection and covariance matrix calculation.

• RPA-01 [27], is the code/package for the proposed
method of Riemannian Procrustes Analysis that this
project extends to a laboratory experiment.

Simulated experiment
With methods discussed, the two following pipelines can be
created for the ML code: one with transfer-learning and one
without. The pipeline and abberviation for these are as follows:

• COV-RMTS-SVC pipeline: this is the ’prior-free’
method that ignores previous experiments, and purely
uses the data from the actual session. It consists of
calculating the covariance matrices (COV), then pro-
jecting the data to the tangent space of the data mean
with Riemannian methods (RMTS), and finally using
the obtained hyperplane vectors with a Support Vector
Machine Classifier.

• COV-RPA-RMTS-SVC pipeline: this is the method that
implements transfer learning. It is identical to the COV-
RMTS-SVC method except for the TL step. Between the
COV and RMTS steps, the data from the current session
is augmented by using prior data from past sessions.
Before augmentation, the past data goes through an RPA
step for its distribution on the Riemannian manifold to
fit the current data.

To examine feasibility under more ideal laboratory circum-
stances, exploratory testing is first done by taking an existing
database with multiple recorded sessions, and by ’simulating’
an online experiment by feeding in the new session data in
increasing chunks and recording cross-validation accuracy on
data reserved from ’later’ in the session. This is done on the
motor-image dataset collected and used by the original RPA
paper [27] in their git repository.

6. Results
6.1 Timeflux
Snapshots can be shown to prove that it is in fact working, and
that data can be observed in the monitor (see Figure 10). One
of the most challenging parts was to integrate Psychopy into
Timeflux and being able to send an event when an image is
presented in the screen so that it is recognized by the epoch
node in the EEG preprocessing graph. This can be seen in
the prompt (see Figure 11). To show in a more realistic way
what Timeflux is doing, a more representative graph has been
created offline using real collected data (see Figure 12).

6.2 Simulated Real time convergence in ML
Though performance is variable, preliminary experiments in
comparing the near-identical TL and non-TL pipelines of
COV-RMTS-SVC and COV-RPA-RMTS-SVC seem to show
what we hoped to see; that when we have a low number of
measurements in the actual session, transfer learning allows
for better overall performance. This can be seen in Figure 13.

Figure 10. Monitor showing real time data: the top plot represents
the raw initial data, and the bottom one after being filtered with a
band-pass filter

Figure 11. Snapshot from the prompt, showing how an event is
sent from the experiment node (Psychopy program) and recognized
by the LSL event receiver, as well as the epoch node – which prints
the data corresponding to slightly more than one second.

Figure 12. In bold, the filtered signal. In the same colors, but
lighter, the raw data corresponding to that period of time. The red
box represents the epoched time window, and the black line the instant
in which the stimuli is presented. This is a representative image, so
the P300 response might not be visible.
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Figure 13. Simulated convergence using motor neuron data when
using the same COV-RMTS-SVC pipeline without any prior data
and the TL-based COV-RPA-RMTS-SVC pipeline that does utilize
prior data. This simulated experiment shows the advantage of TL for
a motor imagery dataset

As the number of new measurements increase, this lead slowly
shrinks.

Note, however, that other datasets have not yet been inves-
tigated than the Motor imagery data from the cited paper and
our own dataset [27].

6.3 Machine Learning applied to the experimental setup
Riemannian machine learning was successfully made to work
with the data recorded from our experimental setup. This was
done by taking two datasets, each containing 60 5-second BCI
recordings using the experiment setup detailed in Section (4).
Then the corresponding label of Furniture or Dog was added
to each BCI recording, allowing for classification. Finally,
the ML algorithms presented in Section 5 were applied to
this data. Using standard covariance matrix calculation, they
proved incapable of producing any results meaningfully above
random chance, giving results of around 46-54%, irrespective
of whether transfer learning was utilized or not. To test if the
non-functional results were due to the method used or poor
quality of data, alternative methods to Riemannian learning
were also considered, such as the Random Interval Spectral
Forest [16]. Though not originally part of the project plan,
this resulted in a classification accuracy of around 60-75%,
which demonstrates that the data itself is useful. As a next
step, alternative means of covariance matrix calculation were
investigated. This included using a special form covariance
matrix dedicated to ERP processing, described in the paper
[5]. This essentially enabled Riemannian methods to work
properly for the data, obtaining a classification accuracy of
70-80%.

Therefore, we can draw the conclusion that for the pur-
poses of the Muse-s in the designed experiment, the Rieman-
nian ML is a viable pathway to enabling TL.

7. Discussion
7.1 General considerations
As expected, one of the tasks proving to be the most difficult
is the merger of all the disparate parts of the project into a
cohesive whole. (PsychoPy, Timeflux, and the ML and TL

algorithms). Although theoretically possible, the integration
involves dealing with unexpected problems. Mistakes were
made early in the project when setting up python environ-
ments. Even though the team has difficult time running the
project according to the planned schedule for various reasons,
the project is completed. It has come to realization that work-
ing with a frontier field, such as BCI, makes the planning and
estimating quite difficult.

7.2 Machine learning
From preliminary results on simulating the experiment with
ML and prerecorded data, the TL approach using the COV-
RPA-RMTS-SVC pipeline seemed promising as compared to
having no TL. On the first attempt results obtained on motor
image data in a clinical environment did not generalize well to
our experimental setup using the Muse S headband and P300
data. Riemannian methods failed at gaining any meaningful
classification accuracies above random chance in our experi-
ments, with or without transfer learning being included. This
issue was then overcome by using alternative methods to cal

In conclusion, we can see that the experimental setup itself
is viable. Ultimately, this means that the ML methods tested
in Riemannian transfer learning when combined with time-
flux is a realistic path to experiment with reducing calibration
time. Of course, considering how relatively new the field of
Riemannian TL for EEG data is; the issues and details for
implementing it for specific use-cases are not well known.

Furthermore, alternate methods for non-TL machine learn-
ing such as Random Interval Spectral Forest also seem to show
results, so alternative paths to achieve TL can also potentially
improve results.

7.3 Outlook and ethical aspects
In view of the ethics behind BCI in general and in our project,
there are as presented in the introduction many positive use
cases for this technology, including hearing aids and prosthetic
limbs. It is also possible to use BCI for wheelchair control,
giving more independence for the user. There are many more
possible use cases for people in need that can be developed in
this area. With a non-invasive BCI method similar to ours but
with better instrumentation than in our case, it is possible not
only to differ between dog and chair but to control a computer
mouse or for even more. BCI could even potentially be used
in the future for more day-to-day use cases like social media
and gaming.

On the other hand, the potential of malicious usage of BCI
can not be overlooked. This might include non-voluntary ma-
nipulation and mind reading, potentially even as a component
in totalitarian rule. In conclusion, there are many positive use
cases for BCI technology but also a risk for exploitation.
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Abstract: The project’s main objective is to implement proven control algorithms and prior
control and robotics knowledge in order for a ball-balancing robot to stabilize around an upright
equilibrium point. The robot consists of a basketball and a tower like structure. The tower like
structure and the basketball are in contact through three stepper motors and omni wheels. The omni
wheels in combination with the basketball allows for movement in any horizontal direction. The
system is modeled using the Euler-Lagrange method [3] in two vertical planes and it is assumed
that there is no coupling between them. System simulations and linearization of the model has
been performed in MATLAB. It is by sending control signals to the motors, that enables movement
and balance. For controlling, LQR is used and the system receives user input through a Bluetooth
module. Results show that the robot is able to balance on top of the basketball, however, only for
around a minute.

1. Introduction
The goal of this project is to utilize our prior knowledge and
further explore the field of control. The main objective is to
make a robot balance around an equilibrium point on top of a
basketball, with the help of three stepper motors and A4988
drivers, an inertial measurement unit (IMU) and an Arduino
Mega 2560. The secondary objective is to make the system
cordless by implementing a built in energy source i.e. a battery.
Furthermore, if time allows, the group will try to make the
robot be able to move around in its environment. Throughout
the project several control algorithms will have to be evaluated
to find the optimal solution for the problem. The first and final
version of the robot can be seen in Figure 1.

2. Modeling
A pendulum that wants to be stabilized in it’s upmost position
on top of a movable cart is a well known control problem [5].
Although a body on top of a ball may look different at first
glance, theory from the standard inverted pendulum should be
able to be utilized to control this system as well. One of the
biggest differences between the inverted pendulum on a cart
and a body on a ball is the increase of dimensions, going from
two to three dimensions. With this in mind a simplified phys-
ical model, modeling the system in 3 independent 2D planes
(XY, XZ and YZ), based on differential equations describing
torques and forces acting on the system were decided as the
way to model the system instead of grey or black box mod-
els based on data. Although some dynamics of the complete
system are not captured with 3 independent 2D planes they
were considered negligible for this project. Views of the YZ
and XY planes can be seen in Figure 2. Torques applied on

(a) First version (b) Final version

Figure 1. First and final versions of the self-balancing robot.

the blue virtual wheels in Figure 2 plane can be mapped into
stepper motor torques with the transformation in Equation 1
using the angle 𝛾 the motors are mounted at in relation to the
flat surface of the robot.

𝜏1
𝜏2
𝜏3

 =

− 2𝑟𝑤

3𝑟𝑘 cos 𝛾
𝑟𝑤

3𝑟𝑘 cos 𝛾
𝑟𝑤

3𝑟𝑘 cos 𝛾

0 −
√

3𝑟𝑤
3𝑟𝑘 cos 𝛾

√
3𝑟𝑤

3𝑟𝑘 cos 𝛾
𝑟𝑤

3𝑟𝑘 sin 𝛾

𝑟𝑤
3𝑟𝑘 sin 𝛾

𝑟𝑤
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𝜏𝑥
𝜏𝑦
𝜏𝑧

 (1)
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Figure 2. Definitions of the YZ and XY planes.

2.1 Equations of Motion
The equations of motion can be seen in Equation 2. It consists
of four matrices, with three of them depending on the current
state of the robot (i.e. position, angle and their velocities)
described in Equation 3, as well as physical constants of the
system. These are derived using the Lagrangian method. The
matrices stands for the following in the system: 𝑀 for masses
and inertias, 𝐶 for the coriolis forces, 𝐺 for the gravitational
forces and 𝐸 for external forces, such as the forces from the
stepper motors. All relevant and important parameters of the
system can be seen in Table 1. [2]

𝑀 (𝑞𝑥) ¥𝑞𝑥 + 𝐶 (𝑞𝑥 , ¤𝑞𝑥) ¤𝑞𝑥 + 𝐺 (𝑞𝑥) = 𝐸𝜏𝑥 (2)

𝑞𝑥 =

[
𝑦

\𝑥

]
(3)

Rewriting the equations of motion and solving ¥𝑞 gives Equa-
tion 4. The state space form of this can be seen in Equation 5.

¥𝑞𝑥 = −𝑀−1𝐶 ¤𝑞𝑥 − 𝑀−1𝐺 + 𝑀−1𝐸𝜏𝑥 (4)
¤𝑦
¤\𝑥
¥𝑦
¥\𝑥

 =
[
02×2 𝐼2×2
02×2 (−𝑀−1𝐶)2×2

] 
𝑦

\𝑥
¤𝑦
¤\𝑥


−
[

02×1
(𝑀−1𝐺)2×1

]
+
[

02×1
(𝑀−1𝐸)2×1

]
𝜏𝑥

(5)

where 𝑋𝑛×𝑚 represents a matrix with 𝑛 rows and 𝑚 columns.
Equation 5 represents the non-linear system for the YZ

plane (analogously for the XZ plane with different variables)
and was used to simulate the system in Simulink and linearize
the system around an equilibrium point to obtain a linearized
system to control, used for control synthesis.

2.2 Linearization
As previously mentioned the model is analogous in the XZ and
YZ plane, so the same linearization can be applied to both of
the planes. In this subsection, only the latter is presented.
Linearizing Equation 5 around 𝑥0 =

(
𝑦 \𝑥 ¤𝑦 ¤\

)𝑇
=(

0 0 0 0
)𝑇 , where the index x means that we are in the

YZ plane, yields:
¤𝑥 = 𝐴𝑥 + 𝐵𝑢 (6)

Description Parameters
Mass of ball 𝑚𝑘

Radius of ball 𝑟𝑘
Inertia of ball 𝐼𝑘
Mass of body 𝑚𝑎

Body inertia 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧
Radius of omni wheels 𝑟𝑤
Intertia of omni wheels 𝐼𝑤
COM height body l
Gravity constant g
Zenith angle 𝛾

External torque 𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧

Table 1. Description of parameters used for modeling. Observe
that COM stand for Center of Mass and that the external torque
represents the torque that will be applied on the blue virtual wheels
in Figure 2. The zenith angle describes the angle the motors are
mounted in relation to the horizontal surface of the robot.

where

𝐴 =

(
0 𝐼

−𝑀 (𝑥0)−1 𝜕𝐺 (𝑥0 )
𝜕𝑥𝑥

0

)
, 𝐵 =

(
0

𝑀 (𝑥0)−1𝐸

)
(7)

and

𝑥𝑥 =

[
𝑞𝑥
¤𝑞𝑥

]
=


𝑦

\

¤𝑦
¤\

 (8)

From now on we will ignore the position states, 𝑥, 𝑦, ¤𝑥 and ¤𝑦,
since the main objective is to balance the robot in the upright
position.

2.3 Converting torque to motor speed
The output of the control algorithm consists of three torque
values, representing the necessary torques in each plane to bal-
ance the robot. These values need to be converted into angular
velocities that can be given to the stepper motors. This is done
using the equation for angular momentum, as in Equation 9,
where 𝐼 is the moment of inertia and 𝜔 is the angular speed,
and the relation between angular momentum and torque, see
Equation 10. The combination of these equations will give
the formula needed to convert torque to angular speed for the
stepper motors, as seen in Equation 11.

𝐿 = 𝐼 × 𝜔 (9)∫
𝜏𝑑𝑡 = 𝐿 (10)

𝜔 =
𝐿

𝐼
=

∫
𝜏𝑑𝑡

𝐼
(11)

Another easier, but not as accurate, approach to translate a
torque to an angular velocity for stepper motors, is to assume
a linear relationship between the two as in Equation 12

𝜔 = 𝐽𝑘 × 𝜏 (12)

where 𝐽𝑘 is a constant tuned experimentally. This approach
will be used initially to get a functional prototype and Equa-
tion 11 will replace it if deemed necessary.
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Item Qty Cost/Item
Stepper motor driver 3 40

Stepper motor 3 500
Omni Wheels 3 100

Arduino Mega 2560 1 400
Copper plate 1 50

IMU (LSM9DS1 Breakout) 1 300
Battery (Li-Po 3S 11V) 1 250
Battery voltage reader 1 50

Bluetooth chip (HM-10 BLE Module) 1 150
Basketball 1 200

Total: 3320

Table 2. List of equipment, with the corresponding quantity and
cost per item in SEK. The prices are estimated from various sources
online and smaller equipment such as wires and tools are not listed.
Qty is an abbreviation for quantity.

3. Electro-Mechanics
The hardware used for the robot can be seen in Table 2, along
with bolts, nuts, three threaded rods, three angle brackets, two
acrylic plates. The first version of the robot, that was supplied
during the start of the project, was a simple version that only
contained the necessary component such as the Arduino, the
IMU and the stepper motors and their driver (this version can
be seen in the left part of Figure 1). So to expand the system
and increase its adaptability, a battery, a battery voltage reader
and a Bluetooth chip were installed on the system. The circuit
on the breadboard was redesigned and soldered on a smaller
copper plate to eliminate some of the otherwise necessary
wires. See Figure 1 for a comparison of the given and updated
robot and Figure 3 for the redesigned circuit.

The main advantage of using stepper motors for this project
was the need for precise movement. This causes them to have
good speed control and precise positioning, with the only big
disadvantage being that it happens that they miss stepping
because of heavy load. The way to control the motors is to
send a digital pulse to the stepper motor drivers, which in their
turn will control so that the connected motor operates correctly
in regard with direction and the amount of stepping to do. The
drivers also allows to set the precision of the steps. The motors
themselves then converts digital pulses into mechanical shaft
rotation. The configuration of the stepper drivers can be seen
in Figure 3, where the main point is that the pins for setting
microsteps are all set to high, meaning that the stepper motors
will move one sixteenth of a step for every pulse sent. The
effect of this is to have the highest precision possible for the
movement of the stepper motor.

3.1 Hardware and Software implementation
The relation between hardware and software can be seen in
Figure 4. The modules used in this project are the follow-
ing: Wireless interface, IMU controller, Stepper controller,
EEPROM interface and finally LQR controller. Each one of
these modules will handle a specific part and communicate
directly with the Main module to update values or perform
some action. Following paragraphs will in more detail explain
the content and application of each module.

Figure 3. The redesigned circuit on the copper plate.

The Main module handles the setup for all the other mod-
ules and then runs a loop that for each iteration lets the other
perform their action. The important content of the Main is the
current values read from the IMU, the LQR parameters and
the current torque values that are to be applied on each motor.

To easily handle setting and getting different parameters,
the EEPROM chip on the Arduino will be used to store these
values. The EEPROM module will handle these operations,
together with reading all the parameters at startup.

Modifying what values to set can then be done using Blue-
tooth communication, through a mobile phone app called Ar-
duinoBlue [1]. The Wireless module will be in constant com-
munication with the Bluetooth chip, and may receive and send
data to be used in the robot. Together with the EEPROM mod-
ule this will facilitate tuning the parameters, as well as perform
actions such as turning on or off the motors.

The IMU chip will be handled by the IMU module, where
the values from the gyroscope, accelerometer and magne-
tometer will be processed. These three sensors will be polled
approximately every 10 ms and then sent to a complementary
filter (described at the end of Section 4.2) to reduce the amount
of noisy data. These values will then be used as input for the
LQR module, and will thus be sent to the Main module to
update the current state of the robot.

The LQR module will handle the control algorithm, further
described in Section 4.1. Using the sensor values from the
IMU module, the LQR will output the torque that needs to be
applied from the motors.

Stepper Control is used to control the three stepper motors
through PWM signals. An important aspect of this module is
the ability to calculate the correct speed to apply, based on the
torque calculated from the LQR module.

4. Control
4.1 Control design
A system of an inverted pendulum like ours (linearized around
an equilibrium point) is suitable with linear quadratic con-
trol [5]. This minimizes an accumulative cost function 𝐽

quadratic in states 𝑥𝑘 and control signals 𝑢𝑘

𝐽𝑡 =

𝑡 𝑓 𝑖𝑛𝑎𝑙∑︁
𝑘=𝑡

𝑥𝑇𝑘𝑄𝑥𝑘 + 𝑢
𝑇
𝑘 𝑅𝑢𝑘 (13)

where 𝑄 and 𝑅 are positive definite 𝑠𝑡𝑎𝑡𝑒 and 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 matri-
ces respectively. Since we want the robot to balance on top of
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Figure 4. A flow chart for the hardware and software in the project.
The green squares represent modules in the Arduino code (i.e. soft-
ware), the yellow square represents filter and the red squares represent
the hardware.

the ball indefinitely, 𝑡 𝑓 𝑖𝑛𝑎𝑙 = ∞. To implement computerized
digital control, the dynamic equations (see Equation 6) are dis-
cretized using zero-order-hold as Φ = 𝑒𝐴Δ𝑡 , Γ =

∫ Δ𝑡

0 𝑒𝐴𝑠𝑑𝑠 𝐵

and the digital LQR control is then given by:

𝑢𝑘 = −𝑅−1Γ𝑇𝑃𝑥𝑘 ≡ −𝐾𝑥𝑘 (14)

where 𝑃 is a steady state solution obtained by solving the
discrete-time algebraic Riccati equation:

𝑃 = Φ𝑇𝑃Φ − (Φ𝑇𝑃Γ) (𝑅 + Γ𝑇𝑃Γ)−1 (Γ𝑇𝑃Φ) +𝑄 (15)

Since the linearization accurately represents the system in the
equilibrium, the LQR control will be optimal with respect to
stabilizing the plant close to the equilibrium.

4.2 Measuring states
Calculations of the tilt angles of the robot, \𝑥 and \𝑦 can be
seen in Equation 16

\𝑥 = arctan
𝑦

√
𝑥2 + 𝑧2

, \𝑦 = arctan
𝑥

𝑧
, (16)

where 𝑥, 𝑦 and 𝑧 corresponds to the raw data from the IMU.
These measurements were considered noisy and therefore

combined with the gyroscope in a complementary filter [4],
essentially low pass filtering the accelerometer data and high
pass filtering gyro data to obtain a more accurate estimation
of the angles while avoiding drift caused by integrating values
from the gyroscope. This can be seen in Equation 17:

\ = 𝛼(\ + ¤\𝑔𝑦𝑟𝑜 · Δ𝑡) + (1 − 𝛼) · \𝑎𝑐𝑐 (17)

where 𝛼 typically is some values close to 1, i.e. 0.98, to get
the correct filter characteristics.

Figure 5. Plot of roll and pitch angles while manually assisting the
robot to stand in the upright position. Used to estimate the offset of
the accelerometer.

4.3 Calibration of sensors
Looking at the raw data from the accelerometer and the gyro-
scope while standing still in an upright position rose suspicion
that the sensors were not calibrated and outputed values with
a somewhat constant offset. In order to compensate for this,
two experiments were performed.

Accelerometer offset To calibrate the accelerometer the
robot was put upon the ball in a position where a human barely
needed to support the robot for it to stand upright. While in
this position, readings of \𝑥 and \𝑦 were collected. These are
plotted in Figure 5. To compensate for the offset in software
the mean value of the data points was calculated offline once
and subtracted from every \𝑥 and \𝑦 calculation. The obtained
mean values can be seen in Table 3.

Gyroscope offset Since a gyroscope relies on relative move-
ments instead of an absolute position (like the accelerometer)
the robot was placed on the ground and measurements from
the gyroscope were collected. These are plotted in Figure 6.
A mean value for ¤\𝑥 and ¤\𝑦 were calculated once offline and
directly subtracted from the sensor readings in software. The
obtained mean values are available in Table 3.

\𝑥 -0.01331 (rad)
\𝑦 0.01949 (rad)
¤\𝑥 -0.00846 (rad/s)
¤\𝑦 0.011557 (rad/s)

Table 3. Offsets for the accelerometer and gyroscope.

4.4 Motor filter
Although compensation of the sensors’ offsets helped to bal-
ance the robot, fluctuations in the readings and vibrations in
the system caused torque spikes in the motors. These spikes
induced even more vibrations into the system and to coun-
teract this a motor low-pass filter were implemented before
sending the control signals to the motors. The details of this
can be seen in Equation 18:

𝜔 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝛽𝜔 + (1 − 𝛽) · 𝜔 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 (18)

where 𝛽 is some value close to 0.
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Figure 6. Plot of ¤\𝑥 and ¤\𝑦 while stationary. Used to estimate the
offset of the gyroscope.

5. Results
5.1 Control design parameters
To obtain a LQR controller that balances the robot in the
upright position is an iterative procedure and most of the
tuning of the 𝑄 and 𝑅 matrices were done with the help of
the simulation of the non linear system in Simulink. Using
𝑄 = 𝑑𝑖𝑎𝑔[0.6, 8] and 𝑅 = 0.05 gave satisfying results in the
simulation. However, when trying these values out on the real
system, it resulted in a too weak control signal and the values
were increased by 50%. These parameters resulted in a control
law, 𝐾 that looked like:

𝐾𝑥 = 𝐾𝑦 = [𝑘1, 𝑘2] = [0.1903, 0.4871] (19)

5.2 Real world results
Using the parameters in Table 4, starting the system in it’s
upright position gave the plots in Figure 7.

The time axis of Figure 7 is cropped in order to show
the angles and their velocities in more detail. On average, the
robot manages to balance on top of the ball for approximately
40 seconds before it falls off.

6. Discussion
6.1 Result analysis
As Figure 7 shows, the robot managed to balance on top of the
ball in a desired way. The tilt angles are kept low and the system
quickly reacts to changes, keeping all states \𝑥 , \𝑦 , ¤\𝑥 and ¤\𝑦
close to zero. By observing the robot, the main reason to why
the robot does not balance on top of the ball forever seems
to be due to vibrations caused by the frame not being stiff
enough, causing behaviours that the model does not capture.

6.2 Software implementation
After connecting the IMU chip to the Arduino it was observed
that the values for \𝑥 and \𝑦 were quite fluctuating, changing

𝑘1 𝑘2 𝐽𝑘 𝛼 𝛽 𝛾

0.204 0.492 40 0.98 0.02 45°

Table 4. Final parameters used on the system

Figure 7. Plot of \𝑥 , \𝑦 (from the complementary filter), ¤\𝑥 and
¤\𝑦 while balancing on top of the ball.

with a ±1°in a rather short period of time. Thus a complemen-
tary filter was implemented to keep the values more stable,
using the formula found in Section 4.1.

Another problem that occurred during development was
that the speed of the motors did not quite reach a high enough
velocity for the robot the be balance. The main reason for this
was that the IMU module read the position too often, which
took too much time and did not allow the Arduino to control
the three stepper motors. The solution was then to limit the
amount of reads, to once every 10 ms.

One of the main points of discussion during the projects
course was on how to convert the torque value from the control
algorithm to a motor speed value to apply for each motor. The
easy way of solving this is to assume a linear relation between
torque and speed, and thus only multiply the torque with some
constant. This constant could be found by doing some rather
simple experiments, in other words try out different scenarios
until a satisfied value has been found. But the more correct
way of doing this conversion is described in Section 2.3. This
theoretical relation between torque and speed seemed like the
better way, but as a start the first method was implemented
to get the robot working. Unfortunately the project ran out
of time before the theoretical relation could be implemented,
thus this method remains untested.

6.3 Sources of error
The basketball provided with the project was old and not
completely spherical. This was not modelled and made it hard
for the robot to balance on top of the ball for certain ball
positions. Another source of error was that the structure of
the robot was not very rigid. The model didn’t take this into
account and gave rise to unwanted vibrations in the structure
which the control algorithm did not handle well. Finally the
different intertias and the center of mass of the system was
not measured. Instead they were approximated due to lack of
measuring equipment.

6.4 Future work
Because of the time limitation a 3D printed case could not
be designed and printed. Therefore one possible improvement
for this project is to design a good case, as to both boost
the appearance but to also have a better weight placement,
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to have more mass near the z-axis (origin of the XY plane).
This would result in a smaller uncertainty of the center of
mass. Making the robot more rigid with a better structural
construction, would also make the system easier to control
due to reduced vibrations.

Another optional task that was not implemented during the
run of this project was the ability to make the robot move in
the room. This could for example be achieved with the model
described in Section 2. and by adding sensors measuring the
relative position of the robot to the environment and another
control algorithm for position control. However, due to the
short period of time assigned for this project, we focused on
achieving a reliable stabilization of the robot instead.

A problem with the stepper motors was that they are de-
pendent on the capability of the Arduino. If the Arduino is op-
erating with a too high CPU load then the motors will decrease
in velocity, as they are controlled with pulse-width modula-
tion (PWM). Thus if the pulses are delayed the speed will
decrease. A way to avoid this is to control each stepper motor
with their own MCU, to prevent the PWM signals from being
dependent on what other processes the CPU is performing. A
simple form of communication can then be used between the
Arduino and each MCU, e.g. letting the Arduino send velocity
commands to the MCU.

Other control approaches such as nonlinear control, PID
control or some sort of machine learning control could also
be interesting to test and compare with.

6.5 Final words
This project has been a great exercise in control theory,
robotics and simulation. While also covering important topics
such as project planning, group dynamics and critical think-
ing. The project has not simply been a straight path, but rather
a path of overcoming difficulties and obstacles, as it should
be. However, it has been quite rewarding seeing the project
come together bit by bit, finally reaching a final product of a
balancing robot. Obstacles have been overcome by debugging,
finding new solutions and by consulting with our supervisor.
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Tracking of a high precision robot
Abdullah Shahin1 Vinay Venkanagoud Patil2

1sve15ash@student.lu.se 2vi0507pa-s@student.lu.se

Abstract: The project is centered around the evaluation of sensor fusion with the help of a
filtering algorithm to filter out noise from the process and the measurement of a high precision
robot that is being built for MAX IV, the filtered position estimate is used to track the robot in the
environment. The filter in focus is the extended Kalman filter (EKF). This is a continuation of the
work done by the author, Abdullah Shahin and Vinay Venkanagoud Patil, the collaboration will
use the dual robot (omnidirectional/delta) that has been built by Vinay and implement the filters
that Abdullah worked on in the localization node, the main focus is to find the measurement model
of the IMU and Encoders. Further, the project will work on the inverse kinematics of the robot, so
that the control signal units correspond to the measurement units, the final result has been tested at
MAX IV, the robot is equipped with 3 omni wheels and 3 actuators that has a delta configuration.
The results of this project was a maximum radius error of 3.5mm, this is more than a 10 fold
improvement in the precision of the robot as our most accurate sensor has a 4cm resolution.

1. Introduction
In this project, a fine-tracking mobile robot for high-precision
positioning and localization is implemented and used at the
beam-line laboratory MAX IV in Lund, Sweden. The require-
ment comprises of the positioning and marking of relatively
exact points on concrete floor where the beam line equip-
ment and machinery will be positioned. Currently, there are
16 funded beam-line experiments and 6 are being installed.
All of the beam-line equipment has been placed manually by
construction workers. This machinery needs to be placed very
accurately since the radiated beam itself is highly sensitive to
deviations along its path and will have a direct impact on the
resolution this beam has. Therefore, a poor placement will in-
terfere with the experiments and measurements. A computer
based blue lining system is being used to map the construction
area in order to help the engineers to place the aforementioned
equipment. Thus, the task is repetitive and physically demand-
ing for the workers due to the goal precision of ±60 microns
they need to reach for each mark using the current equip-
ment. Consider that there are a couple of hundred points to
be marked. Another drawback is the time the worker spends
to reach each point because of the natural inaccuracies of the
human hand. Thus, it takes several tries to reach the position.
It is so a highly accurate robotic system with advanced control
techniques is required to accomplish this task more efficiently
and in less time.

Previously, the authors (Patil V., Carrera L.) [2] have im-
plemented a dual robotic system for accurate positioning con-
sisting of a Delta-configuration robot over an omnidirectional
mobile robot. This system features the coarse navigation (om-
nidirectional) and the fine positioning (Delta) in two consec-
utive stages, once the omnidirectional robot has reached a
reasonable ±2 centimeters in radius from its target the Delta
robot goes into action by fine positioning the end effector to
the target with an estimate of ±300 microns of error from

the actual target. Although the robot is capable of a consid-
erable high accuracy on its positioning it does not perform at
its full potential due to the control system employed. Alterna-
tively to this work, the author (Shahin A.) [4] has developed
the control software intended to solve the blue lining task us-
ing advance control techniques with outstanding localization
and navigation features. The objective was to investigate, via
simulation, an EKF (Extended Kalman Filter), an UKF (Un-
scented Kalman Filter) and a PF (Particle Filter) over a car-like
steering vehicle and its corresponding state-space model. This
work concluded that the filters have potential to navigate the
MAX IV robot with accuracy, the simulation had both process
and measurement noise applied to it. Therefore, and in order
to take advantage of the full potential of the authors work,
the authors have studied the adaptation of these filters on the
omniwheel/delta dual robot and investigated with potential
implementation in this dual robot for later testing on-site at
MAX IV, as this robot will run the algorithm on a raspberry
pi, the PF is computationally demanding, the UKF a more ad-
vanced version of the EKF and thus is more demanding on the
group to implement. The objective is therefore to reach a fine
positioning suitable enough to perform the blue lining process
with great accuracy and cheap but reliable components with
an EKF algorithm. The book [5] is used extensively during
the previous project, that was investigated by (Shahin.A) and
has been continued, with a real world robot with more sensors
and actuators than the simulated robot, the chapters studied
will mainly be chapter 1,2,3,7 and 8.

2. Modeling
The present project has a list of key components in which
the functioning is based on. It is described from the hardware
components to the subsystems they form. Also, the essential
math background is described for each subsystem so the whole
model can achieve the localization and navigation process.
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Figure 1. Dual robot (omnidirectional/delta) used in this project

Figure 2. Crazyflie sensor (Lighthouse Deck)

IMU sensor
Since the dual robot uses relative position and rotation

measurements, the considered sensor for this setup is the
6-DOF (Degrees Of Freedom) IMU (Inertial Measurement
Unit) which is mounted on the center of the omnidirectional
robot frame.
The crazyflie drone has been retained to compute the iner-
tial measurements and use the sole measurements from the
on-board accelerometer and gyroscope. This sensory data has
been logged using the crazy-radio(RF interface to control and
log data from the crazyflie drone). The sensory data logged
from the crazyflie drone will consist of X and Y position using
the lighthouse deck, acceleration along X and Y using the
accelerometer. However, more accurate and reliable IMU’s
could be mounted on the robot in the future

Wheel Encoders Along with the IMU sensor, wheel en-
coders are used to extract wheel velocities which are in turn
transformed to the robot body velocities using the forward
kinematics of the robot. The encoder data is polled from the
dynamixel motor [1] every instance a control signal is sent in.
Additionally, the encoders on the motor provide us a resolution
of 4096 ticks per revolution which corresponds to 0.00153ra-
dians.

Leica Absolute Tracker The Leica Absolute Tracker is a
laser based device which uses a laser beam directly pointed
to a reflector to estimate with metrology-grade accuracy the
3D-position, see Figure 3. In the dual robot, the Leica reflector
has been installed in a position near the IMU sensor in order
to obtain the position of the robot with respect to the Leica
tracker. This enables the robot to know its initial position

Figure 3. Leica Absolute Tracker

in the space and compute the trajectory to the target. The
important role of the Leica Absolute tracker in this project
is to provide us with absolute position in space during the
initial calibration and also help measure the performance of
the localization on arrival to the target.

Crazyflie Lighthouse deck
The lighthouse deck is one of many decks developed by

Bitcraze. This deck is custom designed to acquire position
data using the htc vive lighthouse base stations. The base sta-
tions used produce a light signal that sweeps in the horizontal
and the vertical plane with a unique frequency which is quite
similar to a conventional lighthouse we see at the sea shores.
The flydeck is equipped with 4 mirrors that are photo sensitive
that sense the lighthouse signals to compute its position from
the lighthouse.

Omnidirectional Robot
The considered model is the omnidirectional setup shown

in Figure 4.

An omnidirectional platform is used since it can perform
translations in any direction without the need to reorient.
Moreover, due to its symmetric construction, the omnidirec-
tional platform can also rotate about its Z axis seamlessly.
These features are achieved by using the resulting veloci-
ties of the omnidirectional wheels that are controlled dictated
by its kinematics. The command to the robot is in form of
𝑢𝑡 = (𝑉𝑥 , 𝑉𝑦 , 𝜔𝑧) which is the body velocities in X and Y,
and the angular velocity along Z. Thus, the robot kinematics
equation will correlate the command vector variables with the
actual controllable variables in the omnidirectional platform
i.e. the wheel velocity of each wheel (𝜔1, 𝜔2, 𝜔3). This rela-
tion is derived from the inverse kinematic transformation of
the robot.
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Figure 4. Model of the omnidirectional robot

2.1 State Space Model
First, the state transition model for this setup is described in
Eq. 1

𝑥𝑡 = 𝑔(𝑢𝑡 , 𝑥𝑡−1) + 𝑣𝑡 (1)

Where, 𝑥𝑡 is the state vector, the control vector 𝑢𝑡 , 𝑣𝑡 is a
Gaussian process noise in the form of a Gaussian vector.

The state vector 𝑥𝑡 is given by (Eq. 2),

𝑥𝑡 = (𝑥𝑤𝑜𝑟𝑙𝑑 , 𝑦𝑤𝑜𝑟𝑙𝑑 , 𝜓𝑧)⊤ (2)


¤𝑥
¤𝑦
¤𝜓𝑧

 =

(𝑢1) ∗ 𝑐𝑜𝑠(𝜓𝑧) − (𝑢2) ∗ 𝑠𝑖𝑛(𝜓𝑧)
(𝑢1) ∗ 𝑠𝑖𝑛(𝜓𝑧) + (𝑢2) ∗ 𝑐𝑜𝑠(𝜓𝑧)

𝑢3

 (3)

Where 𝑥 and 𝑦 are the positions in the world coordinates,
𝑢1(linear velocity along X), 𝑢2(linear velocity along Y) and
𝑢3(angluar velocity along Z) are the control velocities, 𝜓𝑧 and
𝜔𝑧 are the angular position and angular velocity respectively.

The control vector is given by (Eq. 4),

𝑢𝑡 = (𝑉𝑥𝑟𝑒 𝑓 , 𝑉𝑦𝑟𝑒 𝑓 , 𝜔𝑧𝑟𝑒 𝑓 )⊤ (4)

Where 𝑢𝑡 is the control signal containing the body veloc-
ities in the x,y and 𝜓 direction respectively. This is used to
predict the estimated state in EKF algorithm.

Measurement Model

From Eq. 5 and the state vector in Eq. 2 the measurement
model is then given by the vector,

And the mobile robot measurements,

𝑦𝑡 = ℎ(𝑥𝑡 ) + 𝑒𝑡 (5)

Where 𝑒𝑡 is a Gaussian measurement noise in Eq. 1 and
Eq. 5 accordingly.

The 𝑦𝑡 is the measurement vector containing the measure-
ments form the IMU sensor, Light house position data and

the encoder data, the IMU sensor outputs data from the ac-
celeromotor which is the measure of 𝑎𝑥 , 𝑎𝑦 this data has been
fused with the Light house data which outputs the position for
𝑋𝑤𝑜𝑟𝑙𝑑 , 𝑌𝑤𝑜𝑟𝑙𝑑 and 𝜓𝑏𝑜𝑑𝑦 and the encoder data 𝑉𝑥 ,𝑉𝑦 and 𝑤𝑧
to correct the estimated state from the control signal. This has
been done in the final step of the EKF algorithm called the
correction step.

[
𝑦𝑡
]
=



𝑥

𝑦

𝜓𝑧
𝑉𝑥
𝑉𝑦
𝜔𝑧
𝑎𝑥
𝑎𝑦


(6)

3. Extended Kalman filter
As it was mentioned before, an EKF (Extended Kalman Filter)
has been employed to preform the localization of this robot.
Such algorithm relies on two steps sequence: Prediction step
and the Correction step. The updates for the state and the
covariances are performed in Eq. 1 and 7 respectively,

𝑃𝑡+1 |𝑡 = 𝐹𝑃𝑡 |𝑡𝐹
⊤ +𝑄 (7)

Where 𝑥𝑡 |𝑘 is intended to be the estimate of 𝑥 at time 𝑡
given the control signal up to time 𝑘 . Now, when the state
space model is linearized to 𝐹 the covariance update is possi-
ble. Further, the Kalman filter equations for the measurement
update is seen in 8,

𝐾𝑡 = 𝑃𝑡 |𝑡−1𝐻
⊤
𝑡 (𝐻𝑡𝑃𝑡 |𝑡−1𝐻

⊤
𝑡 +𝑄𝑒)−1 (8)

𝑥𝑡 |𝑡 = 𝑥𝑡 |𝑡−1 + 𝐾𝑡 (𝑦𝑡 − ℎ(𝑥𝑡 |𝑡−1)) (9)

𝑃𝑡 |𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡 )𝑃𝑡 |𝑡−1 (10)

3.1 Predict for EKF
The prediction for the EKF is preformed by equation 1 and
7.However, the prediction in this project differs from the pre-
vious in the following way, we have a more states in our state
space model, where our control signal is updating the posi-
tion states and the orientation states. The acceleration states
are updated using the accelerometer readings. Thus, there are
in total 5 sates as can be seen in equation 2. To predict the
covariance matrix it is then required to linearizer the state
space model with a Taylor series expansion, this creates a 5x5
matrix which is the Jacobian matrix, the Jacobian matrix has
been used to predict the covariance of the system.

3.2 Correct for EKF
After the prediction is complete, the correction of the predicted
state is facilitated from the measurements on the robot, the
measurements are two IMU readings i.e. the accelerations
along X axis and the Y axis, the position data from the HTC
vive lighthouse deck and three encoder readings, by taking the
difference in the innovation seen in equation 9, the Kalman
gain calculated will help to weigh the different measurements
form the sensors and the final estimated state is reached, this is
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Figure 5. ROS graph

where the ’sensor fusion’ is completed. The corrected estimate
is then sent to the controller as input. for the next iteration the
correction of the covariance matrix is preformed and is fed
back to the predicted step along with the new control signal
and the corrected estimated state, the cycle continues until the
final desired position is achieved.

4. Implementation
4.1 ROS
The software for the robot to control and estimate its position
is done using ROS. ROS that stands for Robot Operating sys-
tem is an open-source robotics middle-ware. Although it is not
an actual operating system but a collection of software frame-
works for robot software development. It provides services
designed for a heterogeneous computer cluster such as hard-
ware abstraction, low-level device control, implementation of
commonly used functionality, message-passing between pro-
cesses, and package management. The operating processes in
ROS can be represented using a ROS graph where the opera-
tions happen in the nodes that may receive, send or multiplex
sensor data and other messages such as control signals and set
points. The other features that ROS provides is suite of de-
bugging tools that enable us to plot data from the ROS topics
in real time and check for inconsistencies. In this project ROS
is used as framework for multiple python nodes that perform
different tasks within the robot application. The ROS graph
in the following figure 5 is the ROS graph that shows all the
nodes and how they communicate with each other and the
hardware using the respective ROS topics.[3]

4.2 Message passing
Since the body velocity obtained by the wheel velocities is one
of the sensory data used in the EKF, we need to extract wheel
speeds from the motors at every iteration. The ROS-node we
initially used didn’t accommodate for timing and this led to the
robot loosing its control over the motors every time we read
the sensor data. This was a result of the bus used to read and
write to the motor being a shared variable between the reading
and the writing functions. To fix this conflict, we introduced
a ROS service which whenever invoked would obtain a lock
over the bus to read the sensor data and release it whenever it is
not using it thus removing the conflict between the 2 processes
trying to access the bus.

4.3 Control signal
From the above section we can see that the control node in
the ROS system, subscribes to the /𝑝𝑜𝑠𝑒 and the /𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡
topics. It computes the errors along X, Y and𝜓. It then runs the
error through a PI controller and computes the corresponding

correction body velocities that are fed to the robot as control
signals in the form (𝑉𝑥 ,𝑉𝑦 ,𝜔𝑧). This body velocity is then
converted to wheel velocities and then to motor PWMs in
the direction_to_wheel_speeds, and the control_signals nodes
respectively.

4.4 Kinematics
As we are using a 3-wheel omnidirectional setup, we need an
inverse kinematic model to transform the linear and angular
velocities of the body to wheel speeds. In our case, d is the
distance of each wheel from the centre of the robot, r is the
radius of the wheel and in a general case, angle 𝛼𝑖 is the angle
between the axes of the wheels. The angle \ is the angle of
the first wheel from the X axis of the robot body frame. In our
robot, the values of \, 𝛼1, 𝛼2 and 𝛼3 are 30 deg,0 deg, 120 deg,
and 240 deg respectively. The corresponding transformation
can be represented using the following matrix.

𝑅𝐼𝐾 =
©«

−𝑠𝑖𝑛(\) 𝑐𝑜𝑠(\) 𝑑

−𝑠𝑖𝑛(\ + 𝛼2) 𝑐𝑜𝑠(\ + 𝛼2) 𝑑

−𝑠𝑖𝑛(\ + 𝛼3) 𝑐𝑜𝑠(\ + 𝛼3) 𝑑

ª®¬ (11)

©«
𝑉1
𝑉2
𝑉3

ª®¬ = 𝑅𝐼𝐾 · ©«
𝑉𝑥
𝑉𝑦
𝜔𝑧

ª®¬ (12)

This matrix was used in the direction_to_wheel_speeds
node to convert the robot velocity from the control node to
wheel velocities that is further used to move the robot in the
desired way.

Additionally, a rotation matrix (Eq. 13) is applied to the
motion body frame to fully describe the velocities 𝑉𝑥 , 𝑉𝑦 and
angular velocity 𝜔𝑧 from the wheel velocities 𝑉1, 𝑉2 and 𝑉3
(Eq. 14). Due to the symmetric nature of the robot, the forward
kinematics can be computed by directly inverting the Inverse
Kinematic transformation from (Eq. 11).

𝑅𝐹𝐾 = 𝑅−1
𝐼𝐾 (13)

©«
𝑉𝑥
𝑉𝑦
𝜔𝑧

ª®¬ = 𝑅𝐹𝐾 · ©«
𝑉1
𝑉2
𝑉3

ª®¬ (14)

This matrix was used to compute the body velocities from
the wheel velocities in the robot_control node which is further
used in the localization_filter.

4.5 Calibration of encoder measurements
The measurements from the encoders had to be calibrated for
the controller, as the EKF algorithm is running at 10000 Hz
the encoder measurements had to be scaled to compensate
for the frequent update of the EKF. Thus, at first the encoder
values where too small in the algorithm, the controller would
run the control commands more frequently than necessary, the
encoder measurement where multiplied by a thousand and a
destination of 10cm was given to the robot, the robot would
reach around 3.1cm which was then compensated for by divid-
ing the 1000 by 3.19 to reach the desired scaling factor which
would reach the 10cm mark with a ±1mm error.
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4.6 Tilt Compensation
Due to the unevenness of the ground, the robot would have
a tilt error form the IMU reading, that would result in the
robot control to incorrectly compensate for this tilt. This is
implemented to remove any effect of the acceleration due to
gravity appearing on the other axes namely x and y. In an
ideal scenario, when the robot is stationary on a completely
flat surface, the acceleration across z should be -g and 0 across
x and y axes. In order to achieve tilt compensation, we acquire
the accelerometer data along x,y and z. We then compute the
orientations of the IMU in the X-Z plane and the Y-Z plane.
Upon obtaining these angles, we know that the accelerometer
orientations in the space. We then project the raw values onto
the corrected axes. This is well described in the following
equation 15-18.

𝜙𝑥 = 𝑡𝑎𝑛
−1 (𝑎𝑐𝑐𝑟𝑎𝑤𝑥 /𝑎𝑐𝑐𝑟𝑎𝑤𝑧 ) (15)

𝜙𝑦 = 𝑡𝑎𝑛
−1 (𝑎𝑐𝑐𝑟𝑎𝑤𝑦 /𝑎𝑐𝑐𝑟𝑎𝑤𝑧 ) (16)

𝑎𝑐𝑐
𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑
𝑥 = 𝑎𝑐𝑐𝑟𝑎𝑤𝑥 · 𝑐𝑜𝑠(𝜙𝑥) (17)

𝑎𝑐𝑐
𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑
𝑦 = 𝑎𝑐𝑐𝑟𝑎𝑤𝑦 · 𝑐𝑜𝑠(𝜙𝑦) (18)

4.7 Path planning
An algorithm was implemented to automate the motion of the
robot in a continuous loop of points chosen. This algorithm
keeps track of the error i.e. the euclidean distance between
the current position and the destination. When the error is
smaller than the resolution of the robot, the next destination is
automatically selected and the robot starts moving to the next
position. The path planned is a square with the sides of length
10 cm.

4.8 Extended Kalman filter
The pseudo algorithm seen in algorithm 1 represents the EKF
algorithm.

Algorithm 1: Extended Kalman Filter Algorithm
while currentSimulationTime < simulationTime do

Calculate the state estimate with the control
commands from the previous time step;

Calculate the error covariance with the Jacobian
of the model;

Calculate the measurement residual;
Calculate the Kalman gain;
Correct the state estimate with the Kalman gain;
Correct the error covariance;

end

As in the previous project the group relied on the help of
[5, pp. 203–220]. for the completion of the EKF algorithm,
as well as the experience the group members gained from the
previous projects.

Predict algorithm Equation 21 shows the Jacobian matrix
of the state space, the Jacobian is required to predict the co-
variance matrix.

𝑎 = −𝑑𝑡 ∗ ((𝑢1) ∗ 𝑠𝑖𝑛(𝜓𝑧) + (𝑢2) ∗ 𝑐𝑜𝑠(𝜓𝑧)) (19)

𝑏 = 𝑑𝑡 ∗ ((𝑢1) ∗ 𝑐𝑜𝑠(𝜓𝑧) − (𝑢2) ∗ 𝑠𝑖𝑛(𝜓𝑧)) (20)

𝐹 =
©«
1 0 𝑎

0 1 𝑏

0 0 1

ª®¬ (21)

Correct algorithm As our observation model needs to be
weighed for the correction step its Jacobian is shown in equa-
tion 22, as previously mentioned the output of the update step
is again fed into the Predict State and the cycle goes on until
the final position is estimated with in a satisfactory frame.

𝐻𝑡 =

©«

1 0 0
0 1 0
0 0 1
𝑑𝑡 0 0
0 𝑑𝑡 0
0 0 𝑑𝑡

0.5 ∗ (𝑑𝑡 ∗ 𝑑𝑡) 0 0
0 0.5 ∗ (𝑑𝑡 ∗ 𝑑𝑡) 0

ª®®®®®®®®®®®¬
(22)

5. Results
The EKF algorithm with sensor fusion from the three encoders
is finalized and have the same units as the control signal values,
the IMU units are adjusted to the control signals units as well
as the data from the HTC VIVE light house. As well as the
re-tuning of the PI controller to accommodate the new control
signal units. The ROS network and the inverse kinematics
have been adjusted to the project, debugged and are running
as expected. The MSE error for the localization was computed
and the values stayed between 6.53 ∗ 10−8 to 7.4 ∗ 10−8 along
X and 5.23 ∗ 10−8 to 5.59 ∗ 10−8 along Y when run for 15
minutes in a square trajectory.

5.1 Repeatability and Reliability
From the path planning node the robot had an automated
loop that moved in a square with sides of length 10cm, at
every corner of the square a point is made, this test is done to
visually see the error distribution as the robot moves along the
square in an infinite loop, the position estimate of the EKF as
well as the measured light house measurements are plot and
can be seen in figure 6 where the units for the x and y axis
are in meters, the EKF position estimate is in red and the light
house position measurement is in blue. Further, the light house
measurement was blocked to test the effect of the light house
measurement, the results of that test can be seen in figure 7, the
light house measurement is the dominant measurement in the
sensor fusion done by the EKF, the light house was blocked
in the right top corner of the square the robot then moved
around 17cm in the x direction 7.4cm in the y direction, the
EKF flowed the Light house. In figure 8 the markings on the
floor have a error radius distribution of maximum of 3.5mm
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Figure 6. EKF estimate VS Light house measurement

this is measured after the robot has moved clockwise and the
over shoots are mostly seen on the y axis, the robot is then
moved anti clock wise and a different corner have the largest
error radius to be 3mm as seen in figure 9. In figure 10 and
11 where the robot reaches the 10cm destination with an error
radius of around 2.5mm for both the x axis and the y axis
respectively.

6. Discussion
6.1 Results
The testing on the 8th of December at MAX IV, resulted in ac-
knowledging that more work needed to be done on the network
for the message passing to the motors. It was also observed that
the environment was dusty where the robot would be work-
ing, thus error would arise from the encoder measurements.
Further the leica laser could not be relied on for measurement
values as jitters where present in the leica laser measurements,
the jitters are due to the fact that the leica laser is not capa-
ble to update the measurements of a moving target as well
as it does for a stationary one, thus different covariances was
tuned in the EKF for when the robot is moving and when it is
stationary. As the robot should trust the IMU measurements
more when the robot is moving and trust the encoders as well
as the leica laser more when stationary, the covariance matrix
must be tuned accordingly. As every sensor has disadvantages
and advantages when in operation the sensor fusion is not only
beneficial for the operation of the system but necessary. The
testing of this EKF design could not be done in due time,

Figure 7. EKF estimate VS Light house measurement blocked

Figure 8. 3.5mm radius error distribution when running the robot
clockwise
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Figure 9. 3mm radius error distribution when running the robot
clockwise and anti clock wise

Figure 10. horizontal total distance and error when running clock
wise and anti clockwise

Figure 11. Vertical total distance and error when running clock
wise and anti clockwise

as the measurement engineer Alina did not have a possibility
to meet with us during the holidays. Thus, the team replaced
the Leica measurements with the Light House measurement,
the light house measurements are less accurate with 4cm but
is more reliable when it comes to moving target, as seen in
5.1 the resolution of the position estimate relative to the reso-
lution of the Light house measurement resulted in a 10 folds
improvement form 4cm to around 3mm. The final set up of the
algorithm and results were presented on the 14th of January
to the faculty members and students at LTH.

6.2 Project dynamics
The dynamics of the group has been under pressure, as one
of our group members decided to drop the course. Further,
the testing of the robot was scheduled to be on the 8th of
December, thus the group was required to be 4 weeks ahead of
schedule, this resulted in long night (the longest night lasted
until 5 in the morning) in the lab to get everything debugged
and working. Results of the work were investigated on the 8th
and reported soon after. Finally, the group missed one week of
supervisor help due to the robot lab week, which resulted in
the investigation of quaternion which was not necessary to the
project, the python package built by Anders Blomdell that is
responsible for controlling Dynamixel motors did not account
for negative values in the register. Thus, some hours were
spent to understand and process the negative values from the
Dynamixel motors. Due to the circumstances and the nature of
a project was proposed by the authors. Resulted in the authors
having to be more self reliant, compared to other projects.
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6.3 Project outcome
The project was a challenging endeavour for the time assigned
to it, many over time hours were invested into the project for
the final results, the majority of the time was investigating and
debugging the code implementation for better results. As the
project has not been done before many unknown unknowns
where realised as the project developed, this project contains
information form the majority of the courses taken previously
by the authors and some courses that haven’t been taken at
all. The investigation in this project will further develop in the
authors thesis work, that will be worked on in the spring.
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