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Abstract

Let (G, g) be a 4-dimensional Riemannian Lie group with a 2-dimensional left-
invariant, conformal foliation F with minimal leaves. Let J be an almost Hermitian
structure on G adapted to the foliation F . The corresponding Lie algebra g must
then belong to one of 20 families g1, . . . , g20 according to [7]. We classify such
structures J which are almost Kähler (AK), integrable (I) or Kähler (K). Hereby,
we construct 16 multi-dimensional almost Kähler families, 18 integrable families and
11 Kähler families.

Throughout this work it has been my firm intention to give reference to the stated
results and credit to the work of others. All theorems, propositions, lemmas and
examples left unmarked are either assumed to be too well known for a reference to
be given or the fruits of my own efforts.
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Popular Scientific Summary

In any scientific field, it is important to classify certain objects in order to form
a greater understanding. Here, this is done for so-called 4-dimensional Lie groups
with some additional specifications. The theory of Lie algebras and Lie groups is
connected to almost all topics in mathematics and is also widely used in physics.
For instance, gauge theory in physics uses certain symmetries of a physical system
to form a Lie group. It is through the use of gauge theory that the existence of
certain particles has been postulated, which points towards a greater understanding
of our universe.

Throughout this work, we use a field in mathematics called Riemannian geome-
try. Euclidean geometry is what most people have been using when working with
elementary geometry. Here, lines are assumed to be straight in the sense that two
parallel lines will never meet, no matter how long you make them. It is, however,
sometimes useful to work with geometry where lines can be assumed to not be
straight. According to general relativity, for example, the path of a light particle
bends when it is in the presence of a massive body. Such geometry is referred to
as non-Euclidean geometry. Riemannian geometry was developed in the 19th cen-
tury by Bernhard Riemann. In 1854, he presented his ideas in a lecture hall at his
university in Göttingen. Among the audience was his former teacher Carl Friedrich
Gauss. With his new theory, Riemann provided a system to unite all non-Euclidean
geometries.

Riemannian geometry makes it possible to define a so-called manifold. A manifold
is a space that up-close looks Euclidean. For instance, if a person stands on a
sphere as big as the Earth and looks around, they appear to be standing on a
flat plane. A Lie group is defined as a manifold that also has the properties of
a group. A mathematical group is an arbitrary set paired with an operation (for
example addition or multiplication) that is associative, has an identity element and
any element must have an inverse. For example, the set of whole numbers paired
with addition is a group. Any Lie group has an associated Lie algebra, which is
the associated Euclidean space at a point of the Lie group. In the case of a person
standing on a sphere of the size of the Earth, imagine that the person makes the
perceived plane at the point at which they are standing infinitely larger.

The 4-dimensional Lie group studied in this thesis is also a so-called almost
Hermitian manifold, which can be seen as a generalisation of a complex space. With
the specifications that will be given to this Lie group, it has been shown by S.
Gudmundsson and M. Svensson that its corresponding Lie algebras can be divided
into 20 families. We use the work of A. Gray and L. Hervella to show that any
4-dimensional almost Hermitian manifold must belong to one of four classes and
determine when each of the 20 families belongs to the four classes.





Contents

1 Introduction 1

2 Harmonic Morphisms and Foliations 3
2.1 Harmonic Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 4-Dimensional Lie groups 9
3.1 Setting the Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Minimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Conformality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Almost Hermitian Manifolds 13
4.1 Almost Complex Manifolds . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Almost Hermitian Manifolds . . . . . . . . . . . . . . . . . . . . . . . 14

5 The Space of Covariant Derivatives of the Kähler Form 19
5.1 The Case of 4-Dimensional Lie Groups . . . . . . . . . . . . . . . . . 23

6 The Four Classes of 4-Dimensional Lie Groups 27
6.1 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Almost Kähler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Kähler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 The 20 Families of Lie Algebras 31
7.1 Case (A) - (λ ̸= 0 and (λ− α)2 + β2 ̸= 0) . . . . . . . . . . . . . . . . 33
7.2 Case (B) - (λ ̸= 0 and (λ− α)2 + β2 = 0) . . . . . . . . . . . . . . . . 35
7.3 Case (C) - (λ = 0, r ̸= 0 and (aβ − αb) ̸= 0) . . . . . . . . . . . . . . 36
7.4 Case (D) - (λ = 0, r ̸= 0 and (aβ − αb) = 0) . . . . . . . . . . . . . . 37
7.5 Case (E) - (λ = 0, r = 0 and αb− aβ ̸= 0) . . . . . . . . . . . . . . . 41
7.6 Case (F) - (λ = 0, r = 0 and αb− aβ = 0) . . . . . . . . . . . . . . . 42

Bibliography 51





Chapter 1

Introduction

The reader is assumed to have a fundamental knowledge of Riemannian geometry
corresponding to that of [10].

Let (G, g) be a 4-dimensional Lie group with a 2-dimensional foliation F which
is minimal, conformal and left-invariant. Such a group carries a natural almost
complex structure J . Denote by g the corresponding Lie algebra of G. It was
proven by S. Gudmundsson and M. Svensson that gmust belong to one of 20 families
g1, . . . , g20, see [7]. The aim of this Master’s thesis is to determine when the structure
J is integrable (I), almost Kähler (AK) or Kähler (K). The results are new and
summarized in Table 7.1.

In Chapter 2, we introduce some useful theory about so-called harmonic mor-
phisms and foliations.

In Chapter 3, we introduce 4-dimensional Lie groups (G, g) which are equipped
with a minimal, conformal and left-invariant foliation F of dimension 2. These Lie
groups correspond to those in the article [7]. We show that the corresponding Lie
algebras g of (G, g) must have the Lie bracket relations given in Equation (3.2), as
stated in the original article [7].

The theory of almost Hermitian manifolds is introduced in Chapter 4, where we
go over concepts like (almost) complex structures, Hermitian manifolds and Kähler
manifolds, which will be useful later on.

Chapter 5 is based on [6] and introduces the space W consisting of covariant
derivatives of the Kähler form. We show that an almost complex structure J on
a 4-dimensional almost Hermitian manifold must be either almost Hermitian (W),
integrable (I), almost Kähler (AK) or Kähler (K).

In Chapter 6 we apply this to the 4-dimensional Lie groups introduced in Chapter
3 and determine when they are almost Kähler, integrable or Kähler.

The main work takes place in Chapter 7, where we look at the 20 families of
Lie algebras found in [7] and construct new examples in each family that are either
almost Kähler (AK), integrable (I) or Kähler (K).
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Chapter 2

Harmonic Morphisms and
Foliations

In this chapter, we go over some useful theory of harmonic morphisms and foliations.
We follow [5].

2.1 Harmonic Morphisms

In 1848, Jacobi published a paper where he introduced the idea of harmonic mor-
phisms in the 3-dimensional Euclidean space [13]. A harmonic morphism is, broadly
speaking, a map preserving Laplace’s equation. His ideas were then generalized to
maps between Riemannian manifolds. In this section, we introduce harmonic mor-
phisms in the case of Riemannian manifolds. We will, occasionally, draw parallels
to the work done by Jacobi.

Given a two times differentiable function f defined on an open subset of the
Euclidean space Rm, the Laplacian ∆ of f is given by

∆f =
∂2f

∂x2
1

+ · · ·+ ∂2f

∂x2
m

.

Notice that ∆f = div grad f . Laplace’s equation in Rm is given by ∆f = 0. The
solutions of Laplace’s equation are called harmonic functions. In Definition 2.2 we
define harmonic functions on a general Riemannian manifold, similarly to how it is
done on Rm. To do this, we must first introduce some additional definitions.

Definition 2.1. Let f be a smooth real-valued function on the smooth Riemannian
manifold (M, g). Then the gradient of f is a vector field given by

g(grad f, Y ) = df(Y ),

where df(Y ) is the differential of f and Y is any vector field on M .
Let E be an arbitrary vector field. Then the divergence of E is given by

divE = trace∇E,

where ∇ is the Levi-Civita connection on (M, g).

We are now ready to introduce the Laplace-Beltrami operator and define what is
meant by a harmonic function on a Riemannian manifold.

3



Definition 2.2. Let (M, g) be a Riemannian manifold. The Laplace-Beltrami op-
erator τ of any function f : U ⊂ M → R of class C2 is defined by

τ(f) = div grad f = div df,

where the divergence and gradient are given in Definition 2.1. Laplace’s equation is
given by τ(f) = 0 and its solutions are called harmonic functions. The operator τ
is also called the tension field.

The tension field for a smooth map ϕ : (M, g) → (N, h) is similarly defined by

τ(ϕ) = div dϕ,

where dϕ is the differential of ϕ. The map ϕ is harmonic if and only if τ(ϕ) = 0, see
[5, Theorem 3.3.3].

We now define what is meant by a harmonic morphism between Riemannian
manifolds.

Definition 2.3. Let (M, g) and (N, h) be two Riemannian manifolds. A smooth
mapping ϕ : M → N is called a harmonic morphism if, for any harmonic function
f : U → R on an open subset U ofN such that ϕ−1(U) is non-empty, the composition
f ◦ ϕ is harmonic on ϕ−1(U).

A complex-valued function ϕ on R3 given by ϕ = u + i v, where u and v are
real-valued functions on R3, is called horizontally (weakly) conformal if and only if

|∇u| = |∇v| and ⟨∇u,∇v⟩ = 0. (2.1)

Jacobi showed in his article from 1848 that a complex-valued function on R3 of class
C2 is a harmonic morphism if and only if it is harmonic and horizontally conformal.
The result was independently generalized by Fuglede in 1978 [5] and by Ishihara in
1979 [12] to Riemannian manifolds. We present this in Theorem 2.9 below.

We now give an example of how the theorem by Jacobi shows that the usual
holomorphic and anti-holomorphic functions in complex analysis are harmonic mor-
phisms.

Example 2.4. Let f : U ⊂ C → C be a function of class C2 such that f = u+ i v,
where u, v : U → R. Then f is horizontally weakly conformal if and only if

⟨∇u,∇v⟩ = 0 and |∇u|2 = |∇v|2.

That is,

0 = ⟨∇u,∇v⟩ = ∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

and

0 = |∇u|2 − |∇v|2 =
(
∂u

∂x

)2

+

(
∂u

∂y

)2

−
(
∂v

∂x

)2

−
(
∂v

∂y

)2

.

This is true if and only if the function f or its conjugate f̄ satisfy the classical
Cauchy-Riemann equations :(

∂u

∂x
,
∂u

∂y

)
= ±

(
∂v

∂y
,−∂v

∂x

)
.
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Thus f is also holomorphic or anti-holomorphic. Notice that, if this is true, then

∆u =
∂2u

∂x2
+

∂2u

∂y2
= ±

(
∂

∂x

∂v

∂y
− ∂

∂y

∂v

∂x

)
= 0

and

∆v =
∂2v

∂x2
+

∂2v

∂y2
= ±

(
− ∂

∂x

∂u

∂y
+

∂

∂y

∂u

∂x

)
= 0,

giving ∆f = ∆u + i∆v = 0. Thus f is also harmonic. It follows that the function
f is a harmonic morphism.

Let us remind the reader what is meant by a (weakly) conformal map between
Riemannian manifolds.

Definition 2.5. Given two Riemannian manifolds (M, g) and (N, h), a smooth map
ϕ : M → N is said to be (weakly) conformal at a point p ∈ M if there exists a real
non-negative number λ(p) so that

h(dϕp(E), dϕp(F )) = λ2(p) g(E,F )

for each E,F ∈ TpM . The number λ(p) is called the conformality factor. If the
above holds for all points p ∈ M , the map ϕ is called (weakly) conformal.

We will now define what is meant by a horizontally weakly conformal map in
the case of Riemannian manifolds. Let ϕ : (Mm, g) → (Nn, h) be a smooth map
between Riemannian manifolds and let p ∈ M be any point in M . Then the vertical
space Vp of ϕ at p is the kernel of dϕp and the horizontal space Hp of ϕ at p is the
orthogonal complement of Vp.

Definition 2.6. Let ϕ : (Mm, g) → (Nn, h) be a smooth map between Riemannian
manifolds. The map ϕ is then said to be horizontally weakly conformal at a point
p ∈ M if

(i) dϕp = 0, or

(ii) the differential dϕp is surjective and there exists a positive real number λ(p)
such that

h(dϕp(X), dϕp(Y )) = λ2(p) g(X, Y ),

for any X, Y ∈ Hp.

The map ϕ is called horizontally weakly conformal if the above holds for all points
in M .

Definition 2.7. For a smooth map ϕ : (Mm, g) → (Nn, h) between Riemannian
manifolds, the points p ∈ M at which dϕp = 0 are called critical points. The
points q ∈ M where the restriction dϕq|Hq is surjective and conformal are called
regular points. ϕ is called a conformal submersion if it has no critical points and is
horizontally weaky conformal at every point in M .

Remark 2.8. Definition 2.6 can be written more compactly if, given a smooth map
ϕ : (Mm, g) → (Nn, h) between Riemannian manifolds, we define a set Cϕ by

Cϕ = {p ∈ M | dϕp = 0}

called the critical set. The map ϕ is then horizontally weakly conformal if for each
p ∈ M \ Cϕ, the restriction dϕp|Hp is surjective and conformal.
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The following result was proved by Fuglede in 1978 [5] and by Ishihara in 1979
[12], independently of each other.

Theorem 2.9 ([5], [12]). A map ϕ : (M, g) → (N, h) of class C2 between Rieman-
nian manifolds is a harmonic morphism if and only if it is harmonic and horizontally
weakly conformal.

2.2 Foliations

Definition 2.10. For k ∈ {0, 1, . . . ,∞, ω}, let M be an m-dimensional manifold
of class Ck and let n, q be positive integers such that m = n + q. A foliation F
of M , of dimension q, is a decomposition F = {Lα} of M into disjoint, connected
submanifolds, each of dimension q, such that: Given a point p in M , there is a
submersion ϕp : Up → Nn of class Ck from an open neighbourhood Up of M to an
n-dimensional manifold Nn. Further, the connected components of Up ∩ Lα are the
fibres of ϕp, i.e. for each α there exists a point yα ∈ Nn such that

Up ∩ Lα = {x ∈ Up |ϕp(x) = yα}.

The manifolds Lα are called the leaves of the foliation.
The connected components of the fibres of a smooth submersion ϕ form the leaves

of a foliation. Such a foliation is called the foliation associated with ϕ.

Remark 2.11. Note that we can, equivalently, define a foliation in terms of local
coordinates. Let M be an m-dimensional Riemannian manifold with local coor-
dinates (x1, . . . , xm) on an open neighbourhood U of a point p in M . Then each
connected component U ∩ Lα, where Lα is given by Definition 2.10, is given by
(xq+1, . . . , xm) = constant.

Given a vector bundle E
π→ M , we denote by C∞(E) the set of all its smooth

sections.

Definition 2.12. LetM be a manifold of dimensionm and let k be a positive integer
less than or equal to m. Then a k-dimensional distribution V is a k-dimensional
subbundle of the tangent bundle TM .

Denote by [·, ·] the Lie bracket. A distribution V is called involutive (or integrable)
if [V,W ] ∈ C∞(V) for all V,W ∈ C∞(V), i.e. V is closed under the Lie bracket.

The following theorem is called Frobenius’ theorem.

Theorem 2.13 ([5]). Suppose that M is an m-dimensional manifold with a q-
dimensional smooth involutive distribution V. Let N be any q-dimensional submani-
fold of M such that TpN = Vp for all points p in N . Then the connected components
of N form the leaves of a smooth q-dimensional foliation F . The tangent spaces of
F are given by V.

The converse is also true: Let F be a smooth foliation. Then its tangent spaces
form an involutive distribution.

Now let (Mm, g) be a Riemannian manifold. Denote by V a q-dimensional dis-
tribution on M and H its orthogonal complement distribution on M . Then

TM = V ⊕H.

6



We call the distributions V and H the vertical and horizontal distribution, respec-
tively.

The second fundamental form of V and H are tensor fields of type (2, 1) given by

BV(U, V ) =
1

2
H(∇UV +∇VU) (U, V ∈ C∞(V))

and

BH(X, Y ) =
1

2
V(∇XY +∇YX) (X, Y ∈ C∞(H)),

respectively. Given the second fundamental form BV , we can define the mean cur-
vature of V :

µV =
1

q
traceBV .

We can now define what it means for the vertical distribution V to be minimal,
totally geodesic, conformal or Riemannian:

Definition 2.14. Let V be the vertical distribution of a Riemannian manifold (M, g)
as above. Then V is

(i) minimal if the mean curvature µV vanishes at every point in M ;

(ii) totally geodesic if BV
p = 0 for any point p in M ;

(iii) conformal if there exists a vector field V in V such that

BH = g ⊗ V ;

(iv) Riemannian if, in addition to being conformal, the vector field V in V is iden-
tically zero.

We end this section by stating a theorem connecting harmonic morphisms to
foliations of codimension 2.

Theorem 2.15 ([5, Proposition 4.7.1]). Let F be a conformal foliation of codimen-
sion 2 on a Riemannian manifold M . Then the following is true if and only if
F has minimal leaves: For any point p in M , there exists an open neighbourhood
U such that the restriction F|U is associated to a submersive harmonic morphism
ϕ : U → N2, where N2 is a 2-dimensional Riemannian manifold.

7
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Chapter 3

4-Dimensional Lie groups

In this chapter, we apply some of the theory from Chapter 2 as well as our previous
knowledge to construct the same 4-dimensional Lie algebra as the one given in [7].
This is done by introducing a 4-dimensional Lie group (G, g) equipped with a left-
invariant, minimal and conformal foliation of codimension 2. By Theorem 2.15 such
a foliation is locally given by submersive harmonic morphism. Our main goal of this
chapter is to show that this Lie algebra will have the Lie bracket relations (3.2), as
stated in [7].

3.1 Setting the Stage

Let (G, g) be a Riemannian manifold. We denote by V an involutive distribution
on G and by H the orthogonal complementary distribution of V . V and H also
denote the orthogonal projections onto the corresponding subbundles of TG. Then
the second fundamental form of V is

BV(U, V ) =
1

2
H(∇UV +∇VU) (U, V ∈ C∞(V)),

and the second fundamental form for H is given by

BH(X, Y ) =
1

2
V(∇XY +∇YX) (X, Y ∈ C∞(H)).

By Theorem 2.13, the distribution V has an associated 2-dimensional foliation
F . F is said to be conformal if there is a vector field V in V such that

BH = g ⊗ V. (3.1)

A conformal foliation is called Riemannian if V = 0. F is called minimal if
traceBV = 0 and totally geodesic if BV = 0. This is equivalent to saying that
the leaves of F are minimal and totally geodesic, respectively.

We now specify the Riemannian manifold (G, g) further, by letting G be a 4-
dimensional Lie group and g be a left-invariant Riemannian metric. Recall that a
Lie group G has an associated Lie algebra g of the same dimension as G given by
the set of all left-invariant vector fields of G. Let K be a 2-dimensional subgroup of
G and denote by k the Lie algebra of K. Let m be the orthogonal complement of k:

m = {X ∈ g | g(X, Y ) = 0 for all Y ∈ k}.

9



We then let the Lie algebra k generate the involutive distribution V and m its
orthogonal distribution H. Let {X, Y, Z,W} be an orthonormal basis of g such that
Z,W generate V and X, Y generate H. The foliation F is assumed to be minimal
and conformal. Denote by [·, ·] the Lie brackets on g. In the article [7], they state
that the Lie bracket relations of g are of the form

[W,Z] = λW,

[Z,X] = αX + βY + z1Z + w1W,

[Z, Y ] = − βX + αY + z2Z + w2W,

[W,X] = aX + bY + z3Z − z1W,

[W,Y ] = − bX + aY + z4Z − z2W,

[Y,X] = rX + θ1Z + θ2W,

(3.2)

for real constant. We are now going to show that this is true for the remainder of
this chapter. It is important to note that the system (3.2) alone does not necessarily
describe a Lie algebra, since a Lie algebra must also satisfy the Jacobi identity.

The elements W,Z in g can be picked so that [W,Z] = λW since the field V is
involutive and thus closed under the Lie bracket, see Definition 2.12. The elements
X, Y are picked so that H[Y,X] = r X for some real structure constant r. Note that
H is involutive if and only if θ1 = θ2 = 0.

For the remaining Lie brackets, we use the fact that the Lie brackets of the base
vectors are linear combinations of the base vectors, meaning that we get

[Z,X] = αX + βY + z1Z + w1W, (3.3)

[Z, Y ] = a2X + b2Y + z2Z + w2W, (3.4)

[W,X] = aX + bY + z3Z + d3W, (3.5)

[W,Y ] = a4X + b4Y + z4Z + d4W, (3.6)

for some real structure constants. We are now going to use minimality and confir-
mality of the foliation F to obtain the same Lie bracket relations as in Equation
(3.2).

3.2 Minimality

The foliation F is minimal in G if and only if trace(BV) = 0. By [10, Definition
6.23] the trace is given by

trace(BV) =
1

2
H(∇ZZ +∇ZZ) +

1

2
H(∇WW +∇WW )

= H(∇ZZ +∇WW ).

Thus 0 = H(∇ZZ + ∇WW ). Using this, the Koszul formula for Riemannian Lie
groups [10, Proposition 6.13] and the fact that the elements X and Y are orthogonal
to the vertical distribution V , we can compute

0 = g(H(∇ZZ +∇WW ), X) = g(∇ZZ +∇WW,X)

= g(∇ZZ,X) + g(∇WW,X)

=
1

2
{g(X, [Z,Z]) + g([X,Z] , Z) + g(Z, [X,Z])}

10



+
1

2
{g(X, [W,W ]) + g([X,W ] ,W ) + g(W, [X,W ])}

= g([X,Z] , Z) + g([X,W ] ,W ) = −g([Z,X] , Z)− g([W,X] ,W )

= −z1 − d3

and

0 = g(H(∇ZZ +∇WW ), Y ) = g(∇ZZ +∇WW,Y )

= g(∇ZZ, Y ) + g(∇WW,Y )

=
1

2
{g(Y, [Z,Z]) + g([Y, Z] , Z) + g(Z, [Y, Z])}

+
1

2
{g(Y, [W,W ]) + g([Y,W ] ,W ) + g(W, [Y,W ])}

= g([Y, Z] , Z) + g([Y,W ] ,W ) = −g([Z, Y ] , Z)− g([W,Y ] ,W )

= −z2 − d4.

From this, we see that d3 = −z1 and d4 = −z2, which is in line with [7].

3.3 Conformality

As stated before, the foliation F is conformal if and only if Equation (3.1) is fulfilled.
We see that this is equivalent to saying that for the orthonormal basis {X, Y } of H

BH(X,X) = BH(Y, Y ) and BH(X, Y ) = 0.

By the use of the Koszul formula for Riemannian Lie groups [10, Proposition 6.13]
and Equation (3.3) to (3.6) we see that

g(BH(X,X), Z) = g(X, [Z,X]) = α,

g(BH(X,X),W ) = g(X, [W,X]) = a,

g(BH(Y, Y ), Z) = g(Y, [Z, Y ]) = b2,

g(BH(Y, Y ),W ) = g(Y, [W,Y ]) = b4,

g(BH(X, Y ), Z) =
1

2
(g([Z,X], Y ) + g([Z, Y ], X)) =

1

2
(β + a2) and

g(BH(X, Y ),W ) =
1

2
(g([W,X], Y ) + g([W,Y ], X)) =

1

2
(b+ a4).

It follows that
b2 = α, b4 = a, a2 = −β and a4 = −b.

We observe that our resulting constants are the same as those in [7].
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Chapter 4

Almost Hermitian Manifolds

4.1 Almost Complex Manifolds

We will now define a complex manifold. Recall that a topological manifold M of
dimension m is a paracompact Hausdorff space such that for all points p in M , there
exists a neighbourhood Up and a homeomorphism xp : Up → x(Up) ⊂ Rm. As will
be seen, the definition of a complex manifold is similarly defined:

Definition 4.1. A 2m-dimensional manifold is called a complex manifold if there
exists an atlas

A = {(Uα, z
α) : α ∈ I},

of complex charts

zα : Uα → zα(Uα) ⊂ Cm

such that, for each α, β ∈ I,

(i) Uα ∩ Uβ = ∅ or

(ii) the transition map zα ◦ (zβ)−1 : Cm → Cm is holomorphic.

We then say that M is a complex manifold of dimension m.

Suppose that M is a complex manifold of dimension m and let (Uα, z
α) be a

complex chart such that Uα contains the point p ∈ M . Let k be an integer between
1 and m. The k-th coordinate of the point p ∈ Uα is then given by the map

zαk : Uα → C
p 7→ projk(z

α(p)).

Each coordinate has a decomposition zαk = xα
k + iyαk , where x

α
k and yαk are real. The

set {
∂

∂xα
k

,
∂

∂yαk
: 1 ≤ k ≤ m

}
then becomes a basis of the tangent space TpM . Note that we now regard M as a
real manifold.

Definition 4.2. Let M be a complex m-dimensional manifold and let (z1, . . . , zm)
be local coordinates around a point p ∈ M , each having the real decomposition zk =
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xk + iyk for 1 ≤ k ≤ m. A complex structure J : TM → TM is an endomorphism
of the tangent bundle TM of M which in local coordinates is given by

Jp

(
∂

∂xα
k

)
=

∂

∂yαk
, Jp

(
∂

∂yαk

)
= − ∂

∂xα
k

. (4.1)

The following example shows that complex structures can be seen as generaliza-
tions of multiplication by i in the complex plane.

Example 4.3. The space C of complex numbers is clearly a complex manifold. Any
z ∈ C has a decomposition z = x+iy, where x and y are real numbers. At any point
in C, the tangent space is isomorphic to C itself. Thus, e1 = 1 and e2 = i become
basis vectors for the tangent space at any point in C. Let J : TM → TM be an
endomorphism given by Jw(z) = iz for w, z ∈ C. Then J is a complex structure by
Equation (4.1), since Jw(e1) = e2 and Jw(e2) = −e1 for any w ∈ C.

Definition 4.4. An almost complex structure on a differentiable manifold M of
even dimension is a tensor field of type (1, 1), such that for each point p ∈ M , the
restriction Jp = J |TpM

is an endomorhism Jp : TpM → TpM such that J2
p = − idTpM .

If there exists an almost complex structure onM , the manifoldM is called an almost
complex manifold.

Remark 4.5. Note that the complex structure J on a complex manifold M given
in Definition 4.2 is an almost complex structure. J is also called the standard almost
complex structure.

An almost complex structure J on an almost complex manifold (M,J) is called
integrable if there exists an atlas of complex charts such that any complex coordi-
nates satisfy (4.1).

Definition 4.6. The Nijenhuis tensor of an almost complex manifold (M,J) is
defined as

NJ(U, V ) = [U, V ] + J [JU, V ] + J [U, JV ]− [JU, JV ] , (4.2)

where U, V ∈ C∞(TM).

The following result is called the Newlander-Nirenberg theorem [15].

Theorem 4.7. For an almost complex manifold (M,J), the almost complex struc-
ture J is integrable if and only if its associated Nijenhuis tensor NJ vanishes for all
vector fields U, V ∈ C∞(TM).

Proof. See [15].

4.2 Almost Hermitian Manifolds

Definition 4.8. Let (M, g, J) be a Riemannian manifold equipped with an (almost)
complex structure J . The structure J is said to be compatible with the metric g if

g(E,F ) = g(JE, JF ), E, F ∈ C∞(TM).

The metric g is then said to be Hermitian. An (almost) Hermitian manifold is a
Riemannian manifold equipped with a compatible (almost) complex structure.
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Remark 4.9. Suppose that (M, g, J) is an (almost) Hermitian manifold of dimen-
sion 2n in the sense of a real manifold. Given a point p in M , we can construct
an orthonormal basis of the tangent space TpM in the following way. Let e1 be an
arbitrary tangent vector at p of unitary length. That is, g(e1, e1) = 1. Let e2 = Je1.
Note that e2 is also of unit length since J is compatible with g. By compatibility,
e1 and e2 are also orthogonal since

g(e1, e2) = g(e1, Je1) = g(Je1, J
2e1) = g(Je1,−e1) = −g(e2, e1),

or equivalently, g(e1, e2) = 0. The tangent vectors e1 and e2 generate a plane V1. In
V ⊥
1 , we pick a tangent vector e3 of unit length and let e4 = Je3. Then {e1, e2, e3, e4}

generates a 4-dimensional space V2. Let e5 be a tangent vector of unit length in the
space V ⊥

2 and so on. Eventually, we are left with the set {e1, e2, . . . , e2n−1, e2n} of
orthonormal tangent vectors where J(e2k−1) = e2k. Since J2(e2k−1) = −e2k−1, we
also have J(e2k) = −e2k−1.

Remark 4.10. Notice that an (almost) complex Riemannian manifold (M, g, J)
always has a Hermitian metric, since we can define a Riemannian metric h by

h(X, Y ) = g(X, Y ) + g(JX, JY ).

It is easy to see that J is compatible with the metric h.

Definition 4.11. Let (M, g, J) be an (almost) Hermitian manifold. Then its Kähler
form ω is a 2-form defined by

ω(E,F ) = g(JE, F ), E, F ∈ C∞(TM).

Definition 4.12. Let (M, g, J) be an (almost) Hermitian manifold with Levi-Cevita
connection ∇. The (almost) complex structure J is said to be (almost) Kähler if
and only if ∇J = 0 i.e. if J is parallel. In that case, the triple (M, g, J) is called an
(almost) Kähler manifold.

We will now introduce a lemma (see Lemma 4.15) which shows that the definition
of a Hermitian manifold also can be defined in terms of its Kähler form. Before doing
that, we need to define the exterior derivative.

Definition 4.13. Let M be a differentiable manifold, ω be a k-form on M and
X1, . . . , Xk+1 be smooth vector fields. Then the exterior derivative dω of ω is given
by

dω(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i+1Xi(ω(X1, . . . , X̂i, . . . , Xk+1))

+
∑
i<j

(−1)i+jω([Xi, Xj] , X1, . . . , X̂i, . . . , X̂j, . . . , Xk+1),

where X̂i means that Xi is missing.

Example 4.14. The Kähler form ω on an (almost) Hermitian manifold is a 2-form.
By letting k = 2 in Definition 4.13 we get

dω(X1, X2, X3) =X1(ω(X2, X3))−X2(ω(X1, X3)) +X3(ω(X1, X2))

− ω([X1, X2], X3) + ω([X1, X3], X2)− ω([X2, X3], X1).
(4.3)
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The next lemma is taken from [3, Proposition 4.16].

Lemma 4.15. Let (M, g, J) be an (almost) Hermitian manifold. Then

dω(X, Y, Z) = g((∇XJ)Y, Z) + g((∇Y J)Z,X) + g((∇ZJ)X, Y )

and
2 · g((∇XJ)Y, Z) = dω(X, Y, Z)− dω(X, JY, JZ)

for any vector fields X, Y, Z ∈ C∞(TM).

Proof. Notice that, since J is compatible with g,

g(JX, Y ) = g(J2X, JY ) = −g(X, JY ).

According to the definition of the covariant derivative ∇J of J , we have

(∇XJ)Y = ∇X(JY )− J∇XY

and we can expand

g((∇XJ)Y, Z) = g(∇X(JY ), Z)− g(J∇XY, Z)

= g(∇X(JY ), Z) + g(∇XY, JZ).

By an application of the Koszul formula, we get

g(∇X(JY ), Z) =
1

2
{X(g(JY, Z)) + (JY )(g(X,Z))− Z(g(X, JY ))

+g([Z,X], JY ) + g([Z, JY ], X) + g(Z, [X, JY ])}

and

g(∇XY, JZ) =
1

2
{X(g(Y, JZ)) + Y (g(X, JZ))− (JZ)(g(X, Y ))

+g([JZ,X], Y ) + g([JZ, Y ], X) + g(JZ, [X, Y ])}.

After doing the same thing for g((∇Y J)Z,X) and g((∇ZJ)X, Y ), we see that

g((∇XJ)Y, Z) + g((∇Y J)Z,X) + g((∇ZJ)X, Y )

= X(g(JY, Z))− Y (g(JX,Z)) + Z(g(JX, Y ))

−g(J [X, Y ], Z) + g(J [X,Z], Y )− g(J [Y, Z], X)

= X(ω(Y, Z))− Y (ω(X,Z)) + Z(ω(X, Y ))

−ω([X, Y ], Z) + ω([X,Z], Y )− ω([Y, Z], X)

This corresponds to the exterior derivative of ω in Equation (4.3). Thus the first
statement of the lemma holds.

To prove the second part, we use the exterior derivative dω of ω and get

dω(X, Y, Z) = X(g(JY, Z))− Y (g(JX,Z)) + Z(g(JX, Y ))

−g(J [X, Y ], Z) + g(J [X,Z], Y )− g(J [Y, Z], X)

and

−dω(X, JY, JZ) = −X(g(−Y, JZ)) + JY (g(X,Z))− JZ(g(X, Y ))
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+g([X, JY ], Z)− g([X, JZ], Y ) + g(J [JY, JZ], X).

After adding and rearranging, we get

dω(X, Y, Z)− dω(X, JY, JZ) = −Y (g(JX,Z)) + JY (g(X,Z))

+Z(g(JX, Y ))− JZ(g(X, Y ))

+g(J [JY, JZ], X)− g(J [Y, Z], X)

+g(J [X,Z], Y )− g([X, JZ], Y )

+g([X, JY ], Z)− g(J [X, Y ], Z).

By our earlier calculations we find that

2(g(∇X(JY ), Z) + g(∇XY, JZ)) = −Y (g(JX,Z)) + JY (g(X,Z))

+Z(g(JX, Y ))− JZ(g(X, Y ))

+g([Z, JY ], X) + g([JZ, Y ], X)

+g(J [X,Z], Y )− g([X, JZ], Y )

+g(Z, [X, JY ])− g(Z, J [X, Y ]).

From this we see that

2(g(∇X(JY ), Z) + g(∇XY, JZ)) = (dω(X, Y, Z)− dω(X, JY, JZ))

and the second statement holds.

As a direct consequence of Lemma 4.15, we now get the following:

Proposition 4.16 ([3, Theorem 4.17]). Let (M, g, J) be an (almost) Hermitian
manifold and denote by ω its corresponding Kähler form. Then ∇J = 0 if and only
if dω = 0, where dω is the exterior derivative of ω.
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Chapter 5

The Space of Covariant
Derivatives of the Kähler Form

We define a finite-dimensional vector space W consisting of tensors with the same
symmetries as those of the covariant derivative of the Kähler form of an almost
Hermitian manifold. This work is based on the article [6].

We consider a real vector space V of dimension 2n. V is equipped with a positive
definite inner product g and an almost complex structure J which is compatible
with g, meaning g(Jx, Jy) = g(x, y) for all x, y ∈ V . Put

W = {α ∈ V ∗ ⊗ V ∗ ⊗ V ∗ |α(x, y, z) = −α(x, z, y) = −α(x, Jy, Jz), x, y, z ∈ V },
(5.1)

where V ∗ is the dual space of V . We define ᾱ(z) ∈ V ∗ by

ᾱ(z) =
2n∑
i=1

α(ei, ei, z),

where {e1, . . . , e2n} is an orthonormal basis for V . We also define a scalar product
⟨·, ·⟩ on W by

⟨α, β⟩ =
2n∑

i,j,k=1

α(ei, ej, ek)β(ei, ej, ek), (5.2)

where α, β ∈ W and {e1, . . . , e2n} is an orthonormal basis for V . The space W can
then be split into four different subsets1 [6]

W1 = {α ∈ W |α(x, x, z) = 0 for all x, z ∈ V },
W2 = {α ∈ W |α(x, y, z) + α(z, x, y) + α(y, z, x) = 0 for all x, y, z ∈ V },
W3 = {α ∈ W |α(x, y, z)− α(Jx, Jy, z) = ᾱ(z) = 0 for all x, y, z ∈ V },

W4 = {α ∈ W |α(x, y, z) = 1

2(n− 1)
(g(x, y)ᾱ(z)− g(x, z)ᾱ(y)

−g(x, Jy)ᾱ(Jz) + g(x, Jz)ᾱ(Jy)) for all x, y, z ∈ V }.

It is stated in [6] that W1, W2, W3 and W4 are orthogonal and that

W = W1 ⊕W2 ⊕W3 ⊕W4.

1Note that W4 is defined differently than in [6], due to a mistake found by Kexing Chen, author of [4].
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There, they use a proof involving representation theory. We will, instead, prove this
by using a given orthonormal basis, see Lemma 5.2. Proposition 5.4 in the case of
n = 2 will be of most importance for our work in the next chapters.

Lemma 5.1 ([6]). For the above defined subsets we have

W1 ⊕W2 = {α ∈ W |α(x, y, z) + α(Jx, Jy, z) = 0 for all x, y, z ∈ V }

and

W3 ⊕W4 = {α ∈ W |α(x, y, z)− α(Jx, Jy, z) = 0 for all x, y, z ∈ V }.

The sets W1, W2, W3 and W4 are orthogonal.

Proof. We first show that the sets W1 and W2 are orthogonal. Let α1 ∈ W1 and
α2 ∈ W2. Then α1(x, y, z) = −α1(y, x, z) for all x, y, z ∈ V . From this, we can
show that α1(x, y, z) = α1(z, x, y) = α1(y, z, x). The definition of the set W gives
α1(x, y, y) = α2(x, y, y) = 0 and from this we see that α1(x, y, z)α2(x, y, z) = 0
whenever at least two of the variables are equal. We also get

α1(x, y, z)α2(x, y, z) + α1(y, z, x)α2(y, z, x) + α1(z, x, y)α2(z, x, y)

= α1(x, y, z)(α2(x, y, z) + α2(y, z, x) + α2(z, x, y))

= 0.

Since α1(x, y, z)α2(x, y, z) = α1(x, z, y)α2(x, z, y), we see that the sum of all of all
the possible combinations of α1(x, y, z)α2(x, y, z) for any distinct x, y, z ∈ V is zero.
If ei ̸= ej ̸= ek, all of its combinations show up in the sum in Equation (5.2). Thus
⟨α1, α2⟩ = 0. From this we see that W1 and W2 are orthogonal.

We next show that the sets W3 and W4 are orthogonal. To do this, we need
to construct an orthonormal basis for V . By Remark 4.9 we can construct an
ortonormal basis {e1, e2, . . . , e2n−1, e2n} where J(e2k−1) = e2k and J(e2k) = −e2k−1.

Let α4 ∈ W4. Then

α4(x, y, z) =
1

2(n− 1)
(g(x, y)ᾱ4(z)−g(x, z)ᾱ4(y)−g(x, Jy)ᾱ4(Jz)+g(x, Jz)ᾱ4(Jy))

for any x, y, z ∈ V . If α3 ∈ W one can show that

⟨α4, α3⟩ =
1

2(n− 1)

2n∑
k=1

(ᾱ4(ek)ᾱ3(ek) + ᾱ4(Jek)ᾱ3(Jek))

+
1

2(n− 1)

2n∑
j=1

(ᾱ4(ej)ᾱ3(ej) + ᾱ4(Jej)ᾱ3(Jej))).

This scalar product vanishes for any α3 ∈ W3, since ᾱ3(z) = 0 for any z ∈ V by
definition. We conclude that the sets W3 and W4 are orthogonal.

With the above we have shown that W1∩W2 = W2∩W4 = {0}, which motivates
the use of direct sums.

Let

U1 = {α ∈ W |α(x, y, z) + α(Jx, Jy, z) = 0 for all x, y, z ∈ V }.
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We first prove that W1 ⊕ W2 is a subset of U1. Let α1 ∈ W1. Then α1(x, y, z) =
−α1(y, x, z). By using this and the definition of W we get

α1(x, y, z) = −α1(y, x, z) = α1(y, Jx, Jy) = −α1(Jx, y, Jz) = −α1(Jx, Jy, z).

If α2 ∈ W2 then

α2(Jx, Jy, z) = −α2(z, Jx, Jy)− α2(Jy, z, Jx) = α2(z, x, y)− α2(Jy, Jz, x).

Thus

α2(Jx, Jy, z) = α2(z, x, y)− α2(Jy, Jz, x)

= α2(z, x, y)− (α2(x, y, z)− α2(Jz, Jx, y))

= α2(z, x, y)− α2(x, y, z) + α2(Jz, Jx, y)

= α2(z, x, y)− α2(x, y, z) + (α2(y, z, x)− α2(Jx, Jy, z))

= (α2(z, x, y) + α2(y, z, x) + α2(x, y, z))

−2α2(x, y, z)− α2(Jx, Jy, z)

= −2α2(x, y, z)− α2(Jx, Jy, z).

After rearranging, we get

α2(x, y, z) = −α2(Jx, Jy, z).

Thus W1 ⊕W2 is a subset of U1. We now show that U1 is a subset of W1 ⊕W2.
This is true if for each α ∈ U1 there exists an α1 ∈ W1 and α2 ∈ W2 such that
α = α1 + α2. Given α ∈ U1, we can define an α1 by

α1(x, y, z) =
1

2
(α(x, y, z)− α(y, x, z)),

for all x, y, z ∈ V and an α2 by

α2(x, y, z) =
1

2
(α(x, y, z)− α(y, z, x)),

for all x, y, z ∈ V . One can easily check that α1 ∈ W1, α2 ∈ W2 and α = α1 + α2.
Thus U1 is a subset of W1 ⊕W2. We conclude that

W1 ⊕W2 = {α ∈ W |α(x, y, z) + α(Jx, Jy, z) = 0}.

Let

U2 = {α ∈ W |α(x, y, z)− α(Jx, Jy, z) = 0 for all x, y, z ∈ V }.

It is easy to see that W3 ⊕W4 is a subset of U2. Let α ∈ U2. Then we can define

α4(x, y, z) =
1

2(n− 1)
(g(x, y)ᾱ(z)− g(x, z)ᾱ(y)− g(x, Jy)ᾱ(Jz) + g(x, Jz)ᾱ(Jy))

and
α3 = α(x, y, z)− α4(x, y, z).

Here, a calculation shows that ᾱ = ᾱ4 and from this it follows that ᾱ3 = 0. Thus
α3 ∈ W3, α4 ∈ W4 and U2 is a subset of W3 ⊕W4. We conclude that

W3 ⊕W4 = {α ∈ W |α(x, y, z)− α(Jx, Jy, z) = 0 for all x, y, z ∈ V }.
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Lastly, we want to show that W1 ⊕W2 and W3 ⊕W4 are orthogonal. We again
let {e1, e2, . . . , e2n−1, e2n} be a set of orthonormal vectors where J(e2k−1) = e2k and
J(e2k) = −e2k−1. If α ∈ W1 ⊕ W2 and β ∈ W3 ⊕ W4 we get α(x, y, z)β(x, y, z) =
−α(Jx, Jy, z)β(Jx, Jy, z). This and the definition of our orthonormal basis gives

⟨α, β⟩ =
2n∑

i,j,k=1

α(ei, ej, ek)β(ei, ej, ek)

=
2n∑
k=1

n∑
i,j=1

(α(e2i, e2j, ek)β(e2i, e2j, ek) + α(e2i−1, e2j, ek)β(e2i−1, e2j, ek)

+α(e2i, e2j−1, ek)β(e2i, e2j−1, ek) + α(e2i−1, e2j−1, ek)β(e2i−1, e2j−1, ek))

=
2n∑
k=1

n∑
i,j=1

(α(e2i, e2j, ek)β(e2i, e2j, ek) + α(e2i−1, e2j, ek)β(e2i−1, e2j, ek)

−α(e2i−1, e2j, ek)β(e2i−1, e2j, ek)− α(e2i, e2j, ek)β(e2i, e2j, ek))

= 0.

Thus the sets W1 ⊕ W2 and W3 ⊕ W4 are orthogonal. It follows that all of the
sets W1, W2, W3 and W4 are orthogonal.

Lemma 5.2 ([6, Theorem 2.1]). The sets W1, W2, W3 and W4 are orthogonal and

W = W1 ⊕W2 ⊕W3 ⊕W4.

Proof. Orthogonality follows from Lemma 5.1. The same lemma states that

W1 ⊕W2 = {α ∈ W |α(x, y, z) + α(Jx, Jy, z) = 0 for all x, y, z ∈ V }.

and

W3 ⊕W4 = {α ∈ W |α(x, y, z)− α(Jx, Jy, z) = 0 for all x, y, z ∈ V }.

It is clear that (W1 ⊕W2)⊕ (W3 ⊕W4) is a subset of W .
Let α ∈ W . We can define α12 and α34 by

α12(x, y, z) =
1

2
(α(x, y, z)− α(Jx, Jy, z))

and

α34(x, y, z) =
1

2
(α(x, y, z) + α(Jx, Jy, z)).

Then α12 ∈ W1 ⊕W2, α34 ∈ W3 ⊕W4 and α = α12 + α34. Thus

W = (W1 ⊕W2)⊕ (W3 ⊕W4) = W1 ⊕W2 ⊕W3 ⊕W4.

Lemma 5.3 ([6]). Let n = 2. Then W1 = W3 = {0}.

Proof. If n = 2 the vector space V is of dimension 4. We can construct an orthonor-
mal basis {X, Y, Z,W} where

JX = Y, JY = −X, JZ = W, JW = −Z.
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We will now show that W1 = {0}. Notice that if α ∈ W1, then α(x, y, z) =
−α(y, x, z) for all x, y, z ∈ V . By using this and looking at the definition of W , it is
easy to show that

α(x, y, z) = −α(x, z, y) = −α(y, x, z) = α(y, z, x) = −α(z, y, x) = α(z, x, y)

for all x, y, z ∈ V . If not all x, y, z are distinct, it is therefore easy to see that
α(x, y, z) = 0. Let x, y and z be distinct basis vectors. The definition of the set
W gives α(x, y, z) = −α(x, Jy, Jz) and we must have x = ±Jy or x = ±Jz. Thus
α(x, y, z) = 0 for all x, y, z ∈ V and W1 = {0}.

Let β ∈ W3. We want to show that β(x, y, z) = 0 for all x, y, z ∈ V . This is true
if and only if it holds for all combinations of our given basis vectors.

Since β(x, y, z) = β(Jx, Jy, z) and β(x, y, y) = 0 for all x, y, z ∈ V it is clear that
β(x, y, z) = 0 whenever y and z are in the same 2-dimensional plane spanned by
{X, Y } or {Z,W}. This and the condition β̄(z) = 0 for all z ∈ V gives

β̄(X) = β(Z,Z,X) + β(W,W,X) = 2β(Z,Z,X) = 2β(W,W,X) = 0,

β̄(Y ) = β(Z,Z, Y ) + β(W,W, Y ) = 2β(Z,Z, Y ) = 2β(W,W, Y ) = 0,

β̄(Z) = β(X,X,Z) + β(Y, Y, Z) = 2β(X,X,Z) = 2β(Y, Y, Z) = 0,

β̄(W ) = β(X,X,W ) + β(Y, Y,W ) = 2β(X,X,W ) = 2β(Y, Y,W ) = 0.

Thus β(x, x, w) = 0 whenever x and w are basis vectors not both in {X, Y } or
{Z,W}. We will turn back to this later.

We mentioned earlier that β(x, y, z) = 0 whenever y and z are in the same 2-
dimensional plane spanned by {X, Y } or {Z,W}. Suppose that y and z are basis
vectors not both in {X, Y } or {Z,W}. If x is a basis vector, then x or ±Jx must
be equal to y or z. Since

β(x, y, z) = −β(Jx, z, Jy) = −β(x, z, y) = β(Jx, y, Jz)

we can rearrange so that β(x, y, z) = ±β(x, x, w), where x and w are not both in
{X, Y } or {Z,W}. We showed earlier that β(x, x, w) = 0 for all such basis vectors.
This means that β(x, y, z) = 0 for all x, y, z ∈ V . Thus W3 = {0}.

As a direct consequence of our previous lemmas we get the following result.

Proposition 5.4 ([6]). Suppose that n = 2. Then

W = W2 ⊕W4.

The sets W2 and W4 are orthogonal.

5.1 The Case of 4-Dimensional Lie Groups

Let (G, g) be a Lie group of dimension 2n = 4 with a left-invariant Riemannian
metric g. We denote by g its corresponding Lie algebra. Note that g is isomorphic
to the tangent space of G at the unitary element and is a real vector space of
dimension 4. Let J be an almost complex structure that is compatible with the
Riemannian metric g, meaning g(Jx, Jy) = g(x, y) for all x, y ∈ g. Thus (G, J, g) is
an almost Hermitian manifold.
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Let ω be the Kähler form of the almost Hermitian manifold (G, J, g) given by
ω(X, Y ) = g(JX, Y ) for all X, Y ∈ g. As stated at the beginning of the chapter,
the space W consists of tensors with the same symmetries as those of the covariant
derivative of a Kähler form. Thus ∇ω ∈ W for all almost Hermitian manifolds. The
class of almost Hermitian manifolds is denoted by W .

We denote the class of almost Hermitian manifolds satisfying ∇ω ∈ W2 by AK
and the class satisfying ∇ω ∈ W4 is denoted by I. The class of almost Hermitian
manifolds satisfying ∇ω ∈ {0} is denoted by K.

By Proposition 5.4, ∇ω ∈ W = W2 ⊕W4 for all 4-dimensional almost Hermitian
manifolds. We write W = AK ⊕ I. We see that an almost Hermitian manifold of
dimension 4 must belong to one of the four classes W , AK, I or K.

If ∇ω ∈ W2 then

∇X(ω)(Y, Z) +∇Y (ω)(Z,X) +∇Z(ω)(X, Y ) = 0

for all X, Y, Z ∈ g. By definition,

∇X(ω)(Y, Z) = Xω(Y, Z)− ω(∇XY, Z)− ω(Y,∇XZ)

= g(∇XY, JZ)− g(JY,∇XZ),

where we have used that Xg(JY, Z) = 0. This can then be expanded using the
Koszul formula for Riemannian Lie groups, stated in for example [10, Proposition
6.13], giving

∇X(ω)(Y, Z) =
1

2
{g(JZ, [X, Y ]) + g([JZ,X], Y ) + g(X, [JZ, Y ])}

−1

2
{g(JY, [X,Z]) + g([JY,X], Z) + g(X, [JY, Z])}

(5.3)

and we get

∇X(ω)(Y, Z) +∇Y (ω)(Z,X) +∇Z(ω)(X, Y )

= g([X, Y ], JZ) + g([Y, Z], JX) + g([Z,X], JY ).

We observe that this is the same as the exterior derivative dω(X, Y, Z) given in
Definition 4.13 for k = 2. Thus dω = 0. From Definition 4.12 and Proposition 4.16,
AK consists of almost Kähler manifolds.

Before characterizing our set I we give the following lemma.

Lemma 5.5. Let NJ be the Nijenhuis tensor defined in Definition 4.6. For our
given 4-dimensional Lie group (G, g), we have that

g(JW,NJ(V, U)) + g(JV,NJ(U,W )) + g(JU,NJ(V,W )) = 0 (5.4)

for all U, V,W ∈ g if and only if NJ = 0.

Proof. Equation (5.4) clearly holds if NJ = 0.
Suppose that g has an orthonormal basis {X, Y, Z,W} where

JX = Y, JY = −X, JZ = W, JW = −Z.

Then NJ(X, Y ) = NJ(Z,W ) = 0 and there exist real constants k1, k2, k3 and k4
such that

NJ(Z,X) = k1X + k2Y + k3Z + k4W = −NJ(W,Y )

NJ(Z, Y ) = k2X − k1Y + k4Z − k3W = NJ(W,X)
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This is because NJ(Z,X) = J NJ(Z, Y ) and due to the fact that the Lie brackets
become linear combinations of the base vectors.

Suppose that (5.4) holds for any elements in g. Then

0 = g(JZ,NJ(X, Y )) + g(JX,NJ(Y, Z)) + g(JY,NJ(X,Z)) = 2 k1,

0 = g(JW,NJ(X, Y )) + g(JX,NJ(Y,W )) + g(JY,NJ(X,W )) = 2 k2,

0 = g(JW,NJ(X,Z)) + g(JX,NJ(Z,W )) + g(JZ,NJ(X,W )) = 2 k3,

0 = g(JW,NJ(Y, Z)) + g(JY,NJ(Z,W )) + g(JZ,NJ(Y,W )) = 2 k4.

Thus k1 = k2 = k3 = k4 = 0 and we get that NJ = 0.

If ∇ω ∈ W4 then
∇X(ω)(Y, Z) = ∇JX(ω)(JY, Z)

for all X, Y, Z ∈ g. By using Equation (5.3) we get

0 = 2∇JX(ω)(JY, Z)− 2∇X(ω)(Y, Z)

= g(JZ,NJ(Y,X)) + g(JY,NJ(X,Z)) + g(JX,NJ(Y, Z)),

where NJ is the Nijenhuis tensor defined in Definition 4.6. This is true if and only
if NJ = 0 by Lemma 5.5. By Theorem 4.7, NJ = 0 if and only if J is integrable.
Thus I consists of almost Hermitian manifolds where J is integrable.

The class K consists of all 4-dimensional almost Hermitian manifolds with ∇ω ∈
{0} = W2 ∩ W4, i.e. manifolds which are both almost Kähler and whose almost
complex structure J is integrable. Thus K is the class of Kähler manifold. Notice
that ∇ω = 0.

In Chapter 6 we return to the 4-dimensional Lie group introduced in Chapter 4
and determine when it belongs to the class K, AK or I.
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Chapter 6

The Four Classes of 4-Dimensional
Lie Groups

We now return to the 4-dimensional Lie group (G, g) given in Chapter 3. Recall
the orthonormal basis {X, Y, Z,W} of the Lie algebra g of G. We now adapt a
left-invariant almost complex structure J to the decomposition TG = V ⊕H of the
tangent bundle TG so that V and H are closed under J . Recall that V is spanned
by {Z,W} and H is spanned by {X, Y }. We get

JX = Y, JY = −X, JZ = W, JW = −Z.

The almost complex structure J is assumed to be compatible with the Riemannian
metric g, meaning

g(U, V ) = g(JU, JV ) for all U, V ∈ g.

This makes (G, J, g) an almost Hermitian manifold by Definition 4.8. In Chapter 5,
we show that J must belong to one of the four classes W , AK, I or K, where W
consists all almost Hermitian manifolds, AK consists of all almost Kähler manifolds,
I consists of all almost Hermitian manifolds where J is integrable and K consists
of all Kähler manifolds. Since (G, J, g) is an almost Hermitian manifold it always
belongs to the class W . We will now determine the necessary conditions for (G, J, g)
to belong to the class AK, I or K.

Remark 6.1. The almost complex structure J is the same as the one denoted by
J1 in [7]. There, they claim that there are exactly two invariant almost complex
structures, namely J and J2, where J2 is defined by

J2X = Y, J2 Y = −X, J2 Z = −W, J2W = Z.

We will, however, not look at the almost complex structure J2 since it is simply
obtained by looking at {−Z,−W} instead of {Z,W} for the vertical distribution.

6.1 Integrability

The Lie group (G, J, g) belongs to I if and only if J is integrable. By Theorem 4.7,
J is integrable if and only if NJ = 0, where NJ is the Nijenhuis tensor given by
Definition 4.6. In our case,

NJ(U, V ) = [U, V ] + J [JU, V ] + J [U, JV ]− [JU, JV ] (6.1)
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for all U, V ∈ g. NJ = 0 if and only if NJ(U, V ) = 0 for all basis vectors U, V .
Notice that NJ(U, V ) = 0 when U and V are both in {X, Y } or {Z,W}. Since NJ

is also anti-symmetric, we only need to look at the cases when U ∈ {Z,W} and
V ∈ {X, Y }. A quick calculation involving the definition of J shows that

NJ(Z,X) = J NJ(Z, Y ) = −NJ(W,Y ) = J NJ(W,X).

By using the definition of J and the obtained Lie bracket relations in Equation (3.2),
we get

NJ(Z,X) = [Z,X] + J [JZ,X] + J [Z, JX]− [JZ, JX]

= [Z,X] + J [W,X] + J [Z, Y ]− [W,Y ]

= ���αX +�
�βY + z1Z + w1W

+��aY −��bX + z3W + z1Z

−�
�βY −���αX + z2W − w2Z

+��bX −��aY − z4Z + z2W

= (2z1 − z4 − w2)Z + (2z2 + z3 + w1)W.

Thus
2z2 + z3 + w1 = 2z1 − z4 − w2 = 0 (6.2)

if and only if J is integrable. This is the same condition as in [7] for J1.

6.2 Almost Kähler

Our almost Hermitian manifold (G, J, g) belongs to the class AK if and only if it is
almost Kähler.

By Definition 4.11, the Kähler form ω is given by

ω(X1, X2) = g(JX1, X2), (6.3)

where X1, X2 ∈ g. By Definition 4.12 and Proposition 4.16, (G, J, g) is almost
Kähler if and only if dω = 0, where dω is the exterior derivative of ω given by
Definition 4.13. By Example 4.3 and the definition of the Kähler form we get

dω(X1, X2, X3) = −g(J [X1, X2] , X3)−g(J [X2, X3] , X1)−g(J [X3, X1] , X2), (6.4)

where X1, X2, X3 ∈ g are left-invariant vector fields. Note that X1(g(X2, X3)) van-
ishes for X1, X2, X3 left-invariant vector fields.

We have dω = 0 if and only if dω(X1, X2, X3) = 0 for all basis vectors X1, X2

and X3. Clearly,

dω(X1, X2, X3) = dω(X2, X3, X1) = dω(X3, X1, X2)

and
dω(X1, X2, X3) = −dω(X2, X1, X3)

for all X1, X2, X3 ∈ g. From this, it follows that dω(X1, X2, X3) = 0 if at least two
of the vector fields are equal. We conclude that we only need to look at cases for
distinct basis vectors and disregard how they are arranged.
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By using the definition for J , the obtained expressions of the Lie brackets in
Equation (3.2) and Equation (6.4), we get

dω(X, Y, Z) = −g(J [X, Y ] , Z)− g(J [Y, Z] , X)− g(J [Z,X] , Y )

= g(J(rX + θ1Z + θ2W ), Z)

+g(J(−βX + αY + z2Z + w2W ), X)

−g(J(αX + βY + z1Z + w1W ), Y )

= g(rY + θ1W − θ2Z,Z)

+g(−βY − αX + z2W − w2Z,X)

−g(αY − βX + z1W − w1Z, Y )

= −θ2 − 2α.

Similarly,

dω(X, Y,W ) = θ1 − 2 a, dω(X,Z,W ) = 0 and dω(Y, Z,W ) = 0.

Thus dω = 0 if and only if θ1 = 2a and θ2 = −2α.

6.3 Kähler

Recall from Chapter 5 that K consists of Kähler manifolds and is given by the
intersection of I and AK. From our previous calculations we see that (G, J, g)
belongs to K if and only if

θ1 − 2a = θ2 + 2α = 0 and 2z2 + z3 + w1 = 2z1 − z4 − w2 = 0.

The space K is also defined by ∇ω = 0. We will quickly show that we can obtain
the same result by computing ∇ω = 0.

Let X1, X2, X3 ∈ g. Then Equation (5.3) gives

∇X1(ω)(X2, X3) =
1

2
{g(JX3, [X1, X2]) + g([JX3, X1], X2) + g(X1, [JX3, X2])}

−1

2
{g(JX2, [X1, X3]) + g([JX2, X1], X3) + g(X1, [JX2, X3])}.

One can easily see that

∇X1(ω)(X3, X2) = −∇X1(ω)(X2, X3).

From this it follows that ∇X1(ω)(X3, X2) vanishes if X2 and X3 are equal.
We find that

∇Y (ω)(X,Z) = −∇X(ω)(Y, Z) = −∇X(ω)(X,W ) = −∇Y (ω)(Y,W )

=
1

2
θ2 + α,

∇X(ω)(Y,W ) = −∇Y (ω)(X,W ) = −∇X(ω)(X,Z) = −∇Y (ω)(Y, Z)

=
1

2
θ1 − a,

∇Z(ω)(X,W ) = ∇W (ω)(X,Z) = −∇Z(ω)(Z, Y ) = ∇W (ω)(W,Y )

= −1

2
(2z1 − z4 − w2)
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and
∇Z(ω)(Y,W ) = ∇W (ω)(Y, Z) = −∇W (ω)(W,X) = ∇Z(ω)(Z,X)

= −1

2
(2z2 + z3 + w1),

where we again have used the definition of J and the Lie bracket relations in Equa-
tion (3.2). Thus, ∇ω = 0 if and only if

θ1 − 2a = θ2 + 2α = 0 and 2z2 + z3 + w1 = 2z1 − z4 − w2 = 0,

which we from before know means (G, J, g) is almost Kähler and integrable.
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Chapter 7

The 20 Families of Lie Algebras

In Chapter 3, we introduce the Riemannian manifold (G, g), where G is a 4-dimen-
sional Lie group and g is a left-invariant Riemannian metric. The Lie algebra of G
is denoted by g. We let K be a 2-dimensional subgroup of G and denote by k the
Lie algebra of K. m is the orthogonal complement of k with respect to the metric
g. We then introduce an orthonormal basis {X, Y, Z,W} of g such that {Z,W} is
an orthonormal basis of k and {X, Y } is an orthonormal basis of m. k generates an
involutive distribution V and m generates its orthogonal distribution H. By F , we
denote the foliation of codimension 2 associated to V . We show in Chapter 3 that
if F is minimal and conformal, g must have the Lie bracket relations

[W,Z] = λW,

[Z,X] = αX + βY + z1Z + w1W,

[Z, Y ] = −βX + αY + z2Z + w2W,

[W,X] = aX + bY + z3Z − z1W,

[W,Y ] = −bX + aY + z4Z − z2W,

[Y,X] = rX + θ1Z + θ2W

with real coefficients. These relations alone do not necessarily describe a Lie algebra,
since a Lie algebra must also fulfil the Jacobi identity. It has been proved in [7] that
g must belong to one of 20 families g1, . . . , g20 of Lie algebras specified below.

Recall the almost complex structure J given by

JX = Y, JY = −X, JZ = W, JW = −Z.

In Chapter 6 we show that J is integrable (I) if and only if

2z2 + z3 + w1 = 2z1 − z4 − w2 = 0

and almost Kähler (AK) if and only if

θ1 − 2a = θ2 + 2α = 0.

The structure J is Kähler (K) if and only if it is both almost Kähler and integrable.
In this chapter, we go through all of the 20 families obtained in [7] and determine

the conditions for each family to be integrable, almost Kähler or Kähler. The results
are summarized in Table 7.1.
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Family Almost Kähler,
dω = 0

Integrability,
NJ = 0

Kähler

g1 w1 = 0 w1 = w2 = 0 w1 = w2 = 0
g2 α = 0 w1 = w2 = 0 α = w1 = w2 = 0
g3 θ2 = −2α ̸= 0 w1 = w2 = 0 θ2 = −2α ̸= 0 and

w1 = w2 = 0
g4 2λ2 = z2w1 2z2 + w1 = w2 = 0 never true
g5 r2 = 4(αb− aβ) a = β and b = −α never true
g6 θ1 = θ2 = 0 r = (z21 + z23)/z3

and
z2 = (z21 − z23)/2z3

θ1 = θ2 = 0,
r = (z21 + z23)/z3

and
z2 = (z21 − z23)/2z3

g7 θ1 = θ2 = 0 2z2 + w1 = w2 = 0 θ1 = θ2 = 0 and
2z2 + w1 = w2 = 0

g8 θ1 = θ2 = 0 2z2 = z4 + w2 = 0 θ1 = θ2 = 0 and
2z2 = z4 + w2 = 0

g9 θ1 = θ2 = 0 z3 − r = z4 = 0 θ1 = θ2 = 0 and
z3 − r = z4 = 0

g10 never true always true never true
g11 θ1 = θ2 = 0 never true never true
g12 θ1 = θ2 = 0 z3 = −w1 ̸= 0 θ1 = θ2 = 0 and

z3 = −w1 ̸= 0
g13 θ1 = θ2 = 0 never true never true
g14 θ1 = θ2 = 0 z2 = z4 + w2 = 0 θ1 = θ2 = 0 and

z2 = z4 + w2 = 0
g15 never true w1 = w2 = 0 never true
g16 θ1 = θ2 = 0 w1 = w2 = 0 θ1 = θ2 = 0 and

w1 = w2 = 0
g17 never true w1 = w2 = 0 never true
g18 θ1 = θ2 = 0 z3 = z4 = 0 θ1 = θ2 = 0 and

z3 = z4 = 0
g19 never true w1 = w2 = 0 never true
g20 never true w1 = w2 = 0 never true

Table 7.1: Conditions for each Lie algebra family g1, . . . , g20 of (G, J, g) to be almost Kähler,
integrable or Kähler.

Remark 7.1. The 2-dimensional Lie group k with orthonormal basis {Z,W} is flat
if λ = 0 and hyperbolic if λ ̸= 0. We see this by looking at the sectional curvature
defined in for example [10, Definition 8.14]. Note that Z and W are orthonormal
basis vectors. Let

σ = spanR{Z,W}.

Then the sectional curvature at the identity becomes

K(σ) = g(R(Z,W )W,Z),

where R is the Riemann curvature operator. We get (see [10, Theorem 8.9])

R(Z,W )W = ∇Z∇WW −∇W∇ZW −∇[Z,W ]W.

By using the Koszul formula in [10, Proposition 6.13] we see that

∇WW = −λZ, ∇ZZ = 0, ∇ZW = 0, and ∇WZ = λW.
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From this, the sectional curvature becomes

K(σ) = −λ2.

Thus, the 2-dimensional Lie algebra k either corresponds to the flat Euclidean plane
R2 or the hyperbolic disk H2

λ.

Remark 7.2. If θ1 = θ2 = 0, Remark 7.1 applies to the 2-dimensional space m with
orthonormal basis {X, Y }. We also get that m becomes a Lie algebra. If, in addition,
either of the Lie algebras k or m is ideal in g (meaning [k, g] ⊂ k or [m, g] ⊂ m), we
get a semidirect product of Lie algebras and write g = k⋉m. For more details, see
[14, Chapter 1].

7.1 Case (A) - (λ ̸= 0 and (λ− α)2 + β2 ̸= 0)

Example 7.3 (g1(λ, r, w1, w2)). This is a 4-dimensional family obtained by letting
r ̸= 0. By [7], this gives α = β = 0 and rw1 = λθ2, resulting in a family of solvable
Lie algebras given by the Lie bracket relations

[W,Z] = λW,

[Z,X] = w1W,

[Z, Y ] = w2W,

[Y,X] = rX +
rw1

λ
W.

AK : For J to be almost Kähler in this family, we must have that θ1−2a = θ2+2α = 0.
Since a = θ1 = α = 0, we only need to consider θ2 = 0. But λθ2 = rw1, so
this implies that rw1 = 0. r is chosen to be nonzero, so we conclude that the
family is almost Kähler if and only if w1 = 0. We get a 3-dimensional family
gAK
1 (λ, r, w2) given by

[W,Z] = λW,

[Z, Y ] = w2W,

[Y,X] = rX.

Here, m is a Lie algebra and k is ideal in g. By Remark 7.1 and 7.2 the family
corresponds to a semidirect product H2

λ ⋉H2
r of hyperbolic disks.

I : J is integrable if and only if 2z2 + z3 + w1 = 2z1 − z4 − w2 = 0. Since

z1 = z2 = z3 = z4 = 0

here, we get the condition w1 = w2 = 0 and obtain a 2-dimensional family
gI1 (λ, r) given by

[W,Z] = λW,

[Y,X] = rX.

In view of Remark 7.1, we notice that this family corresponds to a product of
two hyperbolic disks H2

λ and H2
r .

K : The family gK1 (λ, r) = gI1 (λ, r) is contained in gAK
1 (λ, r, w2), thus Kähler.
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Example 7.4 (g2(λ, α, β, w1, w2)). Here, r = θ1 = θ2 = 0, resulting in a 5-
dimensional family of solvable Lie algebras with the Lie bracket relations

[W,Z] = λW,

[Z,X] = αX + βY + w1W,

[Z, Y ] = −βX + αY + w2W.

AK : Since θ1 = θ2 = a = 0, this family is almost Kähler if and only if α = 0. This
gives a 4-dimensional family gAK

2 (λ, β, w1, w2) with the Lie bracket relations

[W,Z] = λW,

[Z,X] = βY + w1W,

[Z, Y ] = −βX + w2W.

I : Since z1 = z2 = z3 = z4 = 0, J is integrable if and only if w1 = w2 = 0, which
gives a 3-dimensional family gI2 (λ, α, β) given by

[W,Z] = λW,

[Z,X] = αX + βY,

[Z, Y ] = −βX + αY.

K : The family is Kähler if and only if it is both almost Kähler and integrable i.e.
α = w1 = w2 = 0. We get a 2-dimensional family gK2 (λ, β) given by

[W,Z] = λW,

[Z,X] = βY,

[Z, Y ] = −βX.

This corresponds to a semidirect product H2
λ ⋉R2.

Example 7.5 (g3(α, β, w1, w2, θ2)). Here r = θ1 = 0, θ2 ̸= 0 and λ = −2α, resulting
in a 5-dimensional family of solvable Lie algebras with the relations

[W,Z] = −2αW,

[Z,X] = αX + βY + w1W,

[Z, Y ] = −βX + αY + w2W,

[Y,X] = θ2W.

AK : Here a = θ1 = 0, λ = −2α ̸= 0 and θ2 ̸= 0. Thus, the family is almost Kähler
if and only if θ2 = −2α = λ ̸= 0, giving a family gAK

3 (α, β, w1, w2) with

[W,Z] = −2αW,

[Z,X] = αX + βY + w1W,

[Z, Y ] = −βX + αY + w2W,

[Y,X] = −2αW.

I : Since z1 = z2 = z3 = z4 = 0, we see that J is integrable if and only if
w1 = w2 = 0, giving a family gI3 (α, β, θ2) with

[W,Z] = −2αW,
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[Z,X] = αX + βY,

[Z, Y ] = −βX + αY,

[Y,X] = θ2W.

K : The family is Kähler if and only if θ2 = −2α ̸= 0 and w1 = w2 = 0. We get a
family gK3 (α, β) with

[W,Z] = −2αW,

[Z,X] = αX + βY,

[Z, Y ] = −βX + αY,

[Y,X] = −2αW.

7.2 Case (B) - (λ ̸= 0 and (λ− α)2 + β2 = 0)

Example 7.6 (g4(λ, z2, w1, w2)). This is a 4-dimensional family of solvable Lie al-
gebras given by the Lie bracket relations

[W,Z] = λW,

[Z,X] = λX + w1W,

[Z, Y ] = λY + z2Z + w2W,

[W,Y ] = −z2W,

[Y,X] = −z2X − z2w1

λ
W.

AK : Since θ1 = a = 0, α = λ ̸= 0 and λθ2 = −z2w1, the family is in the almost
Kähler class if and only if θ2 = −2α = −2λ. This implies that 2λ2 = w1z2
and we get a 3-dimensional family gAK

4 (λ, z2, w2) with the following Lie bracket
relations

[W,Z] = λW,

[Z,X] = λX +
2λ2

z2
W,

[Z, Y ] = λY + z2Z + w2W,

[W,Y ] = −z2W,

[Y,X] = −z2X − 2λW.

I : Since
z1 = z3 = z4 = 0,

J is integrable in this family if and only if

2z2 + w1 = w2 = 0.

This gives a 2-dimensional family gI4 (λ, z2) with relations

[W,Z] = λW,

[Z,X] = λX − 2z2W,

[Z, Y ] = λY + z2Z,
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[W,Y ] = −z2W,

[Y,X] = −z2X +
2z22
λ

W.

K : The family can not be Kähler, since this requires

λ2 + z22 = 0,

which has no real solutions for λ ̸= 0.

7.3 Case (C) - (λ = 0, r ̸= 0 and (aβ − αb) ̸= 0)

Example 7.7 (g5(α, a, β, b, r)). This 5-dimensional family consists of solvable Lie
algebras given by the Lie bracket relations

[Z,X] = αX + βY +
r(βb− αa)

2(aβ − αb)
Z +

r(α2 − β2)

2(aβ − αb)
W,

[Z, Y ] = −βX + αY +
r(αb+ βa)

2(aβ − αb)
Z − rαβ

(aβ − αb)
W,

[W,X] = aX + bY +
r(b2 − a2)

2(aβ − αb)
Z +

r(αa− βb)

2(aβ − αb)
W,

[W,Y ] = −bX + aY +
rab

(aβ − αb)
Z − r(αb+ βa)

2(aβ − αb)
W,

[Y,X] = rX − ar2

2(aβ − αb)
Z +

αr2

2(aβ − αb)
W.

AK : Here,

θ1 = − ar2

2(aβ − αb)
and θ2 =

αr2

2(aβ − αb)
.

Thus, the family is in the almost Kähler class if and only if

2a = − ar2

2(aβ − αb)
and 2α = − αr2

2(aβ − αb)
.

The condition aβ − αb ̸= 0 shows that not both a and α can be 0. If at least
one is nonzero, the above gives r2 = 4(αb− aβ) > 0. From this we get two
solutions of the form

[Z,X] = αX + βY ∓ (βb− αa)√
αb− aβ

Z ∓ (α2 − β2)√
αb− aβ

W,

[Z, Y ] = −βX + αY ∓ (αb+ βa)√
αb− aβ

Z ± 2αβ√
αb− aβ

W,

[W,X] = aX + bY ∓ (b2 − a2)√
αb− aβ

Z ∓ (αa− βb)√
αb− aβ

W,

[W,Y ] = −bX + aY ∓ 2ab√
αb− aβ

Z ± (αb+ βa)√
αb− aβ

W,

[Y,X] = ±2
√

αb− aβ X + 2aZ − 2αW.

The solutions yield two 4-dimensional families gAK,+
5 (α, a, β, b) and gAK,−

5 (α, a, β, b)
for r positive or negative, respectively.
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I : Since

z1 =
r(βb− αa)

2(aβ − αb)
, z2 =

r(αb+ βa)

2(aβ − αb)
, z3 =

r(b2 − a2)

2(aβ − αb)
,

z4 =
rab

(aβ − αb)
, w1 =

r(α2 − β2)

2(aβ − αb)
and w2 = − rαβ

(aβ − αb)
,

we get that J is integrable if and only if

2
r(αb+ βa)

2(aβ − αb)
+

r(b2 − a2)

2(aβ − αb)
+

r(α2 − β2)

2(aβ − αb)
= 0

and

2
r(βb− αa)

2(aβ − αb)
− rab

(aβ − αb)
+

rαβ

(aβ − αb)
= 0.

Since r ̸= 0 and aβ − αb ̸= 0, we can cancel these out. By doing this and
rearranging, we get the conditions

(a− β)(b+ α) = 0 and (a− β)2 = (b+ α)2.

By the first condition, we must have a = β or b = −α. If we let a = β in the
second equation we see that we must have b = −α and vice versa. Thus, J is
integrable if and only if a = β and b = −α. This gives a family gI5 (α, β, r) with

[Z,X] = αX + βY − rαβ

(β2 + α2)
Z +

r(α2 − β2)

2(β2 + α2)
W,

[Z, Y ] = −βX + αY − r(α2 − β2)

2(β2 + α2)
Z − rαβ

(β2 + α2)
W,

[W,X] = βX − αY +
r(α2 − β2)

2(β2 + α2)
Z +

rαβ

(β2 + α2)
W,

[W,Y ] = αX + βY − rαβ

(β2 + α2)
Z +

r(α2 − β2)

2(β2 + α2)
W,

[Y,X] = rX − βr2

2(β2 + α2)
Z +

αr2

2(β2 + α2)
W.

K : We showed earlier that if the family is almost Kähler, then αb − aβ > 0.
Suppose that J is integrable. We know that this is true if and only if

a = β and b = −α.

But then
αb− aβ = −(α2 + β2).

Since this can not be positive, the family can not also be almost Kähler. We
conclude that the family can not be Kähler.

7.4 Case (D) - (λ = 0, r ̸= 0 and (aβ − αb) = 0)

Example 7.8 (g6(z1, z2, z3, r, θ1, θ2)). In this family, z21 = −w1z3 ̸= 0 and

z4 =
z3(r + 2z2)

2z1
, w1 = −z21

z3
, w2 =

z1(r − 2z2)

2z3
.
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This gives a 6-dimensional family of solvable Lie algebras where

[Z,X] = z1Z − z21
z3
W,

[Z, Y ] = z2Z +
z1(r − 2z2)

2z3
W,

[W,X] = z3Z − z1W,

[W,Y ] =
z3(r + 2z2)

2z1
Z − z2W,

[Y,X] = rX + θ1Z + θ2W.

AK : Since a = α = 0 the above is almost Kähler if and only if θ1 = θ2 = 0, giving a
4-dimensional family gAK

6 (z1, z2, z3, r) with the relations

[Z,X] = z1Z − z21
z3
W,

[Z, Y ] = z2Z +
z1(r − 2z2)

2z3
W,

[W,X] = z3Z − z1W,

[W,Y ] =
z3(r + 2z2)

2z1
Z − z2W,

[Y,X] = rX.

We see that this corresponds to a semidirect product H2
r ⋉R2.

I : We have

z1 ̸= 0, z4 =
z3(r + 2z2)

2z1
, w1 = −z21

z3
and w2 =

z1(r − 2z2)

2z3
.

Thus, J is integrable if and only if

2z2 + z3 −
z21
z3

= 0 and 2z1 −
z3(r + 2z2)

2z1
− z1(r − 2z2)

2z3
= 0.

After multiplying the first equation by z3 and the second one by z1z3 and
rearranging, we get that

z21 = (2z2 + z3)z3 and z21(4z3 − r + 2z2) = z23(r + 2z2).

By multiplying the first equation by 4z3 − r + 2z2, we see that these two con-
ditions correspond to

(2z2 + z3)(4z3 − r + 2z2) = z3(r + 2z2), (7.1)

which can be rewritten as

(z2 + z3)(2(z2 + z3)− r) = 0. (7.2)

If z2 + z3 = 0, our earlier conditions give z21 + z23 = 0, which is not possible for
nonzero real constants. Thus, we must have z2 + z3 ̸= 0. This leaves us with
r = 2(z2 + z3). We conclude that J is integrable if and only if

r =
z21 + z23

z3
and z2 =

z21 − z23
2z3

,
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giving a 4-dimensional family gI6 (z1, z3, θ1, θ2) with relations

[Z,X] = z1Z − z21
z3
W,

[Z, Y ] =
z21 − z23
2z3

Z + z1W,

[W,X] = z3Z − z1W,

[W,Y ] = z1Z − z21 − z23
2z3

W,

[Y,X] =
z21 + z23

z3
X + θ1Z + θ2W.

K : The family is Kähler if and only if

θ1 = θ2 = 0, r =
z21 + z23

z3
and z2 =

z21 − z23
2z3

,

giving a 2-dimensional family gK6 (z1, z3) with relations

[Z,X] = z1Z − z21
z3
W,

[Z, Y ] =
z21 − z23
2z3

Z + z1W,

[W,X] = z3Z − z1W,

[W,Y ] = z1Z − z21 − z23
2z3

W,

[Y,X] =
z21 + z23

z3
X.

This corresponds to a semidirect product H2
r ⋉R2.

Example 7.9 (g7(z2, w1, w2, θ1, θ2)). In this family,

z1 = z3 = z4 = 0, r = 2z2 and w1 ̸= 0,

resulting in a 5-dimensional family of solvable Lie algebras of the form

[Z,X] = w1W,

[Z, Y ] = z2Z + w2W,

[W,Y ] = −z2W,

[Y,X] = 2z2X + θ1Z + θ2W.

AK : Since α = a = 0, one can easily see that the family is in the almost Kähler class
if and only if θ1 = θ2 = 0, which gives a 3-dimensional family gAK

7 (z2, w1, w2)
with Lie bracket relations

[Z,X] = w1W,

[Z, Y ] = z2Z + w2W,

[W,Y ] = −z2W,

[Y,X] = 2z2X,

which correspond to a semidirect product H2
2z2

⋉R2.
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I : We have z1 = z3 = z4 = 0. Thus, J is integrable if and only if 2z2+w1 = w2 = 0
and we get a 3-dimensional family gI7 (z2, θ1, θ2) given by

[Z,X] = −2z2W,

[Z, Y ] = z2Z,

[W,Y ] = −z2W,

[Y,X] = 2z2X + θ1Z + θ2W.

Note that z2 ̸= 0.

K : The family is Kähler if and only if θ1 = θ2 = 0, w1 = −2z2 ̸= 0 and w2 = 0,
giving a 1-dimensional family gK7 (z2) with

[Z,X] = −2z2W,

[Z, Y ] = z2Z,

[W,Y ] = −z2W,

[Y,X] = 2z2X.

This corresponds to a semidirect product H2
2z2

⋉R2.

Example 7.10 (g8(z2, z4, w2, r, θ1, θ2)). Here we have z1 = z3 = w1 = 0, providing
a 6-dimensional family of solvable Lie algebras with

[Z, Y ] = z2Z + w2W,

[W,Y ] = z4Z − z2W,

[Y,X] = rX + θ1Z + θ2W.

AK : Since α = a = 0, the family is almost Kähler if and only if θ1 = θ2 = 0, giving
a 4-dimensional family gAK

8 (z2, z4, w2, r) with

[Z, Y ] = z2Z + w2W,

[W,Y ] = z4Z − z2W,

[Y,X] = rX.

This corresponds to a semidirect product H2
r ⋉R2.

I : We have z1 = z3 = w1 = 0, so J is integrable if and only if z2 = z4 + w2 = 0,
giving a family gI8 (w2, r, θ1, θ2) with

[Z, Y ] = w2W,

[W,Y ] = −w2Z,

[Y,X] = rX + θ1Z + θ2W.

K : The family is Kähler if and only if θ1 = θ2 = z2 = z4 + w2 = 0. We get a
2-dimensional family gK8 (w2, r) with

[Z, Y ] = w2W,

[W,Y ] = −w2Z,

[Y,X] = rX.

Like gAK
8 , this corresponds to a semidirect product H2

r ⋉R2.
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Example 7.11 (g9(z2, z3, z4, θ1, θ2)). Here,

z1 = w1 = w2 = 0, z3 ̸= 0 and r = −2z2,

which gives a 5-dimensional family of solvable Lie algebras of the form

[Z, Y ] = z2Z,

[W,X] = z3Z,

[W,Y ] = z4Z − z2W,

[Y,X] = −2z2X + θ1Z + θ2W.

AK : Since α = a = 0, we see that the family is almost Kähler if and only if θ1 =
θ2 = 0, giving gAK

9 (z2, z3, z4) with

[Z, Y ] = z2Z,

[W,X] = z3Z,

[W,Y ] = z4Z − z2W,

[Y,X] = −2z2X.

We see that this corresponds to a semidirect product H2
2z2

⋉R2.

I : From z1 = w1 = w2 = 0, we find that J is integrable if and only if 2z2 + z3 =
z4 = 0, from which we get gI9 (z2, θ1, θ2) with the relations

[Z, Y ] = z2Z,

[W,X] = −2z2Z,

[W,Y ] = −z2W,

[Y,X] = −2z2X + θ1Z + θ2W.

K : The family is Kähler if and only if θ1 = θ2 = 0, z3 = −2z2 and z4 = 0. We get
a 1-dimensional family gK9 (z2) with

[Z, Y ] = z2Z,

[W,X] = −2z2Z,

[W,Y ] = −z2W,

[Y,X] = −2z2X.

This corresponds to a semidirect product H2
2z2

⋉R2.

7.5 Case (E) - (λ = 0, r = 0 and αb− aβ ̸= 0)

Example 7.12 (g10(α, a, β, b)). In this family,

z1 = z2 = z3 = z4 = w1 = w2 = θ1 = θ2 = 0,

which gives a 4-dimensional family of solvable Lie algebras with the relations

[Z,X] = αX + βY,

[Z, Y ] = −βX + αY,

[W,X] = aX + bY,

[W,Y ] = −bX + aY.

We see that this family corresponds to a semidirect product R2 ⋉R2.
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AK : Since θ1 = θ2 = 0, we see that the family is almost Kähler if and only if
a = α = 0. But then the requirement αb − aβ ̸= 0 is not true, so this family
can not be almost Kähler.

I : Since
z1 = z2 = z3 = z4 = w1 = w2 = 0,

we can see that J is always integrable in this family.

K : Since this family can not be almost Kähler it can not be in the Kähler class.

7.6 Case (F) - (λ = 0, r = 0 and αb− aβ = 0)

Here, the classes are divided into disjoint cases parametrized by Λ = (α, a, β, b),
where the variables are zero if and only if they are marked by zero. For instance, if
Λ = (α, 0, 0, 0), the variable α is non-zero while the variables a, β and b are zero.

Example 7.13 (g11(z1, z2, z3, w1, θ1, θ2)). Here, we let Λ = (0, 0, 0, 0) and z1 ̸= 0,
giving a 6-dimensional family of solvable Lie algebras with the Lie bracket relations

[Z,X] = z1Z + w1W,

[Z, Y ] = z2Z +
z2w1

z1
W,

[W,X] = z3Z − z1W,

[W,Y ] =
z2z3
z1

Z − z2W,

[Y,X] = θ1Z + θ2W.

AK : Since α = a = 0, we see that this is in the almost Kähler class if and only if
θ1 = θ2 = 0. This gives a 4-dimensional family gAK

11 (z1, z2, z3, w1) with

[Z,X] = z1Z + w1W,

[Z, Y ] = z2Z +
z2w1

z1
W,

[W,X] = z3Z − z1W,

[W,Y ] =
z2z3
z1

Z − z2W.

This corresponds to a semidirect product R2 ⋉R2.

I : From
z1 ̸= 0, z4 =

z2z3
z1

and w2 =
z2w1

z1
,

we see that J is integrable if and only if

2z2 + z3 + w1 = 0 and 2z1 −
z2z3
z1

− z2w1

z1
= 0.

After multiplying the second equation by z1 and rearranging, we get

z3 + w1 = −2z2 and 2z21 − z2(z3 + w1) = 0.

Now, we plug in z3 +w1 = −2z2 into the second equation and get z21 + z22 = 0.
This is, however, not possible since z1 and z2 are real constants and z1 ̸= 0.
Thus, it is not possible for J to be integrable in this family.
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K : This family can not be Kähler since it can not be integrable.

Example 7.14 (g12(z3, w1, w2, θ1, θ2)). This family is obtained by letting Λ =
(0, 0, 0, 0), z1 = 0 and w1 ̸= 0, which gives

z2 = 0 and z4 =
z3w2

w1

and we get a 5-dimensional family of solvable Lie algebras with the Lie bracket
relations

[Z,X] = w1W,

[Z, Y ] = w2W,

[W,X] = z3Z,

[W,Y ] =
z3w2

w1

Z,

[Y,X] = θ1Z + θ2W.

AK : Since α = a = 0, this family is almost Kähler if and only if θ1 = θ2 = 0. This
is a 3-dimensional family gAK

12 (z3, w1, w2) with the relations

[Z,X] = w1W,

[Z, Y ] = w2W,

[W,X] = z3Z,

[W,Y ] =
z3w2

w1

Z.

We see that this corresponds to a semidirect product R2 ⋉R2.

I : We have
z1 = z2 = 0, z4 =

z3w2

w1

and w1 ̸= 0.

We see that J is integrable if and only if

z3 + w1 =
z3w2

w1

+ w2 = 0,

which is true for z3 = −w1 ̸= 0, giving a 4-dimensional family gI12(w1, w2, θ1, θ2)
which has the Lie bracket relations

[Z,X] = w1W,

[Z, Y ] = w2W,

[W,X] = −w1Z,

[W,Y ] = −w2Z,

[Y,X] = θ1Z + θ2W.

K : The family is Kähler if and only if θ1 = θ2 = 0 and z3 = −w1 ̸= 0, which gives
a 2-dimensional family gK12(w1, w2) with relations

[Z,X] = w1W,

[Z, Y ] = w2W,
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[W,X] = −w1Z,

[W,Y ] = −w2Z,

corresponding to a semidirect product R2 ⋉R2.

Example 7.15 (g13(z3, z4, θ1, θ2)). This family is obtained by letting Λ = (0, 0, 0, 0),
z1 = w1 = 0 and z3 ̸= 0, which gives z2 = w2 = 0 and we are provided with a 4-
dimensional family of nilpotent Lie algebras with

[W,X] = z3Z,

[W,Y ] = z4Z,

[Y,X] = θ1Z + θ2W.

AK : We see that, since α = a = 0, this family is almost Kähler if and only if
θ1 = θ2 = 0. We get the 2-dimensional family gAK

13 (z3, z4) with

[W,X] = z3Z,

[W,Y ] = z4Z.

This corresponds to a semidirect product R2 ⋉R2.

I : The condition
z1 = z2 = w1 = w2 = 0

gives that J is integrable if and only if z3 = z4 = 0. This contradicts z3 ̸= 0.
Hence g13 can not be almost Kähler.

K : This family can not be Kähler.

Example 7.16 (g14(z2, z4, w2, θ1, θ2)). Here, they let Λ = (0, 0, 0, 0) and z1 = z3 =
w1 = 0, providing a 5-dimensional family of solvable Lie algebras with the relations

[Z, Y ] = z2Z + w2W,

[W,Y ] = z4Z − z2W,

[Y,X] = θ1Z + θ2W.

AK : The condition α = a = 0 implies that this family is almost Kähler if and only
if θ1 = θ2 = 0. We get a 3-dimensional family gAK

14 (z2, z4, w2) given by

[Z, Y ] = z2Z + w2W,

[W,Y ] = z4Z − z2W.

We see that this corresponds to a semidirect product R2 ⋉R2.

I : From z1 = z3 = w1 = 0 we see that J is integrable if and only if z2 = 0 and
z4 + w2 = 0. This gives a 3-dimensional family g14(w2, θ1, θ2) with Lie bracket
relations

[Z, Y ] = w2W,

[W,Y ] = −w2Z,

[Y,X] = θ1Z + θ2W.
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K : The family is Kähler if and only if θ1 = θ2 = 0, z2 = 0 and z4 +w2 = 0. We get
a 1-dimensional family gK14(w2) with

[Z, Y ] = w2W,

[W,Y ] = −w2Z.

This corresponds to a semidirect product R2 ⋉R2.

Example 7.17 (g15(α,w1, w2)). This is obtained by letting Λ = (α, 0, 0, 0), which
gives

z1 = z2 = z3 = z4 = θ1 = θ2 = 0.

and we get a 3-dimensional family of solvable Lie algebras where

[Z,X] = αX + w1W,

[Z, Y ] = αY + w2W.

AK : Here, a = θ1 = θ2 = 0 and α ̸= 0, so we see that this family can not be almost
Kähler.

I : The condition z1 = z2 = z3 = z4 = 0 implies that J is integrable if and only if
w1 = w2 = 0. We get a 1-dimensional family gI15(α) with

[Z,X] = αX,

[Z, Y ] = αY,

corresponding to a semidirect product R2 ⋉R2.

K : This family can not be Kähler since it can not be almost Kähler.

Example 7.18 (g16(β, w1, w2, θ1, θ2)). Here, they let Λ = (0, 0, β, 0), which implies

z1 = z2 = z3 = z4 = 0.

From this we get a 5-dimensional family of Lie algebras which are not solvable in
general. They have the Lie bracket relations

[Z,X] = βY + w1W,

[Z, Y ] = −βX + w2W,

[Y,X] = θ1Z + θ2W.

AK : We have α = a = 0, so this family is almost Kähler if and only if θ1 = θ2 = 0.
We get the 3-dimensional family gAK

16 (β, w1, w2) of solvable Lie algebras with

[Z,X] = βY + w1W,

[Z, Y ] = −βX + w2W.

I : We have z1 = z2 = z3 = z4 = 0, so J is integrable if and only if w1 = w2 = 0,
giving a 3-dimensional family gI16(β, θ1, θ2) of Lie algebras which are not solvable
in general and have the relations

[Z,X] = βY,

[Z, Y ] = −βX,

[Y,X] = θ1Z + θ2W.
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K : The family is Kähler if and only if θ1 = θ2 = 0 and w1 = w2 = 0. We get a
1-dimensional family gK16(β) of solvable Lie algebras with Lie bracket relations

[Z,X] = βY,

[Z, Y ] = −βX.

We see that this corresponds to a semidirect product R2 ⋉R2.

Example 7.19 (g17(α, a, w1, w2)). For this family, they let Λ = (α, a, 0, 0), which
gives

z1 = −aw1

α
, z2 = −aw2

α
, z3 = −a2w1

α2
, z4 = −a2w2

α2
, θ1 = 0, θ2 = 0.

From this, we get a 5-dimensional family of solvable Lie algebras given by

[Z,X] = αX − aw1

α
Z + w1W,

[Z, Y ] = αY − aw2

α
Z + w2W,

[W,X] = aX − a2w1

α2
Z +

aw1

α
W,

[W,Y ] = aY − a2w2

α2
Z +

aw2

α
W.

AK : Since θ1 = θ2 = 0, α ̸= 0 and a ̸= 0, this family can not be almost Kähler.

I : From

z1 = −aw1

α
, z2 = −aw2

α
, z3 = −a2w1

α2
and z4 = −a2w2

α2

we see that the family is integrable if and only if

−2aw2

α
− a2w1

α2
+ w1 = 0 and − 2aw1

α
+

a2w2

α2
− w2 = 0.

This can be rewritten as(
α2 − a2

)
w1 = 2aαw2 and

(
α2 − a2

)
w2 = −2aαw1. (7.3)

Since 2aα ̸= 0, we can divide and get

w2 =
α2 − a2

2aα
w1 = −(α2 − a2)2

4a2α2
w2.

Suppose that w2 ̸= 0. Then

4a2α2 = −(α2 − a2)2,

which can be rewritten as
(α2 + a2)2 = 0.

This has no nonzero, real solution. Thus, J is integrable if and only if w1 =
w2 = 0. We get a 2-dimensional family gI17(α, a) with

[Z,X] = αX,
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[Z, Y ] = αY,

[W,X] = aX,

[W,Y ] = aY.

This corresponds to a semidirect product R2 ⋉R2.

K : The family can not be Kähler since it can not be almost Kähler.

Example 7.20 (g18(β, b, z3, z4, θ1, θ2)). Here Λ = (0, 0, β, b), which gives

z1 =
βz3
b

, z2 =
βz4
b

, w1 = −β2z3
b2

, w2 = −β2z4
b2

.

We get a 6-dimensional family of Lie algebras which are not solvable in general given
by

[Z,X] = βY +
βz3
b

Z − β2z3
b2

W,

[Z, Y ] = −βX +
βz4
b

Z − β2z4
b2

W,

[W,X] = bY + z3Z − βz3
b

W,

[W,Y ] = −bX + z4Z − βz4
b

W,

[Y,X] = θ1Z + θ2W.

AK : Since a = α = 0, this family is almost Kähler if and only if θ1 = θ2 = 0. We
get a 4-dimensional family gAK

18 (β, b, z3, z4) of solvable Lie algebras with

[Z,X] = βY +
βz3
b

Z − β2z3
b2

W,

[Z, Y ] = −βX +
βz4
b

Z − β2z4
b2

W,

[W,X] = bY + z3Z − βz3
b

W,

[W,Y ] = −bX + z4Z − βz4
b

W.

I : Here,

z1 =
βz3
b

, z2 =
βz4
b

, w1 = −β2z3
b2

and w2 = −β2z4
b2

and we can easily see that J is integrable if and only if

(β2 − b2)z3 = 2βbz4 and (β2 − b2)z4 = −2βbz3.

We can immediately see that this has the same form as equation (7.3). Thus,
J is integrable if and only if z3 = z4 = 0. We get the 4-dimensional family
gI18(β, b, θ1, θ2) of Lie algebras which are not solvable in general and have the
Lie bracket relations

[Z,X] = βY,
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[Z, Y ] = −βX,

[W,X] = bY,

[W,Y ] = −bX,

[Y,X] = θ1Z + θ2W.

K : The family is Kähler if and only if θ1 = θ2 = 0, and z3 = z4 = 0. From this, we
get a 2-dimensional family gK18(β, b) of solvable Lie algebras with

[Z,X] = βY,

[Z, Y ] = −βX,

[W,X] = bY,

[W,Y ] = −bX.

We see that this corresponds to a semidirect product R2 ⋉R2.

Example 7.21 (g19(α, β, w1, w2)). Here Λ = (α, 0, β, 0), which gives

z1 = z2 = z3 = z4 = θ1 = θ2 = 0.

and we get a 4-dimensional family of solvable Lie algebras where

[Z,X] = αX + βY + w1W,

[Z, Y ] = −βX + αY + w2W.

AK : This family can not be almost Kähler since a = θ1 = θ2 = 0 and α ̸= 0.

I : Since z1 = z2 = z3 = z4 = 0, J is integrable if and only if w1 = w2 = 0. We get
the 2-dimensional family gI19(α, β) given by

[Z,X] = αX + βY,

[Z, Y ] = −βX + αY.

This corresponds to a semidirect product R2 ⋉R2.

K : Since this family can not be almost Kähler, it can not be Kähler.

Example 7.22 (g20(α, a, β, w1, w2)). Here they let Λ = (α, a, β, b), which gives

z1 = −aw1

α
, z2 = −aw2

α
, z3 = −a2w1

α2
, z4 = −a2w2

α2
,

b =
βa

α
, θ1 = 0 and θ2 = 0.

We get a 5-dimensional family of solvable Lie algebras with

[Z,X] = αX + βY − aw1

α
Z + w1W,

[Z, Y ] = −βX + αY − aw2

α
Z + w2W,

[W,X] = aX +
βa

α
Y − a2w1

α2
Z +

a

α
w1W,

[W,Y ] = −βa

α
X + aY − a2w2

α2
Z +

a

α
w2W.
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AK : Since θ1 = θ2 = 0, α ̸= 0 and a ̸= 0, this family can not be almost Kähler.

I : The constants z1, . . . , z4, w1 and w2 are the same as for the family g17. Thus
J is integrable if and only if w1 = w2 = 0. This gives a 3-dimensional family
gAK
20 (α, a, β) with

[Z,X] = αX + βY,

[Z, Y ] = −βX + αY,

[W,X] = aX +
βa

α
Y,

[W,Y ] = −βa

α
X + aY.

We see that this corresponds to a semidirect product R2 ⋉R2.

K : The family can not be Kähler since it can not be almost Kähler.
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