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Disclaimers and corrections

The picture in the title page is not mine. It was included in the LATEX Beamer template and I
assume it is OK to use it.

All source code and the report can be found at: https://gitlab.com/Drunte/public-sor

Sources can be found in the report.

Most proofs will be omitted in this presentation, see the report instead.

The equation at the end of section 5.4 in the report should be:

ARB = PAPT

Theorem 4 should conclude: c(A) = O (n2)
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Partial differential equations

PDE’s are hard to solve exactly.

So solutions must be approximated instead.

Poisson type is the target of investigation.

Approximated by a linear equation system.

Options for solving said systems.

Increased performance by working in parallel.

Due to strong coupling: a remedy is Red-Black ordering.

Implementation details, experiment results and conclusions.
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Poisson’s equation

Poisson’s equation is given by:

−∆u(x) = f(x), x ∈Ω⊂Rn,

u(x) = g(x), x ∈ ∂ Ω.

Where u(x) is the solution, x is our independent variable, Ω is a compact subset ofRn, ∂ Ω
is its boundary, f(x) describes the problem, g(x) is the boundary conditions and−∆ is the
Laplace operator.

Henrik Chrintz Iterative methods 17th February 2022 4/37
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Discretization with a grid

We want a linear system on the form: Au = f

First we partition Ω into an equidistant grid of cells.

Now f can be generated by evaluating f(x) over each cell center.

Likewise, u will approximate u(x) at these cell centers.

The derivation of A comes next.
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Symmetric difference approximation

For simplicity i chose to use a square equidistant grid and square Ω⊂R2.
The−∆ operator can be approximated by a matrix in different ways. The one i chose was
the symmetric central finite difference scheme. From the definition of the derivative we get:

The two discrete derivatives: f ′(x)≈ f(x+h)−f(x)
h and f ′(x)≈ f(x)−f(x−h)

h .

Combining these two to approximate the second order derivative yields:

f ′′(x)≈
f(x + h)− 2f(x)+ f(x − h)

h2

Now taking second derivatives in two different directions and negating we get:

−∆u ≈
−u(v1, v2 + h)− u(v1− h, v2)+ 4u(v1, v2)− u(v1 + h, v2)− u(v1, v2− h)

h2

Henrik Chrintz Iterative methods 17th February 2022 6/37
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5-point stencil

This expression can be represented by a stencil after multiplying the h2 factor.
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Sparsity pattern

The resulting matrix has the following sparsity pattern:

The full line on the main diagonal has all 4’s and the dotted lines are all -1.
For a grid of size n× n the matrix is of size m×m with m = n2.

Henrik Chrintz Iterative methods 17th February 2022 8/37



Disclaimers and
corrections

Introduction

Background

Algorithm options

Implementation details and
numerics

Performance analysis by
experiments

Questions

The End

Preliminaries

Some notations.

xi : the i’th element of a vector x .

Ai,j : the element of a matrix A, of row i and column j.

A−1 : the inverse of a matrix A.

AT : the transpose of a matrix A.

uT v : the inner product of two vectors u and v .

x(k) : the k’th iterate of some iterative process.

λ(A) : the set of eigenvalues of A.

λ ∈ λ(A) : λ is an eigenvalue of A.

Henrik Chrintz Iterative methods 17th February 2022 9/37
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Existence and uniqueness

A linear equation system Ax = b has a unique solution given by:

x = A−1b

if and only if:

A is non-singular.

A has full rank.

b ∈ range(A).

λ 6= 0 ∀λ ∈ λ(A)
(other equivalent properties are omitted).

Henrik Chrintz Iterative methods 17th February 2022 10/37
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Symmetric positive definite

A symmetric positive definite, SPD, matrix has the following properties:

Symmetry: A = AT .

λ > 0 ∀λ ∈ λ(A)
For any x 6= 0, xT Ax > 0

All SPD matrices has full rank.

Henrik Chrintz Iterative methods 17th February 2022 11/37
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The symmetric difference matrix is SPD

Short proof by Gershgorin circle theorem.

A is symmetric.

Since A is weakly diagonally dominant all eigenvalues lie in the circle(interval) around 4
with radius 4.

Due to the irreducible property, A is non-singular and thus this interval is half-open.

All eigenvalues are in the half-open set (0,8].

no eigenvalue is 0.

All eigenvalues are > 0.

Henrik Chrintz Iterative methods 17th February 2022 12/37
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Eigenvalues and condition number

The eigenvalues of A are given by:

λk = 4 sin2(
πi

2(n+ 1)
)+ 4 sin2(

πj

2(n+ 1)
), k = i +(j − 1)n, i, j = 1..n.

The condition number of A is:

c(A) =
λmax

λmin

≈ 8

8 sin2(
π

2(n+1))
≈ 1

π2

4(n+1)2

=
4(n+ 1)2

π2
= O (n2).

Here we used the small angles approximation of sin.

Henrik Chrintz Iterative methods 17th February 2022 13/37
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Lipschitz continuity

The spectral radius of a matrix, ρ(A), is given by: ρ(A) = maxλ∈λ(A)|λ|.

A mapping φ :Rm→Rm is said to be globally Lipschitz continuous if and only if:

‖φ(x)−φ(y)‖ ≤ L‖x − y‖ ∀x, y ∈Rm,

holds for some L ∈R+. The smallest such L is called the Lipschitz constant of φ. If L< 1
then φ is said to be a contraction.

An affine mapping ψ :Rm→Rm of the form: ψ(x) = Mx + c with M ∈Rm×m and
x, c ∈Rm is Lipschitz continuous with Lipschitz constant L = ρ(M).

Henrik Chrintz Iterative methods 17th February 2022 14/37
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Banach fixed-point theorem

Let φ be a Lipschitz continuous mapping and consider the fixed-point problem:

x∗ =φ(x∗), for some x∗ ∈Rm.

A solution exists and is unique if and only if φ is a contraction.

The fixed-point problem can be solved by a process called fixed-point iteration, given by:

x(k+1) =φ(x(k))

where x(k) ∈Rm denotes the k’th iterate, and is started by an initial guess x(0) ∈Rm.

The fixed-point iteration converges globally to a unique x∗ independent of initial guess x(0).

x∗ = lim
k→∞

x(k).

Henrik Chrintz Iterative methods 17th February 2022 15/37
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Direct methods

We want to solve Ax = b.

First option: finding A−1 and multiply by b.

This won’t work for several reasons.

Finding A−1 needs more memory than we have and it takes too long.
It suffers from instability and ill-conditioness.

Second option: LU or Cholesky.

These won’t work either for the same reasons above.
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Iteration methods

Why iterate?

No memory expensive factorizations.

Matrix-vector multiplication is fast for sparse matrices.

Avoid accuracy decay due to ill-conditioness.
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Stationary linear iterative methods, SLIM

The core idea for SLIM methods is to formulate Ax = b as a fixed-point problem and then
solve it by fixed-pont iteration.
There are different ways to achieve this, all based on a splitting of the form: A = A1 + A2

Ax = b

(A1 + A2)x = b

A1x =−A2x + b

x =−A−1
1 A2x + A−1

1 b = Mx + c

A1 should be chosen such that it is easy to invert/solve with for example forward/backward
substitution and it should be a good approximate inverse to A. M is called the iteration matrix
for the method. Convergence of the method is guaranteed if ρ(M)< 1. SPD matrices has
this property.
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Jacobi

Consider splittings on the form A = L+D +U. If we choose A1 = D, A2 = L+U we get
the Jacobi method with iteration matrix:

MJAC =−D−1(L+U)
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Gauss-Seidel

If we instead choose A1 = L+D, A2 = U we get the Gauss-Seidel method with iteration
matrix:

MGS =−(D + L)−1U
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Successive over relaxation, SOR

Similar to Gauss-Seidel but we introduce a weight factorω as an extra degree of freedom.
The benefit will be apparent later. SOR withω= 1 is the Gauss-Seidel method. The
iteration matrix for SOR is:

MSOR(ω) =−(D +ωL)−1(ωU +(ω− 1)D)
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Convergence rate

The convergence rate of the SLIM methods are given by:

‖x(k+1)− x(k)‖ ≤ ρ(M)k‖x(1)− x(0)‖

Thus smaller spectral radius is better.
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Relation between spectral radii

Given 0<µ= ρ(MJAC)< 1 the formula for the spectral radius of MSOR(ω) is given by:

ρ(MSOR(ω)) =

¨

1
4(ωµ+
p

ω2µ2− 4(ω− 1))2 0<ω ≤ωopt ,
ω− 1 ωopt ≤ω< 2.

Withωopt :

ωopt = 1+

�

µ

1+
p

1−µ2

�2

This gives:

0<ρ(MSOR(ωopt))<ρ(MSOR(1)) = ρ(MGS) =µ
2 <ρ(MJAC) =µ< 1

µ can be computed via this formula:

1−
λmin

4
= ρ(MJAC) =

λmax

4
− 1
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Krylov subspace methods

Other iterative methods are GMRES and CG.

These methods are not suited for solving systems with spread out eigenvalues.

A remedy is to use a preconditioner.

The SLIM-methods can be used as preconditioners.
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Multi-grid methods

Multi-grid methods requires some attention in design.

They require a full solve at the coarsest level.

This solve has to be done by some other method.

For example CG with SOR preconditioner.

Another option is to mimic the non-linear case, FASMG, and not do a full solve.

Instead of the full solve, do a number of iterations of a SLIM precoditioner.
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Algorithm choice and test problem

The SLIM methods were chosen due to their secondary use case as preconditioners.
As a test problem for the experiments the following choices were made for simplicity.

f(x, y) = sin(πx) · sin(πy)

Ω= [0, 1]× [0, 1]⊂R2

g(x, y)≡ 0
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Parallelism

We want a parallel implementation for increased performance. There are some pitfalls where
the performance will be similar to a sequential implementation.
In this work parallelism through MPI was chosen over shared memory parallelization. Each
process gets a partition of the full problem and need to share its data with its neighbouring
processes. This communication was achieved with point-to-point communication.
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The order matters

When we try to solve the equations with forward SOR we encounter a problem immediately.

In order to solve the first equation we need the newly updated values from the neighbouring
process. This will cause a waiting problem.
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The order matters

The workflow this way is sequential, only one process has any work to do at a time.
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Red-Black order

The remedy is to reorder the equations in the so-called Red-Black order.
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New sparsity pattern

This gives the matrix a new sparsity pattern.

Now when we apply forward SOR every process has work to do since they only need old
values for the first half of the equations.
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Red-Black SOR

The key insight is that we can solve the original system with a different order, the Red-Black
order, instead of forward SOR. This way we avoid shuffling memory around. The workflow is
now much improved.
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Experiments

The experiments were performed on the POWER8 server at LTH. Some results:

Here we can see that going from 1 to 10 processes is a large improvement, whereas going
to 25 or 50 brings no benefit.
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Experiments continued

In another experiment we got:

Here we can see that the iteration count agrees somewhat with the theoretical estimate.
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Conclusion and continued work

SOR is faster than GS which is faster than Jacobi.

More processes is faster for larger problems, up to a point.

More processes for small problems gives no benefit. It can even reduce performance.

Domain decomposition is slightly faster than by rows.

Reduced and full versions are very similar in performance.

The next step is to implement these methods on a GPU, which i propose for continued work.
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Questions

All source code and the report can be found at: https://gitlab.com/Drunte/public-sor
Questions?
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