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Abstract

Remote sensing image classification is used in land cover, forest type and tree species
classifications but rarely considered for habitat suitability modelling of animal
and plant species. It is instead common that land cover products derived from
remote sensing data are used in these modelling problems, even though satellite
imagery can provide more detailed information. The aim of this project was thus to
explore remote sensing image classification methods to classify land covers in Baden-
Württemberg based on their habitat suitability for the fire salamander (Salamandra
salamandra). Fire salamanders depend on both suitable aquatic and terrestrial
environments, and the classification was therefore applied on multi-temporal
Sentinel-1 and Sentinel-2 images combined with a waterway proximity layer derived
from OpenStreetMap data. The classification used a random forest classifier which
was trained to discriminate between positive samples from tree covered areas within
300 m of fire salamander observations and unlabelled samples drawn from a regular
grid with 1500 m point spacing in the study area. Two classification methods were
evaluated: pixel-based, in which single pixels are used in the classification, and
superpixel-based, in which the classification was performed on mean pixel values of
approximately equally sized (∼1 ha) vectorized regions of similar pixels derived from
a Simple Linear Iterative Clustering (SLIC) segmentation of the study area. The
resultant classifications were compared against a model with land cover data from
Copernicus Land Monitoring Service, and the evaluation showed that the image
classifications were able to discriminate better between positive and unlabelled test
samples. The superpixel-based classification further achieved a higher evaluation
score (AUC: 0.91) than the pixel-based classification (AUC: 0.90), and was thus
the best model in the analysis. An exploratory analysis of the predictions based
on LUCAS 2018 survey points further indicated that the models predicted high
fire salamander habitat suitability in tree covered areas situated within roughly
200 m of stream and river features, with more than 10 % canopy cover, and with
more than 25 % of broadleaved trees in the canopy composition. Remote sensing
image classification for fire salamander habitat suitability modelling was concluded
applicable at regional mapping scales, and more generally for habitat suitability
modelling of species that are highly dependent on land cover characteristics.
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1 Introduction

A global decline in amphibian populations has been noticed for more than 30
years (Green et al. 2020). Habitat loss due to human activities and a continued
spread of the amphibian skin disease chytridiomycosis are important drivers of
this decline (Blaustein and Kiesecker 2002; Scheele et al. 2019). Chytridiomycosis
is known to be caused by the fungi: Batrachochytrium dendrobatidis (Bd) and
Batrachochytrium salamandrivorans (Bsal), and the latter is highly problematic for
the fire salamander (Salamandra salamandra) in Europe (Martel, Sluijs, et al. 2013;
Martel, Blooi, et al. 2014). Fire salamanders show no immune response to Bsal
infection which is lethal to most individuals, and rapid population declines have
therefore been noticed in affected populations (Stegen et al. 2017). Bsal has since
it was discovered in the Netherlands, also been detected in Belgium, Germany, and
Spain (Martel, Vila-Escale, et al. 2020; Spitzen-van der Sluijs et al. 2016), and has
further been termed the “salamander plague” (Stokstad 2014). Most Bsal cases
have been recorded in western Germany, which is considered the current hotspot
of the disease (Lötters et al. 2020). However, a continued spread is expected as
models suggest that additional regions in Central Europe that are currently free
from Bsal provide a suitable environment for the disease (Beukema, Martel, et al.
2018; Beukema, Erens, et al. 2021; Lötters et al. 2020).

Fire salamander habitat suitability models can aid conservation programmes of
the species since resultant distribution maps can be used in Bsal risk analyses to
evaluate potential spread of the disease, or to identify areas with risk of habitat
loss. These models are usually built with correlative species distribution modelling
(SDM) methods by relating presence observations with environmental predictors
that constrain the distribution of the species. Common predictors used in fire
salamander SDM studies describe climatic conditions, topography, and land cover
characteristics (e.g. see: Bani et al. 2015; Romero et al. 2012; Werner et al.
2013). However, climatic conditions are not necessarily useful at regional mapping
scales since fire salamanders are found throughout a relatively large distribution
range in Europe (see Figure 1.2) and thus show an adaptability to different
climatic variations. Fire salamanders show great subspecies variation within
the Iberian Peninsula, but, the high genetic similarity found outside the Iberian
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Figure 1.1: Adult fire salaman-
der. Photo by Mélissa Msalmi in
Bougival, France, 2021-10-30.

Peninsula (Burgon et al. 2021) suggests that these populations have a relatively
large adaptability to different climatic conditions. The fire salamander is further a
forest living species (Dufresnes 2019), and available climate data sets are generally
unrepresentative of the climatic variations experienced below a forest canopy, where
smaller temperature variations and more moist conditions can provide suitable
habitats to amphibians (Escoriza and Hernandez 2021). Approaches to model the
microclimate in forest from combinations of in situ measurements, weather station,
and remote sensing data have been proposed (Lembrechts et al. 2019). However, in
situ measurements are impractical for models over large heterogeneous regions, and
the accuracy of the resultant microclimate model must be taken into consideration
in the modelling.

Fire salamander habitat suitability models can thus be assumed to be highly
dependent on land cover characteristics at regional mapping scales, which means
that availability of suitable terrestrial and aquatic habitats must be accounted
for. The aquatic habitat is used during the larval life stage of the species and
usually consist of fish-free headwater streams (Thiesmeier and Schuhmacher 1990),
although, small ponds or ditches (Antzen and Belkom 2020; Burgstaller et al. 2021;
Steinfartz et al. 2007) and subterranean water bodies (Manenti et al. 2017) are
also known to be used by the fire salamander. Larval development in the aquatic
habitat depends on water temperature and food availability (Weitere et al. 2004),
and metamorphosis typically occur after about three to five months in German
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Figure 1.2: Fire salamander distribution from IUCN
(International Union for Conservation of Nature), Con-
servation International & NatureServe (2009). “Sala-
mandra salamandra”. In: The IUCN Red List of Threat-
ened Species. Version 2021-1. url: https ://www.
iucnredlist.org.

populations (Thiesmeier and Schuhmacher 1990). Adult individuals thereafter live
completely terrestrial lives (Steinfartz et al. 2007), however, the aquatic habitat
must still be available for larval deposition. Forests, are the main terrestrial
environment used by the species as previously mentioned, and Wagner et al. (2020)
found broadleaved forests to have higher larval abundance than coniferous forests
in western Germany.

Populations of the species thus rely on both terrestrial and aquatic environments
which in addition must co-occur since fire salamanders typically remain within a
limited extent. The full dispersal ability of the species is not yet fully investigated,
but capture-recapture studies have indicated that most fire salamander movements
are of distances shorter than 500 m (Ficetola et al. 2012). Estimates of average
home range sizes, representing the mean area recaptured individuals moved within
during the length of the study period, vary between studies, e.g. Burgstaller et
al. (2021) found a mean home range size of 263 m2, while Hendrix et al. (2017)
reported 3894 m2. These estimates are dependent on the size of the study area
(Burgstaller et al. 2021), and the studies are further affected by the weather
dependent activity of adult fire salamander (Catenazzi 2016) which makes the
species difficult to monitor. Movement and home range estimates are therefore not
fully representative of movements made by the studied individuals, however, these
studies nevertheless provide knowledge regarding extents and distances in which
movements can be expected.

Land cover predictors describing the availability of suitable terrestrial and
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aquatic environments in habitat suitability models are often based on variables
derived from land cover classification maps, however, these predictors have cer-
tain limitations. Land cover classifications partition the landscape into different
information classes which for forest areas typically concern classes of coniferous,
broadleaved, and possibly mixed forest types. No information of within class varia-
tion, e.g. proportion of broadleaved and coniferous trees within an area classified
as mixed forest, is thus available during the modelling. Land cover classifications
are on the other hand usually derived from high resolution remote sensing data
sets which also is used in more forest specific applications such as: tree species
classification (Persson et al. 2018), forest above ground biomass (Laurin et al.
2018), and canopy cover (Korhonen et al. 2017). It is therefore clear that these
data sets have the potential to provide more information in habitat suitability
modelling problems than what data from land cover classification maps provide.

This project therefore aims to investigate whether image classification techniques
commonly used in e.g. land cover and tree species classifications, can be applied
on high resolution remote sensing data sets to classify land covers based on their
suitability as fire salamander habitats. This is similar to how SDMs are modelled,
although, the predictor variables used are measures of physical properties and
do not directly offer simple ecological interpretations. Remote sensing based
habitat suitability models usually includes an intermediate processing step in
which ecologically meaningful land cover predictors are derived from the remote
sensing imagery (He et al. 2015). An image classification approach aim to identify
suitable habitats directly from the remote sensing imagery, and thus remove the
intermediate processing step of generating ecologically meaningful predictors, as
visualised in Figure 1.3.

Satellite
Imagery

Additional Data
e.g. climate,

elevation, etc.

Land Cover
Products

Model
Habitat

Suitability

Common workflow

Proposed workflow

Figure 1.3: This project explore the usage of high resolution satellite images in habitat suitability
modelling, which avoid the intermediate step of generating derived land cover products.

The habitat suitability study is performed in Baden-Württemberg in southwest-
ern Germany for which a point set of fire salamander observations are available.
Bsal has not yet been detected in Baden-Württemberg, but, records from neigh-
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bouring Bavaria (Schmeller et al. 2020; Thein et al. 2020) highlight the need
to prepare for a continued spread of the disease into Baden-Württemberg. Im-
agery from the Sentinel-1 and Sentinel-2 missions of European Union’s Copernicus
programme has been selected for the classification. These missions provide high
resolution radar and optical products suitable for land monitoring with an open
data policy. Using Sentinel-1 and Sentinel-2 data offer the possibility to classify
habitat suitability at resolutions higher than the expected home range size of the
fire salamander, and the usage of a superpixel-based image classification method,
in which the classification is performed on approximately equally sized regions of
similar and connected pixels, is therefore tested and compared against a pixel-based
approach. Both methods are further contrasted against a model based on land
cover classification data from Copernicus Land Monitoring Service. Apart from
generating and comparing resultant fire salamander habitat suitability maps, the
project aims to provide more knowledge regarding benefits and drawbacks with an
image classification based approach compared to models derived with land cover
classification data. An exploratory analysis of the model predictions is also applied
in order to evaluate the most important habitat type for the fire salamander in
Baden-Württemberg.
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2 Methods

2.1 Study Site and Fire Salamander Observations
Baden-Württemberg is German state situated in southwestern Germany (49◦0′ N,
9◦0′ E). It covers an approximate 35 800 km2, and is mainly composed of agricultural
(∼50 %), forest and semi-natural (∼40 %), and artificial (∼10 %) land covers. The
area has a varied topography and contain mountain ranges such as the Black Forest
and the Swabian Alps, with the highest peak (Feldberg) reaching 1493 m above sea
level. Figure 2.1 display an overview map of Baden-Württemberg, and shows the
main land cover classes from the CORINE Land Cover 2018 inventory provided
by the Copernicus Land Monitoring Service.

Figure 2.1: Map of Baden-Württemberg with the main classes of CORINE Land
Cover 2018.
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Fire salamander observations (n = 2896) from 2014 to 2021 were provided
by Landesanstalt für Umwelt Baden-Württemberg (LUBW) for the study. The
observations originate from two different monitoring projects open for public partic-
ipation: “Landesweite Artenkartierung” (LUBW 2022b), and “Meldeplattformen”
(LUBW 2022a). Although the former project is based on an organized sampling
scheme with 5 km × 5 km grid cells which participants survey, no information re-
garding the sampling effort within each cell was known, and observations from both
projects were therefore treated as opportunistic, i.e. not systematically collected.
15 recordings from 2014 to 2017 located within 500 m of areas with loss in tree
cover in the Tree Cover Change Mask 2015-2018 product from Copernicus Land
Monitoring Service was removed from the point set since these observations possibly
depend on land covers not available in 2018 and 2019, which was the temporal
range considered in the modelling. Distribution of the filtered point observations
in the study area can be seen in Figure 2.2.

Figure 2.2: Distribution of filtered fire salaman-
der observations in Baden-Württemberg used in
the study.

2.2 Sentinel Data
The image classifications were performed with Sentinel-1 Level-1 Ground Range
Detected (GRD) images acquired in Interferometric Wide (IW) swath mode and
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Sentinel-2 Level-1C products from European Union’s Copernicus programme. For
Sentinel-1, IW swath mode is the main acquisition mode for land monitoring
in which the C-band Synthetic Aperture Radar (SAR) instrument acquire dual
polarisation (VV: vertical transmit – vertical receive, and VH: vertical transmit
– horizontal receive) data at 5 m × 20 m spatial resolution. The Level-1 GRD
products contain detected and multi-looked (an operation which averages the
signal to reduce speckle noise) backscattered signal strength projected to ground
range with a 10 m × 10 m pixel spacing (ESA 2021). The Sentinel-2 satellites are
equipped with multi-spectral push broom sensors which acquire high-resolution
optical imagery over four spectral bands in 10 m and six bands in 20 m spatial
resolution. (The sensors also acquire three additional 60 m bands, but these were
only used for atmospheric corrections.) Products in Level-1C processing level are
orthorectified images in top of atmosphere reflectance.

The imagery was downloaded through the French PEPS – Operating platform
Sentinel products portal at: https://peps.cnes.fr. Sentinel-1 images acquired in
descending orbit direction was used since the full study area was covered within
the swath width of a single descending orbit. Using images acquired in ascending
orbit direction would have required mosaicking of images from two orbits (which
implies two different acquisition dates), and was therefore avoided in the study.
It was however necessary to use Sentinel-2 images from two orbits: relative orbit
number 65 and 108 (hereafter simply referred to as orbit 65 and orbit 108), to cover
the full study area. Combining the data over the two orbits was later performed
with decision level fusion of models trained in overlapping areas as explained in
Section 2.10. For each Sentinel-2 orbit, images from three acquisition dates with
no or very low amount of visible cloud cover over the study area and at different
parts of the 2018 and 2019 growing seasons were identified for download. Note that
2018 and 2019 falls within the temporal range of the fire salamander observations
which are further described in Section 2.8. Sentinel-1 scenes was then selected
at different periods over the corresponding growing seasons. No consideration of
cloud cover is necessary in selection of Sentinel-1 scenes, since the C-band SAR
instrument is an active sensor that can acquire images independent of weather
or sunlight. Both the Sentinel-1 and Sentinel-2 products required several image
tiles for each acquisition date to cover the study area and Table 2.1 provides an
overview of all scenes downloaded for the classification.

9
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Table 2.1: Sentinel-1 GRD and Sentinel-2 Level-1C images downloaded for the classifi-
cations. Each acquisition date used required several tiles to generate a full scene for the
study area.

Orbit* Direction Acquisition Date Platform Product No. Tiles
66 Desc. 2018 October 7 Sentinel-1B IW Level-1 GRD 3
66 Desc. 2019 May 11 Sentinel-1B IW Level-1 GRD 3
66 Desc. 2019 August 3 Sentinel-1B IW Level-1 GRD 3
65 Desc. 2018 April 7 Sentinel-2B Level-1C 8
65 Desc. 2018 April 27 Sentinel-2B Level-1C 8
65 Desc. 2018 October 14 Sentinel-2B Level-1C 8
108 Desc. 2018 September 27 Sentinel-2B Level-1C 9
108 Desc. 2019 April 20 Sentinel-2A Level-1C 9
108 Desc. 2019 June 29 Sentinel-2A Level-1C 9
*Relative orbit number.

2.3 Sentinel-1 Processing
The downloaded Sentinel-1 Level-1 GRD images were processed in SNAP (ESA
SNAP 2021) to obtain terrain-flattened γ0 backscatter coefficients in both po-
larisations (VV and VH), following the workflow presented in Figure 2.3. The
terrain-flattened γ0 coefficient is a measure of the backscattered signal per area
corrected for the local topography (Small 2011), which makes it suitable for usage
in study areas with varying topography. This processing workflow began with
common Sentinel-1 processing steps in which the satellite orbit information first
was updated with a more accurate post-processed orbit file from the Copernicus
Precise Orbit Determination Service, followed by thermal and border noise re-
moval operations to reduce these noise signals in the pixels. Calibration to the β0

backscatter coefficient was thereafter performed, and since the Sentinel-1 swaths
are sliced into multiple tiles, it was also necessary to combine them into full scenes
with the slice assembly tool in SNAP.

SAR images are affected by speckle noise (see Figure 2.4) and the Intensity-
Driven Adaptive-Neighbourhood (IDAN) speckle filter (Vasile et al. 2006) was
applied to limit its influence on the classification. The IDAN filter applies a region
growing algorithm of the neighbourhood around a pixel, and the despeckled pixel
value is thereafter estimated based on the mean and variance of the pixel values
within the region (Vasile et al. 2006). The variance in the region determine the
amount of smoothing applied, high variance in a region reduce the amount of
smoothing and the resultant pixel value is set close to its original value, low region
variance result in high smoothing and the new pixel value is set close to the mean
value of the region. The filter was applied using an adaptive neighbourhood size

10



Sentinel-1
GRD

(VV+VH)

Update orbit file

Thermal
noise removal

Border noise
removal

Radiometric
calibration to β0

Slice Assembly

IDAN speckle filter

Radiometric
terrain flattening

(SRTM 1Sec DEM)

Range-Doppler
terrain correction

(SRTM 1Sec DEM)

Linear to dB scale

Output:
Terrain-flattened

γ0 in dB scale
(10 m resolution)

Figure 2.3: Sentinel-1 processing workflow applied in SNAP.

of 50 pixels and with the number of looks parameter set to one. The reciprocal
square root of the number of looks parameter is a noise variation coefficient used
as a threshold for inclusion/exclusion of pixels in the region growing algorithm. It
thus controls the filtering since a smaller noise variation coefficient (which means
that less speckle is expected in the image) results in less pixels included during
the region growing process. Setting this parameter to one results in relatively
large regions, and the choice was based on visual comparison between different
parameter settings. An example of the speckle filtering is presented in Figure 2.4.

(a) Before speckle filtering. (b) After speckle filtering.

Figure 2.4: β0 backscatter coefficient of 2019 May 11 scene subset in VH
polarisation before (a) and after (b) IDAN speckle filtering.

The terrain-flattened γ0 backscatter coefficient was then computed with the
terrain flattening tool using the 1 arc-second Digital Elevation Model (DEM) from
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the Shuttle Radar Topography Mission (SRTM) downloaded within SNAP. The
result was orthorectified to 10 m resolution using Range-Doppler Terrain Correction,
again with the SRTM DEM, and finally converted from linear to decibel (dB) scale.

2.4 Sentinel-2 Processing
The Sentinel-2 scenes were processed to derive a multi-temporal set of 10 m and
20 m spectral bands in bottom of atmosphere reflectance, and additional vegetation
indices and texture metrics features further discussed in Section 2.5. An overview
of the processing workflow is presented in Figure 2.5. First, atmospheric and
terrain correction of all Sentinel-2 Level-1C image tiles to bottom of atmosphere
reflectance (i.e. Level-2A products) was performed with Sen2Cor version 2.9 (MPC
2020). Similar settings as defined in issue 41 of the Level-2A Data Quality Report
(MPC 2021, Section 3.1.1) was applied, including the auxiliary European Space
Agency’s Climate Change Initiative Land Cover data used to aid scene classification
in the correction. The only difference in processing settings compared to the Level-
2A Data Quality Report was that only 10 m and 20 m resolution layers were
kept as outputs, and that the SRTM DEM was used in the correction. Note
that this version of Sen2Cor failed to use the SRTM DEM in regions covering
more than one DEM tile due to a known bug (see: https://forum.step.esa.int/
t/processing-error-due-to-srtm-data-conflict/29796/6). This bug was caused by
an error during the removal of a temporary DEM file open in a different process,
and the suggested temporary bug fix: disable the temporary DEM file removal in
“L2A_Tables.py”, was applied such that all scenes could be processed consistently.

GDAL (GDAL/OGR contributors 2021) was thereafter used to mosaic the
resultant tiles of corresponding dates, and the scenes were then visually inspected
using the scene classification and true colour image outputs from Sen2Cor. No cloud
cover was noticed in most of the scenes although certain agricultural and urban
areas contained pixels misclassified with high cloud probability. The exception
was two scenes in orbit 65: 2018 April 27 and 2018 October 10, in which some
cloud cover was found near the border of the study area. These areas were simply
masked in all orbit 65 scenes since they were located within the zone of orbit
overlap. A few scenes also contained areas classified as thin cirrus (i.e. cloud with
high transparency), but, no additional treatment of these regions was performed.
Figure 2.6 shows the final coverage of each orbit after removal of cloud covered
areas.

The geolocation accuracy of Sentinel-2 scenes can result in co-registration
errors between multi-temporal images that exceeds 10 m (Rufin et al. 2021). An
additional co-registration of the Sentinel-2 scenes was therefore applied in order
to correct for this disagreement, which can be visualized in Figure 2.7. No co-
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Sentinel-2 Level-1C

Athmospheric &
terrain correction

with Sen2Cor

Cloud Masking

Co-registration
Target image: 2019 June 29

VI/texture
processing

Output:
10 m and 20 m spectral bands
(bilinear resampling to 10 m)

Output:
texture metrics Green & NIR bands

Contrast/Entropy/GLCMMean

Output:
NDVI
NDWI

Figure 2.5: The processing workflow used to generate Sentinel-2 features for the
classification.

registration of Sentinel-1 images was performed since the geolocation accuracy
of the Sentinel-1 GRD products (3σ deviation of 7 m specified in CLS 2016) was
considered sufficient for a multi-temporal analysis. The co-registration used the
2019 June 29 scene from orbit 108 as “target” image which all other “moving”
images were co-registered against. A set of tie-points between the target image
and the moving images were generated automatically using the phase correlation
approach used in Skakun et al. (2017). Points were generated in a 1500 m × 1500 m
grid throughout the target image, resulting in a total of 13 747 points of which
10 553 were located in the region of orbit overlap. Phase correlation derived image
translation was then computed on the 10 m Near Infra-Red (NIR) bands using
windows of 65 × 65 pixels centred over each grid point, such that each tie-point
was assigned estimated local translation parameters. The phase correlation was
computed with scikit-image (Walt et al. 2014) using an up-sampling factor of 100
which allow the algorithm to report detected translations at decimetre levels. The
point set was then filtered by removal of points with unlikely large shifts (≥30 m),
and 1000 points were additionally set aside as test points used to evaluate the
co-registration performance.

An affine transformation was used to transform the moving images in the
co-registration. The transformation parameters were derived with Random Sample
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Figure 2.6: Sentinel-2 orbit coverages after
cloud removal.

Consensus – RANSAC (Fischler and Bolles 1981) least squares regression in scikit-
learn (Pedregosa et al. 2011). RANSAC regression is used to handle corrupt
observations by an outlier detection algorithm in which models fitted to minimum
sized subsets of the observations are used to classify observations as outliers or inliers
(Fischler and Bolles 1981). The minimum subset size was set to three tie-points,
which is the least amount of points needed to solve for the six transform parameters.
Transformation parameters for the 20 m bands were derived directly from the 10 m
transformations, and all images were assigned the modelled transformations by
updating the image geotransform parameters with GDAL followed by bilinear
resampling to 10 m resolution. Table 2.2 presents the number of inliers used in
the model fitting and RMSE (Root Mean Square Error of coordinate differences)
calculated on the test set before and after co-registration. Note that the test set
was not filtered with RANSAC and may thus also contain outliers.
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(a) Before co-registration. (b) After co-registration.

Figure 2.7: Image mosaics with the 2019 June 29 (top and
bottom) and the 2018 September 27 (mid section) scenes
before (a) and after (b) co-registration. The co-registration
transform the moving image in the mid section of the mosaic
to the target image which aligns the linear feature visible
in the centre of the mosaics.

Table 2.2: Evaluation statistics from the co-registration of moving images
to the target image 2019 June 29.

Test RMSE (m)
Moving Image No. Inliers Before Co-Reg. After Co-Reg.
2018 April 7 6824 7.5 5.2
2018 April 27 7701 4.1 2.1
2018 October 14 8004 7.1 4.4
2018 September 27 11 006 7.7 2.8
2019 April 20 9206 7.7 3.4

2.5 Vegetation Indices and Texture Features
Vegetation indices, designed to enhance vegetation characteristics in the images,
were included in the classification since they potentially can improve a fire salaman-
der habitat classification (e.g. Immitzer et al. (2019) found vegetation indices to im-
prove the tree species classification in Central Europe). Indices based on normalized
differences between two bands can in addition reduce the influence of topographic
effects or shadows affecting both bands. A great amount of vegetation indices have
been developed for different studies (see: https://www.indexdatabase.de/), but,
only: the Normalized Difference Vegetation Index (NDVI; Rouse et al. 1974), and
the Normalized Difference Water Index (NDWI; Gao 1996), were considered in this
analysis. NDVI exploits the high reflectance in the NIR band and low reflectance
in the Red band of live vegetation, and is calculated as a difference between the
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bands normalized by their sum:

NDV I = NIR − Red

NIR + Red
.

NDWI was developed to measure leaf water content, and use that dry vegetation
have higher reflectance in the Short Wave Infra-Red (SWIR) band than green
vegetation (Gao 1996). The NDWI index is calculated as a normalized difference
between the NIR and SWIR bands:

NDWI = NIR − SWIR

NIR + SWIR
.

NDVI and NDWI was calculated for all Sentinel-2 scenes using the 10 m Red and
NIR bands, and the 20 m (Band 11) SWIR band.

Texture features, which provide information about the spatial variation in pixel
values within a neighbourhood, was tested in the project since it was found to
improve the old-growth forests classification in B. D. Spracklen and D. V. Spracklen
(2019). Several texture metrics can be derived from the Grey-Level Co-Occurrence
Matrix (GLCM) which contain count frequencies (normalized to probabilities with
probabilistic quantizer) of how often two pixel values occur at a given displacement
within a neighbourhood (Haralick et al. 1973). The metrics: Contrast, Entropy, and
GLCM mean were considered for this analysis based on the recommendations in
Hall-Beyer (2017). Contrast increases with larger differences between neighbouring
pixels (assuming one pixel displacement), Entropy is a measure of disorder and
depends on the amount of variation in pixel values between neighbouring pixels,
and GLCM Mean is a weighted average of pixel values in the neighbourhood in
which weights are taken from the GLCM matrix such that the most common
pixel variations are emphasized. The metrics were computed on 10 m Green and
NIR bands of all Sentinel-2 scenes in SNAP using one pixel displacement over all
angles in 5×5 pixel neighbourhoods and 32 bit quantization level with probabilistic
quantizer.

2.6 Additional Predictors of Waterway Proxim-
ity

A set of waterway proximity layers were also derived for the classification in
addition to the Sentinel-1 and Sentinel-2 features described above. It is clear
that availability of aquatic breeding sites is a constraining factor for the distribu-
tion of the species, and inclusion of a waterway proximity layer in the predictor
set thus allow the classifier to discriminate between suitable land covers with
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and without potential breeding sites nearby. These waterway proximity layers
were derived from OpenStreetMap (© OpenStreetMap contributors 2021) data.
Raw OpenStreetMap data for Baden-Württemberg and neighbouring regions was
downloaded in the PBF format from the download server of Geofabrik GmbH:
https://download.geofabrik.de. Line features registered with the waterway tag as
either: stream, brook (deprecated tag which was treated as equivalent to stream in
this project, see: OpenStreetMap Wiki 2021), river, ditch, or drain, were first ex-
tracted. Extracted waterway features in culverts, tunnels, underground or pipelines
were thereafter removed. The stream and brook tags are used for narrow natural
waterways (OpenStreetMap Wiki 2021) and were assumed to represent the most
common aquatic habitat used by the fire salamander (i.e. smaller fish-free streams
Thiesmeier and Schuhmacher 1990). It was however unclear whether waterways
registered as river or drainage ditches (ditch and drain tags) also offer potential
breeding sites. Six different waterway layers, referred to as: Stream, Stream-Ditch1,
Stream-Ditch2, Stream-River, Stream-River-Ditch1, and Stream-River-Ditch2, were
therefore generated for further evaluation during the model selection process. An
overview of the waterway tag combinations used in each layer is given in Table 2.3.
The lines in each waterway layer were first buffered 50 m, and proximity maps of
10 m resolutions were thereafter generated with GDAL.

Table 2.3: Waterway tag combinations used in the waterway
proximity layers derived for the classification.

Layer Name OpenStreetMap Waterway Tags
Stream stream, brook
Stream-Ditch1 stream, brook, ditch
Stream-Ditch2 stream, brook, ditch, drain
Stream-River stream, brook, river
Stream-River-Ditch1 stream, brook, river, ditch,
Stream-River-Ditch2 stream, brook, river, ditch, drain

2.7 Image Segmentation for Superpixel-Based
Classification

The application of superpixel-based image classification, in which the classification
is performed on mean values of roughly equally sized regions of similar pixels rather
than single pixels, was tested in the analysis. Note that object-based classification
is a similar classification method, but, the term superpixel-based is here used to
clarify that regions used in the classification do not represent meaningful features
such as roads and houses visible in an image. Fire salamander home-range estimates
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larger than the 10 m pixel resolution, and a superpixel-based approach thus offer
the possibility to consider the characteristics in areas of more suitable sizes in the
classification.

The partitioning of the study area into superpixels was performed with the
Simple Linear Iterative Clustering (SLIC) segmentation algorithm which is a k-
means clustering algorithm adapted to take both pixel values and spatial distance
into account (Achanta et al. 2012). The segmentation is controlled by the number
of k-means cluster centres initialized in a regular grid over the image, and a weight
factor which defines the importance of spatial distance relative to distance in pixel
values. The SLIC segmentation was performed on false colour composites of the
20 m (Band 11) SWIR, and the 10 m NIR and Red bands from the 2019 June 29
scene for the area covered by orbit 108, and of the 2018 April 27 scene for the part
in orbit 65 not covered by orbit 108. A contrast stretch of each band was applied
by linearly stretching pixel values between the 2nd and 98th percentiles to the
range from 0 to 255 during the generation of the false colour composites, resulting
in 8 bit colour images. The images were segmented with the SLIC implementation
in the OpenCV library (Bradski 2000) using a region size of 10 pixels, ruler (i.e. the
weight factor) of 100, and forced connectivity between superpixels with the default
minimum element size of 25 %. A region size parameter of 10 results in roughly
1 ha large superpixels, and a ruler of 100 was selected based on visual evaluation
of the segmentation result.

(a) Tile 1 segmentation. (b) Tile 2 segmentation. (c) Merged segmentation after
sliver polygon removal.

Figure 2.8: Tile based SLIC segmentation on a subset of the 2019 June 29 false
colour composite (R: SWIR, G: NIR, B: Red).

The segmentation of the 2019 June 29 scene had to be computed in two tiles
due to the large image size. It was performed by extracting superpixels from the
interior of the first tile processed and thereafter remove their area from the second
tile (i.e. assign these pixels the no-data value) before its segmentation. This resulted
in high agreement in the border regions between the two tiles, however, a few
small (<10 pixels) sliver polygons were still present in the second segmentation (see
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Figure 2.8b). These sliver polygons were merged with the neighbouring superpixel
with the longest shared boundary, before the two segmentations were combined.
Figure 2.8 provides a visualization of this tile based SLIC segmentation which also
was used to combine the 2019 June 29 segmentation with the segmentation of the
2018 April 27 image. A final clipping of the full segmentation with the study area
was further applied in order to force the superpixels to agree with the boundary of
the study area, and small sliver polygons from this operation were also merged
with neighbouring superpixels. Mean pixel values within the SLIC superpixels
were thereafter derived and used as predictor variables for the superpixel-based
classification approach.

2.8 Positive and Unlabelled Data
The positional accuracy of the fire salamander observations was insufficient for
direct usage in the classification, and positive class samples, representing fire
salamander habitats, were instead drawn from tree covered areas within 300 m
of the observations. Forests are the most common terrestrial habitat of the
fire salamander (Wagner et al. 2020) in Germany, and it is thus reasonable to
assume that tree covered areas near the point observations represents suitable
fire salamander habitats. A distance of 300 m was used since it was the largest
coordinate uncertainty reported in the observation set. Identifying tree covered
areas requires a tree cover mask, and it was derived from the Tree Cover Density
2018 and Forest Additional Support Layer 2018 products from the Copernicus
Land Monitoring Service. A binary tree cover mask was first generated by applying
a 30 % threshold on the tree cover density layer (in agreement with the threshold
applied in the pan-European validation of the tree cover density product in CLMS
2021), and the forest additional support layer was then used to divide the tree
cover mask into three layers of tree cover in urban, agricultural and forest context
(urban context combined class 4 and 5 in the forest additional support layer). The
geolocation accuracy in the satellite imagery and the tree cover masks can lead to
tree covered pixels in the mask layers to be located outside the corresponding tree
covered area in the imagery. This was prevented by reducing the size of each tree
covered area in the mask layers with morphological erosion of one pixel size. The
results were combined into a single tree cover mask, from which tree covered areas
within a 300 m radius of fire salamander observations could be extracted.

A random selection of 10 % of the more than 2.8 million pixels located in tree
covered areas within 300 m of the fire salamander observations were used as samples
of the positive class in the pixel-based classification. This random selection was
performed to generate a sample set that is representative of pixels within the
tree covered areas but with a more manageable size. For the superpixel-based
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classification, the positive class was sampled from the set of superpixels within
300 m of the observations which fulfilled tree cover overlap constraints of:

(i) 75 % or more of the superpixel area overlapped the tree covered area, or,

(ii) 75 % or more of a tree covered area overlapped the superpixel, and the tree
covered area was larger than 25 % of the superpixel area.

50 % of the superpixels that fulfilled these constraints were randomly selected as
the positive class for the superpixels-based classification, again to reduce the data
set to a more suitable size.

The observations only contain information of locations where the fire salamander
have been present, i.e. no absence observations were available. The classification
is thus a one-class classification problem that can be approached with positive-
unlabelled learning (PU-learning) methods. PU-learning use information from the
positive class together with unlabelled samples, i.e. samples of unknown class label,
which in SDM literature is called background or pseudo-absence data (Guisan
et al. 2017). Unlabelled samples were generated by distributing points in a regular
grid pattern with 1500 m × 1500 m point spacing throughout the study area. The
1500 m point spacing distance was selected in order to limit spatial auto-correlation
between any point pair while still generating a large unlabelled set. Any grid
point within 1500 m of a fire salamander observation was also removed from the
unlabelled set. Unlabelled samples for the pixel-based classification was then
extracted by selecting all pixels located within rectangular windows of 9 × 9 pixels
centred at each grid point, while superpixels intersecting the grid points were
selected as unlabelled samples for the superpixel-based classification.

2.9 Train and Test Areas
For evaluation of different modelling methods, it is important to split the data
into a train set used for model fitting and a test set used for model evaluation.
These sets should be independent of each other such that the test set represent
unseen data, however, spatial auto-correlation makes it difficult to generate fully
independent sets in practice. For this analysis, a set of subregions within the
study area was used as test area for model evaluation. These test areas were
generated by first distributing points in a diagonal grid with point spacing of
50 000 m × 50 000 m over the study area. The grid points were then buffered twice
using radii 5000 m, and 6500 m, where the smaller radius defines the test area and
the larger radius forms a buffer zone between the test and train areas used to
reduce spatial auto-correlation between the sets. 16 test areas were generated in
this fashion and their distribution can be seen in Figure 2.9.
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Figure 2.9: Train and test areas. Positive and
unlabelled samples extracted from the train area
were used for model fitting and selection, whereas
the test area was used for model evaluation.

Train samples for both classification methods were selected as samples from
the sets of positive and unlabelled data completely within the train area, while a
unique test set for evaluation was created within the set of test areas. Positives
in the test set were generated by distributing 1000 random points in the area
of intersection between the tree covered areas within 300 m of fire salamander
observations and the superpixels which fulfilled the overlap conditions used in the
superpixel selection. Unlabelled test samples were generated by random sampling
of 10 000 points in test areas more than 300 m away from any fire salamander
observation point. From the unlabelled points in the test set, a subset of all points
within areas of the tree cover mask was further selected (referred to as the tree
cover test subset) for evaluation over tree covered areas only.

2.10 Model Fitting
Several classifiers can be used in PU-learning problems and balanced random
forest (Chen et al. 2004) was selected for this project. Random forest is popular
for remote sensing image classifications, partly since the method provide good
classification results, but also since it can handle large data sets efficiently and
has low sensitivity to the high dimensionality often present in remote sensing data
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sets (Belgiu and Drăguţ 2016). It is based on decision tree bagging, in which the
prediction is a combination of the predictions from a collection of decision trees
trained on bootstrap samples (observations sampled with replacement), but only
search tree splits over random predictor subsets in order to reduce correlation
between trees (Breiman 2001). Balanced random forest counter class imbalances in
the data by creating balanced bootstrap samples, and relates with bagging based
approaches in PU-learning literature. Mordelet and Vert (2014) motivated bagging
in PU-learning problems since bootstrap samples of the unlabelled set contain
different amount of true positives and thus decrease correlation between classifiers.
They further showed that bagging of one-class support vector machines, trained
on the full positive set and bootstrap samples of given size from the unlabelled
data, gave competitive results compared to other PU-learning methods. If a similar
bagging based approach is applied but with decision tree classifiers, in which each
tree split is searched for over a random predictor subset, and with bootstrap
samples drawn from both the positive and the unlabelled sets, then the method is
a balanced random forest.

Model fitting and selection was performed in scikit-learn using the balanced
random forest implementation in imbalanced-learn (Lemaître et al. 2017). The
models were trained on bootstrap samples of the positive class and equally sized
bootstrap samples of the unlabelled class for each decision tree. The random
predictor subset size used for tree splits was set to the square root of the number
of predictor variables (rounded downwards to the nearest integer), in agreement
with the recommended default settings for classifications (Hastie et al. 2009).
Variable reduction was not applied, but, combinations of different predictor sets
were evaluated using 5-fold cross-validation on models trained with a 100 trees.
5-fold cross-validation is a method to estimate how well a model perform on new
data using only the train set, and it can therefore indicate whether a model tend
to overfit the train data. This was performed in two steps, first, the combination of
Sentinel-1 images, Sentinel-2 bands, texture and vegetation indices were considered
as predictors, and it was from this test found that the best models were the full
model which included all predictors. However, it should be noted that models
based solely on Sentinel-2 bands performed almost as well. All predictors were kept
for the second step in which the addition of different waterway proximity layers
were evaluated. Inclusion of waterway proximity layers improved model prediction,
and the largest improvement was found with the Stream and Stream-River layers.
The Stream-River layer was finally selected for the final models since it appeared
to be most beneficial for models in the orbit overlap area. The complete result of
the 5-fold cross-validation is available in Appendix A.

Final models were thereafter generated using balanced random forests with
300 trees. Due to the coverages of the Sentinel-2 orbits, three models were fitted for
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both the pixel-based and the superpixel-based approach: one for orbit 65, one for
orbit 108, and one for the orbit overlap area as shown in Figure 2.6. The model in
the overlap area benefit from having all predictor variables available, whereas single
orbit models includes data from larger areas. Fusion of the three model predictions
was performed by averaging the predicted class probabilities. This made it possible
to generate final prediction maps of fire salamander habitat suitability covering
the full study area.

2.11 Model Evaluation and Exploration
Evaluation of the final prediction maps were performed with the Receiver Operating
Characteristics (ROC) curve and the area under curve (AUC) metric (see: Fawcett
2006 for an overview of ROC analysis). Both the full test set and the tree cover
test subset, which only include samples located within the tree cover mask, were
used in the evaluation. A ROC curve contrast true positive rate: proportion of test
set positives classified as positives, against false positive rate: proportion of test set
unlabelled samples classified as positives, over varying threshold values used to map
predicted class probabilities into binary predictions. The AUC metric is thereafter
calculated as the area under the plotted ROC curve and is a commonly used metric
in SDM evaluations (Elith et al. 2006). It can be interpreted as the probability
that a randomly selected positive sample in the test set is predicted to have higher
positive class probability than a randomly selected unlabelled sample in the test
set (Fawcett 2006), and take a maximum value of 1 for a perfect classifier, and a
value of 0.5 for a random prediction.

A land cover based model at 100 m pixel resolution was also created for compar-
ison using the Stream-River proximity layer combined with data from Copernicus
Land Monitoring Service. This model, hereafter referred to as the LC-based classi-
fication, provides a baseline in the evaluation for how well the information available
in the land cover data sets can explain the distribution of positive samples. The
LC-based model was derived with the same balanced random forest classifier as
used in the image classifications trained on 1000 random points sampled within
the tree cover areas of positive class, and the set of gridded unlabelled points.
Land cover data included in the model consisted of the Broadleaf Cover Density
2018, Coniferous Cover Density 2018, Imperviousness Degree 2018 layers, as well
as Grassland 2018 and classes of “Arable land” and “Permanent crops” from
CORINE Land Cover 2018 aggregated from 10 m to 100 m resolution with average
resampling.

An exploratory analysis of the image classifications was finally applied to offer
better understanding of the model predictions in different forest types, and how
distance to the Stream-River layer influence the prediction. The influence of the
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Stream-River layer was first evaluated with partial dependence plots using the
model train data. The forest type exploration was thereafter based on a point set
of land cover observations within the study area from the Land Use and Coverage
Area frame Survey (LUCAS) of Eurostat (2018a). The LUCAS survey points
contain detailed land cover information for each point location derived from in situ
and photo-interpreted observations. Points with Stream-River proximity of 200 m
or less were used in the exploration since the Stream-River layer partial dependence
plots were relatively stable for these distances, which thus reduce variation in
predicted probabilities caused by the Stream-River proximity layer. Classes of
broadleaved, coniferous, and mixed woodlands, for which woodland is defined
as tree covered areas with a canopy cover of more than 10 % (Eurostat 2018b),
were considered in the analysis which was performed by computing histograms
of the predicted habitat suitability for each class. The primary land cover at the
theoretical point location was used and only points in which the primary land
cover represented more than 90 % of the land cover at the location were included.
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3 Results

3.1 Model Evaluation and Comparison
The ROC curves generated for model evaluation is presented in Figure 3.1. These
graphs show that the models are able to discriminate well between positive and
unlabelled samples in the full test set with AUC values around 0.9, representing
the overall model performance in test areas. Superpixel-based classification appear
to perform slightly better than the pixel-based approach, which further performs
better than the LC-based model. The graphs further include the ROC curve of the
Stream-River proximity layer only, and it is noticeable that it explains the positive
sample distribution relatively well, but, additional land cover information still
improves the predictions. It is however expected that all models perform well in
non tree covered unlabelled samples, resulting in high AUC values over the full test
set. The tree cover test subset was therefore used to evaluate the predictions in tree
covered areas only, since discrimination between positive and unlabelled samples
in these areas is expected to be more difficult. It is clear from the ROC curves
over the tree cover test subset that the pixel-based method performs slightly better
than the LC-based model, while the superpixel-based classification outperform
both of them.
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(a) Full test set.
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(b) Tree cover test subset.

Figure 3.1: ROC curves and AUC scores for the pixel and superpixel-based classifications
contrasted against the LC-based model which is built with land cover data. The Stream-River
curve shows the performance of the Stream-River proximity layer only. The full test set (a)
compare samples from tree covered areas within 300 m of fire salamander observations against
unlabelled samples throughout the study area, while the tree cover test subset (b) contains only
unlabelled samples within tree covered areas.

3.2 Resultant Prediction Maps
Maps of predicted positive class probability, here interpreted as habitat suitability
for the fire salamander, from the two image classification models are presented
in Figures 3.2 and 3.3. The prediction maps have been overlaid with the fire
salamander observation set from Figure 2.2, which for visualisation purposes have
been buffered 1 km. The distribution of predicted habitat suitability from both
classifications appear to agree well with the fire salamander observation set, and a
high agreement between both predictions can be noticed in general.

26



Figure 3.2: Resultant habitat suitability map from the pixel-based classification.
The map displays predicted positive class probability (%) from the balanced
random forest classifier, which is interpreted as fire salamander habitat suitability.
Transparent regions with dark boundaries represent 1 km buffer zones of the fire
salamander observation set used in the classification.
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Figure 3.3: Resultant habitat suitability map from the superpixel-based clas-
sification. The map displays predicted positive class probability (%) from the
balanced random forest classifier, which is interpreted as fire salamander habitat
suitability. Transparent regions with dark boundaries represent 1 km buffer zones
of the fire salamander observation set used in the classification.
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3.3 Model Exploration
Partial dependence plots of the Stream-River layer is presented in Figure 3.4. The
graphs show how the prediction depends on the Stream-River proximity layer
over all three models fitted in the different orbit areas for both the pixel-based
and the superpixel-based approach. Note that lines in the Stream-River layer
was buffered 50 m before the proximity layer was generated, and that distances
are measured from this buffer zone. The graphs indicate a decrease in predicted
habitat suitability with increasing distances in the Steam-River proximity layer.
The decrease appear to start at about 200 m Stream-River proximity and then
flatten out near 500 m. A negative correlation between distance to streams and
rivers which can be used as breeding sites for the fire salamander is expected,
and the results indicate that the area within roughly 200 m from these features
were predicted with the highest habitat suitability. However, positives for the
classifications were sampled from tree covered areas within 300 m of fire salamander
observations, and if a large part of the observations are of larvae in streams, then
this sampling will result in high suitability values at Stream-River proximity values
shorter than 300 m. Note that it was for most observations not known whether
an adult or a larva had been observed. The partial dependence plots thus show
a pattern that can be expected due to the sampling of positives, which must be
considered during evaluation of the plots.
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(a) Pixel-based.
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(b) Superpixel-based.

Figure 3.4: Stream-River layer partial dependence plots from pixel-based (a) and
superpixel-based (b) classifications over each orbit area. These plots indicates how the
predictions depend on the Stream-River proximity layer. The Steam-River proximity
layer contain distances to a 50 m buffer around OpenStreetMap waterways registered
with stream, brook, and river waterway tags.

Histograms showing the count of predicted habitat suitability values in LUCAS
2018 survey points of different woodland classes with Stream-River proximity
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(c) Mixed woodland.

Figure 3.5: Histograms of predicted habitat suitability in LUCAS in situ or photo-interpreted
points with Stream-River proximity of ≤200 m and with more than 90 % of the primary land cover
classified as broadleaved (a), coniferous (b), or mixed (c) woodland classes. Histograms from the
pixel-based classification is presented in dark grey, while histograms from the superpixel-based
classification is presented in light grey.

of 200 m or less is presented in Figure 3.5. Comparison in these points reduce
prediction differences caused by the Stream-River layer since the partial dependence
plots in Figure 3.4 are relatively stable at distances below 200 m. However, land
cover dependent differences can still be present. The woodland class in the LUCAS
survey is defined as tree covered areas with a canopy coverage of minimum 10 %,
and the broadleaved and coniferous woodland classes are used for areas where 75 %
or more of the canopy is composed by either tree type (Eurostat 2018b). The mixed
woodland class is further used for areas with more than 25 % of the canopy from
each tree type. Note that this woodland class definition do not distinguish between
forest and other tree covered areas, and thus only indicates tree cover within an
area. It can be seen that points from broadleaved areas are predicted with higher
habitat suitability values than points from coniferous areas. Tree covered areas of
mixed class are also classified with suitability values similar to broadleaved areas,
which thus suggests that these areas contain sufficient amount of broadleaved trees
(>25 % of the canopy) to be predicted as suitable habitats.
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4 Discussion

4.1 Model Comparison
The ROC analysis (Figure 3.1) showed that pixel-based and superpixel-based
remote sensing image classification methods performed better than the model
based on only land cover classification data. The evaluation was based on how well
the models were able to discriminate between tree covered areas within 300 m of fire
salamander observations (positive class representing fire salamander habitats), and
unlabelled samples from other areas further away than 300 m from the observations.
The test set used for the evaluation is thus expected to contain fire salamander
habitats in the unlabelled samples, but, it is further possible that the positive
class set is contaminated with areas that are unsuitable to the fire salamander. It
is preferable to have a test set without these contaminations, however, since the
models were trained to discriminate between positive and unlabelled samples with
the same type of contaminations, it is also applicable to evaluate the models after
their ability to do so. The model based on land cover classification data provides a
baseline model used to compare the image classifications with a model of similar
information, i.e. waterway proximity and land cover information. It should not
be interpreted as a typical correlative SDM, which traditionally has been built
with predictors describing climatic conditions either directly or indirectly through
topographic variables (Franklin 2010). The results nevertheless indicate that high
resolution remote sensing imagery can be used to build fire salamander habitat
suitability models with better discriminatory performance compared to models
built with common land cover classification products.

The reason why the image classification approaches performed better than the
land cover classification based model is likely explained by the detailed information
available in high resolution remote sensing imagery. A model based on available land
cover classification layers is highly dependent on the information classes used during
the classification. These are not necessarily designed to represent the habitat type
of interest in the modelling, and they can further contain erroneous classifications
which affect the model prediction. This is especially clear in forest areas where
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minor difference in the amount of broadleaved and coniferous trees can result
in different classifications due to threshold based information class definitions.
Remote sensing images do not contain classification errors and their accuracy
instead depend on the accuracy of the measurement with corrections applied, as
well as the geolocation accuracy. Co-registration can however reduce the influence
of geolocation accuracy, and it can be performed with relatively automatic methods
as in this project. Cloud cover in optical imagery is nevertheless a problematic
issue for classifications over large study areas. Images from single acquisition
dates were used in this project since multiple scenes with no or low amount of
cloud cover could be identified, however, this further required data fusion over the
Sentinel-2 orbits, which was applied by decision level fusion. An alternative is to
use time-series image composites (e.g. see: Griffiths et al. 2019) rather than images
from single acquisition dates, which remove influence of cloud cover and makes it
possible to train classifiers over the full study area. Phenological differences at tree
species level may not be possible to distinguish in time-series composites, but, it is
not clear whether this was necessary for the classification.

The evaluation further showed that the superpixel-based approach performed
better than the pixel-based classification. Superpixel-based classification was moti-
vated because the average fire salamander home ranges are larger than the pixel
size of 10 m resolution (Burgstaller et al. 2021; Hendrix et al. 2017; Schulte et al.
2007). SLIC segmentation oversegment homogeneous areas and create approxi-
mately equally sized regions of similar pixels. This is in contrast to traditional
object-based methods in which the segmentation is used to derive meaningful
features (objects representing e.g. a road, a house, etc.) from the image such that
object size and shape can be taken into account during the classification (Blaschke
et al. 2014). However, object size and shape was not suitable to consider in this
project since the true habitat area each fire salamander observation represent was
unknown, and a SLIC superpixel-based method was thus more appropriate for
this study. SLIC superpixel-based land cover classification has in addition been
found to achieve similar results as an object-based classification (Csillik 2017).
An important benefit of SLIC superpixel-based compared to pixel-based classifi-
cation is that the segmentation results in a smaller data set size and thus also
a simpler model fitting process. The resultant prediction map also contains less
salt-and-pepper noise, which may be the main reason why the superpixel-based
classification performed better than the pixel-based approach in this project. It
is also possible that the larger subset size (50 %) of positive samples used in the
superpixel-based approach better captured the positive class distribution than the
selected subset of positive pixels (10 %) used in the pixel-based classification. This
was however possible due to the reduced data set size obtained after the SLIC
segmentation. Superpixel-based classification thus offer benefits which can lead to
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improved classifications, and it is therefore recommended to further evaluate its
usage in habitat suitability studies.

4.2 Distribution of Fire Salamander Habitat Suit-
ability

The final prediction maps in Figure 3.2 and Figure 3.3 presents distributions
of land cover with suitable habitats for the fire salamander throughout Baden-
Württemberg, and these distributions appear to agree well with the distribution
of fire salamander observations used in this study. It is nevertheless possible
to identify areas predicted with high habitat suitability but without any fire
salamander observation in the nearby region, such as Kaiserstuhl and other tree
covered regions in the Upper Rhine Plain. This can occur under three different
scenarios:

(i) the fire salamander is present, but an observation has not been recorded,

(ii) the fire salamander is absent, but the area is suitable for the species, or

(iii) the fire salamander is absent, and the area is not suitable for the species.

Scenario ii may for example occur if migration barriers have restricted the fire
salamander from the area, while scenario iii is more related to limitations in the
modelling. These models were designed to predict how suitable the land cover in
an area is for the fire salamander, but also took into consideration the distance
to stream and river features (i.e. potential breeding sites). Since other factors
that may constrain the fire salamander distribution e.g. soil type, hydrological
conditions, pollution, etc. are not accounted for in the models, the final prediction
maps are expected to overestimate the true distribution of suitable habitats for
the fire salamander in Baden-Württemberg.

The models can further falsely predict an area as unsuitable for the fire salaman-
der. Inclusion of the Stream-River proximity layer in the models is expected to lead
to an overprediction of habitat suitability in general, since not all stream or river
sections are expected to offer potential breeding sites to the fire salamander. On
the other hand, areas without stream and river features but with aquatic breeding
sites of other types, e.g. forest road ditches, can be misclassified as unsuitable for
the fire salamander. Note that this can also be caused by erroneous registrations
in the OpenStreetMap data. The 5-fold cross-validation however indicated that
inclusion of the Stream-River layer in the models improved the predictions, which
motivates its inclusion even though it may come at the expense of misclassifying a
few areas as unsuitable.
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4.3 Suitable Habitats for the Fire Salamander in
Baden-Württemberg

An image classification approach to model habitat suitability provides less ex-
planation compared to models built with ecologically meaningful predictors, but,
some model exploration could still be performed. The main issue is to reduce the
influence of additional predictors while exploring the prediction in different land
cover types. For this analysis, the additional predictor set consisted only of the
Stream-River proximity layer, and its influence on the prediction was limited by
evaluating the prediction in LUCAS points within a relatively homogeneous range
of the Stream-River layer partial dependence plot. However, other methods must
be considered for larger sets of additional predictors.

The curves in the Stream-River partial dependence plots in Figure 3.4 suggested
a decrease in predicted habitat suitability beginning at around 200 m Stream-
River proximity which thereafter flattens out near 500 m. Ficetola et al. (2012)
analysed the results of six capture-recapture studies and found that 96 % of the fire
salamanders studied moved less than 200 m, 2 % moved distances between 200 m
to 500 m and 2 % moved longer distances than 500 m. Similar results were also
found in the more recent study by Kiss et al. (2021), while Hendrix et al. (2017)
reported slightly larger proportions of longer movements, with the longest distance
moved reaching 1.9 km. Although the partial dependence plots agree well with
these studies, it is likely that the partial dependence curves simply reflect the
method used to sample positives for the classification. This is because observations
of larvae in streams will result in a preference for Stream-River proximity values
below 300 m, which corresponds well with the curves in the partial dependence
plots. It should further be considered that the Stream-River proximity layer only
contain rough estimates of distances to the area around the nearest stream and
river feature registered in OpenStreetMap rather than known suitable aquatic
habitats for the fire salamander, and that distances are measured along a straight
line without taking any migration barriers along the path into account. The results
thus show that the models predicted high habitat suitability in areas within roughly
200 m of stream and river features, but, it is not clear whether this reflects fire
salamanders habitat preferences or rather the method used to sample positives for
the classification.

The histograms of predicted habitat suitability in different LUCAS 2018 survey
woodland points presented in Figure 3.5 indicate how the models predicted habitat
suitability in tree covered areas of different tree types. Woodland areas in the
LUCAS survey are defined as tree covered areas with more than or equal to 10 %
canopy cover. This definition does not agree with the definition of “other wooded
land” by the Food and Agriculture Organization of the United Nations (FAO), and
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the LUCAS woodland points are therefore more appropriate to consider as points
in tree covered areas. LUCAS points in which the canopy is composed of 75 % or
more broadleaved trees were classified with higher suitability values than points
with 75 % or more coniferous trees. This is in line with larger fire salamander
populations in broadleaved compared to coniferous forests as indicated by the larval
abundance analysis in Wagner et al. (2020). It emphasizes the importance of forest
management practices for conservation of the species, and especially conversion
from broadleaved to coniferous forest lead to decreased habitat suitability, which
may result in population declines as discussed in Schmidt et al. (2005). Mixed
forests appear suitable to the fire salamander on the other hand, since LUCAS
points with mixed tree types (canopy composed of 25 % or more of both coniferous
and broadleaved trees) were classified with high suitability values similar to areas
with broadleaved tree cover.

The model prediction relates with the more common land cover characteristics
found within the set of positive samples in the classification. Image classification
with high resolution imagery require high positional accuracy in the observation
set, which the fire salamander observations could not fulfil. This issue was handled
by sampling positives from tree covered areas near the observations which required
previous knowledge regarding the habitat preferences of the fire salamander habitat
as well as a large observation set. Sampling positives from tree covered areas near
fire salamander observations most likely include unsuitable areas in the positive
set, but, the more common land cover characteristics within this set of positives
are more important to the classifier and should thus obtain higher suitability
values. Assuming that the most common land cover types found in the positive
set indeed represent the most suitable habitat for the fire salamander, then, the
model exploration indicates that tree covered areas with a canopy composed of
more than 25 % of broadleaved trees are the most suitable terrestrial environment
for the fire salamander in Baden-Württemberg.

4.4 Image Classification for Habitat Suitability
Modelling

Habitat suitability models built with already available land cover classification
products require limited data processing and allows easy interpretations of rela-
tionships between species observations and land cover variables. However, these
models depends on the information classes used during the land cover classification
which may not correspond with the habitat of interest as previously mentioned.
Remote sensing based habitat suitability models counter this issue by including an
intermediate processing step in which more representative land cover products are
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derived (He et al. 2015). In contrast, the image classification methods applied in
this project remove this intermediate processing step and thus avoid introducing
any classification errors in the predictor variables. The drawback is that this results
in limited model interpretation since the predictors are not ecologically meaningful.

Image classification should be considered as a method to identify suitable
habitats in land covers directly from remote sensing imagery, whereas SDM is a
more general approach applied to model the potential distribution of a species
based on environmental predictors. Focusing only on habitat suitability in land
covers is thus a simpler problem, but, the models can still provide important
information for species conservation. For the fire salamander, the high evaluation
score obtained in all models indicated that land cover and waterway proximity
explained the distribution of fire salamander observations in Baden-Württemberg
well, thus, motivating image classification as a method to model fire salamander
habitat suitability. Image classification is further applicable for similar projects at
regional or local scales in which land covers suitability for the species is of interest
and when remote sensing imagery can provide more information than land cover
classification products.

4.5 Additional Considerations
The balanced random forest classifier was suitable for the classification due to
its ability to handle the high dimensionality and multi-collinearity in the data
set. No variable reduction was applied, but, the 5-fold cross-validation used in
the model selection process (see: Appendix A) indicated that inclusion of texture
and vegetation indices slightly improved the models, although, models based only
on Sentinel-2 bands resulted in high cross-validation scores as well. Inclusion of
texture and vegetation indices increase the dimensionality and multi-collinearity of
the predictor set, and the result of the cross-validation indeed show that random
forest is relatively insensitive to these issues and avoids overfitting the data, in
agreement with previous studies (Belgiu and Drăguţ 2016). However, feature
reduction is still suitable since it may improve classifications (Belgiu and Drăguţ
2016), and also reduces the data set size. This was not performed in the analysis
but is recommended for similar studies.

The 5-fold cross-validation further showed that Sentinel-2 data was most impor-
tant for the classification. This was expected since Sentinel-2 images contain more
information than Sentinel-1 scenes. Inclusion of Sentinel-1 scenes in this type of
classification is nevertheless motivated by the backscattered signal’s dependence on
the vegetation density (Dostálová et al. 2021). However, the applied IDAN speckle
filter reduced the spatial resolution in the images in order to counter speckle noise
and thus also reduced the possibility to identify smaller backscatter differences
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within forest areas. It is therefore likely that metrics from Sentinel-1 time-series
data as presented in Dubois et al. (2020) would have provided more useful informa-
tion to the classifier compared to the multi-temporal image set used, since it allows
speckle filtering to be applied in temporal rather than spatial dimension. This
requires additional data processing but may lead to an improved classification.
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5 Conclusions

Land covers in Baden-Württemberg were classified after their habitat suitability
for the fire salamander using pixel-based and superpixel-based image classification
methods. The classifications obtained higher evaluation scores than a model based
on available land cover classification products, which therefore motivate the use
of image classification in habitat suitability studies. The methods are applicable
for projects at regional to local mapping scales in which the focus is to predict
how suitable different land covers types are for a species. The superpixel-based
model obtained a slightly higher AUC score than the pixel-based model, it is thus
recommended to further evaluate superpixel-based habitat suitability classification
in future studies. Model exploration based on LUCAS 2018 survey points further
indicated that the models predicted high suitability in tree covered areas located
roughly 200 m or less from stream and river features, with a canopy cover of at least
10 %, and with more than 25 % of broadleaved trees in the canopy composition.
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Appendix A

Table A.1: 5-fold cross-validation statistics for predictor set inclusion.

AUC

Predictor Set Overlap Area Orbit 65 Orbit 108

Pixel-based classification

S1 0.806 0.794 0.812
S2 0.907 0.890 0.907
S1 + S2 0.907 0.890 0.909
S1 + S2 + VI 0.908 0.890 0.909
S1 + S2 + Texture 0.909 0.891 0.910
S1 + S2 + Texture + VI 0.91 0.891 0.910
S1 + S2 + Texture + VI + Stream 0.928 0.914 0.932
S1 + S2 + Texture + VI + Stream-Ditch1 0.923 0.909 0.927
S1 + S2 + Texture + VI + Stream-Ditch2 0.923 0.909 0.927
S1 + S2 + Texture + VI + Stream-River 0.929 0.914 0.933
S1 + S2 + Texture + VI + Stream-River-Ditch1 0.924 0.909 0.928
S1 + S2 + Texture + VI + Stream-River-Ditch2 0.924 0.909 0.928

Object-based classification

S1 0.817 0.800 0.825
S2 0.877 0.863 0.885
S1 + S2 0.878 0.861 0.887
S1 + S2 + VI 0.881 0.864 0.889
S1 + S2 + Texture 0.880 0.862 0.887
S1 + S2 + Texture + VI 0.883 0.865 0.890
S1 + S2 + Texture + VI + Stream 0.898 0.883 0.909
S1 + S2 + Texture + VI + Stream-Ditch1 0.897 0.880 0.907
S1 + S2 + Texture + VI + Stream-Ditch2 0.897 0.880 0.906
S1 + S2 + Texture + VI + Stream-River 0.901 0.884 0.908
S1 + S2 + Texture + VI + Stream-River-Ditch1 0.898 0.881 0.908
S1 + S2 + Texture + VI + Stream-River-Ditch2 0.898 0.881 0.907
S1: Sentinel-1 images; S2: Sentinel-2 bands; VI: vegetation indices.
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