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Popularvetenskapligt
sammanfattning

Trafiksikerhetsanalys ar nddvandigt for forebyggandet av dédsolyckor i trafiken.
I Europa, ar ambitionen ”Nollvisionen”, det vill séiga, ingen ska skadas eller
do6 i en trafikolycka. I rapporten anvinds olika distans mellan tvd fordon i
en interaktion f6r att uppskatta risken {6r krock eller néra till att krockas.
Déremot, dr distansen ett matt pa hur nira bilarna fir varandra, darfor gar
det inte att avgéra om sitnationen ar allvarlig eller inte.

Data som anvéandes ar samlat av cn forskningsgrupp hos avdclningen
Trafik och vig pa Institutionen for Teknik och samhille vid Lunds tekniska
hogskola. Lunds universitet. Sammanlagt innchaller datan 1512 observa-
tioner av en fyrvigskorsning. De situationer som analyserades var de med
tvéd bilar involverade pd en vigbana; en bil som kér rakt och den andra
svanger vinster. Tva olika distanser registrerades vid olika moment. Den
ena momentet dr den minsta distansen mellan bilarna i korsningen. Den an-
dra ar forsta momentet da Post Enchroachment Time beriknas (PET). det
vill siiga, momentet. d& forsta bilen limnar den andra bilens bana.

Syftet med rapporten ar att uppskatta risken att krockas med hjilp av
Extreme Virdes Teori (EVT) applicerad pa. trafikdata. Do modeller som
anvands for att modellera data &r Generalized Extreme Value (GEV) och
Generlized Parcto Distribution (GPD). Mctoderna de anvindes tillsammans
med &r blockmaxima och Peak Over Threshold (POT), respektive. Det biista
resultatet gavs av GPD tillsammans med POT dir sannolikheten for att det
blir en krock ar 0.0173%.




Abstract

Road safety analyses are required for the prevention of road accident fa-
talities. In Europe, the ambition is ”Vision Zero”. Data that was used is
collected by the research group Transport and Roads which is part of Depart-
ment of Technology and Society at LTH, Lund University. The dataset of
video-recorded traffic situations used in the study was limited to encounters
in which one motor vehicle turns left at an intersection and straight-passing
vehicle approaches. Distance between the cars were registered and used as
surrogate measure for the risk of collision, specifically, the Minimum Dis-
tance (MD) between the involved motor vehicles during an interaction and
Post Encroachment Distance (PED). The PED is the distance computed at
the moment when the first road-user leaves the lane of the second road-user.
The nearness to collision is of interest, thus, the probability that distances
are less than 0 need to be computed. '

Modelling was done with Generalized Extreme Value Distribution (GEV)
and Generalized Pareto Distribution (GPD) together with block maxima and
Peak Over Threshold (POT), respectively. The model GPD vielded the best,
results with probability of collision being .0173%.
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Chapter 1

Introduction

1.1 TImportance of Traffic Safety

Every ycar more than 25 000 people dic on the roads and more than 135 000
people are seriously injured in the countries of the European Union. The road
crashes are now the most common cause of death for children and young
people between 5 and 29 worldwide. The European Commission has now
set together the Road Safety Policy Framework 2021-2030. Its target is to
halve the number of fatalities caused by road crashes, as well as, halving the
number of serious injuries by 2030. The target is part of the long-term goal
of European Union, which is to move the nnmber of deaths cansed by road
crashes close to zero (" Vision Zero”) [1].

The results from Vision Zero have been very promising in several coun-
trics. In Sweden, the number of road accident fatality rate has decreased in
the recent years and are in compliance with Sweden’s Vision Zero. During
2018 the mumber of accident fatality was 324. Comparing it to 2020 which
has in total decreased with 120 persons, corresponding to approximately 37
percent [2].

Road safety analyses are required for the prevention of road accident fa-
talities. Previous research has relied on erash data. However, crash data has
been known to have a lot of limitations such as access to small samples of
data due to the data being reactive, i.e., more crash accidents are needed
which is contradicting to wanting to prevent accidents. Instead, it is more



beneficial to ntilize observable nou-crash events as a s wrogate or a comple-
ment to crashes [3]. Thus, surrogate measure of safety is instead used, which
i measire of how close the road-nsers are to eollision. The practicality is
the additional information; type of driver, type of vehicles, evasive maneu-
vering, type of interscetion at which near-to-collision happened. It is more
advantageous since the dataset available is much larger [4].

Extreme value theory (EVT) has been widely in applied science for over 50
years. The main objective of extreme value analysis is attempting to quantify
the behavior of stochastic processes at extreme val ues, i.e., unusually large- or
small values. The analyses usually require estimation of the probability of the
more extreme values that haven’t previously been observed |5]. The extreme

alue theory provides a framework for extrapolation. which is suitable for
application in Traflic Road Safety. Viewing the crash accident as extreme
values, appropriate measures can be used for quantifying the frequency of
the evash dafa.

1.2 Surrogate measures

In this veport different surrogate measures of road crashes are used. The
different indicators that will be introduced are minimurm distance, post en-
croachment distance and Delta-V. The former two are surrogate measures
of the nearness of collision. while Delta-V are often used as an indicator of
severity of collision. The indicators are defined as:

¢ Minimum distance (MD). is the smallest distance between two ve-
hicles in an interaction. For example, Situation 1 and 2 are moments
during an interaction and the smallest distance of these two is the min-
imum distance (see in Figure 1.1).



| Situation 1 Situation 2

| MD=miin S,

Figure 1.1: Minimum distance between two vehicles.

¢ Post encroachment distance (PED) is distance between the in-
volved vehicles at the moment when the first vehicle (who reached the
conflict area first) is leaving the avea of potential collision, when PET
(Post Encroachment, Time) is computed. Given there is two road-users
inan interaction, The PET indicator is the time between two nmoments,
the first moment is when the tirst car leaves the path of the seeond car,
and the other moment is when the second car arrives at the path of the
first car (Figure 1.2) [6].
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Figure 1.2: Mlustration of PET [6].

¢ Delta-V (Ar), the change of velocity during a crash. Delta-V will
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be defined helow. Assume there are two road-users; user 1 and user 2.
Let my and me denote their corresponding masses with v; and vy as
speeds. In an clastic collision, as shown in Figure 1.3, Delta-V’s can be
computed for both road-users as,

iy
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where Av; and Av, are Delta-V’s of road-user 1 and road-user 2, re-
spectively [3].

(m;+m;)YPaster

Figure 1.3: Ilustration of Delta-V [3].




1.3 Problem formulation

In the recent years, EVT has been found to be useful for predicting the
risk of accident in road safety analysis. Temporal surrogate measures are
mostly used in road safety, but has been fonud to result in some coutrary
effects. Another surrogate measure, which does not have this problem is
distance. Additionally, the distance can be measured free from the need of
a collision course [7]. In this thesis, the indicators MD and PED and the
corresponding Delta-V’s will be analyzed with EVT to better describe road
safety. The related data are collected by a research group at Transport &
Roads which is apart of the Department of Technology and Society at LTH,
Lund University. The purpose is to assess the risk of collision using GEV and
GPD. The method used in combination with the models are block maxima,
and peak over threshold. The following questions that will be attempted to
be answered are:

e Is there a significant correlation between MD and PED with its Delta-
Vig?

o Are the EVT models vaild for modelling the given safety data?

10




Chapter 2

Theoretical background

2.1 Extreme Value Theory (EVT)

Extreme value theory deals with cxtremc valucs in data. The two EVT
families that will be introduced are GEV and GPD. In GEV, the aim is
to model maxima (or minima), while GPD models excess (or excess loss).
Methods that work well with these models are block maxima and POT,
respectively.

2.1.1 Generalized Extreme Value Distribution (GEV)

In extreme value theory it is often of interest to analyze the statistical be-
haviour of

M, = max{Xy, ..., X,}

where 1 € N and X7, ..., X,,, is a sequence of independent random variables
having common distribution F. The distribution of M,, can be derived as,

P(M,, < z) = {F(z)}" 2.1

In practice. the distribution F is usually unknown. The distribution function
can be estimated from observed data. The problem with this method is that
small discrepancies in the estimate of F can lead to large discrepancies in F™.
Instead, if F' is assumed to be unknown, a possible way to to approximate the
distribution of A/, is to use approximate families of models for ™. By usual
practice, observe the behavionr of F™ for n — oc. Due to the asymptotic

11




distribution being degenerate, a linear renormalization of M, is performed,
given by,

M, = b,

a’ﬂ

M=

where {a,} and {b,} are sequences of constants. They are chosen, such that
it stabilizes the location and scale of M} as n increases.

Theorem 1 If there exist sequences of constants {an > 0} and {b,} such
that

(2%

P (M < z) - G(z) as n— oo (2.2)

for a non-degenerate distribution function G, then G is a member of one of
the following families:

1. Gumbel distribution

G(z) =exp{—exp {— <z;b>}},-oc <2<

2. Fréchet distribution

0, 2<b
o= {p (=) 2>

8. Weibull distribution

Oz) = {exv{— - (=)}, z<b

1, z>b

for parameters a > 1), b and, in the case of families 2. and B, 0> 0.
The the familics can be wnified into a single fomily of extreme vcalue dis-
tribution called the Generlized Extreme Value (GEV) family, given by,

G(2) =exp{— [1+5(Z;”)J_1/€} (2.3)

12




defined on {z : 1+ &(z — p)/o > 0}, where —oc < i < 00,0 > 0 and
—00 < § < 00. Different values of & corresponds to any of the three models
mentioned above; if £ > 0 the model corvesponds to a Frechet distribution
and if £ < 0 Wetbull distribution and if ¢ = 0, the model is the Gumbel
distribution. In the casc of the Gumbel distribution, it can be simplificd to,

G(z):exp{—exp [— (z”)” —00 < 2 < . (2.4)

g

The GEV is commonly used in extreme value theory [5].

2.1.2 GEV fitted to negative data

Instead of being interested in the behavior of the maxima. the minima is
sometiines a more interesting case. Let M, = min{X, ..., X,,}, where X;
denotes the independent and identically distributed random variables. Let

Y, = =X, fori = L,...,n, the small valucs of X; now corresponds to the
large values of Y;. If M, = min {X;,...X,,} and M, = max{Y},...,Y,}, then
M, = —M,. The proof is given by the following,

Pr{ﬂv-*[,,, <z} =Pr{-M, <z}
=Pr{M, > -z}
=1-Pr{M, < —z}

rm{[rre(222)] )
e fi-e(=2)] )

on {z:1—-¢&(z—p)/o > 0}, where fi = —u. The derived distribution is
called the GEV distibution for minima. It can be restated formally as the
following theorem [5].

Theorem 2 [f there exist sequencese of constants {a, > 0} and {b,} such
that

Pr{(l\:/" —b)/a, <z} = @(z) as n— oo




Jor a non-degenerate distribution function G, then G is a member of the GEV
family of distribution of minima:

dor-1-en-[i-o ()] )

defined on {z : 1 — §{(z — i)/o > 0}, wherc —00 < u < 00, & > 0 and
—0o < €< 20 [3].

2.1.3 Block Maxima Approch

The method that are usually used together with GEV are block maxima or
block minima. In the case block maxima, let # be the size of the dataset,
The data can be blocked into & blocks with block size m = Ll

In cach block the maximum will be taken, resulting in the sequence

Aj{k;l)) ey iW(k‘k).

The sequence will then be fitted to a suitable GEV distribution. The pro-
cedure for block minima is similar, but the minimum will be taken in each

block given as,
m(k,D, m(k,k).
which is equivalent to,

_M(k’l), cery _M(’C,k)[5]'

2.1.4 Generalized Pareto Distribution

Another distribution that is not as wasteful as GEV is the Generlized Pareto
distribution (GPD). The distribution is considers the random variable X over
a chosen threshold u, i.e., (X — u|X > u).

14




Theorem 3 (Generalized Pareto Distribution) Let X, ..., X5 be a se-
quence of independent random variables with common distribution function
F, and let

M, = max {X;, ..., X, }.

Denote an arbitrary term in the X; sequence by X, and suppose that F sat-
isfies the equation 1, so that for large n,

P{M, <z} =~ G(2)

G2 _eXp{_ {1%(2;“)]-”&}

Jor some p.o >0 and . Then, for large enough u, the distribution function
of (X —u), conditional on X > u, is approzimately

-1/
Hy)=1- <1+£&—y>

defined on {y 1y >0 and (1+4£&y/5 > 0)}, where 6 = o + E(u — 7) [5].

where

2.1.5 Peak over threshold (POT)

A framework that are usually used together with GPD is the Peak Over
Threshold method. In this method the extremes are chosen with regards
to a given high threshold. Given independently and identically distributed
measurments z,...,z,. The method considers the extremes events to be
chosen according to a high threshold wu, such that we the exceedences are

{i 1 w; > u}. Labelling the exceedences by w1, ..., 2%, where k is the munber
of exceedences, the threshold excesses can be defined by y; = z; — u, for
J =1,k In this method choosiug the threshold is erucial. Too low

a threshold will lead to the violation of the asymptotic assumption, thus,
resulting in high bias, while a too high threshold will result in the model
using too few data and causing high variance instead. In this report, the two
methods used for choosing a suitable threshold are the mean residual plot
and plotting the parameter estimates against different thresholds.

15




Mean residual plot

The mean residual plot is created by plotting the mean of the GPD. Assume
that GPD is a valid model for the exeess over a chosen threshold g derived
from the following stochastic sequence X1, ..., X,,. The mean of the GPD is
given by,

Uun

1-¢

The assumption that GPD is a valid model for the exceedences over g,
indicate that it should also be valid for the thresholds U > U,. If ¥, =
Oup + &u, then

E(X —u|X > uy) =

E(X —ulX >u) = 1”_“€ (2.5)
_ Ty t 6‘” c
== (2.6)

Therefore, for u > g the conditional probability E(X —u|X > u) is a linear
function of « and also the mean. Plotting the locus of points:

{(’Ll-, ﬁ Z::ul Ty — u); u < Imaac}

This should make a linear function.

Parameter estimates against different thresholds

The shape parameter ¢ is indepeundent, while the scale paraneter o, is de-
pendent on ¢ and denoted by:

Ty = Oy + E("Ll - uU)
After the reparameterization, the scale parameter is written as:
o' =0 —¢u

aud is constant with respect to w. Accordingly, the estimates & and o* should
be constant above ug if ug is a suitable threshold [5].

16




2.1.6 Conditional probability to fitted negative data

Instead of excess, Fori = 1,...,n, let X; = — X, be a sequence of independent
stochastic variables. Given a threshold 4 = —u, for @ < 0. Fitting GPD to
X — @, we have,

P(X > a+2|X > i) ~ GPD(o, &),z > 1,

which can be rewritten:
1-F(i+x)

P(X >z) = T—F(3)

where F is the unknown distribution function. Knowing the distribution of
X, we have that,

B e —a\] V¢
P(X >z)=ny [1 + £ (—)J x> U
a
where
ma=P(X >4) = P(-X > —u) = P(X < u)

whic!l can be seen is the same number of exceedences over the threshold @
for X. It follows from P(X > z) that

P(=X>2)=m [1+£<;@>J_1/é, O<z<u  (27)
P(X < —2) = g [1 2 (%‘—”)J _l/s, —r<u  (28)
PX <y)=mn; [1 +£ (u ; y)} o y<u (2.9)

for 0 <y <wu[5].

2.1.7 Lower- and upper endpoint

In extreme value theory, the endpoint is also of interest and can tell you if
there is a threshold for the data. For the GEV distribution, the endpoints
are estimated by u — é, the following points decides if it is a lower- or upper
endpoint:

17




e upper endpoint if £ < 0.

e lower endpoint if £ > 0.

This leads to violation of the standard asymptotic bechavior and leads to the
following results:

e maximum likclihood has usual asymptotic propertics for ¢ > —0.5

e for -1 < ¢ < —0.5 maximum likelihood estimators are possible to
estimate, however does not have the standard asymptotic behavior

e for { < —1 the estimtors arc most probably not possible to cstimatc

On the other hand, GPD has an upper bound, o/|€| over the threshold
v > 0. Indicating that the original variable has an upper endpoint g+ o/|€|.
However, there is no endpoint for £ > 0. By Equation (2.9). if £ < 0, then it
holds that

: } 1/lel

P(X <u—y)= P(X <) [1 ~ 1t (2.10)

for 0 <y < o/[¢]. Reforming u —y = z to y = u— 2, Equation (2.10) can be
rewritten as

1/
P(X <z)=P(X < 2) {1 - [EIU HJ

for 0 <u -2z < o/|¢]. The lower endpoint is given by

U— =
€]

siuce it Liolds that u — ﬁ <z<ulj

2.2 Basic Statistics

This section will introduce necessary basic statistics. Kendall’s tau is men-
tioned as a measure of linearity between two variables. The estimation of
model parameters are done by using maximum likelihood method. In order
to make inference, the profile likelihood and delta method was used to com-
pute the confidence interval. Lastly, model diagnostics is introduced as a
wethod for quantifying models.

18




2.2.1 Kendall’s tau

In order to see if there are any linearity involved between variables. the
Kendall’s tan was chosen. In particular, the measure is more robust to ex-
treme values and to non-linear data. Assume X and Y are random variables
sampled from a bivariate distribution, Kendall’s tau is defined as

TxXy = E{sign(X] . Xz)blgn(}/] — Yrg)}

where (X1,Y1) and (X3, Y3) pairs of variables sampled independently from
the same population [§].

2.2.2 Maximum Likelihood Estimation

A general estimation of an unknown paraimcter # is the maximum likelihood.
Let 24, ..., z,, be independent observations of a random variable X with prob-
ability density function f(x;#). The maximum likclihood method is based
on the likelihood function and defined as,

L(6) = [[ /i)

The maximm likelihood estimator of ¢ is the one that result in maximizing
the likelihood function, i.e.,

0= ax L(0)

where O is the parameter space. By convenicnee the log-likelihood function
is usually used to compute the estimator. It is computed as,

16) = Z log f(x;6).

It can already be seen that the log-likelihood is a sum. which is much easier
to compute than a product [5].

2.2.3 Profile Likelihood

In inference, another method is the profile likelihood. Defining the profile
log-likelihood for §;, we have,

gp(gl) = IDB'(}X (/(91-, 0_1‘).

19




where ¢(f,,6_;) is the log-likelilood of #_;, which is the set including all ¢
excluding 6; [5].

2.2.4 Delta Method

In some situations, a parameter f; might not be of interest, and instead
some function 6, = g(#,) that also has a different dimension. Let 6, be a
d-dimensional parameter with approximate variance-covariance matrix V.
Given an estimator and the large-sample maximum likelihood, which will
be denoted 8. Assuming ¢ = g(f) is a scalar function, then the maximum
likelihood estimator of ¢g = y(fy) satistics

o ~ N(¢o, Vy)

where
V=V V3V
with
o  ae]"

evaluated at 6, [5].

2.2.5 Confidence interval

In inference theory, a common practise is to compute the confidence inter-
val. Let 6 be a parameter belonging to the paranieter space ©. Denote the
confidence interval, [y(X). with a confidence level 1 — . Let z,, ..., z, be the
observation of a random variable X ~ N(u,0?), with paramcters g and o.
Computing ¢ as an estimator of o, the confidence interval is given computed

as,

N G
Il—‘ = (’L‘ + )\G/QW) '
where £ is the estimated mean, A some normal quantile and o the sigificant
level [9].
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2.2.6 Model Diagonostics

There are different graphical techniques for evaluating the model fit. In this
thesis the two that will mention are the probability plot and the gnantile
plot. Let the ordered sample of the independent observations x1,z., ..., 2,
be,

) S Te) < S T

with an unknown distrjbut.ion function F. The estimated dis~tribution func-
tion will be denoted F. Plotting the probability plot for F', we have the

plot:
(v (55)- -1

and the quantile plot arc formed by

(7 (i) o1}

Assuming that F is a reasonable estimation, the quantile plot should approx-
imately be a unit diagonal [5].
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Chapter 3

Data Analysis

3.1 Data Description

The datasct comes from the rescarch group Transport and Roads which is
part of Department of Technology and Society at LTH, Lund University.
Records from year 2010 of a regular signalized intersection with two-phases in
Minsk for two days (between 6AM and 9PM) was used to produce the dataset.
Traffic interactions of two vehicle on one lane were registered. Specifically, the
situations where there are two road users driving in the opposite direction
and one wants to turn left and the other is driving straight. Each road
user corresponds to a data point in the dataset, and in total the number of
observations is 1512. Note that no accidents occurred during the recording,.
Computation of ND and PED was conducted by Transport and Roads using
the program Pyramid. Minimum distance was computed at a moment. when
distance (pink linc) between two vehicles is the smallest during the interaction
of two vehicles (Figure 3.1). The PED is computed at the first moment of
PET. In this casc it is the red car leaving the dotted yellow trajoction of the
yellow truck (Figure 3.2). At these two different moments the Delta-V’s are
computed and denoted Delta-Vyp and Delta-Vpgp.

22




Figure 3.1: Mininmm distance (MD).




Scatter plots and histograms of -MD and -PED are shown in Figure 3.3.
The descriptive statistics of Delta-Vyp, MD, Delta-Vpgp and PED are shown
in Table 3.1. Aceording to the table, MD lLas a minimun which is cequal
to zero (and also the only one in the dataset). This is caused by some
numcrical approximation by the program. However. it is also important to
be reminded that the minimum distance is an indicator of the nearness to
collision and does not imply anything about the severity of a collision. Thus,
for minimum distances equal to zero, an accident might not have happened
since the severity might be low. It can be noted that the mean of PED
is higher than the mean of MD, which could indicate that the values are
generally higher in PED.

Table 3.1: Descriptive Statistic
Indicator MD  Delta-Vyy;, PED  Delta-Vpgp,

Min 0 0.56 1.76 0.54
Max 40.72 16.19 95.14 20.93
Mean 12.65 7.57 37.33 8.75
Median 10.99 7.84 34.4 7.3

Stdev 7.66 2.8 18.63 4.56
Skewness  0.97 -0.13 0.42 0.45
Kurtosis  0.74 0.02 -0.61 -1.08
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Figure 3.3: Scatter plots and histograms of MD and PED.
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Intuitively, the indicators winimmun distance and Delta-Vyp should be
correlated. This means that a binary model might be appropriate. The closer
the vehicles are to one another, the lower the velocities since the drivers tend
to brake to avoid a potential car crash. In other words, lower minimum
distance should result in lower Delta-Vygp. Morcover, drivers were scparated
into drivers going straight and left turning drivers (Straight and Left drivers)
to sce if there was a difference. Observing the Delta-Vin plotted against
-MD for all the different groups in Figure 3.4, it can be noticed that most
of the points are concentrated between the distances —20m and Om, and
between the Delta-Vyp’s Om/s and 10m/s. There does seem to be some
kind of pattern in data, and there are some outliers at around -MD equal
to -40m. The Kendall’s correlation deemed appropriate to compute. which
is shown in Table 3.2. All the p-values indicate that there is a, significant
negative correlation for all drivers, and the groups Straight- and Left drivers.
Left drivers had higher absolute value of the correlation with its 0.269 as
comparcd to 0.0786 for Straight drivers, which could be due to Left drivers
breaking more when turning at the intersection. This implies that a binary
modcl indced scems to be a suitable model for this datasct.

Table 3.2: Kendall’s rank correlation tau for -MD and Delta-Vyp

Type driver | 7 p-valuc
Straight & Left [ -0.172 < 2.2.10°®
Left -0.269 < 2.2.10716

Straight -0.080 0.00121
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Plot Delta-V against -MD for all drivers.
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For the -PED and Delta-Vppp, the Straight drivers a linear pattern conld
be noticed (see Figure 3.5) and the correlation is significant with negative
value equal to -0.324 according to Table 3.3. An explanation to loft drivers
not having a significant correlation could be due to the fact that most of the
velocitics arc being registered when the drivers arc leaving the collision coursc
at a low speed. Thus, binary model for Straight drivers is most suitable.
However, it could also be of interest to model collision for Straight & Left
drivers, since there was still a correlation and Left drivers are also of interest.
Even though the binary model can better assess the frequency of accidents,
for this thesis it was decided that only the nearness of collision will be assessed
(i.e. modelling of distance). The binary problem will be left for further
research.

Table 3.3: Kendall’s rank correlation tau for -PED and Delta-Vpyup

Type driver | 7 p-value
Straight & Left | -0.135 3.56.10 ©
Left -0.013  0.5996
Straight -0.324 <2.2-10716
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3.1.1 Modelling of the road safety data
Modelling with Generalized Extreme Value Theory

Maxinmum block method is conducted over the negated data of the mininmin
distance. The number of blocks to use for the method is chosen by iterating
over different block sizes and choose the once that performed well according
to the diagnostic plots. Resulting in the number of blocks to be 45 for -MD
and 80 for -PED. Estimation of the model parameters with a 95% confidence
interval are shown in Table 3.4. In the table, the local variable 1 is estimated
for negated data. Observing that £ < 0, there exist an upper bound. meaning
that there is a lower endpoint of the original data computed by.

a

lel

where ji = —p. Using the values from Table 3.4, the lower point of MD and
PED are computed as —1.278 and —0.168. respectively, which means that
the distribution covers all the observations.

fi—

Table 3.4: Parameters of GEV.
LB MLE UB

Indicator End point | #Blocks

© -3150 -3.563 -3.975
-MD | o 0987 1279 1571 1.278 45
£ -0453 -0.264 -0.075

i -16571 -15.074 -13.576
-PED |0 5.181  6.266  7.350 0.168 30
€ -0547 -0411 -0.275

Diagnostic plots are shown in Figure 3.6. As can be seen the quantile
plots aud the probability plots for both indicators are well aligued ou the
diagonal line, indicating that the GEV distribution might be appropriate for
this datasct.
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3.1.2 Modelling with Generalized Pareto Distribution

An important part of the GPD is the threshold selection. The mean residual
plot (MRL) of -MD and -PED (Fignre 3.8 and Figure 3.9) shows that the
graph is curved until approximately —5 and —15, and that there might be
somc lincarity for larger valucs of the negated data. The parameter threshold
plots (Figure 3.10 and Figure 3.11) further convinces us that a threshold of
=95 and —15 are appropriate choices. It is also important that the lower
endpoint is close to the smallest datapoint in the dataset.

Moan Residual Life Plot Mean Residual Life Plot
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Figurc 3.8: Mcan residual plot for -MD. The left plot is over all threshold
and the right plot is a zoomed in version over a smaller interval.
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Figure 3.10: Parameter thresholds for -MD.




threshrange.plot(x = var.val, r = c(-5, -20), type = "GP", nint = 20,
na.action = na.fall)
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Figure 3.11: Parameter thresholds for -PED.

The diagnostic plots of the chosen model is shown in Figure 3.12. The
quantile and probability plot seem to be aligned well on the diagonal line,
which indicate that the model is appropriate. Estimating the parameters of
the GPD model, the values are shown in Table 3.5. Furthermore, computing
the lower endpoint from the table results in the value -0.420 for MD and
-0.478 for PED, which covers all the values of the observations.

Table 3.5: Parameters of GPD.
Indicator LB MNMLE UB | End point | Threshold

1.757 2.069 2.381

a
g ¢ 0467 -0.381 -0206| O4%0 -
o 4804 6.044 7.283 :
-PET £ -0.538 -0.390 -0.243 L e
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3.1.3 Results

The nearness of collision could be described by the probability P(Z < 0),
where Z is a randown variable for distance. In this section, the results are
generated using the different models. Computations of a 95% confidence
using delta method and profile likelihood arc presented. The delta method is
quite straight forward, on the other hand, the profile likelihood is a bit more
complicated and also requires some optimization algorithims.

Confidence interval using delta method for GEV
For & # 0 the GEV distribution for excess loss is computed as

res=eel-p(A)])

on {z : 1~— €(z — p)/o > 0}. Let p(8) = exp{—g(0)}, where () =
[1 £ (Z—;"i)]_l/g and 0 = (u.0,€).

—_|op dp op
A _[J;L’E’df}

_|dpdy bpayg 5'1)()'_9
69’ 8y b’ By 5E

By some computation the derivatives are given by.

i =cxp (9(6))

og

dg 1 +1

2 (-2) wo
e (—";“) (9(0))"

bg [1 . z—jt a
&fg‘z‘“[“f( - >J+E(3—ﬁ-ng(6)

Using the delta method we have that.

V(p) = Ap"Volp
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where V is the covariance matrix for the parameters. A 95% counfidence in-
terval was computed for the point estimate, P( M, < 0), for the GEV models
shown in Table 3.6. The delta method produced negative lower houd, which
could mean that the log-likelihood function is skewed and certainly not suit-
ablc for this casc.

Table 3.6: Confidence intervals using delta method are in scale 1072,
Indicator | LB P(M, <0) UB

MD -2.514 0.644 3.803

PED ’ -0.081  0.00174  0.084%

Confidence interval using profile-likelihood method for GEV
For & £ 0, GEV fitted to a winima is compnted by,

P(M, < z)=1—exp {_ {1 i (z;ﬂ)]‘l/i}

ou{z:1-§(z—ji)/o > 0}. Differentiatiug the distribution function we have
the following density function,

02 {5 )

Computing the log-likelihood function,

E(z:ip,0,6) =) log f(2)
=1

=—mlogo— (1+ 1/€)§mjlog [1 +¢ (Zi;ﬁ)} (3.1)

i=1

m ‘35 = -1/¢
e (354

: o

=1

provided that
-y — ﬁ. ) ~

1—|—§( )>0,forz=l,...m
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Let p = P(M, < z) and solving for s, we Lave
. T e
p=g (1= [log (1= m)]¥). (3.2)

Replacing £ in (3.1) with (3.2}, the new log-likelihood is now dependent
on the parameters p, o and ¢ and can be expressed as {(z;p,0,€). The
parameters are optimized using existing optimizing algorithms in R. Using
this wethod a confidence interval was computed for p, = P(Mn < 0). The
profile log-likelihood for the model is shown in Figure 3.14. The two red
interseetions correspound to a contfidence interval for p. The function used to
plot this graph is in Appendix A.1.1.
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Figure 3.14: Profile likelihood of GEV. The blue horizontal line is the max-
i of the graph and the red horizontal line is x?. The two vertical line
intersecting x7 correspond to a 95% confidence interval.

Observing the profile likelihood plot, the distribution is skewed and the
MLE is closer to the lower bound. The resulting confidence interval is shown
in Table 3.7. Comparing to the delta method the lower bound is positive,
which means the MLE is significant. Finthermiore, it is non-zero, which
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might provide more information for future predictions. The table shows the
confidence interval for the point estimate using PED. For this case it is a bit
problematie since the lower bound is 0. Tt is unlikely that future predictions
are zero. An explanation is that GEV models might not be suitable for this

indicator.

Table 3.7: Confidence intervals using profile likelihood method are in scale

10-2. -
Indicator | LB P(A, <0) UB

MD . 0.00646 0.644 5.091

PED g 0.00174  0.0150

Confidence interval using delta method for GPD

Let 6 = (0,&) and
_ Y
9(y;0) = 17 {1 +¢& <u)]
a

Differentiating ¢ with respect to the paramcters we have

@ I ) [1 e (u_y>J—1/£—1
’ o

oo o

5—‘(/— 1 n—-yy ol
o€ B ':52 ln( o ) E(u — y):l nug(O',{‘)

Similar to before, using the delta method we have,

_[ég dyg
(24

the variance computed as,
V(z) = Ag™VeAg

where V' is the covariance matrix for the parameters. The resulting confidence
interval for the GPD models are shown in Table 3.9.

Table 3.8: Confidence intervals using delta method are in scale 1072,
Indicator | LB P(M, <0) UB
-MD -0.186  0.0173 0.221
-PED | -0.0578 0.00143 0.0607
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It cau be noticed that the contfidence interval, just like GEV, also has
“negative lower bound. This further confirms that the delta method is not
suitable to compute the confidence interval for the point cstimato.

GPD: Confidence interval using profile likelihood
The minima of the GPD distribution is given by,

u—y -1/
P(ZSZ)=77;L':1+§(—O_L)J Yy <u

let p = P(Z < ). and solving for o,

o= (u—2)E (%E—l)—l, (3.3)

Computing the profile log-likelihood,

Uz;0,6) =m(logz —logo) — (1/¢€ +1) Zlog [l +£ (u . y)J (3.4)
for {z: 1+¢(%%) > 0}. Replacing o in (3.4) with (3.3), the profile log-
likelihood will now be expressed as #(z; ¢, p), i.e, it is now instead dependent,
on the new variable p. By usual optimization practice, the log-likelihood
function will be optimized with respect to the new variables. The profile log-
likelihood plot of GPD fitted to -MD is shown in Figure 3.15. Analogous to
GEV, the two red intersections correspond to a 95% confidence interval. The
algorithm used to plot the profile log-likelihood and compute the confidence
iuterval is shown in Appendix A.1.2.
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Figure 3.15: Profile likelihood of GPD. The blue horizontal line is the max-
imum of the graph and the red horizontal line is x3. The two vertical line
intersecting x?7 correspond to a 95% confidence interval.

The values of the confidence interval can be seen in Table 3.9. The lower
bound of the point estimate for -MD is nonncgative and might provide in-
formation about future prediction. On the other hand the point estimate of
-PED has is zero and might not be as useful.
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Table 3.9: Confidence intervals using profile likelihood method are in seale

1072

Indicator ’ LB P(M, <0) UB
MD 0.000698 0.0173 0.115
PED 0 0.00144 0.109
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Chapter 4

Conclusions

L this thesis, the purpose was to model risk of collision in tratiic using
traffic safety data. The situations of interests were of encounters between
two drivers in a four-way interscction. Extremce valuc theory was applicd
to the data, specifically the families Generalized extreme value distribution
(GEV) and Generalized Pareto distribution (GPD). For the models different
methods were used to model the data. Block maxima was used together with
GEV and peak over threshold (POT) was used together with GPD.

All modelling was done over negated MD and PED. Analyzing the di-
agnostics plots, the GEV and GPD model provided appropriate models for
analyzing the nearness of collision. Based on these models the probability of
the minimas of the MD and PED less than zero were computed. Using GEV
models the probabilities for MD and PED were computed as ~0.644% and
~0.00174%, respectively. The point estimate using PED were much lower,
which sceis reasonable since the series included more higher valucs than MD.
Computing the point estimate using GPD models, the values were ~0.0173%
for MD and ~0.00144% for PED. The point estimate for MD differed quite
a lot, which means the GEV model might not be suitable for this indicator.
Both GEV and GPD for the points estimate using PED were quite similar.
Overall POT with GPD provided better models.

Additionally, different methods to compute the confidence interval of the
point estimate were tried. The delta method resulted in negative lower bound
and might not be accurate. Alternatively, the profile likelihood method was
implemented. The computed coufidence interval was nonnegative. In partic-
ular. the point estimate of GPD model for MD had a non-zero lower bound,
which might provide inforation about future prediction. However. with




GPD on PED, the lower hound of the point estimate resulted iu zero, im-
plying that the point estimate might not be significantly different from zero.
Intuitively, it is nolikely and to improve the results would require that more
and smaller values are in the data. It can be concluded that the nearness
of collision is best approximated by GPD on the MD with the probability
being ~0.0173%. Whether the percentage is reasonable or not, remains to
be verified with another datasct.

In this report, merely the nearness of collision was measured. It does
not account for severity, which is an important aspect of road safety. For
example, if two vehicles have a velocities close to zero, there might not be
any implication of danger. analyzing the correlation, there were a significant
correlation for both ND and PED to Delta-V. Thus. for further research, a
binary model including Delta-V as a surrogate measure for severity wounld
provide more interesting result for traffic safety.
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Appendix A
R Codes

A.1 Confidence interval

The two different methods for computing the confidence interval for GEV and
GPD are the delta method and profile likelihood method. All the listed codes
are documented and accessible from https://github.com/machstat/evt.git.
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A.1.1 Confidence interval for GEV

Delta method function

The function gev.delta computes a 95% confidence interval of a point csti-
mate of GPD using the delta method.

gev.delta <- function(p,z,theta, V) {
4 parsmaters
mu <~ thetal1l
sgm <- theta[2]
zi <- thetal3]

4 g.theta
g.theta <- (1-xis((z-mu)/sgm))"(-1/x1)
dp.g <- exp(-g.theta) # derivative of p urt. g

# differenciate g.theta wrt. parametears
dg.m <- (-1/sgm)u(g.theta~(1+x1))

dg.sgm <- (-(z-mu)/egm~2)+{g.theta~{1+xi)]

dg.x1 <= ((1/x172)*log(l-x1+((z-mu)/sgm))+sgn/(x1%(z-mu)))+g.theta

A p differentiated wrt. different parameterws
dp.mu <- dg.mwdp,g

dp.sgm <- dg,sgm*dp.g

dp.xi <~ dg.xl+dp.g

t T T lelva mniliod
p-delta <- ec(dp.mu,dp.sgm,dp.x1)
V.p < p.delta %w% matrix(V, nrow=3,mncol=3) %s¥p.delta

# confidence interval
LB <- p-1.564(eqrt(V.p))
UB <~ p+1.98¢(egqre(V.p))

CI <- data,frame("LB"=LB,"UB"=UB, “MLE"=p}
retura (CI)
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Profile method

In order to produce a confidence interval for GEV, two functions were cre-
ated; geo.pplik Minima and geo.pprof Minima. The geopprof Mindma nses
gev.pplik Minima to compute the profile log-likelihood and generates profile
likelihoods over a given interval.

I| gev.pplikNinima <- function(x. theta, z0, p0) {
2 # initial guessas
3 sgm <- theta[1]
4 i <- thetal2]
5 muTilde <- 26 + sgm/xi = (( - log{Ll - p0))°( - xi) - 1)
6
7l R normaliiziog
3l vy <= (x - muTilde)/sgm
gl y <=1 - xi sy
10
11 # negative log-likelihood

if(is.infinite (muTilde) || egm <= 0 || any(y <= 0))

1 <- 10°6

14 else 1 <- langth(y) # log(sgm) + aun{y"(-1/xi)) + sum(log(
IR ¥)) v (1/x1 + 1)
16 return(l)
7|3
18
19| gev.pprofMinima <- function(x, theta®, 20, p.low, p.up, nint = 1000, conf = 0.95, pplot = 0) {
20 1 <- pumaric(nint)

21 p <- seq(p low, p wp, length = nint)
22 thetal <- thaetaO[2:3)

24 » optimizing algorithm for the pnrameters

25 for(i im 1:nint) {

26 po <- pli]

27 opt <- opbtim(par = thetald, fn = gev.pplikMinima, x = x, p0 = p0, z0 = 20)
28 thetal <- opt§par

29

an ve

31 1[1] <- opt3value

34 ¥ MLE ot probability
AR mle.p <- pluhich.max(-1)]

36

ar # maximum value of log-likelihood functien
a8 plik.max <- mex(-1)

39

40| & quaniila af chi-equave

41 q <- plik . max - 0.5 * qchisq(cont, 1)

M} 4 ?ind the index 5f -q in 1 for lower bound (LB, aud upper bound (UB}
+H plik.lb <- 1[1 <= -q 1[1] ## biggar values
45 ind.1b <- mabch(plik.1lb, 1) #d# 21

17 plik.ub <- 1[1>=-q & p>mle.pl[1]
48| ind.ub <- patch(plik.ub, 1)

30| & sonfidence interval
al ci.lb <- plind.1b]
2| ci.ub <- plind.ub]

M # plonting of the values

|  if (pplet){

S plot{p. - 1, type="1", xlab = “Probability", ylab =

o " Profile Log-likelilbood")

33 abline(h = plik.max - 0.6 » qchisq(conf, 1), col = "rad")
34 abline(h = plik.max, col = 4)

30 abline(v=ci.lb, col="rad')

G1 ablina(v=c¢i ub, col="red")

62 }

G3

ul return(data.frame ("LB* = ci.lb,"UB" = ci.ud, "MLE" = mle.p))
nn| 3
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A.1.2 Confidence interval for GPD
Delta method

The function gpd.delta shown in the code snippet. down helow compntes a
95% confidence interval for a point estimate of GPD using the delta method.

gpd.dalta<- function(p, x, u, etau, thata,V) {
# paramatern
sgm <- theta[i]
x1 <- thete[2]

# delta method

dg.sgm <- -((etan * (u-x)}/ (xi#agn~2)) + (1 + xi#((u-x)/8gn))~(~1/xi-1)

dg.xi <- (1/xi"2 # log((u - x)/sgm) — (sgm / (xi ¢ (u - x)))) + etmu & (1+xis((u-x)/sgm)) (-1/xi)
9 p.delta <- c(dg.sgm, dg.xi)

10 V.p <- p.deltaf+fvinY%p.delta

12 4 confidence interval

13 ci.lb <- p - 1.96¢(sqrt(V.p))

14 cl.ub <- p + 1,96+(eqrt(V.p))

114 CI <- data.frame("LB"=ci.lb,"UB"=ci.ub)

T return (CI)
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Profile likelihood

Analogous to GEV, the functions gpd.pplikMinima and gpd.pprof Minima
arc created fo compute confidence interval for GPD.

¥ Thie file coentaine the folloving functinns:
# gpd . pplikMinime, gpd pprot

gpd.plikMinima <- function(x, theta, u, wta, p0, z0) {
4 initial gummsas
xi <- theta
sgm <- ((u - 2z0) # theta)*((p0 / eta) (-theta) - 1)"(-1)

# noramalizing
y <- (u - x} / sgm
¥y <- 1L + theta % y

4 negative log-likelihood
if (any(y <= 0))
1 <- 106
else 1 <- -(length(x) # (log(ata) - log(sgm)} - (1/thaeta + 1) #* aum{log(y)))
1
}

gpd.pprofMinima <- function(x, theta0, u, z0, p.low, p up, nint = 1000, conf = 0.95, pplot = 0){
1 <- numeric(nint)
p <- aeq(p.low, p.up, length = nint)

theta <- theta0 (2]
ata <- sum(x < u)/length(x)
x <- xlx < ul

4 optimlzing algorithm fur ths paramaters
for (i in 1:aint) {
po <- plil
opt <- optim(theta, fn=gpd.plikMinima, method = "EFGS™, x = %, u = u, ¢*a = eta, po
)

theta <- opt$par
# negative log -likelihood rfor p
1[1i] <~ opt$value

}

# NLE of probability
mle.p <- plwhich.max(-1)]

# maximum valuye of log -likelikood funckicno
plik.max <- max(-1)

% guantils of chi -square
q <- plik.max- 0.5 # qchisq(cont, 1)

<- match

plik.ub <- 1[1 >= -q & p > mle.pll1]
ind.ub <- match(plik.ub ,1)

# counfidence interval
et 1b <- p[ind.1b]
ci.ub <- plind.ub]

# plotting of the valuen
if (pplot) {

plot{p, -1, type = "1", xlab = "p", yladb =
"Profile Log-lllhelibood”, ylim = c(-704, plik.max))
ablina(h = q, col = "rad")

abline(h = plik.max, col = 4)
abline(v = ci.lb, col = "xad")
abline(v = ci.ub, col = "rad’)
}
data.frame ("LE" = ¢l,1b, "UR" = ci.,ub,"MLE" = mle.p)
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