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Abstract
The processes of meltwater storage in firn and the impact of refreezing on firn-covered
glaciers have been investigated on the Greenland ice-sheet. On Svalbard, climate change
promotes the disappearance of firn on glaciers. This thesis project aims to monitor the
heat exchanges between the snowpack and the ice surface on a non firn-covered glacier,
on Foxfonna, Spitzbergen, Svalbard, and to draw the picture of the events occurring in
the snowpack over a melting season, from May to July 2021.

This report has two aims. First, to highlight the evolution of snow properties; bulk den-
sity, heat flow, Snow Water Equivalent (SWE, amount of water that would result from the
melting of 1m2 surface area of that snowpack), and albedo, during melting, and attempts
to do so during the formation of superimposed ice, e.g. refreezing of meltwater on the
glacier ice. Second, to model the snow melt using local weather data and to compare the
modelled results with the observed melt, measured periodically throughout the fieldwork
period. Snow pits were dug to measure the snow temperature and density, and to observe
the evolution of the snowpack properties. In the snow pits, the focus was set on the snow
metamorphism, albedo, water content and stakes measurements. Finally, stakes measure-
ments were realized to assess the growth of superimposed ice.

The weather data indicates a sudden warming on the 2nd of June, which rendered the
snowpack isothermal (0°C over the entire column), as observed from the snow temper-
ature. The already established melt became stronger as a result of this warm event, as
observed in the snow depth data. The snow melt modelled from the 6th to the 11th of
June indicates results diverging from the actual snow melt by 95%. Nonetheless, the
model describes the main physics of the system, as it predicts that melting must occur, as
expected. The divergence between the modelled and the observed melt can be attributed
to the use of weather stations located away from the site. As snow melted, the bulk
density increased, resulting in a stronger heat flow within the snowpack over time. The
inter-comparison of the SWE and the bulk density can reveal that snow metamorphism
occurred, or that snow has accumulated on the glacier. Such inter-comparison was suc-
cessfully carried out at the beginning of the fieldwork, revealing the accumulation of snow
by some wind, in accordance with the snow depth and albedo data. Besides this one event,
the SWE data did not reveal any clear trend over time, perhaps because of the interplay
between the progressive melt, which should make it decrease, and the advection of water
from up-glacier snow, which would make the SWE increase. Likely the location of the grid
in a bowl prevented the analyses of the SWE data. Finally, the formation of superimposed
ice was detected at the very end of the fieldwork. Its formation has been prevented by
the fact that snowpack became suddenly isothermal by this warm event. With the cold
content of the snowpack being entirely removed, not much refreezing occurred.



Popular Introduction
Refreezing of meltwater in snow and firn is known to have a major impact on the mass
and energy budget of glaciers. In the Arctic, it is sometimes the primary accumulation
process of some glaciers [1]. It is a major heating process, as the refreezing of 1g of water
releases enough latent heat to raise the temperature of 160g of snow by 1°C.
Superimposed Ice (SI) is a layer of ice formed by the percolation of meltwater onto the
subzero temperature glacier ice. The meltwater can percolate and transfer heat deep into
the snow and the firn cover, and even reach the glacier ice surface, where the refreez-
ing removes some of the cold content of the ice by latent heat release. As a fraction of
the meltwater remains captured in the snow, this process may buffer the sea level rise
caused by the increased glaciers melt [2]. The processes of meltwater storage in firn and
the impact of refreezing on firn-covered glaciers have been investigated on the Greenland
ice-sheet [2]. On Svalbard, climate change promotes the disappearance of firn on glaciers
[3]. Gaining further knowledge about superimposed ice and the refreezing processes on a
firn-free glacier is crucial for understanding and predicting the future of Arctic glaciers.

This thesis aims to monitor the heat exchanges through the snowpack on the firn-free Fox-
fonna glacier, Spitzbergen, Svalbard, over the melting season May-July 2021. Weather
data were gathered, for multiple reasons. First, to link the weather conditions to the
observed snow processes. Second, to model the snow melt. The modelled results were
compared with field data. The evolution of the snow processes as it melts was assessed
by making snow pits, and measuring temperature and density. The snow and the weather
data reveals that the weather and snow conditions were not appropriate for the SI forma-
tion in 2021.
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1 Introduction
Superimposed ice (SI) is a layer of ice formed at the snow/glacier interface. It is pro-
duced by the percolation of meltwater to the bottom of the snowpack, where it refreezes,
removing some of the cold content of the glacier ice, by the release of latent heat. SI
plays a major role in the mass and energy budget of glaciers. On some Arctic glaciers,
SI formation is the main process by which accumulation occurs. Moreover, SI formation
acts as a water retention mechanism on glaciers. It has been suggested that the refreezing
of water on glaciers can potentially buffer the sea-level rise resulting from the glaciers
melt [2]. The increasing temperatures and precipitations recorded in Svalbard over the
years because of climate change modify snowpack properties. More rain-on-snow events
and melting imply more refreezing of water in the snowpack. This, combined with a
warmer climate, induces a faster melt of the snow. This project aims at two things. First,
investigating the evolution of the snow properties; heat flow, bulk density, Snow Water
Equivalent (SWE), albedo, of the glacier surface temperature as the snowmelts and su-
perimposed ice is formed by realising in-situ snow measurements. Second, to implement
a snow melt model based on the local weather conditions, and compare it to the actually
observed melt. The project takes place over the melting season, from May to July 2021.

The fieldwork site is located on Foxfonna glacier, Spitzbergen, Svalbard, as shown in Fig-
ure 1 in Appendix A.1. Weather data were gathered with a weather station placed at
the measurement site next to Stake 4 (78°08’06N, 16°10’15E, 650m altitude), on Breinosa
(78°14’75N, 16°03’90E, 520m altitude) and Adventdalen (78°12’10N, 15°49’41E, 5m alti-
tude), to model the melt of the snow, and link it with the amount of refreezing occurring
under the snowpack. The weather stations of Breinosa and Adventdalen belong to the
Kjell Henriksen Observatory and UNIS respectively and are maintained regularly. The
weather station on Foxfonna was placed by Andy Hodson in 2019 and has been removed
at the term of this project. Snow temperature and density data were gathered by digging
snow pits in a grid enclosed by stakes, and by a thermistors string located at the weather
station and powered by the same battery. The stakes were used to assess the growth of
superimposed ice by measuring their depth (Figure 2 in Appendix A.2).
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2 Background

2.1 The weather of Svalbard
The archipelago of Svalbard is located between the latitudes 76°25’N and 80°50’N, and
the longitudes 10°30’E and 28°10’E. Its land area is 62.450 km2, 60% of it is covered by
glaciers. In winter, it is fully covered with snow [4]. The archipelago has a mountainous
topography. Its coastline is complex as it is formed by fjords - steep cliffs with narrow,
long inlets, shaped by the glacial activity. The polar-maritime climate of the archipelago
is unique, due to its topography and location. It is dictated by the cold polar air and water
masses coming from the Arctic, the Arctic sea ice, the mountain glaciers, and the warm
North Atlantic Ocean carried by the West Spitsbergen Current, which makes Svalbard
the warmest place along this latitude. The phenomenon of Arctic Amplification causes
the Arctic to warm three times faster than the global average in the rest of the world.
Climate change will cause the temperatures in Svalbard to increase by 10 °C in 2100,
compared to today, and will also cause increased precipitations and rain on snow events
[5].

2.2 Svalbard Glaciers
Glaciers form by the accumulation and compaction of snow over time. Snow that has
survived one melting season is called firn, or perennial snow. When firn densifies further,
it turns into ice. Glaciers react primarily to changes in temperature and precipitations,
which makes them a key indicator of climate change. Glaciers and ice caps play a major
role in our ecosystem. They store about 68% of the world’s freshwater resources [6]. In
Svalbard, they are snow-covered about 6 to 9 months a year. Snow is one of the most
reflective surfaces on Earth with a very high albedo, which is the ratio between the incom-
ing and the outgoing solar radiation reflected by a surface. The retreat of snow and ice
decreases Earth’s albedo, triggering the positive ice-albedo feedback, as the Earth absorbs
more energy, enhancing further the melt of snow and ice, resulting in more sea-level rise.

The thermal regime of a glacier defines the subglacial processes occurring there. There
are three kinds of thermal regimes, warm, cold, and polythermal. Each of them exposes
different characteristics. Cold glaciers have their internal structure at a temperature very
much below the freezing point. Warm glaciers exist at temperatures very close to their
melting point. Polythermal glaciers expose characteristics of both warm and cold glaciers
[7]. Svalbard glaciers are often polythermal glaciers. On all three of these glacier types,
SI formation can occur. The melt for glaciers on Svalbard has accelerated in the past
decade [8], and is predicted to continue doing so due to climate change [9]. The absence
of crevasses at the surface of Foxfonna glacier as well as its slow motion are clues that it
is a cold glacier.

2.3 Superimposed Ice
Superimposed ice (SI) is a layer of ice forming on top of the glacier ice by the refreezing
of percolating meltwater, as shown in Figure 1a. Its formation is first triggered by the
warm-up of the snow cover to its melting point. The liberated meltwater can then per-
colate deeply into the snow, perennial snow, and eventually reach the snow/ice interface,
transferring heat to it. If the bottom of the snowpack has enough cold content, it will be
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employed for refreezing the meltwater. The release of latent heat can have drastic con-
sequences on the glacier thermal regime, as the heat released consumes progressively the
cold content of the ice, warms it up, and will eventually modify the thermal regime of the
glacier from cold to warm. The refreezing of the percolating meltwater occurs mostly in
accumulation zones, where there is the most snow [10]. Refreezing acts as a mechanism of
water retention on glaciers, and mass redistribution. Indeed, the porous character of snow
and firn allows them to capture meltwater in the interstitial space existing between the
individual grains, where it can sit until a cold wave makes it refreeze. SI formation can be
a significant part of the mass and energy budget of glaciers. [11]. A study led on Midtre
Lovenbreen, Svalbard, investigating the impact of SI on the mass balance of the glacier in
1999 reports that that year, SI formation accounted for 16-25% of the total accumulation.
For some Arctic glaciers, SI formation is even the only accumulation process. [1].

The increasing temperatures observed in the context of climate change induce a greater
glacier surface melt, and the disappearance of firn on Svalbard glaciers [3]. The role played
by the snow and firn conditions and refreezing on the mass balance of a typical Svalbard
glacier in a future climate has already been investigated [10]. In Winter, rain-on-snow or
small melting events on a thick snowpack will induce the formation of internal ice lenses.
This promotes the internal warming of the snow, reducing its refreezing potential and en-
courage its earlier melt as its cold content is reduced. Ultimately, it creates unfavourable
conditions for the percolation of water to the surface of the ice and the formation of SI
in Spring.

The processes of meltwater storage in firn have been investigated on the Greenland ice-
sheet [2]. Firn increases the capacity of meltwater storage on glaciers, and therefore, the
amount of internal refreezing occurring, until the pore spaces of firn have been exceeded,
which leads to the outflow of water. Once the firn has been saturated with water, it
hardly returns to its initial state. Most of the Svalbard glaciers are however not firn
covered anymore, as it is the case for Foxfonna. Therefore, investigating the impact
of the refreezing occurring on such glaciers is key to understand and predicting their
response to climate change. The snow structure at the surface of a firn(covered glacier is
represented in Figure 1b.
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(a) (b)

Figure 1: a) SI observed on the field. The ice layer lays below the snowpack and above
the glacier ice. b) Structure of the snow layers at the surface of a glacier.[12]

Table 1 presents a summary of the objectives of the thesis.

Objectives
I. Monitoring of the evolution of the snow properties

during its melting and the formation
of Superimposed Ice occurs.

II. Modelling of the snow melt.

Interests :
- Temperature of snow and ice
- Heat flow
- Bulk density
- Snow Water Equivalent (SWE)
- Albedo

Interests :
- Long-/Shortwave radiations
- Relative Humidity
- Wind speed & direction
- Air temperature

Method :
In-situ measurements of snow temperature,

density, reflected shortwave radiaion.

Method :
Weather stations in the area of Foxfonna

Table 1: Summary of the Thesis objectives.
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3 Theory

3.1 Snow Properties
3.1.1 Snow Metamorphism

Snow is a porous material made of ice and air. It can contain impurities, such as black
carbon and dust, which darken it and decrease its albedo. Snow is thermodynamically
unstable. It is permanently subjected to metamorphism, which modifies its macrophysical
properties, such as density, grain size, cohesive strength. As a consequence, other snow
characteristics such as its albedo, permeability, and thermal conductivity also evolve over
time. There are two metamorphism processes: constructive and destructive [13], [14].
Several factors, such as the initial crystal type, the amount of liquid water, the temper-
ature gradient throughout the snow column dictates which metamorphism process takes
place.

In dry snow, the metamorphism is mostly driven by the temperature gradient in the
snowpack, which induces sublimation and condensation cycles, reshaping the snow grain
size, and modifying snow properties. At locations where the temperature is higher, there
is a higher saturation vapor pressure in the interstitial air, and sublimation can occur. The
resulting water vapor then travels along a vapor pressure gradient created between the
warmer and the colder snow layer, until it reaches a colder location where condensation
can occur [13]. Vapor pressure is also driven by the crystals curvature radius, according
to the Kelvin equation [15]. Crystals with larger curvature radius (i.e, the smallest snow
grains) sublimate first and vapor condensate onto other larger crystals. The temperature
gradient within the snowpack determines which one of the Kelvin effect or the vapor
transport dominates the metamorphism process. Over time, the observed snow grains in
the snowpack are often larger, as the smaller crystals have sublimated and only the larger
ones remain [16].

In the absence of a strong temperature gradient within the snowpack (i.e. isothermal
snowpack), snow metamorphism is dictated by the Kelvin effect, where the grains reduce
their surface energy by growing onto the concave locations of the grain [16], resulting in
the formation of small rounded grains, densifying the snowpack, reducing its permeability
[17]. This very slow process occurs faster at warmer temperatures and is often defined
as destructive metamorphism, as it produces rounded grains. Destructive metamorphism
generally takes place if the temperature gradient is below 10 K.m−1, [18].

When there is a strong temperature gradient within the snowpack (i.e. non-isothermal
snowpack), dry snow metamorphism occurs by the advection of vapor. It results in the
formation of faceted, sometimes very poorly bounded crystals such as depth hoar, making
the snowpack more permeable [17]. The metamorphism occurring in such snowpack is
called constructive, and it is driven by the strong temperature gradient[19]. Constructive
metamorphism generally takes place if the temperature gradient is greater than 10 K.m−1.

In wet snow, the metamorphism takes place in snow layers near 0°C. In such condi-
tions, the water occupies the pore spaces partly, increasing the heat transfer within the
snowpack [20]. The saturation regime of the snow dictates the type of metamorphism
occurring in the snowpack. The thermodynamics of wet snow rules the processes of bond
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growth, grain growth and densification. The high and low saturation regimes differ in the
way that the ice grains in the snowpack are still in contact with air at low saturation,
as the water tends to locate at the grain boundary first. At high saturation, water can
envelop the entire snow grains and disconnect them, so that they are slowly completely
surrounded by water [19]. Wet snow metamorphism is destructive as only rounded shapes
subsist.

In snowpacks with a low water content (i.e. pendular regime), the air pressure prevails
over the water pressure, preventing the water to coalesce. The gaseous phase exists con-
tinuously throughout the snowpack [19]. The pendular regime is illustrated in Figure 2a.
In snowpacks with a high water content (i.e. funicular regime), the water coalesces and
traps the air away from the ice crystals. The funicular regime is illustrated in Figure 2b,
from [19].

(a) Pendular Regime (b) Funicular Regime

Figure 2: Illustrations of the pendular and funicular regimes.
[19]

3.1.2 Snow Water Equivalent (SWE) & Bulk Density

The SWE of a snowpack corresponds to the amount of water that would result from
the melting of 1m2 surface area of that snowpack, expressed in mm water equivalent.
SWE can augment by precipitation (freshly fallen snow), or by adding of material by
percolation/runoff of water from other locations on the glacier due to the topography.
The SWE [mm w.e.] of a single snow layer is calculated according to Equation 1, [21].

SWE = zlayer × ρsnow

ρwater

(1)

Where zlayer [mm] is the thickness of the considered snow layer, ρsnow/water [kg·m−3] is the
density of snow and water respectively.
The SWE of an entire snow column is calculated by summing up the SWE of each discrete
layer according to Equation 2 (zi [mm] : thickness of the snow layer, numbered by i) :

SWEtot =
∫ n=i

n=1
ρsnow(z)[kg · m−3] · zi[mm] dz · 1

1000 [kg · m−3] (2)

The bulk density of the snow relates the total thickness of a snow column to its mass.
[22]. It is calculated by dividing the SWEtot by the thickness of the snowpack hs, as
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shown in Equation 3, [23].

Bulk Density = SWEtot [mm w.e.]
hs [mm] (3)

Snow depth and bulk density are inversely correlated over a short period of time, mainly
because of three reasons. First, freshly fallen snow has a lower density than the bulk one.
Snow density increases over time due to metamorphism and densification by gravity. The
new snow crystal gets gradually destroyed and metamorphose [24]. Therefore, freshly
fallen snow increases the snow depth, without considerably increasing the bulk density.
Second, snow thickness decreases as the crystals undergo compaction, leading to an in-
crease in the bulk density. Third, snowmelt reduced the snow thickness and increases
bulk density by water percolation [22].

Changes in bulk density can reflect snow metamorphism and densification. In the case
where no snowfall has occurred, if the SWE does not change and the bulk density increases,
it means the snow became denser, by metamorphism or melting and refreezing.

3.1.3 Heat flow in the snow

The heat transfers in the snow are dictated by three manners. First, the conductivity
through the interconnected ice crystals, second, the latent heat fluxes by the motion of
water vapor and by condensation and sublimation cycles, and third, by convection through
the air space. The heat flow across a snowpack can be calculated by Equation 4, [13].

q = −keffective(ρsnow) · dT

dz
(4)

Where q [W.m−1] is the flow across the snow, keffective [W.m−1.K−1] is the thermal con-
ductivity of snow and is a function of the snow density (i.e. how tightly connected each
individual snow grains are) and accounts for those three processes occurring in the snow,
T [K] is the snow temperature and z [m] is the depth of the considered snow layer.
The effective thermal conductivity k of the snow accounts for the vapor diffusion and is
empirically calculated with the snow density by Equation 5 [25].

keffective(ρsnow) = 2.22362 · ρ1.885
snow (5)

3.1.4 Albedo

The albedo (α) of a surface characterises the amount of shortwave radiation this medium
reflects. It is crucial to assess how much of the shortwave radiation is effectively absorbed
and heats up and finally melts the snowpack. The albedo of snow is dictated by the snow
grain size, its ageing, density, crystals shapes, and the number of impurities, typically
black carbon, dust, small debris [26]. It is calculated by taking the ratio of the outgoing
(S ↑) and incoming (S ↓) shortwave radiation at the snow surface, as shown in Equation 6,
[7]. The range of the considered shortwave radiation is comprised between 0.28-2.5 µm.

α = S ↑
S ↓

(6)
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Fresh snow has the highest albedo. Over time, snow metamorphism increases the snow
grain size, and thus decreases the snow albedo, warming up the snowpack. This can induce
a change in the temperature gradient of the snowpack and modify the metamorphism type.

3.2 Surface Energy Balance (SEB)
The melt of the snow at the glacier surface is controlled by the SEB, which is the sum of
all the energy fluxes, as shown in Equation 7, [20].

QN + QH + QL + QR + QG = QMelt Model (7)
Where QN is the net radiation, QH is the sensible heat flux, QL is the latent heat flux, QR

is the sensible heat flux of rain, QG is the ground heat flux, QMelt Model is the estimated
energy provided to the snow, to heat it up and ultimately melt it. All terms are expressed
in [W.m−2]

Most of the melt is attributed to the radiation factor QN , followed by the sensible heat
factor QH . The latent heat factor contributes relatively less to the melt compared to
these other terms ([20] Table 2). The SEB calculations are based on a review of glaciers
melt processes and modelling [20] and glacier physics literature [7].

3.2.1 QN : Net Radiations

The sum of the shortwave and longwave radiation absorbed by a surface is the net ra-
diation budget. Shortwave radiations are emitted by the sun. The amount of incoming
shortwave radiation depends on the top of the atmosphere radiation (solar zenith angle),
the atmosphere’s transmissivity (cloudiness), and ground and surrounding topography.
The longwave radiations budget is part of the thermal radiations emitted by any Earth’s
surface above 0 °K, with wavelengths between 3-100µm, which are reflected back to the
surface by the atmosphere [27]. Therefore, clear skies offer the best conditions for Earth’s
surface cooling by longwave emission, as not much radiation is reflected back. Covered
skies reflect parts of the longwave radiation, limiting this cooling mechanism, (water va-
por is the most effective molecule in terms of natural greenhouse effect). The longwave
radiation reflected by the atmosphere result from the water vapor, carbon dioxide and
ozone molecules [20]. Therefore, longwave radiation varies accordingly with the cloudiness
and the temperature.

QN can be expressed as according to Equation 8 ([20]) :

QN = S ↓ ·(1 − α) + L ↓ −L ↑ (8)
where α is the albedo, S ↓ [W.m−2] is the incoming shortwave radiation, L↓ [W.m−2] is
the incoming longwave radiation, and L↑ [W.m−2] is the outgoing longwave radiation.
The outgoing longwave radiation L ↑ can also be calculated with the Planck law, as snow
or ice surfaces radiate as a black body in the infrared [7].

L ↑= σ · T 4
s (9)

where σ = 5.670367 · 10−8 W.m−2.K−4 is the Stefan-Boltzmann constant, Ts [K] is the
surface temperature.
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3.2.2 QH, QL : Turbulent Fluxes

Latent heat fluxes and sensible heat fluxes are referred to as turbulent fluxes. Sensible
heat is the energy associated with temperature changes, without phase changes, and is
driven by the temperature gradient between the air and the surface. It is more efficient on
a rough surface, where more turbulence occurs, facilitating the exchange of energy. The
latent heat flux is the heat flux associated with the evaporation, condensation, sublimation
and deposition of water vapor between the atmosphere and the snow. It is driven by the
moisture gradient between the atmosphere and the surface. (Paterson, 1994 (see master
thesis))
The sensible QH and latent QL heat flux are calculated according to the flux-gradient
method by Equation 10 and Equation 11 ([7]):

QH = ρair · cp · CH · u · (Tz − T0) (10)

QL = 0.622
P0

· ρ°
air · Lfusion · CL · u · (ez − e0) = 22.2 · CL · u · (ez − e0) (11)

Where 0.622 is the molecular weight of water vapor to dry air, ρ°
air [kg.m−3] is the air

density at standard pressure P0 [Pa] , Lf [J.kg−1] is the latent heat of fusion, ρ [kg.m−3]
is the density, cp = 1003 J.kg−1.K−1 is the specific heat capacity of air at T=0°C , C is
the exchange coefficient (CH = 0.0019, CL = 0.0015, empirical transfer coefficient includ-
ing surface roughness and atmospheric stability, [7]) , u [m.s−1] is the wind speed at the
surface, T [K] is the temperature at the surface and 2m above it.

The vapor pressure ez is calculated according to Tenten’s equation for temperatures below
0°C [28] in Equation 12 :

ez = RH

100 · 610.78 [Pa] · exp
21.875 · T

265.5 + T
(12)

ez and e0 [Pa] are the vapor pressure at some altitude z and at the surface respectively. e0
is calculated assuming saturation (RH = 100%). T [°C] is the temperature at the surface
and at the considered height.

3.2.3 QR : Sensible heat flux of rain

The sensible heat flux of rain QR [W.m−2] is very often neglected in SEB calculations,
as its contribution to melting is minor compared to the other fluxes. It is expressed as
follow ([20]) :

QR = ρwater · cw · R · (Tr − Ts)
(13)

Where ρwater [kg.m−3] is the density of water, cw = 4200 J.kg−1.K−1 is the specific heat
capacity of water, R is the rainfall rate [mm.h−1] , Tr and Ts [K] are the temperatures of
the rain and the surface respectively.
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3.2.4 Qg : Ground heat flux

The ground heat flux Qg [W.m−2] in snow and ice is calculated using Equation 14 ([20]).

Qg =
∫ Z

0
ρ(z) · cp · ∂T

∂t
dz (14)

Where z is the ice thickness [m], from the surface to the point where seasonal temperature
variations are negligible. ∂T [K]

∂t [s] is the rate of change of the ice temperature. Qg is positive
when the flow is directed from the ice surface to the lowermost boundary [20]. That is,
when heat is conveyed to the glacier ice.

The density of ice as a function of temperature is well documented [29]. The heat trans-
ferred to the ice usually comes from the snow above, so the snow density component
requires to be measured periodically, as snow density changes over time by compaction
and refreezing.

3.2.5 QMelt Experimental : Amount of energy resulting in the observed melt.

The amount of melt energy resulting in the observed melt QMelt Experimental [W.m−2] can
be calculated according to Equation 15 :

QMelt Experimental = ∆hs · ρsnow · Lfusion

∆t
(15)

where ∆ hs [m] is the change of snow thickness, ∆ t[s] the duration of the melting period
considered.

In the field, the snow density is measured for two reasons. First, to calculate the SWE
and estimate whether precipitations occurred or not, and to estimate the amount of water
available for refreezing the bulk density. Second, to calculate the snow heat conductivity,
and ultimately, determine the evolution of the heat flow across the melting snow once
combined with the snow temperature measurements. The albedo is measured to assess
its evolution as snow is melting. The melt model consists of the calculation of each term
described in 3.2, to finally estimate QMelt Model, the amount of energy provided by the
atmosphere, heating up and melting the snowpack. The quality of the model is assessed by
comparing QMelt Model with QMelt Experimental, the amount of energy necessary to produce
the melt observed in the field.
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4 Method

4.1 Snow measurements and weather data
The fieldwork site is located on the glacier of Foxfonna, in Svalbard, as indicated in Fig-
ure 1. Measurements were taken from the 7th of May 2021 until the 27th of June 2021,
about once every 7-10 days when it was possible. The fieldwork site was reached on
skis, and all the equipment was dragged on sledges (Figure 2[a] in Appendix A.2). On
the first day in the field, 5 stakes were installed, in a grid, as shown on the map. Dur-
ing each fieldwork session, the following measurements were carried on; the depth of the
stakes was measured to assess the growth of SI (Figure 2[e] in Appendix A.2). As SI
forms at the bottom of the stakes, the depth from the bottom of the ice to the top of
the stakes must decrease. The snow depth was measured to evaluate the snowmelt and
accumulation. The albedo of the snow was measured using a pyranometer (Figure 2[f] in
Appendix A.2). This measurement is accurate only when the sky is cloud-free or fully
covered, as clouds scatter the short wave radiations. This causes the instability of the
radiation field and makes the measurement inaccurate. The pyranometer was held by
hand, and the albedo was calculated by measuring the averaged incoming and outgoing
shortwave radiation over five measurements. The greatest amount of divergence amongst
five consecutive measurement of solar irradiance was 16%. The weather was favorable
for albedo measurements five times. Three pits were dug each time, at random locations
enclosed by the grid formed by the stakes, always at spaced from each other, as repeating
snow processes measurements at the same place would disturb the system (Figure 2[b] in
Appendix A.2). In each pit, the temperature was measured first, and the density was mea-
sured second, every 10 cm from the top to the bottom of the pit (Figure 2[c] in Appendix
A.2). The tools used for the snow measurements are shown in (Figure 2[d] in Appendix
A.2). A weather station placed close to the grid (by S4) recorded values of incoming
shortwave radiation, air temperature (2m above the ground), and relative humidity. A
thermistors string located by the weather station recorded continuously snow and glacier
ice temperature, down to a depth of 12cm below the ice surface (at the start of the season).

The weather station on Foxfonna was placed in 2019 at Stake 4 (78°08’06N, 16°10’15E,
650 altitude). The wind sensor was broken. It does not include a longwave radiation
sensor, it only measures the incoming shortwave radiation. Therefore, the wind data
was collected from the weather station in Breinosa (78°14’75N, 16°03’90E, 520m altitude,
4km away from the fieldwork site) and the longwave radiation data was gathered from
the weather station in Adventhalen (78°12’10N, 15°49’41E, 5m altitude, 12km away from
the fieldwork site). Both weather stations belong to the Kjell Henriksen Observatory and
UNIS respectively, and they are regularly maintained. The use of weather stations located
away from the field site exposes some drawbacks as the topography is different. Indeed,
both the wind and the radiation measurements are strongly dependant on the topography.
The weather data is meant to be used as inputs in the melt model. Therefore, the use
of weather stations located away from the site is expected to make the melt model less
accurate.
The timeline of the fieldwork is represented in Figure 3.
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Figure 3: Fieldwork Timeline. Each outing required 7-8 hours of work.

4.2 Melt modeling
The melt model consists of two steps. First, the calculation of the each term described
in 3.2; namely QN , QH , QL, QR, QG. Second, the addition of each result as described
in Equation 7, to estimates QMelt Model, the amount of energy heating up and melting
the snow. The calculation of each term in Equation 7 requires the acquisition of weather
data. Both the weather station on Foxfonna and the thermistors string were powered by
the same battery. The station was recording from the 27th of May, until the 11th of June.
The melt has therefore been modelled within this time range. The melt model was coded
using Python by myself based on the SEB theory, which is well documented [7], [20]. The
two main codes are shown in subsection A.3.

Figure 4a shows the incoming and outgoing shortwave radiation recorded in Adventdalen,
and the incoming shortwave radiation recorded in the field site. The incoming shortwave
radiation at both sites is very similar. The differences between the two measurements
can be attributed to the reflection of solar radiation by the surrounding topography. The
outgoing shortwave measured in Adventdalen is much lower than the one emitted by a
snow-covered surface. Figure 4b shows the radiation data recorded in Adventdalen over
Spring and Summer. A sudden drop in the outgoing shortwave radiation measurement
can be noted at the beginning of June, which must be attributed to the melt of the
snow, (see Figure 4b, S↑), caused by the lower albedo of the ground. At this time of
the year, the glacier was still snow-covered. The earlier snow melt in Adventdalen must
be considered when using radiation data from this location, as the recorded outgoing
shortwave and longwave radiation can no longer be considered as representative of the
glacier’s conditions once the snow has disappeared. The outgoing longwave radiation
recordings do increase slightly from the 27th of May as a result of the disappearance of
the snow. When the snow has completely disappeared, the temperature of the ground
increases progressively, emitting more longwave radiation.
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(a) Shortwave radiation from Adventdalen and
Foxfonna (during fieldwork). (b) Radiation data from Adventdalen.

Figure 4: a) Comparison of the shortwave radiation in Adventdalen Vs. Foxfonna. b)
Radiations in Adventdalen.

In order to overcome the issue imposed by the location of the radiation sensors away from
the site, at a lower elevation, the term L ↑ originally attributed to the outgoing longwave
radiations data from Adventdalen could be replaced in the Qnet calculations of Equation 8
by the black body emission formula Equation 9, using the snow temperature recorded by
a sensor from the thermistors string, located as close as possible to the surface. Figure 5a
and Figure 5b illustrate the potential outcome of this solution, by comparing the result-
ing outgoing longwave radiation L ↑ and net radiation Qnet when this solution is applied.
Over this time period, the snow melts, decreasing its thickness and albedo. Therefore,
L ↑ is modelled with different surface temperatures, as shown in Figure 5a, and Qnet

is modelled with an albedo evolving from α = 0.9 to α = 0.77 (according to the field
measurements). From the 27th of May, until the 1st of June (L ↑ orange), the surface
temperature is considered to be the one measured by the temperature sensor of the ther-
mistors string located 122cm above the ice, about 20cm below the snow surface. From the
1st until the 11th of June, the surface temperature is considered to be the one measured by
the temperature sensor situated 97cm above the ice, about 30cm below the snow surface.
The choice of using a sensor located deeper in the snow from the 1st of June is crucial to
model the physics of the system. Indeed, the sensor located 122cm above the ice recorded
positive temperatures from this date, while the snow temperature cannot exceed 0°C.
Therefore, the longwave radiation emitted by a melting snow surface must not exceed
a maximum of 316 W.m−2, as modelled. The modelled outgoing longwave radiation is
slightly lower than the measured one. This offset is because the now snow-free ground in
Adventdalen had warmed up, and as a consequence, emits more longwave radiation. The
daily variation of the snow temperature placed 122cm above the ice can be attributed to
its proximity to the surface, rendering the measurement more sensitive. The recording
of temperatures exceeding 0°C from this sensor, in spite of being below the snow surface
can be attributed to the fact that the thermistors string might be heated by radiations
and conducted heat along its cable to the sensors. Qnet is therefore calculated using the
modelled outgoing longwave radiation, and the albedo evolving as observed in the field.
The modelled net radiation balance is higher than the one obtained using the Adventdalen
outgoing longwave radiation sensor. Therefore, the glacier surface is modelled to absorb
more net radiations when it is calculated with the modelled longwave radiation than with
the one calculated using the Adventdalen data.
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(a) Comparison of the measured outgoing
longwave in Adventdalen and the modelled
one using the black body calculation. (Or-
ange : sensor 122cm above ice, Green : sen-
sor 97cm above ice.)

(b) Comparison of the net radiation calcu-
lated with the outgoing longwave measured
in Adventdalen and the modelled one.

Figure 5: a) Comparison of the radiation data in Adventdalen and the modelled one with
Equation 9. b) Comparison of Qnet when calculated with the modelled outgoing longwave
and the outgoing longwave measured in Adventdalen.
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5 Results

5.1 Melt Modeling
The weather data gathered by the Weather Stations (WS) on Foxfonna and on Breinosa
are displayed in Figure 6. The wind and the temperature both peaked positively on the
2nd of June, with the wind coming from the south. The incoming shortwave radiation data
oscillates as a response of the diurnal cycle and of the shadowing from the surrounding
topography.

(a) Air temperature on Foxfonna. (b) Incoming shortwave on Foxfonna

(c) Wind speed and (d) wind direction on Breinosa.

Figure 6: Weather data from Foxfonna and Breinosa.

Figure 7 is the modelled SEB. Each term used in the modelling of the melt is calculated as
described in subsection 3.2, and summed to finally calculate Qmelt as shown in Equation 7.
The data shows a sudden and strong melt peak on the 2th of June. The sensible heat flux
peaks on this day, as well as the ground heat flux. The latent heat flux is negative most
of the time, which indicates that water evaporates from the surface to the atmosphere.
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Figure 7: Surface Energy Balance. Qmelt is the net amount of energy received by the
snowpack. Negative Qmelt means refreezing is occurring. Positive Qmelt means melting is
occurring. Qmelt is obtained by summing the four other terms calculated from the weather
data.

5.2 Comparison between the modelled and the observed melt
In order to estimate the quality of the melt model, one must compare the modelled results
with the in-situ observation. On the 6th and on the 11th of June, both the snow depth
data and the density measurements have been carried on. Therefore, the modelled results
are compared with the observed melt between these dates. The amount of energy which
implied the observed melt QMelt Experimental [W.m−2] is calculated using Equation 15,
divided by the number of seconds between the two dates. On average, at each stake,
15cm of snow has melted between the 6th and the 11th of June, as it can be seen on
Figure 9a. The value of the snow density used in this equation is the averaged density of
two upper layers of snow (each layer being 10cm thick) of each of the three pits dug on
the 6th of June. The obtained result is then :

QMelt Experimental = 391[kg.m−3] · Lfusion · 0.15 [m]
432000[s] = 45.4 [W.m−2] (16)

The cumulative modelled melt between the two dates is QMelt Model = 1114 W.m−2, or 9.3
W.m−2 on average per hour, meaning that the snow is melting. The difference between
the experimental and the modelled results is of 95%. As the melt seems driven by the
net radiation Qnet, a sensitivity test is carried out on the albedo parameter α. Increasing
the albedo by 10% (α = 0.87) results in a melt energy of QMelt Model = -1702.6 W.m−2,
or -14.2 W.m−2 on average per hour, meaning that the snow would refreeze with such
albedo. Increasing the albedo by 10% produces a result diverging from the initial one by
253%.
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5.3 Evolution of snow properties
5.3.1 Correlation between Heat Flow & Bulk Density increase

The evolution of the vertical heat flow q within the snowpack is represented in Figure 8a.
It is calculated with Equation 4 using the density measurements of each discrete layer
in each snow pit. In some cases, ice lenses were present at the bottom of the snowpack,
which made the density measurement impossible. Therefore, some heat flows have not
been calculated until the bottom of the snowpack. In each pit, q is uniform. The heat
flow increases over time. The evolution of the snow bulk density is shown in Figure 8b. It
is calculated with Equation 3, using the snow density measurements. Each dot represents
the value at one pit. The snow bulk density increases over time.

(a) Evolution of the heat flow through the
snowpack. (b) Evolution of the snow bulk density.

Figure 8: Evolution of the heat flow and the bulk density of the snowpack. Each color
represents each day. Three pits were dug each time.

5.3.2 Evolution of Bulk density and SWE, with respect to the snow depth
data

Figure 9a shows the evolution of the snow depth from the stakes measurements, measured
with the probe, as stated in Table 2 in Appendix A.2. The lack of data on the 6th of June
is due to an oversight. The symbols ”⋆” represent the interpolated data. The data point at
stake 4 on the 11th of June, and at Stake 1 and Stake 4 on the 20th of June are unreasonably
low. The observer must have hit an ice lens when measuring with the probe or has
carried out the measurement in a ”well” over the glacier surface. Glaciers topography
can be highly irregular, especially on Foxfonna. Even at 650m elevation, glaciers can
undergo strong melting and severe negative mass balance. 2020 was for example record-
breaking in terms of glaciers negative mass balance in Ny-Ålesund (J.C.Gallet, personal
communication). This induces some uncertainty in the measurement of about 5cm. The
snow depth evolution comports two stages. From the 7th to the 16th of May, there was
an accumulation of snow in the grid. The snow then started to melt until the end of the
fieldwork. It must be noted that on the first time out in the field, the pits were dug close
to S1, S2 and S3 to have a look at the snow stratigraphy. Ice lenses of 5cm were found
at the bottom of each pit, most likely due to the rain event which must have occurred at
the beginning of the winter season.
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Figure 9b shows the SWE measurements of each day, from each snow pit. It is calculated
using Equation 2, and the snow density data.

(a) Evolution of the snow depth at each stake.
”⋆” : Interpolated data.

(b) Evolution of the SWE. It does not ap-
pear to decrease as the snow melts.

Figure 9: Comparison of the snow depth and the SWE. SWE is expected increase when
the snow depth increases and vice-versa.

The weather data from Svalbard Airport (figure not shown) indicates that the last snowfall
occurred in Longyearbyen on the 5th of May. Svalbard Airport (77°87’50, 20°97’52E, 5m
elevation) is located about 11km away from the field site, almost at sea level. Therefore,
the use of weather data from the airport must be considered with care, as the weather
conditions vary greatly between the two sites. A snowfall event between the 7th the 16th

of May at the airport could have been strengthened by the relief of a snowfall on Foxfonna
at these dates.

Figure 10 shows the evolution of the measured broadband albedo of the snow, calculated
according to Equation 6, measured with the pyranometer. Only measurements for when
the sky was fully covered or cloud-free are considered. The albedo increased between the
7th and the 16th of May and was found to be quite high on the 6th of June as well. It
decreased to a value of α ≈ 0.77 towards the end of the fieldwork.

Figure 10: Albedo of the snow measured with a pyranometer including the 3% of linear
error.
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5.4 Superimposed ice measurement
Figure 11 shows the evolution of the ice depth measured at each stake with a probe, from
the bottom of the ice to the top of the stake. The measurement had not been carried out
on the 16th of May because of an oversight. Superimposed ice was observed in the field
from the 26th of June. Therefore, the depth measurements should be constant, and drop
from this day only. The variations in ice depth measurements of the order of less than 5cm
can be attributed to the reading on skewed stakes. The sudden successive decrease and
increase of the order of more than 10cm can be attributed to the fact that the observer
must have hit an ice lens when performing the measurement, such as on the 11th of June
at Stake 4 and on the 20th of June at Stake 1 and Stake 4. The snowpits dug on the 7th

and 16th of May were located close to the stakes, to identify the possible presence of ice
lenses. Ice lenses were indeed found close to each stake at the lowermost 5-10cm, at the
very beginning of the fieldwork.

Figure 11: Evolution of the ice depth at each stake.
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Figure 12 shows the temporal evolution of the snow pits temperature profiles, gathered
from the snow pits data as shown in Figure 2[c] in Appendix A.2.

07/05/21 16/05/21

22/05/21 06/06/21

11/06/21 16/06/21

20/06/21 26/06/21

Figure 12: Temperature profiles of the snowpits. The crosses indicates the location of the
respective stakes.

Figure 13 shows the snow and ice temperature data recorded by the thermistors string
at the weather station. In Figure 13a, the sensors located more than 97cm above the
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ice were in contact with the air, as they indicate positive temperatures and fluctuate in
a similar trend as the air temperature. The ones located below 97cm above the ice are
measuring the snow temperature. The strong warming event on the 2nd of June can be
observed in the snow and ice data.

(a) Snow temperature

(b) Ice temperature

Figure 13: Thermistors string data. Ice surface is the depth reference.

21



6 Discussion

6.1 SEB - Melt model
The combination of the weather data Figure 6 with the SEB results presented in Figure 7
and the snow data exposes several interesting features.

Temperatures started to increase from the 29th of May, and peaked on the 2nd of June,
as shown in Figure 6[a]. Figure 6[c] indicates a sudden increase of the wind speed on
this day, which coincides with peaks of Qsensible, Qg, and Qmelt in Figure 7. The wind
was coming from the south according to the wather station (see Figure 6[b]). In such
condition, it typically advects warm air to Svalbard and increases the air humidity and
the wind speeds. These results are coherent, as the sensible heat flux is a function of
wind speed and temperature, and the greater air temperature induced the warming of
the snow and the ice. Those factors, combined with the shortwave radiation-induced an
increased melt. A negative latent heat flux indicates that water is evaporating from the
snow surface to the atmosphere.

To compare, on the 30th of May, the air temperature was comprised between 0 °C and -4
°C, and the wind speed was only of about 2.5 m.s−1. This results in a sensible heat flux
and a latent heat flux close to zero. Therefore, the melt seems to be driven by the net
heat radiation on this day.

On the 28th of May and on the 5th of June, the air temperature was negative, at -8°C
and -4 °C respectively. Relatively strong wind speed were recorded, between 5 m.s−1 and
7.5 m.s−1. On these days, the turbulent heat fluxes are modelled to be negative, which
means it played in favor of the refreezing of the snow.

On the 7th of June, a strong positive peak of temperature has been recorded, with rel-
atively strong wind speeds of about 7.8 m.s−1. This results in positive turbulent heat
fluxes, generating more melt on the glacier.

Figure 13a and Figure 13b shows that the warm event on the 2nd of June has had the
effect of bringing the snowpack to its melting point, and bringing the glacier ice relatively
close to it. This illustrates how crucial the role of snow is on glaciers, as it insulates the
ice surface, and in a context where no accumulation occurs on a glacier, snow can at best
delay the melting of the ice.

About the modelling of the snow melt between the 6th and the 11th of June, the modelled
amount of melt energy (45.4 [W.m2]) and the one calculated experimentally (1114 [W.m2])
using Equation 15 differ by 95%. This great divergence indicates that the model does not
describe the melt which occurred on the glacier successfully within this period. In spite
of differing strongly from the observed melt, the model still predicts that melting should
occur on the glacier, and not refreezing. Therefore, the model can reproduce the main
physical processes on the system. The use of local shortwave radiation data and wind
data would certainly have made the results closer to the observed melt. According to
Figure 7, the melt seems driven by the net radiation Qnet. Therefore, a sensitivity test
was carried out for the albedo parameter. It revealed that increasing it by 10% (α = 0.87,
the higher the albedo, the greater the surface reflectivity) decreases the melt energy by
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253%. This shows the importance of the albedo parameter in modelling snow melt.

6.2 Evolution of snow properties
6.2.1 Correlation between Heat Flow & Bulk Density increase

There is a correlation between the increase of the vertical heat flow shown in Figure 8a,
and the increase of the bulk density over time observed in Figure 8b. The bulk density
increases as the snow melts, liberating the water in the snowpack and densifying it. As
the snow is denser, it conducts heat more efficiently. It must be noted that density mea-
surements in the snow can be complicated by the formation of ice lenses in the snowpack.
It sometimes prevents the collection of snow density data [7].

6.2.2 Evolution of Bulk density, SWE, with respect to snow depth data

The snow depth data in Figure 9a suggests an accumulation of snow between the 7th and
the 16th of May, most likely by a strong wind event that remobilized snow in the grid.
This statement is comforted by the increase of SWE, and the bulk density remaining sim-
ilarly high compared to the preceding measurement, as well as Figure 10. On the 16th of
May, the albedo is close to 1, and fresh snow, even deposited by the wind has the highest
albedo. The hypothesis of a snowfall event is not supported by the precipitation data at
Svalbard Airport (figure not shown), which indicates that the last snowfall occurred on
the 5th of May in Longyearbyen. To conclude, the increase of SWE, the fact that the bulk
density remained unchanged, and the high albedo comfort the hypothesis that snow was
remobilized in the grid by strong winds.

Combining Figure 8b and Figure 9a, allows us to highlight the correlation between the
snow melt and the bulk density increase. The more the melt, the more water is released
in the snowpack, the denser the snowpack.

The SWE measurements do not expose any net increase or decrease in the amount of
water contained in the snowpack. As the snow melts, as shown in Figure 9a, the SWE is
expected to decrease over time. The grid is located in a flat area, surrounded by a bowl, as
seen in Figure 1. It is therefore subjected to a lot of advection of meltwater from the above
surroundings. This, combined with the continuous melting might explain why the SWE
varies so much. The grid’s location seems to prevent any further analysis of the SWE data.

About the albedo evolution, the unexpectedly high value recorded on the 6th of June
does not seem to be attributed to the presence of freshly fallen snow grains, as the snow
depth data in Figure 9a indicates a net melt over this period of time. It could have been
attributable to windblown snow grains, which also have a higher albedo, but this can only
be an assumption as the state of the snow surface of this day has not been investigated
with care. At the end of the fieldwork, the albedo reached α = 0.77 which is a typical
value for ageing snow.
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6.3 Isothermal snow and Superimposed ice
Figure 11 and in-situ observation of the ice surface indicate that the formation of superim-
posed ice took place from the 26th of June, and was more important at S2 (∆hice ≈ 22.2cm)
and S5 (∆hice ≈ 19.7cm). The warm event that occurred on the 2nd of June made the
snowpack isothermal, as observed on the temperature profiles of the snow pits from the
6th of June in Figure 12, and on Figure 13, which shows the snow temperature recorded
by the thermistors strings. On the 22nd of May, the surface had not reached 0°C yet, so
no melting had occurred yet. According to Figure 9a the snow melt started after that
date. The sudden warm event which rendered the entire snowpack isothermal had drastic
consequences on the formation of superimposed ice, as its formation requires first a strong
melt at the surface to allow the water to percolate at the bottom of the snowpack, and re-
freeze if snow allows that. When the snow is isothermal, the water flows along the glacier
surface. SI formation is therefore prevented. The use of a thermistors string to measure
the snow and ice temperature exposes some drawbacks. The string can be a pathway for
percolating meltwater. Moreover, the thermistors located close to the surface are more
susceptible to be heated by radiations.

The use of weather stations located away from the field site exposes some drawbacks as
the topography is different. Indeed, both the wind and the radiation measurements are
strongly topography dependant. The wind measurements collected in Breinosa are not
truly representative of the wind conditions experienced in the grid. Also, the amount
of radiation reaching the radiation sensors in Adventdalen is dependant on the topogra-
phy. Moreover, the snow disappears earlier in the valley than on the glacier, making the
longwave radiation measurements not representative of the field conditions.
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7 Conclusion
The weather data indicates that a strong warm event occurred on the 2nd of June, which
induced a positive peak in the sensible and ground heat flux, which largely contributed
to the resulting peak in melt energy supplied to the snow. The modelled amount of melt
energy supplied to the snow between the 6th and the 11th of June is 45.4 W.m−2, and the
amount of melt energy calculated from the observed melt during this period is 9.3 W.m−2.
The two results differ by 95%. In spite of not being able to reproduce the observed melt
accurately, the model at least predicts that melt should occur on the glacier. The diver-
gence between the observed and the modelled melt can be attributed to the use of weather
data from weather stations located far away from the field site for the longwave radiation
and the wind data. A sensitivity test carried out on the albedo parameter highlights
how crucial it is for modelling snowmelt accurately, as increasing the albedo by 10% leads
to a result 283% smaller than the initial one, meaning that a lot of refreezing would occur.

The frequent in-situ snow measurements permitted the depiction of the evolution of sev-
eral properties of the snow as it melts. As the snowmelts, the water coalesces within
it, the snowpack bulk density increases, which results in a greater heat flow through the
snowpack. The comparison of the evolution of the SWE and the bulk density, as well as
the albedo increase seem to indicate that wind deposited snow on the site between the
7th and the 16th of May. Unfortunately, the SWE data does not expose any clear trend
after the 16th of May. Perhaps the interplay between the advection of melt water from
the upper part of the glacier and the progressive melt of the snowpack prevents a clear
understanding of the evolution of the SWE of the snowpack. The grid’s location in a bowl
of the glacier seems to prevent further analysis of the SWE data.

The albedo evolution, and the correlation between snow bulk density and the SWE, are
in accordance with the snow depth measurements, which indicate a snow accumulation
between the 7th and the 16th of May, most likely due to remobilized snow by wind. The
unexpectedly high albedo value measured on the 16th of June is supposely attributed to
the formation of a windblown snow surface. Towards the end of the fieldwork, the snow
albedo decreased to α=0.77, which is a characteristic value for ageing snow.

The warm event which occurred on the 2nd of June rendered the snowpack isothermal
and brought the ice surface very close to its melting point abruptly. This prevented the
formation of SI as it requires a strong surface melting feeding the bottom of the snowpack
with meltwater. The amount of SI formed, and the event of its formation is not system-
atic every year. It depends on the weather conditions during the melt. The measurement
of the sudden ice temperature increase illustrates the importance of the snow cover on
glaciers, and how its absence can modify the thermal regime of the glacier.

The work carried out in this report could be followed by further studies on the impact of
refreezing on Svalbard glaciers that are still firn-covered. Ultimately, an inter-comparison
of the refreezing impacts on Svalbard glaciers and Greenland glaciers could be carried out
in order to estimate the amount of meltwater contributing to sea level rise from Greenland
and Svalbard, nowadays and in a few decades.
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A Appendix

A.1 Introduction : Map

Figure 1: Location of the fieldwork site. Foxfonna glacier is located 10km East of
Longyearbyen. The site is located in a flat bassin of the glacier, under the 650m al-
titude line. The grid has the dimensions [160m E-W ×100m N-S]. The local weather
station is located by S4.



A.2 Method : Field procedures and tools summary

Figure 2: Fieldwork routine. a) Going to the site. b) Digging a snow pit. c) Temper-
ature and density profile. d) Snow pits tools. e) Stake depth measurement. f) Albedo
measurement.

Table 2 presents a summary of all the measurements carried out in the field, as well as
the tools used.



Snow
Measurements Tools and Uncertainty Details

Ice Thickeness Probe (± 5cm, Stakes not Straight) From ice to marker on the stake
Snow Thickeness At each stake and each pit

Albedo
Pyranometer SP-230 APOGEE INSTRUMENTS,

Range : 360 to 1120 nm
Linear error : 3%

Average of 5 measurements

Snow Temperature
Lollipop Traceable Thermometer (±1C)

+
Thermistors String RST (±0.1°C)

Temperature (Lollipop) and density
measurement every 10 cm from the

top to the bottom of the pit

Snow Density
Scale HT-3000 AND (±1g)

+
Wedge Cutter 1000cc Snowmetrics

Six sensors on the string
from 23cm to 141cm

above ice surface.
Pits coordinates GPS

Glacier Ice Temperature Thermistors String RST (±0.1°C) Two sensors below the glacier ice
at -2cm and -12 cm.

Weather
Measurements Tools and Uncertainty Details

Shortwave Radiation Pyranometer SKS 1110 Skye Instrument 0.2 % error
Weather Station – FoxfonnaAir Temperature (2m) HMP60-L Campbell Scientific ± 0.6°C

Relative Humidity HMP60-L Campbell Scientific (± 5%)
Longwave Radiation Campbell Scientific CNR1(± 10%) Weather Station - Adventhalen

Wind Campbell Scientific 05103-L ± 0.3 m/s Weather Station - Breinosa

Table 2: Summary of the measurements made on the field.



A.3 Code : Melt Model & Plot of Weather Data

######### This code reads and plots the weather data ###########"

import numpy as np
from matplotlib import pyplot as plt
import pandas as pd
import sys
# sys.path is a list of absolute path strings

sys.path.append(’/home/thibault/Documents/UNIVERSITY/UNIS/Thesis/Python/
↪→ Thermistor_String’)

import Thermistors

#%% DATES

# =========================================
# Winter_Fox 2020-10-21 / 2021-05-06
# May_Fox 2021-05-27 / 2021-06-11
# Ad5 2020-02-03 / 2021-08-17
# Advh 2020-01-01 / 2021-08-17
#
# ===============================================
#%% INITIAL DataFrame NAMES + READ DataFrames

colnamesJans_init = [’TIMESTAMP’, ’RECORD’, ’ID’, ’LT10cm_minutt_Max’, ’
↪→ LT10cm_minutt_Min’,

’LT10cm_minutt_Avg’, ’LT1m_minutt_Max’, ’LT1m_minutt_Min’,
’LT1m_minutt_Avg’, ’LT3m_minutt_Max’, ’LT3m_minutt_Min’,
’LT3m_minutt_Avg’, ’LF_minutt_Max’, ’LF_minutt_Avg’, ’AT_mbar’,
’VH_mps_Max’, ’VH_10_minutt’, ’VH_mps_mid’, ’VR_gr_framh’, ’NB_time

↪→ ’,
’SD_m’, ’SD_kval’, ’Batt_V_Min’]

colnamesAd5_init = [’TIMESTAMP’, ’RECORD’, ’CM3_opp_Wpm2_Avg’, ’
↪→ CG3_opp_Wpm2_Avg’,

’CM3_ned_Wpm2_Avg’, ’CG3_ned_Wpm2_Avg’, ’CNR1_temp_gr_C_Avg’]

colnamesAdvH_init = [’TIMESTAMP’, ’RECORD’, ’ID’, ’LT1_gr_C_Max’, ’
↪→ LT1_gr_C_Min’,

’LT1_gr_C_Avg’, ’LT2_gr_C_Max’, ’LT2_gr_C_Min’, ’LT2_gr_C_Avg’,
’LT3_gr_C_Max’, ’LT3_gr_C_Min’, ’LT3_gr_C_Avg’, ’LF1_prst_Max’,
’LF1_prst_Avg’, ’LT4_gr_C_Max’, ’LT4_gr_C_Min’, ’LT4_gr_C_Avg’,
’LF2_prst_Max’, ’LF2_prst_Avg’, ’AT_mbar’, ’VH1_mps_Max’, ’

↪→ VH1_10_min’,
’VH1_mps_mid’, ’VR1_gr_framh’, ’VH2_sek_Max’, ’VH2_10_min’,
’VH2_mps_mid’, ’VR2_gr_framh’, ’Batt_V_Min’]



Jans = pd.read_csv(’Jans.csv’, parse_dates=["TIMESTAMP"])
Ad5 = pd.read_csv(’Adv_5min.csv’, parse_dates=["TIMESTAMP"])
Bull = pd.read_csv(’Adv_5min_BULLSHIT.csv’)
Ad5_AprilMay = pd.read_csv(’Adv_5minAprilMay.csv’, parse_dates=["

↪→ TIMESTAMP"])
AdvH = pd.read_csv(’Adv_Hour.csv’, parse_dates=["TIMESTAMP"])
Brei = pd.read_csv(’Breinosa_Res_Data.csv’, parse_dates=["TIMESTAMP"])

#print(Jans[’LF_minutt_Avg’])
MayFox = Thermistors.May
YearFox = Thermistors.Winter
#print(Jans[’LF_minutt_Avg’].head())

Jans = Jans.drop(columns=[’RECORD’,’ID’, ’LT10cm_minutt_Max’, ’
↪→ LT10cm_minutt_Min’,

’LT1m_minutt_Max’, ’LT1m_minutt_Min’,
’LT3m_minutt_Max’, ’LT3m_minutt_Min’,
’LF_minutt_Max’, ’AT_mbar’,
’VH_mps_Max’, ’VH_10_minutt’, ’NB_time’,
’SD_m’, ’SD_kval’, ’Batt_V_Min’])

Advh = AdvH.drop(columns=[’RECORD’, ’ID’, ’LT1_gr_C_Max’, ’LT1_gr_C_Min’,
’LT2_gr_C_Max’, ’LT2_gr_C_Min’,

’LT3_gr_C_Max’, ’LT3_gr_C_Min’, ’LF1_prst_Max’,
’LT4_gr_C_Max’, ’LT4_gr_C_Min’,
’LF2_prst_Max’, ’VH1_mps_Max’, ’VH1_10_min’,
’VH2_sek_Max’, ’VH2_10_min’,
’Batt_V_Min’])

Ad5 = Ad5.drop(columns=["CNR1_temp_gr_C_Avg"])

Brei = Brei.drop(columns=[’RECORD’, ’ID’,’Batt_Volt_Min’])

J_Time = Jans["TIMESTAMP"]
J_T10 = Jans[’LT10cm_minutt_Avg’]
J_T1 = Jans[’LT1m_minutt_Avg’]
J_T3 = Jans[’LT3m_minutt_Avg’]
J_Hum = Jans[’LF_minutt_Avg’]
J_ws = Jans[’VH_mps_mid’]
J_wd = Jans[’VR_gr_framh’]

Advh_Time = Advh["TIMESTAMP"]



Advh_T1 = Advh[’LT1_gr_C_Avg’]
Advh_T2 = Advh[’LT2_gr_C_Avg’]
Advh_T3 = Advh[’LT3_gr_C_Avg’]
Advh_T4 = Advh[’LT4_gr_C_Avg’]
Advh_Hum1 = Advh[’LF1_prst_Avg’]
Advh_Hum2 = Advh[’LF2_prst_Avg’]
Advh_wd = Advh[’VH1_mps_mid’]
Advh_wd = Advh[’VR1_gr_framh’]
Advh_wd = Advh[’VH2_mps_mid’]
Advh_wd = Advh[’VR2_gr_framh’]
BreiRHmax = Brei[’RH_Max’]

#%% Set Index + Hour Data Avrage
Jans = Jans.set_index(’TIMESTAMP’)
Brei = Brei.set_index(’TIMESTAMP’)
Ad5 = Ad5.set_index(’TIMESTAMP’)
Advh = Advh.set_index(’TIMESTAMP’)
Ad5_AprilMay = Ad5_AprilMay.set_index(’TIMESTAMP’)

Jans = Jans.resample("H").mean()
Brei = Brei.resample("H").mean()
Advh = Advh.resample("H").mean()
Ad5 = Ad5.resample("H").mean()
Ad5_AprilMay = Ad5_AprilMay.resample("H").mean()

#%% Plot AD5 Data
# ========================================
# plt.plot(Ad5[’S_Up’])
# plt.plot(Ad5[’L_Up’])
# plt.plot(Ad5[’S_Down’]/Ad5[’S_Up’])
# plt.plot(Ad5[’S_Up’])
# plt.plot(Ad5[’S_Down’])
#
# Ad5.plot()
# =================================
#%% Constants

rho_w = 997 #Kg/m3
rho_air = 1.2 # Kg/m3
Cw = 4200 #J/Kg.K Heat Cap. Water
C_air = 1012 #cP Jg1K1 specific heat capacity of air
L_vaporisation = 2838 #J/kg
C_Sensible = 0.0019 #W/(m2 C)
C_Latent = 0.0015 #W/(m2 C) #p.157 Book Glaciers
L_fusion = 334000 #J/Kg M3



A= 0.0019 # (Cuffey and Paterson, 2010) an empirical transfer
↪→ coefficient including surface roughness and atmospheric stability,

B = 0.0015
RH_sfc = 100
T = 20
T_sfc_26Jul = 0
T_sfc_06May = -8.7
Boltz_cst = 5.67*(10**-8)
T_sfc_06May = -8.7

#%% 21/10/20 to 06/05/21 YEAR Thermistors Data

start_date_YearFox = YearFox.index[0]

end_date_YearFox = YearFox.index[-1]

after_start_date_Ad5 = Ad5.index >= start_date_YearFox
before_end_date_Ad5 = Ad5.index <= end_date_YearFox
between_two_dates__Ad5 = after_start_date_Ad5 & before_end_date_Ad5
Ad5_YearFox = Ad5.loc[between_two_dates__Ad5]

after_start_date_Brei = Brei.index >= start_date_YearFox
before_end_date_Brei = Brei.index <= end_date_YearFox
between_two_dates_Brei = after_start_date_Brei & before_end_date_Brei
Brei_YearFox = Brei.loc[between_two_dates_Brei]

T_sfc = Thermistors.Winter_40_48["T(42)"]

q_air_YearFox = (YearFox["RH"]/100)*611.12*np.exp((22.2*YearFox["Air␣Temp
↪→ "])/(272.62 + YearFox["Air␣Temp"]))

q_sfc_YearFox = (RH_sfc/100)*611.12*np.exp((22.2*T_sfc)/272.62 + T_sfc)

#Albedo should be changed as well as T_surface
ALBEDO = 0.8

Q_net_YearFox = YearFox["Inc␣Radn"] * (1 - ALBEDO) + Ad5_YearFox["L_Down"
↪→ ] - Ad5_YearFox["L_Up"] ### ALBEDO TO IMPROVE ###

#Q_net_YearFox_Boltz = YearFox["Inc Radn"] * (1 - ALBEDO) + Ad5_YearFox
↪→ ["L_Down"] - Boltz_cst*((T_sfc+273)**4)

Q_sens_YearFox = rho_air * C_air * C_Sensible * Brei_YearFox["WS_ms_Avg"]
↪→ * ( YearFox["Air␣Temp"] - T_sfc ) #Cp = sp. heat. cap . air #
↪→ ADJUST BY A STABILITY FACTOR (C_sensible) ### T_sfc CAN BE
↪→ IMPROVED ###



Q_lat_YearFox = 22.2 * C_Latent * Brei_YearFox["WS_ms_Avg"] * (
↪→ q_air_YearFox - q_sfc_YearFox) # Or Humidity difference # 22.2
↪→ from p.157 Book Glaciers ### T_sfc CAN BE IMPROVED ###

Q_net_YearFox = pd.DataFrame(Q_net_YearFox)
Q_net_YearFox.columns = ["Q_net_YearFox"]

# ============================================================
# Q_net_YearFox_Boltz = pd.DataFrame(Q_net_YearFox_Boltz)
# Q_net_YearFox_Boltz.columns = ["Q_net_YearFox_Boltz"]
# =========================================================

Q_sens_YearFox = pd.DataFrame(Q_sens_YearFox)
Q_sens_YearFox.columns = ["Q_sens_YearFox"]

Q_lat_YearFox = pd.DataFrame(Q_lat_YearFox)
Q_lat_YearFox.columns = ["Q_lat_YearFox"]

Q_g_YearFox = pd.DataFrame(Thermistors.df_B_year)
Q_g_YearFox.columns = ["Q_g_YearFox"]

plt.figure()
ax = Q_net_YearFox.plot(legend=True)
# =============================================
# Q_net_YearFox_Boltz.plot(legend=True)
# ============================================
Q_sens_YearFox.plot(ax=ax, legend=True)
Q_lat_YearFox.plot(ax=ax, legend=True)
Q_g_YearFox.plot(ax=ax, legend=True)
plt.title("SEB_Year")
plt.ylabel("W/m2")
plt.xlabel("Time")
plt.ylim(-300,300)

#%% 2021-05-27 to 2021-06-11 MAY Thermistors Data

start_date_MayFox = MayFox.index[0]

end_date_MayFox = MayFox.index[-1]

after_start_date_Ad5_May = Ad5.index >= start_date_MayFox
before_end_date_Ad5_May = Ad5.index <= end_date_MayFox
between_two_dates_Ad5_May = after_start_date_Ad5_May &

↪→ before_end_date_Ad5_May



Ad5_MayFox = Ad5.loc[between_two_dates_Ad5_May]

after_start_date_Brei_May = Brei.index >= start_date_MayFox
before_end_date_Brei_May = Brei.index <= end_date_MayFox
between_two_dates_Brei_May = after_start_date_Brei_May &

↪→ before_end_date_Brei_May
Brei_MayFox = Brei.loc[between_two_dates_Brei_May]

# =================================================
# for row in Thermistors.May_40_48.iterrows() :
# Tsfc = pd.DataFrame(Thermistors.May_40_48[Thermistors.May_40_48[row] <

↪→ Thermistors.May_40_48["Air Temp"]])
# ===================================================

#
↪→ =============================================================================
↪→

# Tsfc40 = pd.DataFrame(Thermistors.May_40_48[Thermistors.May_40_48["T
↪→ (40)"] < Thermistors.May_40_48["Air Temp"] ])

# Tsfc41 = pd.DataFrame(Thermistors.May_40_48[Thermistors.May_40_48["T
↪→ (41)"] < Thermistors.May_40_48["Air Temp"] ])

# Tsfc42 = pd.DataFrame(Thermistors.May_40_48[Thermistors.May_40_48["T
↪→ (42)"] < Thermistors.May_40_48["Air Temp"] ])

# Tsfc43 = pd.DataFrame(Thermistors.May_40_48[Thermistors.May_40_48["T
↪→ (43)"] < Thermistors.May_40_48["Air Temp"] ])

# Tsfc44 = pd.DataFrame(Thermistors.May_40_48[Thermistors.May_40_48["T
↪→ (44)"] < Thermistors.May_40_48["Air Temp"] ])

# Tsfc45 = pd.DataFrame(Thermistors.May_40_48[Thermistors.May_40_48["T
↪→ (45)"] < Thermistors.May_40_48["Air Temp"] ])

# Tsfc46= pd.DataFrame(Thermistors.May_40_48[Thermistors.May_40_48["T
↪→ (46)"] < Thermistors.May_40_48["Air Temp"] ])

# Tsfc47= pd.DataFrame(Thermistors.May_40_48[Thermistors.May_40_48["T
↪→ (47)"] < Thermistors.May_40_48["Air Temp"] ])

# Tsfc48= pd.DataFrame(Thermistors.May_40_48[Thermistors.May_40_48["T
↪→ (48)"] < Thermistors.May_40_48["Air Temp"] ])

#
↪→ =============================================================================
↪→

Tsfc_beg = Thermistors.May_40_48["T(41)"][(Thermistors.May_40_48["T(41)"
↪→ ].index > ’2021-05-27’) & (Thermistors.May_40_48["T(41)"].index <=
↪→ ’2021-06-01’)]

Tsfc_end = Thermistors.May_40_48["T(42)"][(Thermistors.May_40_48["T(42)"
↪→ ].index > ’2021-06-01’) & (Thermistors.May_40_48["T(42)"].index <=
↪→ ’2021-06-11’)]

T_sfc_MayFox = Tsfc_beg



T_sfc_MayFox = T_sfc_MayFox.append(Tsfc_end)

ALbedo = pd.DataFrame(T_sfc_MayFox)
ALbedo.drop(columns=ALbedo.columns[0],

axis=1,
inplace=True)

ALbedo["0.9"] = 0.9
ALbedo["0.75"] = 0.75

ALbedo_beg = ALbedo["0.9"][(ALbedo["0.9"].index > ’2021-05-27’) & (ALbedo
↪→ ["0.9"].index <= ’2021-06-01’)]

ALbedo_end = ALbedo["0.75"][(ALbedo["0.75"].index > ’2021-06-01’) & (
↪→ ALbedo["0.75"].index <= ’2021-06-11’)]

albedo = ALbedo_beg
albedo = albedo.append(ALbedo_end)

q_air_MayFox = (MayFox["RH"]/100)*611.12*np.exp((21.875*MayFox["Air␣Temp"
↪→ ])/(265.5 + MayFox["Air␣Temp"]))

q_sfc_MayFox = (RH_sfc/100)*611.12*np.exp((22.2*T_sfc_MayFox)/(272.62 +
↪→ T_sfc_MayFox))

Q_net_MayFox = MayFox["Inc␣Radn"] * (1 - albedo) + Ad5_MayFox["L_Down"] -
↪→ Ad5_MayFox["L_Up"]

Q_net_MayFox_Boltz = MayFox["Inc␣Radn"] * (1 - albedo) + Ad5_MayFox["
↪→ L_Down"] - Boltz_cst*(( T_sfc_MayFox+273)**4) # Albedo 16 May

Lup_Boltz = pd.DataFrame(Boltz_cst*(( T_sfc_MayFox+273)**4))

Lup_Boltz_LEFT = pd.DataFrame(Boltz_cst*(( Tsfc_beg+273)**4))
Lup_Boltz_RIGHT = pd.DataFrame(Boltz_cst*(( Tsfc_end+273)**4))

AA = pd.DataFrame(MayFox["Inc␣Radn"]*0.8 + Ad5_MayFox["L_Down"] -
↪→ Ad5_MayFox["L_Up"])

BB = pd.DataFrame( - Ad5_MayFox["L_Down"] + Boltz_cst*(( T_sfc_MayFox
↪→ +273)**4))

AA.plot()
#BB.plot()

plt.figure(19191)



plt.plot(Ad5_MayFox["L_Down"], "green")
plt.plot(Ad5_MayFox["L_Up"], "blue")
plt.plot(Lup_Boltz, ’red’)
plt.title("ADV␣RAD")
plt.show()

plt.figure(18181)
plt.plot(Ad5["L_Down"], "green")
plt.plot(Ad5["L_Up"], "blue")
plt.plot(Lup_Boltz, ’rx’)
plt.legend()
plt.show()

plt.figure(181)
plt.plot(Ad5_MayFox)
plt.plot(MayFox["Inc␣Radn"])
plt.show()

Ad5_May_PlotSW = pd.DataFrame(Ad5_MayFox["S_Up"])
Ad5_May_PlotSW = Ad5_May_PlotSW.rename({’S_Up’ : ’S\u2191_Adventdalen’},

↪→ axis=1)

Ad5_May_PlotSW["S_Down␣Adventdalen"] = Ad5_MayFox["S_Down"]
Ad5_May_PlotSW = Ad5_May_PlotSW.rename({’S_Down␣Adventdalen’ : ’S\

↪→ u2193_Adventdalen’},axis=1)

Ad5_May_PlotSW["S_Down␣Foxfonna"] = MayFox["Inc␣Radn"]
Ad5_May_PlotSW = Ad5_May_PlotSW.rename({’S_Down␣Foxfonna’ : ’S\

↪→ u2193_Foxfonna’},axis=1)

# u’\u2193’ \u2191
plt.figure(102)
ax =Ad5_May_PlotSW["S\u2193_Adventdalen"].plot(legend=True, color="tab:

↪→ blue")
Ad5_May_PlotSW["S\u2191_Adventdalen"].plot(legend=True, color="tab:green"

↪→ )
Ad5_May_PlotSW["S\u2193_Foxfonna"] .plot(legend=True, color="tab:purple")
plt.legend()
plt.title("Comparison␣Shortwave␣Radiation␣:␣Adventdalen␣Vs.␣Foxfonna")
plt.ylabel("[W/m2]", rotation=0,labelpad=25)
plt.xlabel("Time")
#plt.ylim(-100,100)
plt.show()

Q_net_MayFox_Boltz = pd.DataFrame(Q_net_MayFox_Boltz)
Q_net_MayFox_Boltz.columns= ["Q_net_Boltzman"]



Q_sens_MayFox = rho_air * C_air * C_Sensible * Brei_MayFox["WS_ms_Avg"] *
↪→ (MayFox["Air␣Temp"] - T_sfc_MayFox ) #Cp = sp. heat. cap . air #
↪→ ADJUST BY A STABILITY FACTOR (C_sensible)

Q_lat_MayFox = 22.2 * C_Latent * Brei_MayFox["WS_ms_Avg"] * (q_air_MayFox
↪→ - q_sfc_MayFox)

Q_net_MayFox = pd.DataFrame(Q_net_MayFox)
Q_net_MayFox.columns = ["Q_net_MayFox"]

Q_sens_MayFox = pd.DataFrame(Q_sens_MayFox)
Q_sens_MayFox.columns = ["Q_sens_MayFox"]

Q_lat_MayFox = pd.DataFrame(Q_lat_MayFox)
Q_lat_MayFox.columns = ["Q_lat_MayFox"]

Q_g_MayFox = pd.DataFrame(Thermistors.df_B_may)
Q_g_MayFox.columns = ["Q_g_MayFox"]

# =========================================
# Q_melt = Q_net_MayFox.add(Q_sens_MayFox, fill_value=0)
# Q_melt = Q_melt.add(Q_lat_MayFox, fill_value=0)
# Q_melt = Q_melt.sum(axis=1)
# Q_melt = pd.DataFrame(Q_melt)
# Q_melt.index = Q_lat_MayFox.index
# Q_melt.columns = ["Q_melt"]
#
# ====================================
Q_melt_Bltz = Q_net_MayFox_Boltz.add(Q_sens_MayFox, fill_value=0)
Q_melt_Bltz = Q_melt_Bltz.add(Q_lat_MayFox, fill_value=0)
Q_melt_Bltz = Q_melt_Bltz.sum(axis=1)
Q_melt_Bltz = pd.DataFrame(Q_melt_Bltz)
Q_melt_Bltz.index = Q_lat_MayFox.index
Q_melt_Bltz.columns = ["Q_melt_Bltz"]

#Met_Rate = Q_melt/(141*L_fusion) #M = Q[m/s] / (density*L_fusion)

plt.figure(101)
ax = Q_sens_MayFox.plot(legend=True)
Q_lat_MayFox.plot(ax=ax, legend=True)
Q_g_MayFox.plot(ax=ax, legend=True) #Using Thermistors 23 and 24
Q_net_MayFox_Boltz.plot(ax=ax, legend=True)
Q_melt_Bltz.plot(ax=ax, legend=True)



#Thermistors.May_40_48["Air Temp"].plot(ax=ax, legend=True)
plt.title("SEB_May")
plt.ylabel("[W/m2]",rotation=0,labelpad=25)
plt.xlabel("Time")
#plt.ylim(-100,300)
plt.legend(bbox_to_anchor=(1.0,1.0))
plt.show()

# =========================================
# Q_net_MayFox.plot(ax=ax, legend=True)
# Q_melt.plot(ax=ax, legend=True)
# =========================================

#%% ComparisonNET Boltzman and Adventhalen Radiation

Q_net_Boltz_LEFT = Q_net_MayFox_Boltz[(Q_net_MayFox_Boltz.index > ’
↪→ 2021-05-27’) & (Q_net_MayFox_Boltz.index <= ’2021-06-01’)]

Q_net_Boltz_RIGHT = Q_net_MayFox_Boltz[(Q_net_MayFox_Boltz.index > ’
↪→ 2021-06-01’) & (Q_net_MayFox_Boltz.index <= ’2021-06-11’)]

Q_net_Boltz_LEFT = Q_net_Boltz_LEFT.rename({’Q_net_Boltzman’ : ’$Q_{net}
↪→ $_Boltzman␣(Temp␣20cm␣below␣surface,␣\u03B1=0.9)’},axis=1)

Q_net_Boltz_RIGHT = Q_net_Boltz_RIGHT.rename({’Q_net_Boltzman’ : ’$Q_{net
↪→ }$_Boltzman␣(Temp␣30cm␣below␣surface,␣\u03B1=0.75)’},axis=1)

plt.figure(102)
Q_net_MayFox_renamed = Q_net_MayFox.rename({’Q_net_MayFox’ : ’$Q_{net}

↪→ $_Adventhalen’},axis=1)
ax = Q_net_MayFox_renamed.plot(legend=True, color="tab:brown")
Q_net_Boltz_LEFT.plot(ax=ax, legend=True, color="tab:cyan")
Q_net_Boltz_RIGHT.plot(ax=ax, legend=True, color="tab:pink")
ax.axvline(pd.to_datetime(’2021-06-01’), color=’r’, linestyle=’:’, lw=2)
plt.legend(loc="lower␣right",bbox_to_anchor=(0.9,-0.5))
plt.title("Comparison␣$Q_{net}$␣-␣Adventhalen␣Vs.␣Boltzmann")
plt.ylabel("[W/m2]", rotation=0,labelpad=10)
plt.xlabel("Time",labelpad=-20)
#plt.ylim(-100,100)
plt.show()

#%% WEATHER PLOT

# ===========================
# plt.figure(10001)
# Brei_MayFox["WS_ms_Avg"].plot()



# plt.title("Wind Speed - Breinosa WS")
# plt.ylabel("[m/s]", rotation=0, labelpad=15)
# plt.xlabel("Time")
# plt.show()
#
# plt.figure(10002)
# MayFox["Air Temp"].plot()
# plt.title("Air Temperature - Foxfonna WS")
# plt.ylabel("[C]", rotation=0, labelpad=15)
# plt.xlabel("Time")
# plt.show()
#
#
#
#
# plt.figure(10003)
# MayFox["RH"].plot()
# plt.xlabel("Time")
# plt.title("Relative Humidity (%) - Foxfonna WS")
# plt.show()
#
# ===============================

plt.figure(10004)
MayFox["Inc␣Radn"].plot()
plt.title("Incoming␣Shortwave␣Radiation␣-␣Foxfonna␣WS")
plt.ylabel("[W/m2]", rotation=0, labelpad=25)
plt.xlabel("Time")
plt.show()

POS = np.arange(0,360,45)
LAB = np.array([’N’, ’NE’, ’E’, ’SE’,"S","SW","W","NW"])

# ==========================
# plt.figure(10005)
# Brei_MayFox["WindDir"].plot()
# plt.yticks(POS,LAB)
# plt.title("Wind Direction - Breinosa WS")
# plt.xlabel("Time")
# plt.show()
# ============================

def uwind(x,y):
u = np.cos(x*np.pi/180)*y
return u

def vwind(x,y):
v = np.sin(x*np.pi/180)*y



return v

# ===========================================
# plt.figure(10006)
# Brei_MayFox["BP_mBar"].plot()
# plt.title("Atmospheric Pressure - Breinosa WS")
# plt.xlabel("Time")
# plt.ylabel("[mBar]", rotation=0, labelpad=25)
# plt.show()
# =============================================

#Ad5_AprilMay_renamed = Ad_AprilMay.rename({’S_Up’ : ’S_Up’,’S_Down’ : ’
↪→ S_Down’, ’L_Up’ : ’L_Up’, ’L_Down’ : ’L_Down’},axis=1)

plt.figure(10007)
Ad5_AprilMay.plot()
plt.title("Radiations␣-␣Adventhalen␣WS")
plt.xlabel("Time")
plt.ylabel("[W/m2]", rotation=0, labelpad=25)
plt.show()

Ad5_AprilMay_SD = pd.DataFrame(Ad5_AprilMay["S_Down"])
Ad5_AprilMay_SU = pd.DataFrame(Ad5_AprilMay["S_Up"])
Ad5_AprilMay_LD = pd.DataFrame(Ad5_AprilMay["L_Down"])
Ad5_AprilMay_LU = pd.DataFrame(Ad5_AprilMay["L_Up"])

Ad5_AprilMay_SD = Ad5_AprilMay_SD.rename({’S_Down’ : ’S\u2193_Adventdalen
↪→ ’},axis=1)

Ad5_AprilMay_SU = Ad5_AprilMay_SU.rename({’S_Up’ : ’S\u2191_Adventdalen’
↪→ },axis=1)

Ad5_AprilMay_LD = Ad5_AprilMay_LD.rename({’L_Down’ : ’L\u2193_Adventdalen
↪→ ’},axis=1)

Ad5_AprilMay_LU = Ad5_AprilMay_LU.rename({’L_Up’ : ’L\u2191_Adventdalen’
↪→ },axis=1)

plt.figure(102)
ax = Ad5_AprilMay_SD.plot(legend=True, color="tab:blue")
Ad5_AprilMay_SU.plot(ax=ax, legend=True, color="tab:green")
Ad5_AprilMay_LD.plot(ax=ax, legend=True, color="tab:orange")
Ad5_AprilMay_LU.plot(ax=ax, legend=True, color="tab:red")
plt.legend()
plt.title("Comparison␣Net␣Radiation␣:␣Adventhalen␣Vs.␣Boltzmann")
plt.ylabel("[W/m2]", rotation=0,labelpad=25)
plt.xlabel("Time")
#plt.ylim(-100,100)
plt.show()



#%% Boltz_Adv Comparison

Lup_Boltz_renamed = Lup_Boltz.rename({’T(42)’ : ’L\u2191_Boltz’},axis=1)
Ad5_MayFox_renamed = Ad5_MayFox.rename({’L_Up’ : ’L\u2191_Adventhalen’},

↪→ axis=1)
Lup_Boltz_LEFT = Lup_Boltz_LEFT.rename({’T(41)’ : ’L\u2191_Boltz␣(Temp.␣

↪→ 20cm␣below␣surface)’},axis=1)
Lup_Boltz_RIGHT = Lup_Boltz_RIGHT.rename({’T(42)’ : ’L\u2191_Boltz␣(Temp.

↪→ ␣30cm␣below␣surface)’},axis=1)
plt.figure(1099)
ax = Ad5_MayFox_renamed["L\u2191_Adventhalen"].plot(legend=True, color="

↪→ tab:red")
Lup_Boltz_LEFT.plot(ax=ax, legend=True)
Lup_Boltz_RIGHT.plot(ax=ax, legend=True)
#Lup_Boltz_renamed.plot(ax=ax, legend=True)
ax.axvline(pd.to_datetime(’2021-06-01’), color=’r’, linestyle=’:’, lw=2)
plt.legend(loc="best",bbox_to_anchor=(0.37,0.28))
plt.title("Comparison␣L\u2191␣Radiation␣-␣Adventhalen␣Vs.␣Boltzmann")
plt.ylabel("[W/m2]", rotation=0,labelpad=25)
plt.xlabel("Time")
#plt.ylim(-100,100)
plt.show()

#%% Calculate Melt

Q_melt_exp = (391.1666666666667*L_fusion*0.15)/432000

Q_melt_Cumulative1 = Q_melt_Bltz[(Q_melt_Bltz.index > ’2021-06-06’) & (
↪→ Q_melt_Bltz.index <= ’2021-06-11’)].sum()

Q_melt_Cumulative = Q_melt_Bltz[(Q_melt_Bltz.index > ’2021-06-06’) & (
↪→ Q_melt_Bltz.index <= ’2021-06-11’)].sum()/len(Q_melt_Bltz[(
↪→ Q_melt_Bltz.index > ’2021-06-06’) & (Q_melt_Bltz.index <= ’
↪→ 2021-06-11’)])

#%%

[language=Python]



A.4 Code : Plot of the Snow Pits Data

################# This code visualizes the snow pits data
↪→ #################

import numpy as np
import matplotlib as plt
import pandas as pd

colnames = [’Depth’, ’T’, ’depth’, ’mass’, "Longitude", "Latitude"]
colna = [’Depth’, ’T’, ’depth’, ’mass’]
colours = [’red’, ’orange’, ’yellow’, ’green’, ’blue’, ’purple’, ’violet’

↪→ , ’cyan’]

k12k = pd.read_csv(’Rod1_2.csv’, names = colna, header=0)["T"]
k13k = pd.read_csv(’Rod1_3.csv’, names = colna, header=0)["T"]

df1_1 = pd.read_csv(’Rod1_1.csv’, names = colnames, header=0) # Read each
↪→ of my snow pit file.

df1_2 = pd.read_csv(’Rod1_2.csv’, names = colnames, header=0)
df1_3 = pd.read_csv(’Rod1_3.csv’, names = colnames, header=0)
df2_1 = pd.read_csv(’Rod2_1.csv’, names = colnames, header=0)
df2_2 = pd.read_csv(’Rod2_2.csv’, names = colnames, header=0)
df2_3 = pd.read_csv(’Rod2_3.csv’, names = colnames, header=0)
df3_1 = pd.read_csv(’Rod3_1.csv’, names = colnames, header=0)
df3_2 = pd.read_csv(’Rod3_2.csv’, names = colnames, header=0)
df3_3 = pd.read_csv(’Rod3_3.csv’, names = colnames, header=0)
df4_1 = pd.read_csv(’Rod4_1.csv’, names = colnames, header=0)
df4_2 = pd.read_csv(’Rod4_2.csv’, names = colnames, header=0)
df4_3 = pd.read_csv(’Rod4_3.csv’, names = colnames, header=0)
df5_1 = pd.read_csv(’Rod5_1.csv’, names = colnames, header=0)
df5_2 = pd.read_csv(’Rod5_2.csv’, names = colnames, header=0)
df5_3 = pd.read_csv(’Rod5_3.csv’, names = colnames, header=0)
df6_1 = pd.read_csv(’Rod6_1.csv’, names = colnames, header=0)
df6_2 = pd.read_csv(’Rod6_2.csv’, names = colnames, header=0)
df6_3 = pd.read_csv(’Rod6_3.csv’, names = colnames, header=0)
df7_1 = pd.read_csv(’Rod7_1.csv’, names = colnames, header=0)
df7_2 = pd.read_csv(’Rod7_2.csv’, names = colnames, header=0)
df8_1 = pd.read_csv(’Rod8_1.csv’, names = colnames, header=0)
df8_2 = pd.read_csv(’Rod8_2.csv’, names = colnames, header=0)
df8_3 = pd.read_csv(’Rod8_3.csv’, names = colnames, header=0)

A = [
df1_1,df1_2,df1_3, #012
df2_1,df2_2,df2_3, #345



df3_1,df3_2,df3_3, #678
df4_1,df4_2,df4_3, #9_10_11
df5_1,df5_2,df5_3, #12_13_14
df6_1,df6_2,df6_3, #15_16_17
df7_1,df7_2, #18_19
df8_1,df8_2,df8_3] #20_21_22

S1 = np.array([1527032, 8673770,0,0]) # Coordinates of the Stakes.
S2 = np.array([1527007, 8673868,0,0])
S3 = np.array([1526860, 8673823,0,0])
S4 = np.array([1526877, 8673734,0,0])
S5 = np.array([1526941, 8673803,0,0])

Diff_S2_S1 = S2-S1
Diff_S3_S1 = S3-S1
Diff_S4_S1 = S4-S1
Diff_S5_S1 = S5-S1

P1_1 = np.array([df1_1["Longitude"][0],df1_1["Latitude"][0],df1_1["Depth"
↪→ ], df1_1["T"].astype(float)])

P1_2 = np.array([df1_2["Longitude"][0],df1_2["Latitude"][0],df1_2["Depth"
↪→ ], df1_2["T"].astype(float)])

P1_3 = np.array([df1_3["Longitude"][0],df1_3["Latitude"][0],df1_3["Depth"
↪→ ], df1_3["T"].astype(float)])

P2_1 = np.array([df2_1["Longitude"][0],df2_1["Latitude"][0],df2_1["Depth"
↪→ ], df2_1["T"].astype(float)])

P2_2 = np.array([df2_2["Longitude"][0],df2_2["Latitude"][0],df2_2["Depth"
↪→ ], df2_2["T"].astype(float)])

P2_3 = np.array([df2_3["Longitude"][0],df2_3["Latitude"][0],df2_3["Depth"
↪→ ], df2_3["T"].astype(float)])

P3_1 = np.array([df3_1["Longitude"][0],df3_1["Latitude"][0],df3_1["Depth"
↪→ ], df3_1["T"].astype(float)])

P3_2 = np.array([df3_2["Longitude"][0],df3_2["Latitude"][0],df3_2["Depth"
↪→ ], df3_2["T"].astype(float)])

P3_3 = np.array([df3_3["Longitude"][0],df3_3["Latitude"][0],df3_3["Depth"
↪→ ], df3_3["T"].astype(float)])

P4_1 = np.array([df4_1["Longitude"][0],df4_1["Latitude"][0],df4_1["Depth"
↪→ ], df4_1["T"].astype(float)])

P4_2 = np.array([df4_2["Longitude"][0],df4_2["Latitude"][0],df4_2["Depth"
↪→ ], df4_2["T"].astype(float)])

P4_3 = np.array([df4_3["Longitude"][0],df4_3["Latitude"][0],df4_3["Depth"
↪→ ], df4_3["T"].astype(float)])

P5_1 = np.array([df5_1["Longitude"][0],df5_1["Latitude"][0],df5_1["Depth"
↪→ ], df5_1["T"].astype(float)])

P5_2 = np.array([df5_2["Longitude"][0],df5_2["Latitude"][0],df5_2["Depth"
↪→ ], df5_2["T"].astype(float)])

P5_3 = np.array([df5_3["Longitude"][0],df5_3["Latitude"][0],df5_3["Depth"
↪→ ], df5_3["T"].astype(float)])



P6_1 = np.array([df6_1["Longitude"][0],df6_1["Latitude"][0],df6_1["Depth"
↪→ ], df6_1["T"].astype(float)])

P6_2 = np.array([df6_2["Longitude"][0],df6_2["Latitude"][0],df6_2["Depth"
↪→ ], df6_2["T"].astype(float)])

P6_3 = np.array([df6_3["Longitude"][0],df6_3["Latitude"][0],df6_3["Depth"
↪→ ], df6_3["T"].astype(float)])

P7_1 = np.array([df7_1["Longitude"][0],df7_1["Latitude"][0],df7_1["Depth"
↪→ ], df7_1["T"].astype(float)])

P7_2 = np.array([df7_2["Longitude"][0],df7_2["Latitude"][0],df7_2["Depth"
↪→ ], df7_2["T"].astype(float)])

P8_1 = np.array([df8_1["Longitude"][0],df8_1["Latitude"][0],df8_1["Depth"
↪→ ], df8_1["T"].astype(float)])

P8_2 = np.array([df8_2["Longitude"][0],df8_2["Latitude"][0],df8_2["Depth"
↪→ ], df8_2["T"].astype(float)])

P8_3 = np.array([df8_3["Longitude"][0],df8_3["Latitude"][0],df8_3["Depth"
↪→ ], df8_3["T"].astype(float)])

P1_1_S1 = P1_1-S1
P1_2_S1 = P1_2-S1
P1_3_S1 = P1_3-S1
P2_1_S1 = P2_1-S1
P2_2_S1 = P2_2-S1
P2_3_S1 = P2_3-S1
P3_1_S1 = P3_1-S1
P3_2_S1 = P3_2-S1
P3_3_S1 = P3_3-S1
P4_1_S1 = P4_1-S1
P4_2_S1 = P4_2-S1
P4_3_S1 = P4_3-S1
P5_1_S1 = P5_1-S1
P5_2_S1 = P5_2-S1
P5_3_S1 = P5_3-S1
P6_1_S1 = P6_1-S1
P6_2_S1 = P6_2-S1
P6_3_S1 = P6_3-S1
P7_1_S1 = P7_1-S1
P7_2_S1 = P7_2-S1
P8_1_S1 = P8_1-S1
P8_2_S1 = P8_2-S1
P8_3_S1 = P8_3-S1

tupple = (P1_1_S1,P1_2_S1,P1_3_S1, #012
P2_1_S1,P2_2_S1,P2_3_S1, #345
P3_1_S1,P3_2_S1,P3_3_S1, #678
P4_1_S1,P4_2_S1,P4_3_S1, #9_10_11
P5_1_S1,P5_2_S1,P5_3_S1, #12_13_14
P6_1_S1,P6_2_S1,P6_3_S1, #15_16_17
P7_1_S1,P7_2_S1, #18_19



P8_1_S1,P8_2_S1,P8_3_S1) #20_21_22

#%% Plot the temperature data of each snow pit.

DoStuff = [0,3,6,9,12,15,18,20]
DoNothing = [1,2,4,5,7,8,10,11,13,14,16,17,19,21,22]

for i in np.arange(0,21,1) :
print(i)
if i == 18 :

fig = plt.figure(i)
ax = plt.axes(projection=’3d’)
ax.set_zlim(0,2)
ax.scatter(0,0,0, marker="x")
ax.scatter(Diff_S2_S1[0],Diff_S2_S1[1],Diff_S2_S1[2], marker="x")
ax.scatter(Diff_S3_S1[0],Diff_S3_S1[1],Diff_S3_S1[2], marker="x")
ax.scatter(Diff_S4_S1[0],Diff_S4_S1[1],Diff_S4_S1[2], marker="x")
ax.scatter(Diff_S5_S1[0],Diff_S5_S1[1],Diff_S5_S1[2], marker="x")
ax.scatter(tupple[i][0],tupple[i][1],tupple[i][2], c=tupple[i][3],

↪→ cmap=’plasma’, vmin = -9.4, vmax=0,depthshade=False)
ax.scatter(tupple[i+1][0],tupple[i+1][1],tupple[i+1][2], c=tupple[

↪→ i+1][3],cmap=’plasma’, vmin = -9.4, vmax=0,depthshade=False)

ax.text(3, 3, .03, "S1", fontsize=15)
ax.text(Diff_S2_S1[0]+3, Diff_S2_S1[1]+3, Diff_S2_S1[2]+.03, "S2",

↪→ fontsize=15)
ax.text(Diff_S3_S1[0]+3, Diff_S3_S1[1]+3, Diff_S3_S1[2]+.03, "S3",

↪→ fontsize=15)
ax.text(Diff_S4_S1[0]+3, Diff_S4_S1[1]+3, Diff_S4_S1[2]+.03, "S4",

↪→ fontsize=15)
ax.text(Diff_S5_S1[0]+3, Diff_S5_S1[1]+3, Diff_S5_S1[2]+.03, "S5",

↪→ fontsize=15)

ax.text(0.6, -0.3, 3.2, "Depth␣[m]", fontsize=10)

p = ax.scatter(tupple[i][0],tupple[i][1],tupple[i][2], c=tupple[i
↪→ ][3],cmap=’plasma’, vmin = -9.4, vmax=0,depthshade=False)

plt.xlabel("Distance␣(W-E)␣[m]")
plt.ylabel("Distance␣(N-S)␣[m]")
fig.colorbar(p, label = "Temperature␣C")
plt.show()

step = 2



continue

if i in DoStuff :
fig = plt.figure(i)
ax = plt.axes(projection=’3d’)
ax.set_zlim(0,2)
ax.scatter(0,0,0, marker="x")

ax.scatter(Diff_S2_S1[0],Diff_S2_S1[1],Diff_S2_S1[2], marker="x")
ax.scatter(Diff_S3_S1[0],Diff_S3_S1[1],Diff_S3_S1[2], marker="x")
ax.scatter(Diff_S4_S1[0],Diff_S4_S1[1],Diff_S4_S1[2], marker="x")
ax.scatter(Diff_S5_S1[0],Diff_S5_S1[1],Diff_S5_S1[2], marker="x")

ax.scatter(tupple[i][0],tupple[i][1],tupple[i][2], c=tupple[i][3],
↪→ cmap=’plasma’, vmin = -9.4, vmax=0,depthshade=False)

ax.scatter(tupple[i+1][0],tupple[i+1][1],tupple[i+1][2], c=tupple[
↪→ i+1][3],cmap=’plasma’, vmin = -9.4, vmax=0,depthshade=False)

ax.scatter(tupple[i+2][0],tupple[i+2][1],tupple[i+2][2], c=tupple[
↪→ i+2][3],cmap=’plasma’, vmin = -9.4, vmax=0,depthshade=False)

ax.text(3, 3, .03, "S1", fontsize=15)
ax.text(Diff_S2_S1[0]+3, Diff_S2_S1[1]+3, Diff_S2_S1[2]+.03, "S2",

↪→ fontsize=15)
ax.text(Diff_S3_S1[0]+3, Diff_S3_S1[1]+3, Diff_S3_S1[2]+.03, "S3",

↪→ fontsize=15)
ax.text(Diff_S4_S1[0]+3, Diff_S4_S1[1]+3, Diff_S4_S1[2]+.03, "S4",

↪→ fontsize=15)
ax.text(Diff_S5_S1[0]+3, Diff_S5_S1[1]+3, Diff_S5_S1[2]+.03, "S5",

↪→ fontsize=15)

ax.text(0.6, -0.3, 3.2, "Depth␣[m]", fontsize=10)

p = ax.scatter(tupple[i+2][0],tupple[i+2][1],tupple[i+2][2], c=
↪→ tupple[i+2][3],cmap=’plasma’, vmin = -9.4, vmax=0,depthshade
↪→ =False)

plt.xlabel("Distance␣(W-E)␣[m]")
plt.ylabel("Distance␣(N-S)␣[m]")
fig.colorbar(p, label = "Temperature␣C")
plt.show()
continue

if i in DoNothing :
continue

#%% Calculation of the heat flow for each pit (Same command repeated
↪→ each time).



#%% q1_1

E1_1 = []
q1_1 = []
for i in np.arange(1, len(df1_1)) :

dTdz_vals1_1 = (df1_1["T"][i] - df1_1["T"][i-1])/0.10
E1_1.append(dTdz_vals1_1+273)

E1_1 = pd.DataFrame(E1_1)

for i in np.arange(0, len(df1_1)) :

DensityMg1_1 = df1_1["mass"][0:11]*10**(-3)
k1_1 = 2.22362*DensityMg1_1**(1.885)
q1_1 = k1_1[0:11]*E1_1[0:11]
q1_1 = q1_1[0]

q1_1 = pd.DataFrame(q1_1)
q1_1 = q1_1.set_index(df1_1["depth"][0:11])
q1_1.columns = ["07/05"]
q1_1.plot(legend=True)

print(q1_1)

#%% q1_2

E1_2 = []
q1_2 = []
for i in np.arange(1, len(df1_2)) :

dTdz_vals1_2 = (df1_2["T"][i] - df1_2["T"][i-1])/0.10
E1_2.append(dTdz_vals1_2+273)

E1_2 = pd.DataFrame(E1_2)

for i in np.arange(0, len(df1_2)) :

DensityMg1_2 = df1_2["mass"][0:5]*10**(-3)
k1_2 = 2.22362*DensityMg1_2**(1.885)
q1_2 = k1_2[0:5]*E1_2[0:5]
q1_2 = q1_2[0]

q1_2 = pd.DataFrame(q1_2)
q1_2 = q1_2.set_index(df1_2["depth"][0:5])
q1_2.columns = ["07/05"]
q1_2.plot(legend=True)

plt.plot(q1_2)
print(q1_2)



#%% q1_3

E1_3 = []
q1_3 = []
for i in np.arange(1, len(df1_3)) :

dTdz_vals1_3 = (df1_3["T"][i] - df1_3["T"][i-1])/0.10
E1_3.append(dTdz_vals1_3+273)

E1_3 = pd.DataFrame(E1_3)

for i in np.arange(0, len(df1_3)) :

DensityMg1_3 = df1_3["mass"][0:8]*10**(-3)
k1_3 = 2.22362*DensityMg1_3**(1.885)
q1_3 = k1_3[0:8]*E1_3[0:8]
q1_3 = q1_3[0]

q1_3 = pd.DataFrame(q1_3)
q1_3 = q1_3.set_index(df1_3["depth"][0:7])
q1_3.columns = ["07/05"]
q1_3.plot(legend=True)

plt.plot(q1_3)
print(q1_3)

#%% q2_1

E2_1 = []
q2_1 = []
for i in np.arange(1, len(df2_1)) :

dTdz_vals2_1 = (df2_1["T"][i] - df2_1["T"][i-1])/0.10
E2_1.append(dTdz_vals2_1+273)

E2_1 = pd.DataFrame(E2_1)

for i in np.arange(0, len(df2_1)) :

DensityMg2_1 = df2_1["mass"][0:14]*10**(-3)
k2_1 = 2.22362*DensityMg2_1**(1.885)
q2_1 = k2_1[0:14]*E2_1[0:14]
q2_1 = q2_1[0]

q2_1 = pd.DataFrame(q2_1)
q2_1 = q2_1.set_index(df2_1["depth"][0:14])
q2_1.columns = ["16/05"]
q2_1.plot(legend=True)



plt.plot(q2_1)
print(q2_1)

#%% q2_2

E2_2 = []
q2_2 = []
for i in np.arange(1, len(df2_2)) :

dTdz_vals2_2 = (df2_2["T"][i] - df2_2["T"][i-1])/0.10
E2_2.append(dTdz_vals2_2+273)

E2_2 = pd.DataFrame(E2_2)

for i in np.arange(0, len(df2_2)) :

DensityMg2_2 = df2_2["mass"][0:14]*10**(-3)
k2_2 = 2.22362*DensityMg2_2**(1.885)
q2_2 = k2_2[0:14]*E2_2[0:14]
q2_2 = q2_2[0]

q2_2 = pd.DataFrame(q2_2)
q2_2 = q2_2.set_index(df2_2["depth"][0:14])
q2_2.columns = ["16/05"]
q2_2.plot(legend=True)

plt.plot(q2_2)
print(q2_2)

#%% q2_3

E2_3 = []
q2_3 = []
for i in np.arange(1, len(df2_3)) :

dTdz_vals2_3 = (df2_3["T"][i] - df2_3["T"][i-1])/0.10
E2_3.append(dTdz_vals2_3+273)

E2_3 = pd.DataFrame(E2_3)

for i in np.arange(0, len(df2_3)) :

DensityMg2_3 = df2_3["mass"][0:12]*10**(-3)
k2_3 = 2.22362*DensityMg2_3**(1.885)
q2_3 = k2_3[0:12]*E2_3[0:12]
q2_3 = q2_3[0]

q2_3 = pd.DataFrame(q2_3)



q2_3 = q2_3.set_index(df2_3["depth"][0:12])
q2_3.columns = ["16/05"]
q2_3.plot(legend=True)

plt.plot(q2_3)
print(q2_3)

#%% q3_1

E3_1 = []
q3_1 = []
for i in np.arange(1, len(df3_1)) :

dTdz_vals3_1 = (df3_1["T"][i] - df3_1["T"][i-1])/0.10
E3_1.append(dTdz_vals3_1+273)

E3_1 = pd.DataFrame(E3_1)

for i in np.arange(0, len(df3_1)) :

DensityMg3_1 = df3_1["mass"][0:9]*10**(-3)
k3_1 = 2.22362*DensityMg3_1**(1.885)
q3_1 = k3_1[0:9]*E3_1[0:9]
q3_1 = q3_1[0]

q3_1 = pd.DataFrame(q3_1)
q3_1 = q3_1.set_index(df3_1["depth"][0:9])
q3_1.columns = ["22/05"]
q3_1.plot(legend=True)

print(q3_1)

#%% q3_2

E3_2 = []
q3_2 = []
for i in np.arange(1, len(df3_2)) :

dTdz_vals3_2 = (df3_2["T"][i] - df3_2["T"][i-1])/0.10
E3_2.append(dTdz_vals3_2+273)

E3_2 = pd.DataFrame(E3_2)

for i in np.arange(0, len(df3_2)) :

DensityMg3_2 = df3_2["mass"][1:9]*10**(-3)
k3_2 = 2.22362*DensityMg3_2**(1.885)
k3_2.index = E3_2[0:8].index



q3_2 = k3_2*E3_2
q3_2 = q3_2[0]

q3_2 = pd.DataFrame(q3_2)
q3_2 = q3_2.set_index(df3_2["depth"][0:9])
q3_2.columns = ["22/05"]
q3_2.plot(legend=True)
print(q3_2)

#%% q3_3

E3_3 = []
q3_3 = []
for i in np.arange(1, len(df3_3)) :

dTdz_vals3_3 = (df3_3["T"][i] - df3_3["T"][i-1])/0.10
E3_3.append(dTdz_vals3_3+273)

E3_3 = pd.DataFrame(E3_3)

for i in np.arange(0, len(df3_3)) :

DensityMg3_3 = df3_3["mass"][0:7]*10**(-3)
k3_3 = 2.22362*DensityMg3_3**(1.885)
q3_3 = k3_3[0:7]*E3_3[0:7]
q3_3 = q3_3[0]

q3_3 = pd.DataFrame(q3_3)
q3_3 = q3_3.set_index(df3_3["depth"][0:7])
q3_3.columns = ["22/05"]
q3_3.plot(legend=True)

plt.plot(q3_3)
print(q3_3)

#%% q4_1

E4_1 = []
q4_1 = []
for i in np.arange(1, len(df4_1)) :

dTdz_vals4_1 = (df4_1["T"][i] - df4_1["T"][i-1])/0.10
print(dTdz_vals4_1)

E4_1.append(dTdz_vals4_1+273)
E4_1 = pd.DataFrame(E4_1)

for i in np.arange(0, len(df4_1)) :



DensityMg4_1 = df4_1["mass"][1:8]*10**(-3)
k4_1 = 2.22362*DensityMg4_1**(1.885)
k4_1.index = E4_1[0:7].index
q4_1 = k4_1[0:7]*E4_1[0:7]
q4_1 = q4_1[0]

q4_1 = pd.DataFrame(q4_1)
q4_1 = q4_1.set_index(df4_1["depth"][1:8])
q4_1.columns = ["06/06"]
q4_1.plot(legend=True)

plt.plot(q4_1)
print(q4_1)

#%% q4_2

E4_2 = []
q4_2 = []
for i in np.arange(1, len(df4_2)) :

dTdz_vals4_2 = (df4_2["T"][i] - df4_2["T"][i-1])/0.10
E4_2.append(dTdz_vals4_2+273)

E4_2 = pd.DataFrame(E4_2)

for i in np.arange(0, len(df4_2)) :

DensityMg4_2 = df4_2["mass"][0:4]*10**(-3)
k4_2 = 2.22362*DensityMg4_2**(1.885)
q4_2 = k4_2[0:4]*E4_2[0:4]
q4_2 = q4_2[0]

q4_2 = pd.DataFrame(q4_2)
q4_2 = q4_2.set_index(df4_2["depth"][0:4])
q4_2.columns = ["06/06"]
q4_2.plot(legend=True)

plt.plot(q4_2)
print(q4_2)

#%% q4_3

E4_3 = []
q4_3 = []
for i in np.arange(1, len(df4_3)) :

dTdz_vals4_3 = (df4_3["T"][i] - df4_3["T"][i-1])/0.10
E4_3.append(dTdz_vals4_3+273)



E4_3 = pd.DataFrame(E4_3)

for i in np.arange(0, len(df4_3)) :

DensityMg4_3 = df4_3["mass"][0:6]*10**(-3)
k4_3 = 2.22362*DensityMg4_3**(1.885)
q4_3 = k4_3[0:6]*E4_3[0:6]
q4_3 = q4_3[0]

q4_3 = pd.DataFrame(q4_3)
q4_3 = q4_3.set_index(df4_3["depth"][0:6])
q4_3.columns = ["06/06"]
q4_3.plot(legend=True)

plt.plot(q4_3)
print(q4_3)

#%% q5_1

E5_1 = []
q5_1 = []
for i in np.arange(1, len(df5_1)) :

dTdz_vals5_1 = (df5_1["T"][i] - df5_1["T"][i-1])/0.10
E5_1.append(dTdz_vals5_1+273)

E5_1 = pd.DataFrame(E5_1)

for i in np.arange(0, len(df5_1)) :

DensityMg5_1 = df5_1["mass"][0:10]*10**(-3)
k5_1 = 2.22362*DensityMg5_1**(1.885)
q5_1 = k5_1[0:10]*E5_1[0:10]
q5_1 = q5_1[0]

q5_1 = pd.DataFrame(q5_1)
q5_1 = q5_1.set_index(df5_1["depth"][0:10])
q5_1.columns = ["11/06"]
q5_1.plot(legend=True)

plt.plot(q5_1)
print(q5_1)

#%% q5_2



E5_2 = []
q5_2 = []
for i in np.arange(1, len(df5_2)) :

dTdz_vals5_2 = (df5_2["T"][i] - df5_2["T"][i-1])/0.10
E5_2.append(dTdz_vals5_2+273)

E5_2 = pd.DataFrame(E5_2)

for i in np.arange(0, len(df5_2)) :

DensityMg5_2 = df5_2["mass"][0:9]*10**(-3)
k5_2 = 2.22362*DensityMg5_2**(1.885)
q5_2 = k5_2[0:9]*E5_2[0:9]
q5_2 = q5_2[0]

q5_2 = pd.DataFrame(q5_2)
q5_2 = q5_2.set_index(df5_2["depth"][0:9])
q5_2.columns = ["11/06"]
q5_2.plot(legend=True)

print(q5_2)

#%% q5_3

E5_3 = []
q5_3 = []
for i in np.arange(1, len(df5_3)) :

dTdz_vals5_3 = (df5_3["T"][i] - df5_3["T"][i-1])/0.10
E5_3.append(dTdz_vals5_3+273)

E5_3 = pd.DataFrame(E5_3)

for i in np.arange(0, len(df5_3)) :

DensityMg5_3 = df5_3["mass"][0:6]*10**(-3)
k5_3 = 2.22362*DensityMg5_3**(1.885)
q5_3 = k5_3[0:6]*E5_3[0:6]
q5_3 = q5_3[0]

q5_3 = pd.DataFrame(q5_3)
q5_3 = q5_3.set_index(df5_3["depth"][0:6])
q5_3.columns = ["11/06"]
q5_3.plot(legend=True)



print(q5_3)

#%% q6_1

E6_1 = []
q6_1 = []
for i in np.arange(1, len(df6_1)) :

dTdz_vals6_1 = (df6_1["T"][i] - df6_1["T"][i-1])/0.10
E6_1.append(dTdz_vals6_1+273)

E6_1 = pd.DataFrame(E6_1)

for i in np.arange(0, len(df6_1)) :

DensityMg6_1 = df6_1["mass"][0:7]*10**(-3)
k6_1 = 2.22362*DensityMg6_1**(1.885)
q6_1 = k6_1[0:7]*E6_1[0:7]
q6_1 = q6_1[0]

q6_1 = pd.DataFrame(q6_1)
q6_1 = q6_1.set_index(df6_1["depth"][0:7])
q6_1.columns = ["16/06"]
q6_1.plot(legend=True)

print(q6_1)

#%% q6_2

E6_2 = []
q6_2 = []
for i in np.arange(1, len(df6_2)) :

dTdz_vals6_2 = (df6_2["T"][i] - df6_2["T"][i-1])/0.10
E6_2.append(dTdz_vals6_2+273)

E6_2 = pd.DataFrame(E6_2)

for i in np.arange(0, len(df6_2)) :

DensityMg6_2 = df6_2["mass"][0:7]*10**(-3)
k6_2 = 2.22362*DensityMg6_2**(1.885)
q6_2 = k6_2[0:7]*E6_2[0:7]
q6_2 = q6_2[0]

q6_2 = pd.DataFrame(q6_2)
q6_2 = q6_2.set_index(df6_2["depth"][0:7])



q6_2.columns = ["16/06"]
q6_2.plot(legend=True)

print(q6_2)

#%% q6_3

E6_3 = []
q6_3 = []
for i in np.arange(1, len(df6_3)) :

dTdz_vals6_3 = (df6_3["T"][i] - df6_3["T"][i-1])/0.10
E6_3.append(dTdz_vals6_3+273)

E6_3 = pd.DataFrame(E6_3)

for i in np.arange(0, len(df6_3)) :

DensityMg6_3 = df6_3["mass"][0:6]*10**(-3)
k6_3 = 2.22362*DensityMg6_3**(1.885)
q6_3 = k6_3[0:6]*E6_3[0:6]
q6_3 = q6_3[0]

q6_3 = pd.DataFrame(q6_3)
q6_3 = q6_3.set_index(df6_3["depth"][0:6])
q6_3.columns = ["16/06"]
q6_3.plot(legend=True)

print(q6_3)

#%% q7_1

E7_1 = []
q7_1 = []
for i in np.arange(1, len(df7_1)) :

dTdz_vals7_1 = (df7_1["T"][i] - df7_1["T"][i-1])/0.10
E7_1.append(dTdz_vals7_1+273)

E7_1 = pd.DataFrame(E7_1)

for i in np.arange(0, len(df7_1)) :

DensityMg7_1 = df7_1["mass"][0:7]*10**(-3)
k7_1 = 2.22362*DensityMg7_1**(1.885)
q7_1 = k7_1[0:7]*E7_1[0:7]
q7_1 = q7_1[0]



q7_1 = pd.DataFrame(q7_1)
q7_1 = q7_1.set_index(df7_1["depth"][0:7])
q7_1.columns = ["20/06"]
q7_1.plot(legend=True)

print(q7_1)

#%% q7_2

E7_2 = []
q7_2 = []
for i in np.arange(1, len(df7_2)) :

dTdz_vals7_2 = (df7_2["T"][i] - df7_2["T"][i-1])/0.10
E7_2.append(dTdz_vals7_2+273)

E7_2 = pd.DataFrame(E7_2)

for i in np.arange(0, len(df7_2)) :

DensityMg7_2 = df7_2["mass"][0:9]*10**(-3)
k7_2 = 2.22362*DensityMg7_2**(1.885)
q7_2 = k7_2[0:9]*E7_2[0:9]
q7_2 = q7_2[0]

q7_2 = pd.DataFrame(q7_2)
q7_2 = q7_2.set_index(df7_2["depth"][0:9])
q7_2.columns = ["20/06"]
q7_2.plot(legend=True)

print(q7_2)

#%% q8_1

E8_1 = []
q8_1 = []
for i in np.arange(1, len(df8_1)) :

dTdz_vals8_1 = (df8_1["T"][i] - df8_1["T"][i-1])/0.10
E8_1.append(dTdz_vals8_1+273)

E8_1 = pd.DataFrame(E8_1)

for i in np.arange(0, len(df8_1)) :



DensityMg8_1 = df8_1["mass"][0:5]*10**(-3)
k8_1 = 2.22362*DensityMg8_1**(1.885)
q8_1 = k8_1[0:5]*E8_1[0:5]
q8_1 = q8_1[0]

q8_1 = pd.DataFrame(q8_1)
q8_1 = q8_1.set_index(df8_1["depth"][0:5])
q8_1.columns = ["26/06"]
q8_1.plot(legend=True)

print(q8_1)

#%% q8_2

E8_2 = []
q8_2 = []
for i in np.arange(1, len(df8_2)) :

dTdz_vals8_2 = (df8_2["T"][i] - df8_2["T"][i-1])/0.10
E8_2.append(dTdz_vals8_2+273)

E8_2 = pd.DataFrame(E8_2)

for i in np.arange(0, len(df8_2)) :

DensityMg8_2 = df8_2["mass"][0:6]*10**(-3)
k8_2 = 2.22362*DensityMg8_2**(1.885)
q8_2 = k8_2[0:6]*E8_2[0:6]
q8_2 = q8_2[0]

q8_2 = pd.DataFrame(q8_2)
q8_2 = q8_2.set_index(df8_2["depth"][0:6])
q8_2.columns = ["26/06"]
q8_2.plot(legend=True)

plt.plot(q8_2)
print(q8_2)

#%% q8_3

E8_3 = []
q8_3 = []
for i in np.arange(1, len(df8_3)) :

dTdz_vals8_3 = (df8_3["T"][i] - df8_3["T"][i-1])/0.10
E8_3.append(dTdz_vals8_3+273)



E8_3 = pd.DataFrame(E8_3)

for i in np.arange(0, len(df8_3)) :

DensityMg8_3 = df8_3["mass"][0:5]*10**(-3)
k8_3 = 2.22362*DensityMg8_3**(1.885)
q8_3 = k8_3[0:5]*E8_3[0:5]
q8_3 = q8_3[0]

q8_3 = pd.DataFrame(q8_3)
q8_3 = q8_3.set_index(df8_3["depth"][0:5])
q8_3.columns = ["26/06"]
q8_3.plot(legend=True)

plt.plot(q8_3)
print(q8_3)

#%% To make plot look nice.

# ==========================================
#
# q1_1 = pd.DataFrame(q1_1)
# q1_1.columns = ["07/05"]
# q1_2 = pd.DataFrame(q1_2)
# q1_2.columns = ["07/05"]
# q1_3 = pd.DataFrame(q1_3)
# q2_1 = pd.DataFrame(q2_1)
# q2_1.columns = ["16/05"]
# q2_2 = pd.DataFrame(q2_2)
# q2_2.columns = ["16/05"]
# q2_3 = pd.DataFrame(q2_3)
# q2_3.columns = ["16/05"]
#
# q3_1 = pd.DataFrame(q1_1)
# q3_1.columns = ["22/05"]
# q3_2 = pd.DataFrame(q1_2)
# q3_2.columns = ["22/05"]
# q3_3 = pd.DataFrame(q1_3)
# q3_3.columns = ["22/05"]
# q4_1 = pd.DataFrame(q2_1)
# q4_1.columns = ["06/06"]
# q4_2 = pd.DataFrame(q2_2)
# q4_2.columns = ["06/06"]
# q4_3 = pd.DataFrame(q2_3)
# q4_3.columns = ["06/06"]
#
# q5_1 = pd.DataFrame(q1_1)



# q5_1.columns = ["11/06"]
# q5_2 = pd.DataFrame(q1_2)
# q5_2.columns = ["11/06"]
# q5_3 = pd.DataFrame(q1_3)
# q5_3.columns = ["11/06"]
# q6_1 = pd.DataFrame(q2_1)
# q6_1.columns = ["16/06"]
# q6_2 = pd.DataFrame(q2_2)
# q6_2.columns = ["16/06"]
# q6_3 = pd.DataFrame(q1_3)
# q6_3.columns = ["16/06"]
#
# q7_1 = pd.DataFrame(q7_1)
# q7_1.columns = ["20/06"]
# q7_2 = pd.DataFrame(q7_2)
# q7_2.columns = ["20/06"]
# q8_1 = pd.DataFrame(q8_1)
# q8_1.columns = ["26/06"]
# q8_2 = pd.DataFrame(q8_2)
# q8_2.columns = ["26/06"]
# q8_3 = pd.DataFrame(q8_3)
# q8_3.columns = ["26/06"]
# ================================================

plt.figure()
ax = q1_1.plot(legend=False,color="tab:blue")
q1_2.plot(ax=ax,color="tab:blue",legend=False)
q1_3.plot(ax=ax,color="tab:blue",legend=False)
q2_1.plot(ax=ax,color="tab:orange",legend=False)
q2_2.plot(ax=ax,color="tab:orange",legend=False)
q2_3.plot(ax=ax,color="tab:orange",legend=False)
q3_1.plot(ax=ax,color="tab:green",legend=False)
q3_2.plot(ax=ax,color="tab:green",legend=False)
q3_3.plot(ax=ax,color="tab:green",legend=False)
q4_1.plot(ax=ax,color="tab:red",legend=False)
q4_2.plot(ax=ax,color="tab:red",legend=False)
q4_3.plot(ax=ax,color="tab:red",legend=False)
q5_1.plot(ax=ax,color="tab:purple",legend=False)
q5_2.plot(ax=ax,color="tab:purple",legend=False)
q5_3.plot(ax=ax,color="tab:purple",legend=False)
q6_1.plot(ax=ax,color="tab:brown",legend=False)
q6_2.plot(ax=ax,color="tab:brown",legend=False)
q6_3.plot(ax=ax,color="tab:brown",legend=False)
q7_1.plot(ax=ax,color="tab:pink",legend=False)
q7_2.plot(ax=ax,color="tab:pink",legend=False)
q8_1.plot(ax=ax,color="tab:grey",legend=False)
q8_2.plot(ax=ax,color="tab:grey",legend=False)
q8_3.plot(ax=ax,color="tab:grey",legend=False)



blue = mpatches.Patch(color=’tab:blue’, label=’07/05/21’)
green= mpatches.Patch(color=’tab:orange’, label=’16/05/21’)
pink = mpatches.Patch(color=’tab:green’, label=’22/05/21’)
purple = mpatches.Patch(color=’tab:red’, label=’06/06/21’)
cyan = mpatches.Patch(color=’tab:purple’, label=’11/06/21’)
orange = mpatches.Patch(color=’tab:brown’, label=’16/06/21’)
black = mpatches.Patch(color=’tab:pink’, label=’20/06/21’)
red = mpatches.Patch(color=’tab:grey’, label=’26/06/21’)

plt.legend(bbox_to_anchor=(1.0, 1.0), handles=[blue,green,pink,purple,
↪→ cyan,orange,black,red])

plt.title("Heat␣Flow␣in␣Snow␣Pack")
plt.ylabel("W", rotation=0)
plt.xlabel("Snow␣Depth␣(cm)␣␣(0cm:␣snow␣surface.)")
plt.show()

[language=Python]
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