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Abstract

This paper presents solutions to the modelling of frequency data of species
labels. but the data is incomplete in the sense that some rarely-occurring
species labels give zero observed frequency because those species are rare.
The data can be modelled by a monotone probability function with parame-
ters to be estimated, and yot, due to the order constraints and the incomplete
data, using conventional parameter estimation methods will cause trouble.
Therefore, we study a previously introduced method to resolve the issuc.

We begin with a brief tour through the attempts of parameter estimation,
starting with the estimators which lcads to problematic situations when using
them. After that, we will study the improved estimation introduced in [1],
which resolves the problem.

The improved estimation method seems to perform well when dealing
with the problem, and it may be especially useful in the fields of forensic
science, zoology, medical science, business analytic and even several fields of
machine learning, especially pattern recognition.




1 Introduction

In this project we will discuss the methods of modelling a monotone species
labels data as a probability mass function with constrains. using data with
issing ohservations due to rarity of some species labels.

The species labels data comes from [2], which is a case study of gene
species investigation collected from 2085 Dutch males. It is given a data
table of gene species labels frequencies, using various types of gene detection
technologies /inethods.

The interest is to estimate the model's parameter through inference tech-
niques introduced in [1]. We will begin by showing some naive cstimation
methods such as empirical distribution estimator and non-parametric maxi-
mum likelihood estimator in Scetion 2, with their limitations of giving prob-
lematic results. Next, we will introduce the extended and improved estima-
tion: the pattern/profile maximum likelihood (PML) estimation, and with
it, the sieved pattern/profile maximum likelihood (sPML) estimator which is
a modified version of PML with optimized computation efficiency, they will
be presented in Section 3, together with some properties. The experimental
result with the gene species data will be presented in Section 4. Finally, the
conclusions, will be given in Section 5.




2 Statement of the problem

Let us begin with the following example scenarios:

1. A zoologist collected data from a field study consisting of the frequency
table for all animal species in a region. The zoologist has a list of
all the known animal species in the region, but within those animal
species, some animal species are too rare to be seen and resulted in
zero observations for those.

2. Clinical data consists of frequencics of different symptoms occurring
when the patients is infected by a type of bacteria/virus. According
to biological theories, patients should suffer a range of symptoms, but
within those symptoms there exists some very rare symptoms that do
not occur so often on patients, therefore not observed.

3. We have the word statistics of onc of the Shakespcarc’s texts, onc
wonders how many rare words does Shakespeare know?

The alyove scenarios could have their data modelled as a multinomial dis-
tribution. Let us define the parameter space for the multinomial distribution
as:

n+1
© = {(61,02, 00, bny1) : 0 € [0.1]".61 > .. > 0, Y 6, =1}
i=1

Having established the distribution and parameter space, let us turn to
the parawneter estimation methods. Oue can attempt first by using the
empirical distribution estimator, which will be refereed as "empirical esti-
mation/estimator” throughout this paper. Define an ordered sct of data
T = {ti. 2, ..., tuy1} where ¢, is the frequency of a specie that is the most
common and ¢, is the frequency of a specie that is the rarest, furthermore,
given the theoretical order for the species labels likelihood as known. The
cmpirical estimator is defined as following:

N tL
g,czy_i', k=12, ..n+1, 1
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where » is the sample size. i.e. total munbers of ohservations. This estiina-
tion is straightforward, it works well for complete data entries and KNOWN
theoretical likelihood order. However, for incomnpletely-smrveyed data sets
with zero data entries, for some rare species labels, this estimator give 0 for
those rarc spccics labels. In such case, the empirical cstimator is not the
most suitable.

Now, let us consider the case if the theoretical order of specics labels’ like-
lihood is unknown, one could approach the problem using the non-Parametric
maximum likelihood estimator (NPMLE). Define x as a bijective permuta-
tion which mixes the species labels. Define the data set N = (N, Ny, Ny, ...)
with unknown theoretical order and sample size n, then we will have the
following discrete probability measure:

P(n’o)(A) = Z e (NIA/2 ) ZHHXG)’ (2)
e

(N1,N2.Vs,

with Hf(v("i) denotes the species labels likelilood correspouding to N;, and also
re-arranged by the function . The NPMLE for (2) will be defined as follow-

ing:
. o
LO) =018, ot 5 s Z II g )

At this point, the problem is that this estimator does not always exists.
To show this, let us assume we have a very small dataset, N = (1,1), with
sample size n = 2, we have our L(f) as

Z HQ)ICV(LI) = 2(0192 + 6,03+ ...+ 0503 + 030, + )
Now, let us consider the half likelihood:
O162 + 61 (1 — (61 + 02)) + 02(1 — (61 + 62)) + O

where O includes all terms with indices above 3. If we differentiate with
respect to §;, we will see that it yields maximnmun if and only if 1-26, -6, = 0.



In fact, becanse the likelihood is synunetric in parameters, we will have
1—-26,—6;, =0, i # j, for all positive integers i and j. hence, the maximum
is affained at 6; = 6.

Now suppose that the cardinality of species is nearly infinite. i.e. there
are R < co munbers of species, then cloarly the solution to this will be 6 =
(% %), which cannot sum up to 1 and the order assumption of parameters
will not satisfy. This cxample is taken from [1]. of page 30-31.

In the next section, we will introduce an improved and extended version
of NPMLE: the Profile/Pattern Likelihood Estimator, which is proven to
exist and to be consistent by [1].




3 Extended model: the pattern likelihood es-
timator

As we have showed the inference problem in Section 2, does not necessary
have a solution. In this scction, a new cstimator will be introduced to ovor-
come the inference problem. The new estimator is an extended estimator of
NPMLE. and it has some interesting propertics.

3.1 Formulation of the pattern maximum likelihood
estimator

In order to address the inference problem, let us introduce the 6, = 1 —

"1 0; as the likelihoods collection of the ” blob-species”, which are the specics
labels that are very likely to generate zero observation. Thus, with the new
component, the Pattern Maximum Likelihvod (PML) Estimator is defined
as follows:

P Nn Ny I(L\j
arg max = gt Z Nol H N, 1 H 0~ (4)

0ty 203 204> .
a=]

Another version of the PML is the Sieved Profile Maximum Likelihood
Estimator (sPML) which is a modification to the PML dedicated to optimize
computation, derived from [1].

Consider the true parameter set p. let us define § as the truncated vector
of likelihood with indices {1, ..., k}, where k is a truncation level that separate
blob and non-blob species, and ¢ > Go > Gz > ... > Gr. gg =1 — Zi:l Qo-

Now, suppose the ordered observed data set N = (N), N,. N3, ...) with
sample size n, where N; > Ny, > N3 > ... The data has an underlying multi-
nomial distribution X = (X, X3, Xy, . ) with parameters (qy. §). Define X,
as Zﬁ 1 Xo accordingly to the truncated level. Then denote the truncated
sample set Ny as (N1, Ny, ..., N,). where s is the number of specie labels of
non-blob-species, furthermore, Ny > Ny > Ny > ... > N,.




Next, append X, munber of ones to the truncated sample set. so N,
becomes N = (Ny, Ny,...,N,.1,1,1,...). X, is the number of unobserved
species labels,

Ultimately, using the truncated sample set N, the sieved species likeli-
Lood (qq, ) and the same bijective penmmtation function y, let us formulate
the sieved likelihood as the [ollowing:

! O A
L(j) = i [ A
Z N IHH{\ T 1;[,

with Np=n - 32 Ny-11y, where

w=1

G =arg max L(g)
FH 202 2 T Ga )

3.2 Existence and Consistency

The PML and the sPML have some interesting properties.

According to [1], the extended Maximum Likelihood estimator exists,
which can be summarized by the following theorem:

Theorem 1. (i) Under the topology of point-wise convergence, the parameter

space © is compact.
(i) The functional L : © v R, defined by:

- n! N )
L(8) = ZN L 0 oHﬁ x
a=1

with No =n — 307 | N, -1(a). @8 @ continuous functional.

Thus, the extended model, the pattern/profile mazimum likelihood estima-
tor defined in (4), exists.

The PML estimator is consistent in the form of almost-surly convergence
in L1-norm, as the sample size gets larger, i.c.

[16™ — 0|, =0 as n— oo
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where § = 6 be the PML estimator. For any § > 0, the following weak
consistency result of the PML estimator is obtained, according to [1]:

PRI — gl], > 8) < —e—e VAVEE V(1 4 0(1)), ()
V3n

as n — 0o0. Here, ¢ = % and r = (4,0) as a function of 4 and 8, such that
:‘il 6 < ;—i

As explained in [1], the sequence of maximum likelihood estimators 6
is strongly consistent in L1-norm, i.e.

zr]ég’“ —6;] 5 0.

=1

This is a consequence of (5), by the characterization X, %5 0 <>
=y P(| X, > 8) < 0o, with X,, = [|6™ — §||, since

! cVEVETVE) o oo

V3

M=

T

The above consistency results suggest that if the sample size increases,
then the L1l-error should go to zero.

In order to investigate the behaviour of consistency. and some additional
properties, the simulation studies for each of them will be introduced, in the
next subsection.

3.3 Simulation Study

The simulation studies are performed on R-studio using the Stochastic Ap-
proximation EM (SA-EM) algorithm for PML estimator developed in [1].
First, let us perform the data simulation. To do this, set a true parame-
ter vector 8 = (61,85, 0;,...) consisting of positive. monotonously decreasing
parameters that sums to 1. Then, use the true parameter vector to gener-
ate umltinomial data XS(ZL = (i1, X2, 43, ...), where n is the samnple size, and

10




£y, 2g, ... are data generated with indices correspornding to the true parameter
vector elements. At last. use the sample to perform estimations and conduct
various experiments.

In this section, additional PML’s consistency properties and the be-
haviour of estimation crror will be investigated. Then, the PML cstimator
will be compared with the Good-Turing estimator. Finally, an experiment
with statistical bootstrapping will be carried out, as a way to gencrate con-
fidence interval for the PML estimation.

3.3.1 Consistency of the PML estimator vs the empirical estima-
tor

The first part of the simulation study is to study PML estimation’s consis-
teney with different truc parameter vectors.

Cousider a short true parameter vector of length 6:

6 = (0.4,0.2,0.15,0.1,0.1,0.05). (6)

Then, let us loop the following process: First, setting the sample size n to
1000 and use the vector (6) to generate multinomial data, denoted as X_f,",f,.
Then, use X é% to perform PML estimation and the empirical estimation,
denoted as §™. F inally, calculate the Ll-error, i.e

d(@™.0) =3 " 16" - 6y,

i=1

The sample size n of the simulation data-set is increased by 1000 when the
process loop backs to the start. Let us perform the above process 1000 times,
then the Ll-error will be stored as a vector, called

7= (di(6™,0), dy (6, 0), ... d, (6™, 8)),
whete t is the number of loops.

Once the error vector is computed. we illustrate the error as a scatter
plot. Eventually, The diagraimn is generated and shown in Figure 1. Observe

11




from the plot, the Li-error of the empirical estimator and the PML estimnator
seem to decrease exponentially, as n increases, and that the Lil-error for the

PML ecstimator is generally higher.

Empirical Estimator VS PML Estimator
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Figure 1: L1-Error plot of PML (Blue) and the Empirical Estimation (Red)

The result in Figure 1 shows that using PML to estimate small amount
of species labels will be less accurate than using the Empirical estimator. In
addition, it seems like the PML estimator has plenty of error jumps. In such
case, the cupirical estimator sceins to perforin better for small amount of

specie labels.

Let us begin another experiment with a longer true parameter veetor with
278 species labels:

=(0.1.0.1,0.5.0.5,0.5,0.008, 0.008, 0.008, 0.008, 610. 611. 012, 613).  (7)

where 6, is a vector with twenty 0.005s, 61, is a vector with sixty 0.004’s,
f12 is a vector with eighty-nine 0.002’s and #13 is a vector with one-hundred
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0.001's. The vector (7) will he used and go throngh the same procedure.
Finally, the result is generated in Figure 2:

Empirical Estimator VS PML Estimator
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Figure 2: Scatter plot of L1-crror aguinst sample size, of the PML cstimator
(blue scatters) and the Empirical Estimator (red scatters)

A further obscrvatiou from Figure 2 is that the performance of PML
Estimation is nearly as good as the Empirical estimation, which should be
compared to the result in Figure 1. However, the random erroncous jumps
still exist, but thankfully they occur less often, compared the result in Figure
1.

To better observe the pattern, let us plot the result of Figure 2 using
logged-scale, see Figure 3:




Empirical Estimator VS PML Estimator
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Figure 3: X-Y Log-scaled scatter plot of L1-crror against sample size, of the
PML estimator (blue scatters) and the Empirical Estimator (red scatters)

Obscrve from Figure 3. the Li-crror tends to go to 0 as we increasce the
sample size, in the manner of asymptotic linear trend.

The theoretical assumption of determining the convergence rate o is that
no| |0 — 0)|, 3 C. for some 0 < €' < co. Thus for large number of n,
n(|0" — g||, = C, with probability 1. Taking the logarithm on both sides
we have log ||0(™ — 8|, ~ log C —alog n. Therefore, the convergence rate can
be determined by a plot of logged Ll-error versus logged sample, which is
essentially Figure 3. Thus, the slope should be « and this can be determined
by using linear regression analysis.

The plot with the regression lines is illustrated in Figure 4. As the result,
the slope is -0.436 for the PML estimation, which refers to the result in [1]
says that the convergence rate is faster than estimation: —o = —( i + ¢) for

any € > 0. Note that it cannot be faster than the parametric rate n?

If linear regression is applied once again to determine the rate of conver-
gence for the empirical estimator, then the slope obtained is -0.495 as the

14




result, which i1s quite close to its optimal rate —v = —%. The couclusion

from this study is that the convergence rate for the PML estimator is nearly
as good as the one for the cmpirical estimator.

The regression line is added to the log-scaled scatter plot, see Figure 4
helow:

Empirical Estimator VS PML Estimator
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Figure 4: X-Y Log-scaled L1-error plot against sample size, with Regression
line. Yellow line represents the convergence rate of the PML estimation error,
and the dark line represents the same thing for the Empirical Estimation

ervor,

3.3.2 Comparison with Good-Turing Estimation

This experiment will compare the ability of estimating blob-species labels
likelihood (the specics label likelihood that likes to give zero obscrvation)
between PML estimator and the Good-Turing estimator.

Definition. Consider an ordered sample data
X = (Xh XQ: “eey )(k,fb Xk: Xk.+11 Roog Xﬂ417 X’na Xﬂ+17 ) Xsfly Xﬁ')

where X1 > Xy > ... > X,. The k,n, s are arbitrary numbers and k < n < s.
In addition, Xep1 = Xpyo = ... = X, = 1 wre singletons, wud Xpp =
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Xpg2 = ... = X, = 0. The Good-Turning Estimator is defined as the
sum of the singletons divided by the sample data, i.e:

Z;l:kﬂ X

PGuud Turing —
B = b
i=1""%

Note that in the context of specie labels frequency estimation, the Good-
Turing estimating the likelihood of observing rare species labels becomes the
number of species labels seen exactly once divided hy the total munber of
samples that has been obhserved.

Let us denote 0(”) as the total specics likelihood PML estimates of zero-

obscrved species estimates when sample size cquals 7, and PGood Turing YCP-
resents the Good-Turing estimator, when sample size equals n. Next, define
the sum of the specics labols llkchhood that gives zcro obscrvation. 00 The

difference between 6y and PGDD d—Turing 15

. (0,n) (L) ILED)]
NGood—Turing = {00 PGrm(l —T uring" 0o —PGoml—T'u'l'i:u,y’ . 90 —1 (.‘mul—Tu.ri'uy} (8)

Omne could also define the identically formulated difference between 8; and
the PML estimates of blob-species ﬂ((,"‘ s

NPML = {00 - 0(0 n) , B — 0(1,n), oy Gg — Gék’n)} (9)
The experiment will be performed using data generated by the long true
parameter vector (7), set the repeat times # = 300 times, with fixed sample

size n = 2000. The result of accuracy falloff ns for both PML and Good-
Turing cstimator. are preseuted in Figure 5
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Figure 5: The scatter plot of the estimation error between the sum of the true
parameter vector’s rare species and correspond to the PML Estimator (Blue
Scatters) and the Good-Turing Estimator (Red Scatter)

From Figure 5, the PML estimator behaves consistent when estimating
the rare species, in contrast, the Good-Turning cstimator has high variance.

3.3.3 Distribution of the Estimation Error

The behaviour of Ll-error lépML — 6|, in terms of its distribution, will be
investigated in this subscction.

To begin with, let us generate the data with the true parameter vector
(7), with a fixed sample size n. Then compute the Ll-crror of the PML
estimator. Repeat this process many times, to generate a vector of Ll-error
for each repetition. let us call it 7.

The density of n can be estimated using kernel density estimator (KDE), it
was originally worked out by Emanuel Parzen (1962) and Murray Rosenblatt

17



(1956). The expression for the KDE is
g = = K (z — ;)
N E Kp(x — 2;),
L " '

given identically independent data (@4, 22, --., ;) and K}, is the kernel func-
tional, such as uniform, triangular, normal kernels, given bandwidth h. In
this simulation study, we will use the default kernel density settings in R-
studio with automatic bandwidth and normal kernel. Finally, the last step
is to use the Kolmogorov-Smirnov test to validate with a few data generated
by the hypothesis distribution of parametric distributions. The test consist
of the following hypothesis:

Hy: The distribution of n behaves like our hypothesis distribution
Hy: The distribution of 7 docs NOT bchave like our hypothesis distri-

bution

If the p-value is generally greater than 0.05, we will not reject the ull
hypothesis.

Now, let us usc the paramecter vector (7) to generate data with a fixed
sample size to n = 40000, compute the vector 1. Finally, generate the fol-
lowing plot of the KDE estimation of #:

18




L1-Error Density
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Figure 6: The Li-Error  Density plot generated from the Kernel Density
Estimation

Looking at the plot, we noticed that majority of the data is centered
around 0.05, and there exists some other small entities scatters beyond z =
0.1. Let us make Gaussian distribution as a hypothesis.

Construct a Gaussian random variable with expectation 0.04712 and stan-
dard deviation ¢ = 0.0032, then perform the Kolmogorov-Smirnov Test, the
p-value seems generally greater than 0.05 (on average larger than 0.2, some-
times reaching 0.G), which means that the null hypothesis cannot be rejected,
therefore, the L1-error seems to behave similar to the Gaussian Random Vari-
able.

3.3.4 An attempt to generate confidence interval using statistical
bootstrapping

To prepare for the next subsection on the data analysis. Let us try to generate
a 95% Contidence Interval (CI) for the PML estimation, based on the statistic
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(6, — 6) in terws of its distribution. given the simulation data.

Usually. to obtain a confidence interval for an estimate, one needs to
gather multiple dataset Ly repeating many data gathering process, which
requires large efforts and costs many resources. To overcome the problem,
we will nse the bootstrapping method introduced by B. Efron in 1979, in [4].

The general idea of bootstrapping, in this paper, is to first use the gath-
cred data xy, @9, ..., x, to cstimate the "reference” PML cstimator 9,, using
the data x1, 29, ..., x,. Then, generate bootstrapping partitions with replace-
ment, call them bootstrapping samples «f, ..., 2}, basced the collected data
T1,%2, ... Tn. Afterwards, make use of bootstrapping samples to compute the
bootbtmpped PML estimators 0 Finally, compute 5 — 6,,. and let us call
that statistic as n = 0* g,. ThlS is one complete step of bootstrapping

estimation.

We repeat the bootstrapping estimation process k-many times by the
following manner:

1. Generate the simulation data (z1,9....,2;,) using the true parame-
ter vector (7). Estimate the "reference” PML estimator 6, based on

(z1. 29, ...; Tp).

2. Do the bootstrap data sampling k-many times, to generate & number
of boutstrap sample vectors:

2® = @10, 2;0), 2 = @@, 2 ®), L 2 ® = (@]9, ),

This sinmlates the repeated data gathering process that gives randoin
species labels distribution

3. Using each bootstrap partition vectors. calculate the bootstrapping
PML estimators to obtain a vector of bootstrap estimates, which is

= (600,020, ., 20,
Where 67,1 < i < k denotes the PML estimator of the bootstrapping

partition vectors with corresponding indices from 1 to k.
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4. Make use of the "reference” PML estimation 6, and each row vector
of the boutstrap PML estimator 6: to caleulate the bootstrapping
statistic op" -0, for infeger 1 < 7 < k. Then generatie a bootstrapping
statistic matrix. Note that each column corresponds to a specie index,
and cach row corresponds to a bootstrap index. definc & x a boot-
strapping error matrix in the following, where & stands for number of
bootstrapping partition vectors and a number of species labels:

i) .
n[ ) = ﬁn

o 9:!(.“ - H,,

T = .

é;:(k] o én

Each column of 4} is a column vector with length k, consists of likelihood

estimation error of each species labels, after bootstrapping k-times.

5. Take each column of 7 to generate the bootstrap likelihood estimation
error distribution of the ”reference” PML estimator f,), so we can use
it to generate a confidence interval for 6.

Each column of %} can be used to determine an underlying distribution
Z. Based on Z, the 95% confidence interval is formulated as:

Iy = (8, + Zoors. 6. — Zoozs),

In other words. once we have Z determined from thie hootstrapping pro-
cess, we will then obtain the probability

0.95 = Pr{Zyyzs < (é; —6,) < Zo025).

Now, let us use true parameter vector (7) to generate data with a fixed
sample size n = 4000, we make a "reference” estimate § and perforin the
bootstrapping loops. Set k=600. so there will be 600 bootstrapping parti-
tions, then compute the confidence inferval and apply the CI to the "refer-
ence” PML estimation. Finally. generate the following plot in Figure 8:
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Figure 7. The PML estimation (Blue line) with confidence interval band
(black lincs)

Observed from Figure 8, the error of the estimation is fairly large for the
common spccies labels, which arc the ones with lower specie indices, and that
become smaller very quickly as the species labels increases.

3.4 Summary

In this section the Pattern Maximum Likelihood estimator has been intro-
dnced, together with the Sieved Pattern Maximum Likelihood estimator to
overcome the inference problem. Both PML and sPML have some interesting
properties such as existence and strong consistency, which are furthier studied
by a simulation study.




The PML estimator, Good-Turing Estimator and the Einpirical estimator
are compared in the simulation study. As the result, the empirical estimator
scoms to perforin well overall, but it cannot estimate the rare specics labels
likelihoods which give zero observations. The PMNL estimator, in contrast,
cannot cstimatc the likelihood of the common species labels accurately, but it
does very well when estimating the likelihood of rare species labels. Another
result is that the PML cstimator performs very well with more species labels
and sample size, which partially verifies the result in [1]. And vet, the PML
estimator does not perform well when the species labels are few. The final
results of this section is the density of estimation error behaves similar to
Gaussian distribution.

Further more, the confidence interval for PML estimates can be deter-
mined through statistical bootstrapping. This technique will be used in the
actual data modelling in the next section.

4 The Data and the Experiment Result

Let us begin our experiment with the attempt by Orlitsky et al. Setting the
vector n = (1,2,3,4,5,6,7) representing the number of times a specie label
is observed, and the vector r = (123, 138,86, 51,17, 2, 6) represents number
of specics labels observed n;-many times. The following plot is gencrated.

23




Experimental Result
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Figure 8: Experiment result of the attempt by Orlitsky et al.

The above plot represents the monotone-decreasing probability for each
species labels on the x-axis ”"Species”. Note that the dotted lines ou the
graph represents the estimation using the empirical estimator. The empirical
estimator cannot cstimate the blob-species while the PML estimator cauw.

Let us turn the focus on the genetic sample data from [2], with the genetic
samples collected fromn 2085 Dutch man. The gene species data collected
using different analyvzing/detection methods is presented in Table 4 in [2].

To better understand the formulation of the data in Figure 10, we usc
"PPY” as an example. The data under "PPY” detects 938 gene species
once, 145 gene specics twice, 60 gene specics three times, 24 gene species
four times, and so on... They make total number of gene species is 1217, says
on the bottom row of the table. Before we perform the parameter estimation,
define vector n as the number of times a gene specie is observed, represents
the very first column in the data table. and r, the number of gene species
observed n;-many times, represents the column under the name of a gene
detection method. Example: The "Min YHRD” data. set

n=(1,234,5,6,7,8,9,10.11,12,13, 14, 17, 18, 19, 22, 23, 24, 25, 30, 53, 63, 84, 99, 107),
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Uniqueness af Y-5TR haplotypes in 2085 Dutch samples
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" See Table | for the marker units present in rthese ¥-STR sets,

Figure 9: The table of the haploid species (haplotype) data, collected from 2085
Dutch males. Source: Antoinette A. Westen et al

and

r = (608,110, 46,28,16,16,6,5,2,4,2,2,1,1,3,1,1,1,1,1,1,1,1,1,1,1, 1).

We have the following results after the implementation for all the data in
Figure 10 and 11, except the column "PPY23 + RMY 1+2”":




Estimation of MIN_YHRD data with 35% Bootstrapped Ci
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Figure 10: The estimation results, with the estimates in blue lines and con-
fidence band in black lines
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Figure 11: The estimation results, with the estimates in blue lines and con-
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Judging from the data estimation, we successfully modelled monotone
decreasing function through the PML estimation. and the confidence interval

via bootstrapping worked mostly fine.

However, the confidence interval for the PPY-23 and Yfilter data model
is very faulty, this is unfortunately caused by the insufficient bootstrapping
iterations. because of ¢ computation power limitation, which often causes
the PML estimatior algorithm to fail. Another problem was the modelling
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data for "PPY23 + RMY (1+2)” failed, because uearly all the gene species
are observed exactly once, which makes the likelihood fairly even: There are
2065 gene species hag observed onee and 10 gene speeies has observed twice.
This will break the PML estimation algorithm.
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5 Conclusion and Discussion

Throughout this study. the solution of the inference problem of modelling the
species likelihood with incomplete data has introduced. The conventional
methods of solving such iuference problem, such empirical distribution es-
timator and the NPMLE, have presented together with their problems and
limitations. Aftor that, the PML estimator and its properties have infro-
duced, which is then followed by a simulation study to further investigate
the PML's behaviour.

The first result concluded from the simulation study is that the PML is
consistent in L1-norm. Howcever, the PML estimator is not the most optimal
since it cannot estimate the likelihood of common species labels accurately.
The second result is that the estimation error of PML estmator behaves
similar to normal distribution. The final result is that the success of applying
statistical bootstrapping to generate a confidence interval on PML estimator.

The gene data is modelled as a multinomial distribution, using the PML,
and with bootstrapped confidence interval. It seems mostly successful, but
due to limitation of computation and my lack of knowledge in optimizing
the code and Rstudio environment, resulted in some of the confidence inter-
val were not properly generated, and the data for "PPY23 + RMY (1+2)”
cannot be modelled since the data structure is not suitable for the inference
problem: It does not have a strong order sinee nearly all the gene specics
were observed exactly once. -

The PML cstimator has shown its potential in Forensic Scicnee, from
what this project studied on. It could also be useful in other fields, such as
machine / deep learning, business analytic, medical science. which require a
solution to the similar inference problem stated at the start of this paper.
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