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Abstract

A framework for optimizing the design of elastomer packaging machine tools, so
called plunge tools, has been developed and has reached a proofofconcept state in
this thesis. The framework indicates the capability of decreasing prototype expenses
and total development time of new plunge tools by roughly three times compared to
the existing iterative design methodology. 

A finite element analysis (FEA) model serves as the core of the framework. Physical
experiments based on Design of Experiments (DoE) theory have been conducted to
validate the model and, with regression analysis, screen system factors influential on
plunge tool performance. The experiments were also useful in detecting large differ
ences in plunge tool performance between the regular plunge tools and the additively
manufactured plunge tools currently used as prototypes. 

Response surface methodology (RSM) has been used together with the FEA model
to optimize the design. An optimal spacefilling design point scheme used together
with a Kriging interpolation response surface was found to bemore capable of predict
ing the FEA model responses than three other configurations. An optimized plunge
design was generated with the framework after roughly 24 hours of computation time
on an average desktop computer from 2013. The design had large design similarities
to a production design developed with iterative design, but performed even better in
the simulation.

Keywords: Polyurethane, Elastomer, packaging industry, Design of Experiments,
Finite Element Analysis, Response Surface Methodology, multiple linear regression
analysis, Additive Manufacturing.
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Sammanfattning

Ett ramverk för att optimera designen av elastomera verktyg som används i förpack
ningsindustrin, så kallade plungeverktyg, har utvecklats och nått ett konceptteststadie
(eng. Proof of Concept) i detta arbete. Ramverket tyder på att kunna sänka nuvarande
prototypkostnader och utvecklingstider av nya plungeverktyg tre gånger.

Optimeringsramverket består i grunden av en FEManalysmodell. FEManalysmodellen
har validerats med fysiska experiment som följer försöksplaneringsteori (Design of
Experiments, DoE) och som dessutom varit lags till en regressionsanalys för att spåra
de systemfaktorer som påverkar tryckbilden mest. Experimenten var även använd
bara för att hitta stora skillnader i prestanda mellan normala plungeverktyg och 3D
printade plungeverktyg som för tillfället används som prototyper.

Optimering av plungedesignen har utförts med hjälp av en surrogatmodell (eng. Re
sponse Surface Methodology, RSM) av FEManalysen. 4 olika RSMkonfigurationer
testades varpå enmed optimal spacefillingschema och enKriginginterpolationsmodell
visade sig vara bättre på att uppskatta FEManalysens respons. En plungedesign som
liknar, och som dessutom i FEManalysen presterar bättre än, en manuellt optimerad
plungedesign, kan på detta sätt tas fram efter cirka 24 timmars beräkningstid med en
vanlig stationär dator från 2013.

Nyckelord: Polyuretan, Elastomer, förpackningsindustri, Design of Experiments,
finita elementmetoden, Response Surface Methodology, regressionsanalys, ad
ditiv tillverkning
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1 Introduction

The press plunge tool, or simply ”plunge”, is central in AR Packaging Systems AB’s
(ARPS) packaging production systems for the food industry. It was first invented by
Åkerlund & Rausing AB (Dahlin, 1987) and has since been subject to many design
progresses and modifications implemented by the spinout ARPS.

The plunge tool is a radially expandable cupformed polymer body that holds carton
components together in a welding process to create package seals. The welding pro
cess utilizes induction heat to melt the components’ plastic laminate layers together.
One central and resourcedemanding activity inmaintaining the function of the plunge
tool is to redesign and adapt it to new package formats (commonly referred to as op
timization). This process has historically been based on iterative design methodology
in which 3 iterations are common and each iteration often takes between 6 and 10
weeks of development time.

Figure 1.1: Simplified animation of plunge tool, involved package components, and
induction coil. (Hagelqvist, 2018)

The aim of this report is to develop an alternative plunge tool adaptation framework
with Finite Element Analysis (FEA) and Response SurfaceMethodology (RSM). The
prospect is to enable structural analysis and design exploration at an early stage of
the development process while saving time and expenses spent on building physical
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prototypes. Physical experiments based on experimental design theory (related to
Design of Experiments, DoE), will play a central role in this thesis to validate the
FEA and identify influential system factors in the plunge tool operation.

1.1 Purpose

The purpose of developing an alternative plunge tool adaptation framework is to make
the process more time and resourceefficient. The development process of the entire
packaging solution system can possibly be shortened and enhanced if the framework
methods are successful in implementation. The framework will potentially also en
able showcasing of finalized package designs earlier in customer relations which po
tentially can convince more customers to buy products and services from ARPS.

Furthermore, the purpose for me as a student writing this master thesis is to train and
test my practical and theoretical engineering experience in a professional setting. This
will be the final step of my master of science in engineering degree and the outcome
of this project is meant to be shared with readers to spread knowledge.

1.2 Objective

The initial request for the project was stated in a letter as: “To explore if it is possible
with tools such as additive manufacturing and FEA, get an understanding of how an
initial design of a plunge would function in reality.’’

As the subject and problem understanding grew and was clarified over the project
course, the objectives of the project resulted in:

• Develop an FEA model that adequately can simulate the contact pressure dis
tribution between plunge and package components during the welding mech
anism.

• Conduct physical contact pressure distribution experiments with three object
ives:

– Validate the FEA.
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– Screen system factors that influence the plunge tool’s performance on the
package weld quality.

– Explore the possibility of using fused deposition modeling (FDM) man
ufactured plunge tools as prototypes in the development process of poly
urethane (PU) plunges.

• Use the FEA model together with response surface methodology (RSM) to de
velop an initial framework for plunge tool design adaptation (parametric op
timization).

1.3 Assumptions

• The contact between plunge lip and carton components can be modeled without
carton components and a stiff inductor wall serves as a reaction object in
stead. The inductor wall is in simulations however protruded the estimated
compressed thickness of the equivalent carton components.

• Homogeneous contact pressure distribution between the plunge lip and the in
ductor wall is optimal in the package welding mechanism. That is, equal pres
sure magnitude in any area of the contact surface between plunge lip and pack
age.

• Nonexistent vertical shear force between the plunge lip and the inductor wall
is optimal.

• The coefficient of friction between the polyurethane plunge and copper bottom
plate is 0.4 based on an estimation made by the manufacturer of the polyureth
ane plunge tools.

• Sliding between carton components in the moment of welding can easily occur
due to the surrounding melted PE plastics. Therefore, the coefficient of friction
between plunge lip and inductor wall is set low (µ = 0.1) in the FEA.

1.4 Report Structure

This report can be divided into 3 segments:
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• Intro Chapters

– Introduction, chapter 1.
– Background, chapter 2. Important information regarding the package
solution and plunge expansion mechanism is presented.

• Experimental Chapters

– Methodology, chapter 3. Describes the overall approach and methodolo
gies used in this report.

– Contact Pressure Distribution Experiments, chapter 4. Describes the
theories behind and the implementation of the physical experiments.

– FEA Model, chapter 5. Describes how the FEA model was developed.
– Indent Optimization, chapter 6. Contains a summary of used RSM the
ory and description of an initial implementation of RSM in which three
design parameters of a plunge tool are optimized.

– Results, chapter 7. Results from chapters 4, 5, and 6.

• Ending Chapters

– Discussion, chapter 8. Discussion of the methodologies and results. As
sessment of meeting the objectives.

– Conclusions, chapter 9. Overall project conclusions.
– Further Recommendations, chapter 10.
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2 Background

In this chapter, necessary information regarding the Boardio package, the plunge tool,
and the existing plunge tool adaptation process will be described.

2.1 Company Description

ARPS are specialized in developing packaging solutions to the global food industry.
Cekacan, Boardio, and Sealio are brands and packaging solutions developed together
with their production systems at the headquarters in Lund, Sweden.

The package solution is delivered to customers as flat readycut and transportation
efficient cartons together with their packaging system. The packages are then as
sembled in the packaging system onpremise.

2.2 Boardio Package

A focus on plunge tools used in the manufacturing of Boardio packages has been kept
in this thesis. The research is however expected to be applicable to other packaging
solutions as well. The Boardio packaging solution is ARPS latest addition to their
product line. It is designed with lower plastic usage, a low carbon footprint, and a
high barrier in mind. The barrier level specifies how well the package can protect its
content from external environmental factors. Due to the laminate composition and the
tight seals, the Boardio package is designed to ensure a gastight barrier if requested
by the customer.

5



2.2.1 Format Parameters

The packaging system has been developed to be adaptable to many different package
formats (dimensions). Many customers order a unique format that goes well with
their product and brand. Hence, many of the package system components, including
the plunge, have to be adapted to the new format.

Only the rectangular Boardio packages will be studied in this report. That is, pack
ages with a crosssection shaped like a rectangle, although they always have rounded
corners and might have rounded long and/or short sides. The design and performance
of the plunge is heavily dependent on the crosssection package format parameters.
They are: package length and width, and the radii of the corners, short, and long sides.
All of them can be found in Figure 2.4.

2.2.2 Components

A Boardio package typically consists of five components as shown in Figure 2.1.
Depending on what product to be contained in the package and what is desired by the
customer, different components can be used for different types of functionalities.
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Figure 2.1: The initial components of a Boardio package before assembly and after
assembly. The components are: 1. Tape. 2. Body. 3. Assembled package. 4.
Toplid. 5. Membrane 6. Base.

The carton components consist of multiple materials that are layered in a laminate
structure. Unique properties and functionalities can this way be obtained for each
component of the package. The PU plunge tool is designed to assemble three types
of transverse carton components. They have specified thicknesses between roughly
450 µm and 600 µm and slightly different amounts of welding plastics (polyethylene,
PE) in them.

2.3 Plunge Tool

2.3.1 Plunge Expansion Mechanism

The plunge tool is utilized to create package seals in a mechanism visualized in Fig
ure 2.2. A large portion of the project focus will be kept on this mechanism. From
here on it will be called the ”plunge expansion mechanism”. The cycle time for the
mechanism is roughly 1 second.
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The mechanism is driven mainly by vertical actuators that sequentially displace the
involved machine and carton components to different heights. One of the actuations
pushes the relatively soft plunge tool into the bottom plate so that it radially expands.
The radial expansion of the plunge creates a pushing force on the carton components
to be assembled. At the same moment, heat is induced in the aluminium layers of
the laminates from a local magnetic field created by an inductor in the inductor wall.
The heat melts the plastic layers of the laminates to create a weld. The force has to
be sufficiently strong and correctly directed along the entire circumference to create
a highquality seal.

Figure 2.2: Sketched animation of plunge expansion mechanism in a crosssection
perspective.

2.3.2 Material Properties

The plunge tools under study in this report are manufactured in a polyether polyureth
ane material. The plunge tools are heatcompression molded to attain high production
quality.

Hardness and Stiffness The material has a specified Shore A hardness of Msha°.
Shore A hardness denotes the stiffness of a rubber vulcanizate and gives an indirect
measure of the elastic properties of the material (Austrell, 1997, p.6). It is measured
with an indentation test with a conical tip on the surface of the material.

8



Experimental Material Data Experimental material data was given for this par
ticular PU material from its manufacturer. The test data was obtained from two ISO
standard tests intended for rubber, vulcanized, and thermoplastic elastomers. The
first one is ISO 37, a uniaxial tension test, and the second one is ISO 7743, a uniaxial
compression test. The experimental data points are composed in Figure 2.3. Negat
ive elongation corresponds to the data obtained from the compression material test.
The data points clearly indicate a nonlinear stressstrain relationship. The most ex
treme strain levels in a plunge under normal operation are unknown. The FEA model
reported equivalent von Mises strains up to 3050%.

Figure 2.3: Material test data for the PU material. Negative elongation data points are taken
from an ISO 7743 test and the positive data points from a ISO 37 test.

The manufacturer describes the mechanical properties of this particular PU material
as highly abrasion and fatigue resistant. Plunge units manufactured in this material
are expected to withstand several hundred of thousands of cycles. The manufacturer
also specified a Poisson’s ratio of υ = 0.499 which indicates nearly incompressible
behavior. Furthermore, the company estimated the coefficient of friction between the
material and dry metal surfaces, such as the copper bottom plate in this case, to be
between 0.4 and 0.5 at high loads and roughly 0.2 in unloaded cases.
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2.3.3 Quality Control

Each plunge batch from the manufacturer undergoes a quality control in which im
portant plunge tool dimensions are controlled, the shore A hardness is measured and
a stiffness assessment test is conducted. Stiffness differences between plunge units
or between batches have been noticed by ARPS in this test. A Mecmesin uniaxial
compression and tension machine is used in this test to compress the plunge unit un
derstudy in a fashion similar to the plunge expansion mechanism in production. The
vertical force reaction at a specific expansion length is measured and used as a ref
erence for the overall stiffness of the plunge unit under study. This reference value,
from here on denoted as mmax, is mainly used to assess plunge units’ capability of
coping with folds of the transverse carton component appearing in the package welds.

According to quality controls carried out by ARPS with a hardness durometer on
plunge units, the measured value can deviate with ±Dsha°. However, ARPS points
out that this test could be subject to error since it does not fully follow ISO standards
due to missing flat surfaces on most plunge tools.

Furthermore, it is believed that the manufacturing method of the plunge tools, espe
cially due to the vulcanization process, can create internal stresses and locally differ
ent material properties of the detail.

2.4 Producing a Sufficient Weld

The methodology of adapting plunges to new formats has been developed since the
late 1980s within ARPS to its current state. This methodology consists mainly of
iterative design with empirical trialanderror testing until sufficient performance is
obtained.

Although the company knowledge and understanding of designing plunge tools have
reached a high level (1 design iteration was often enough), the introduction of the
new Boardio product raised the requirements on the plunge tool performance. That
is partly due to the less amount of PE plastics used for welding in the carton lamin
ates and secondly, due to the more demanding gastight barrier of the package that
requires exceptional welds and more specific plunge lip pressure distribution. Up to
3 design iterations are often needed for Boardiorelated plunge tools which can add
up to roughly 30 weeks of development time.
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2.4.1 Pressure Distribution

This report is based on an assumption that homogeneous pressure distribution is op
timal. Historically, most pressure distributionrelated internal research has focused
on increasing the corner pressure. The corner pressure has been challenging to attain.
Partly because of the plunge design that is bulkier in the corners which causes less de
formation as observed in research by Flodberg, Friberg et al. (n.d.[b]). Several meth
ods to increase the plunge lip pressure in corners have been proposed and tested in
Flodberg, Eriksson et al. (n.d.[a],[b],[c]) and Flodberg, Friberg et al. (n.d.[a]). Meth
ods such as radially extruding the plunge corners, raising the bottom plate corners,
applying antifriction coating on the bottom plate and the plunge, decreasing the lip
height in the corners, and removing material in the corners of the plunge. None of
the methods are used today however. Instead, the indenting method as discussed in
this report and described in the next section, has been found to be a more successful
method in terms of implementation.

2.4.2 Indentation Method

The indentation method can be utilized to increase or decrease the pressure at certain
regions. Homogeneous pressure distribution can potentially be obtained by setting
suitable indent values. It involves indenting the plunge lip radially at certain regions
of the circumference. There are currently three indent design parameters in the CAD
design that ARPS adjusts iteratively until consistent satisfactory package welds are
obtained. One of them is equivalent to the difference between the format and plunge
corner radii. The other two are located on the short and long sides respectively.

The indents of the bottom plate is most often chosen 0.5mm smaller than the indent
values of the plunge.
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Figure 2.4: View from above of a common Boardio package body carton, bottom plate, and
PU plunge with important design parameters.

2.4.3 Package Welding Failure Modes

The indentation method has been observed effective in influencing the quality of
Boardio package seals, but it comes with a few complications. The possible fail
ure modes that can occur in the plunge expansion mechanism are described below
together with their probable cause. They have been empirically observed by ARPS.
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Too Small Indents The gap between the inductor wall and the bottom plate or the
plunge tool needs to be no smaller than 2mm in order to avoid package body im
pact when the plunge is lowered into the package. This value has been empirically
discovered by the company and is used as a design guideline for the plunge. Further
more, for packages with flat short sides, the body carton occasionally tends to create
inward nose tips (see figure 1.1) which demand a further indented plunge and bottom
plate in that region.

Low Corner Pressure The transverse carton components develops folds in the
package seal when lowered into the package body, especially in the corners of the
package. Air channels can easily emerge in these folds. The air channels are unac
ceptable when creating a gastight seal. If the plunge induce sufficiently high pressure
onto the weld (especially in the corners), the folds can be flattened or squeezed enough
so that the plastic laminate layers are fused together and create a highquality weld.

Excessive Corner Pressure Due to this relatively pointy pressure peak, protrusions
can be visible on the outside of the finished package which is aesthetically unaccept
able. It has also been observed that this type of pressure peak can result in internal
stresses in the package that cause the final package dimensions to deviate.

Low Pressure on Sides Usually, fewer folds develop along the more gently curved
sides than in the corner. It is however equally important to have sufficiently high
pressure on the sides to compensate for these folds.

Excessive Pressure on Sides The melted plastic laminate layers of the carton com
ponents can be squeezed away if the plunge produce excessive lip pressure. Con
sequently, the induced current in the aluminum laminate layers of the package com
ponents can be short circuited. Sparks have been observed in such cases.

Excessive Side Indents The plunge lip tends to bend upward during the end of the
expansion mechanism, especially if the indent is large at any point along the circum
ference. This can cause the plunge lip to hit the transverse carton with vertical mis
alignment and create a thin weld height. As a result, the weld becomes extra sensitive
to internal gas pressure (creep failure) which can occur in certain product cases.
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3 Methodology

This chapter broadly presents the methodologies used in this project. The following
chapters 4, 5, and 6 contain more thorough explanations of how these methodologies
were implemented. The combined methodologies used in this project are visualized
in Chart 3.1.

Different research areas, activities, and methodologies, with the common objective to
enhance the process of adapting plunge tools to new package formats, were discussed
together with APRS and the supervisors at an early stage of the project. Time and
resources were considered limiting factors and a prioritization list of activities was
developed. This list can be found in the appendices (A.1).

3.1 Creating a Validated FEA

Developing an FEA model was decided as the highest prioritized activity. The ma
jority of the initial project focus was put on developing this model and planning ex
periments to validate it. The initial aim was to shape the FEA and the experiments as
similar to each other as possible so that the expected few remaining uncertainties in
the FEA could be detected and calibrated.

The number of considered sources of error grew when the FEA model and the valida
tion experiments began to take shape. Thesewere errors related both to the experiment
and the FEA. For instance, the effect of using an inaccurate PU constitutive model
or an inaccurate coefficient of friction between the plunge and the bottom plate was
unknown. Furthermore, the many types of experimental errors in a physical exper
iment can be crucial to the usability of the experimental results if not controlled or
considered.

The need for an objective experimental methodology to ensure some degree of valid
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ity in the physical experimentation results grew. Thereupon, more research was ad
dressed on experimental design. It is presented in chapter 4.

In addition, sequential testing of different FEA settings was performed to further
quantify the uncertainties in the FEA model. They are presented in chapter 5. The
computer activities related to developing the FEA are coloured blue in the flowchart
3.1.

3.2 Measuring Other System Factors

Additional use of the experiments was discovered when the sources of error could be
quantified. To this point, the indentation method’s effect on package welding quality
was of the largest interest to be evaluated. The effect of other system factors that are
present under production circumstances was not questioned as much. Examples of
such factors are dimensional deviations and materialrelated variances in the plunge
tool. Quality control (QC) data on individual plunge units have been used in Analysis
of Variance (ANOVA) tests and a regression analysis to quantify the significance of
these factors. The activities related to the experiments are orangecolored in the flow
chart 3.1and presented in chapter 4.

3.3 Using the FEA

When the FEA had taken its final shape, an RSM framework could be developed and
tested. Chapter 6 presents how RSM has been used to optimize the plunge indent
design parameters. Activities related to RSM are colored red in the project flowchart
3.1.
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4 Contact Pressure Distribution Ex
periments

In this chapter, the procedure of and the theory behind the contact pressure distribution
experiments will be described.

The experiments took place between the 5th and 6th October at the ARPS research
lab in Lund together with the company that resells the contact pressure measurement
equipment, CA Mätsystem. The theory and implementation of experimental design
used in this report is extensively based on the book ”Design and Analysis of Exper
iments” written by Montgomery (2013) and its preceding article on the same topic
Coleman and Montgomery, 1993. The experiments will be described more in detail
in sections 4.1 to 4.4.

4.1 Test Rig

The experiments were intended to realistically resemble the plunge expansion mech
anism under production circumstances, and to be similarly reproducible in an FEA
model. Since a production machine could not be used for the experiments, a similar
machine with similar components and mechanisms was used. A tactile sensor, here
after referred to as a pressure distribution sensor or just sensor, was attached to the
test rig to enable measurement of the pressure distribution on the package components
caused by the plunge. The test rig components are shown in Figure 4.1.
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Figure 4.1: The plunge expansion machine with associated components: 1. External servo
arm connected to plunge. 2. Adaptor. 3. Aluminum part of plunge. 4. PU part
of plunge. 5. Copper bottom plate connected to an internal servo arm. 6.
Pressure distribution sensor connector. 7. Inductor wall.

The sensor was attached to the inductor wall as seen in Figure 4.2. The attached layers
were, starting from the inductor wall: one layer of 25mm wide doublesided carpet
tape, the sensor film, one additional layer of carpet tape, and then finally a body carton
layer. The total thickness added up to roughly 0.9mm.
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Figure 4.2: Closeup picture of inductor wall and attached sensor and one layer of carton.
The green markers and arrows correlate to sensor measurement area and
direction of reading columns.

4.1.1 Pressure Distribution Sensor

The ISCAN 6300 pressure distribution sensor is manufactured by Tekscan. It con
sists of a semiconducting forcesensing matrix of ”sencells” measuring 33.5mm (44
sencells) in height and 264.2mm (52 sencells) inwidth. The construction of the sensor
is shown in Figure 4.3. The normal pressure on a sencell is calculated by the connected
computer software by dividing each sencell’s force reading (in the normal direction)
with its corresponding area. All sencell’s pressure values were recorded with 100Hz
frame rate and later exported for data analysis. The sensor software was programmed
to record 250 frames starting when any sencell’s pressure reading exceeds a threshold
value of 0.1MPa.
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Figure 4.3: Tekscan sensor contruction. (Tekscan, n.d.)

An example of a pressure distribution image from the experiments is given in Figure
4.4. The figure also indicates which segment of the plunge the different segments of
the image corresponds to. Due to the size and placement of the sensor, as shown in
Figure 4.2, the entire plunge circumference was not recorded.

Figure 4.4: Example of pressure distribution image recorded in factor screening experiment
in section 4.4. Pink arrows indicate different segments of the plunge lip. White
arrow indicates the corresponding zone that the FEA produces results of, but
here mirrorinverted.
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4.1.2 Test Material

Plunge Units 34 PU plunges of the 140x120 format were available for the exper
iments. They were of three designs with different design indents. Four with design
version 1, four with design version 2, and twentysix with design version 3. Further
more, four FDM manufactured plunge units existed, one of each design version and
a fourth of an unknown design.

Bottom Plates Four copper bottom plates were accessible for the 140x120 format,
one belonging to each of the three plunge designs and one called ”straight”. The
bottom plates corresponding to plunge designs are radially extended 0.5mm along
the circumference of the respective plunge design. The straight bottom plate has a
constant gap to the inductor wall of 2.0mm.

Base Carton In production, two layers of carton are pressed between the inductor
wall and the radially expanded plunge during welding. That is, one layer of body car
ton, and one layer of the transverse carton component. The latter one is corrugated in
the expansion mechanism which causes randomly located carton folds, especially in
the corners (see Figure 4.6b). The folds produce high contact pressure concentrations
with little regularity in both placement and magnitude. This was seen as a disturb
ance when measuring pressure distribution purely contributed by the plunge. Hence,
most experiments were conducted without a transverse carton component, except the
experiment described in section 4.5.

4.2 Experimental Design

Experimental design is an effective and scientific way of studying and understanding
a system or process with statistical methods. It was developed during the 20th cen
tury and has today become widely established in science and engineering in a range
of industries partly due to the increased availability of computational resources. By
conducting systematic experiments and statistical analysis, valid and objective con
clusions about how input factors are related to the observed changes in the output
response can be drawn. Furthermore, whenever the experimental data is subject to
experimental errors, statistical methods are the only objective approach to analysis
(Montgomery, 2013, p. 11). The general guidelines for designing an experiment are
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1. Recognition of and statement of the problem

2. Selection of the response variable a

3. Choice of factors, levels, ranges, and experimental design a

4. Performing the experiment

5. Statistical analysis of the data

6. Conclusions and recommendations

aIn practice, steps 2 and 3 are often done simultaneously or in reverse order.

There are three fundamental principles in experimental design. Theywill be described
in the following paragraphs.

Randomization Statistical methods require the experimental data to be independ
ently distributed random variables. This is achieved by randomly allocating the ex
periment material and randomizing the order in which the experiment runs are con
ducted. Randomization also contributes to ”averaging out” extraneous factors that
may be present during the experiments.

Replication Replication is the concept of independently repeating runs with the
same treatment (input factor combination). For example, if the experimenter wants
to assess the differences in response from two different samples (e.g. two different
plunge designs) and n copies (plunge units) of each sample are used randomly in the
experiment, n replicates are obtained. Firstly, this allows for an estimate of the ex
perimental error, and secondly, the true response y of each sample is more accurately
estimated by using the sample mean

ȳ =
1

n

n∑
i=1

yi (4.1)

Blocking Blocking is used to reduce or eliminate the response variability caused
by nuisance factors. Those are factors that may affect the response but are not of
interest in the experiment. For example, suppose different batches (blocks) have dif
ferent mean stiffness and we want to eliminate the effect of varying batch stiffness
on the response when comparing stiffness between plunge designs. Then we would
design the experiment to include one of each plunge design from every batch in our
experiment.
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4.2.1 Factors, Levels, and Ranges  Foreword

In sections 4.2.2 to 4.2.4, the different input and output factor categories will be de
scribed. Each category’s respective factors that have been considered in the following
experiments will be listed in each category. Some factors are categorized differently
dependent on experiment, these are listed again in corresponding experiment sections
4.3 to 4.5.

There are two different types of factors. Categorical factors have a finite amount
of levels and are often qualitative, meaning extrapolation between factor levels is
meaningless. Continuous parameters on the other hand, can take any numerical value,
often within a specified range.

Categorizing experiment factors, deciding their levels or ranges, and treating them
individually before an experiment, are difficult and uncertain processes. It often re
quires extensive practical and theoretical process knowledge and understanding.

4.2.2 Response Variables

Measuring the performance of a system can be both quantitative and qualitative. In
this case, it is qualitative. The quality of the welding between carton components is
seen as the ultimate assessment point but at the same time inappropriate as a response
of the system on two levels. One being, welding packages require high temperatures
exactly where the sensor is placed. The second reason is on a statistical level, even
one failed package welding in a thousand is insufficient in production measures and
timewise out of scope to detect in the following experiments.

To be able to compare the responses of different samples, a quantitative response was
needed. Two response variables as functions of the pressure distribution data were
developed for comparison.

R1  Variance of ColumnMeans The response variable was calculated as the pop
ulation variance of the mean of each pressure distribution image column. A low value
of this response variable is seen as good and implies little variance between the mean
pressure of each column in the horizontal direction. A value of zero means that the
mean pressure detected at all columns along the plunge lip is exactly the same, which
could imply a perfectly homogeneous pressure distribution. It is calculated as
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R1 =
1

ncols

ncols∑
j=1

|µj − µ|2 (4.2)

where

µ =
1

ncols

ncols∑
j=1

µj (4.3)

µj =
1

nrows

nrows∑
i=1

pi,j (4.4)

and where pi,j is the pressure value of the sencell at row i and column j (sencell rows
and columns are visible in Figure 4.4).

R2  Variance of Segment Means This response function is similar to the first one
but with the variance being computed between column group means instead. The
groups were selected based on their location on the plunge lip. The plunge lip was in
this case segmented into 3 segments (visible in Figure 4.4):

µS1 =
1

nS1

nS1∑
j∈S1

µj S1 = {4 to 8, 31 to 35, 49 to 52} (corners)

µS2 =
1

nS2

nS2∑
j∈S2

µj S2 = {1 to 3, 36 to 48} (short sides)

µS3 =
1

nS3

nS3∑
j∈S3

µj S3 = {9 to 30} (long side)

(4.5)

4.2.3 Potential Design Variables

From all thinkable factors that influence the system response, the experimenter has
to select which factors are to be studied in particular and that may be varied in the
experiment. These factors can be further divided into 3 groups based on their character
and what strategy that should be used with them. They are, design factors, heldat
constant factors, and allowedtovary factors. The factors that were chosen to be
potential design factors in the experiments are found in Table 4.1.
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Table 4.1: Controllable potential design factors.

Factor ID Type Levels/range

Plunge design pd Categorical v1, v2, v3

Bottom plate design bpd Categorical v1, v2, v3, straight

Plunge type pt Categorical PU,FDM

Transverse carton component tcc Categorical With,without

Expansion length el Continuous 5− 10mm

Sensor frame number sf Categorical #1, #2, ...#250

Mecmesin max value (only in
experiment described in

section 4.5)

mmax Categorical PU : mmaxlow,PU ,
mmaxmid,PU ,
mmaxhigh,PU ,

FDM : mmaxmid,FDM

Design Factors The design factors are the controllable factors, often of the highest
interest. These are factors that the experiment mainly is designed to reveal factor
influence on the system response about. A combination of different design factor
levels are together often called a treatment.

HeldAtConstant Factors The parameters of less interest in a particular experi
ment may be held constant to avoid confusion with the factors of high interest. These
factors may however be used as design factors in other experiments with other ob
jectives.

Most of the first day’s work was spent trying to diminish the measurement system’s
dependency on several disturbing factors. Listed below are experimentindependent
heldatconstant factors and their respective strategy to control their effects. Their
effect on the system response after being treated, were assumed to be negligible.

• The bottom plate could be installed in two different directions. The same dir
ection was held in all experiments and runs.

• When exchanging plunge between experiment iterations, slight rotational po
sitioning differences might result in completely different pressure distribution
measurements. To reduce the effect of this factor, a special adaptor with a ro
tational and vertical reference point was used. This facilitated repeatable and
almost identical positioning of different plunges.
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• Coaxial alignment of extruder and inductor wall was obtained by careful in
stallment of the inductor wall with the help of a halfway extruded plunge as
reference and feeler gauges.

• Horizontal pressure drops in the pressure distribution images were visible as
pixel rows with closetozero pressure values at first. This was assumed to be
affected by the copper coil in the inductor wall with different stiffness properties
and possible misalignment. The problem was resolved by raising the entire
plunge expansion mechanism 3mm above the copper coil.

• The sensor was aligned horizontally by using the inductor wall edge as a refer
ence.

• Little or no pressure at all was detected in the corners initially. That was re
solved by reattaching a new sensor and body carton two times with extra notice
to avoid air bubbles in the corners and between the layers of tape. One sensor
was attached without carpet tape and instead taped to the wall from the outside
using thin singlesided tape on the edges of the body carton strip. This however
enabled vertical sensor movement between test iterations and carpet tape was
therefore used henceforth.

AllowedToVary Factors Factors with estimated relative low influence on the re
sponse or that are difficult to control may be allowed to vary. These factors are often
related to the experiment materials, for example, unittounit manufacturing differ
ences. Useful measured data on six geometric features (depicted in Figure 4.5) and
stiffness and hardness could be taken from the quality controls that ARPS conducts.

The experimenter may rely on randomization to diminish the effect of uncontrollable
allowedtovary factors. In the following experiments however, these factors’ influ
ence on the response were of interest to be assessed. They are found in Table 4.2.
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Figure 4.5: Dimensions that are measured in quality control.

Table 4.2: AllowedToVary factors.

Factor ID Type Levels/Range

Height 1 deviation th1 Continuous ±Dth1mm

Height 2 deviation th2 Continuous ±Dth2mm

Width deviation tw Continuous ±Dtwmm

Length deviation tl Continuous ±Dtlmm

Plunge lip width plw Continuous Mplw±Dplwmm

Plunge lip angle pla Continuous Mpla±Dpla°

Hardness (shore A) sha Continuous Msha±Dsha°

Mecmesin max value mmax Continuous Mmmax±DmmaxN

Mecmesin slope value mslo Continuous Mmslo±DmsloN

4.2.4 Nuisance Factors

Nuisance factors are unavoidable and are often not of interest. Due to these factors’
possible large effect however, they need to be accounted for in ways dependent on
their further categorization.
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Controllable Factors The controllable nuisance factor levels can be set by the ex
perimenter and their influence on the response is often controlled by using blocking.
No such nuisance factors are considered in the following experiments.

Uncontrollable Factors An uncontrollable nuisance factor that can be measured, is
often compensated for with a procedure called analysis of covariance. The environ
ment temperature is commonly referred to as an uncontrollable but measurable factor
and may have a large influence on the response if the system or process is temperature
sensitive. No uncontrollable nuisance factors have been considered in the following
experiments.

Noise Factors The remaining factors that can not be controlled nor measured are
grouped into noise factors. The noise factors that were considered in the following
experiments are:

• The sensor is very fragile to shear forces andmovements which is why a layer of
body carton was kept on the outside of the sensor in all experiments. Persistent
damages and thus faulty pressure readings were not detected to a substantial
degree. However, accumulated deformations in the body carton layer could
have a similar persistent effect.

• The sencells can measure pressure up to 1.93MPa but are not damaged bey
ond that. This magnitude was unfortunately recorded at a few senscells in
most experiments and hence, eventual exceeding magnitudes were not recor
ded. ”Cutoff” sencell recordings were detected already at 5.5mm expansion
length. A significant effect on the response was assumed to take place at ex
pansion lengths above 7.0mmwhen the pressure distribution images contained
a remarkable portion of cutoff sencells.

• The noise level in the sencells pressure readings was ±5% according to CA
Mätsystem.

• Possible variances due to the expansion machine and its operation except ex
pansion length were unknown, but also not detected.
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4.3 Pilot Experiment

A couple of trial experiment runs and after that, a pilot experiment, were conduc
ted at first. The intention was to increase the chance of sampling useful data in the
main experiments, so that the statistical evidence would be more apparent, and so
that meaningful insights could be obtained. The yields from the trials and the pilot
experiment were:

• The sensors ability to read pressure distributions could be confirmed.

• The usability of the response function applied on the raw data could be evalu
ated.

• The distributions and variances of design and error factors could be analyzed.

• Unwanted variance in the test rig before themain experiments could be detected
and eventually diminished.

• Valuable insights on how the proceeding experiments would be designed could
be given.

Most of the strategies to diminish unwanted variance mentioned in section 4.2.3 and
4.2.4 were determined after the trial runs and some of them after the pilot experiment.
The experiment conditions could in that way be improved before the main experi
ments.

This experiment was conductedwith two different treatments, two levels of the plunge
design factor, v1, and v3. All other potential design factors were held constant, see
Table 4.3.

Furthermore, only one plunge unit for each treatment was used. Since all allowed
tovary factors are dependent solely on the plunge unit, the only factors that remain
accountable for the measured variance in response can be assumed to be the plunge
design and nuisance factors (the random error).
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Table 4.3: Design and heldatconstant factors of the pilot test.

Factor ID Type Used levels/range

Plunge design pd Categorical v1, v3

Bottom plate design bpd Categorical v1

Plunge type pt Categorical PU

Transverse carton component tcc Categorical Without

Expansion length el Continuous 7mm

Sensor frame number sf Categorical Average of frames #60  #99

4.3.1 OneWay ANOVA Theory

Suppose that y1, y2, ..., yn represents a sample of response observations. An objective
way to test the test rig’s ability to detect treatment differences, would be to find conjec
ture of difference in mean response between the two treatments, ȳ1 for the v1 plunge
design population and ȳ3 for the v3 plunge design population. A clear difference in
between the treatment means indicates that the experiment is useful in detecting the
effect of different treatments. Small variances within treatments indicate relatively
low experimental error caused by nuisance factors.

A widely adopted method of comparing the different level responses of a single factor
is the oneway ANOVA (analysis of variance). Useful statistical plots and indicators
can be obtained from the test results in this method to help the user in decidingwhether
to reject or failing to reject the null hypothesisH0 against the alternate hypothesisH1,
denoted as

H0 : µ1 = µ2

H1 : µ1 ̸= µ2
(4.6)

There are two possible errors that may appear when testing these hypotheses. The
first one is rejecting the null hypothesis when it is true and the second is failing to
reject the null hypothesis when it is false. The probability of these errors are often
denoted as

α = P (type I error) = P (rejectH0|H0 is true)
β = P (type II error) = P (fail to rejectH0|H0 is false)

Usually, a maximum allowable value is set on α before the experiment, a common
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limit value is 0.05 and will be used throughout this project. After a level has been se
lected, most statistical software packages calculate the probability that the test statistic
will take on a valuemore extreme than the observed value of the statistic when the null
hypothesis is true. This probability is often called P value and its exact formulation
will not be written here, see Montgomery (2013) for a more thorough explanation.
The P value is then compared to the chosen αlevel and if P < α, then it is statist
ically likely that the null hypothesis can be rejected. An alternative interpretation of
the P value is; the smallest level of α at which the data are significant.

The oneway ANOVA test assumes that the observations are obtained independently
and completely random, that the data of each factor level have a normal distribution,
and that the variances of the treatments are equal.

The response values of the treatments in a randomized experiment can often be as
sumed to have a normal distribution. The treatment normal distributionN(µ, σ2) can
be estimated with the statistics; sample mean given in equation 4.1 and the sample
variance

σ2 ≈ S2 =
1

n− 1

n∑
i=1

(yi − ȳ)2 (4.7)

To verify that the assumptions are met, the normality and equal variance assumptions
can be checked with a normal probability plot of the two treatment responses. The
normality assumption is verified if the responses resemble two straight lines on the
plot. The assumption of equal variances can be expected to be true if the two lines
have similar slopes.

The usual statistical indicators calculated in a oneway ANOVA are found in Table
4.4. It is based on analyzing the components of the total variability, which is split
into variability inbetween treatments and variability within treatments. Variability
is here computed as the sum of squares and the total variability can hence be written
as SST = SStreatments + SSE . The ratio F0 computed as in equation 4.8 can be
compared to a tabular value Fα,a−1,N−a that is dependent on the chosen significance
level and the number of degrees of freedom. If F0 > Fα,a−1,N−a, then it is statist
ically likely that the treatment means differ and the null hypothesis can be rejected.
This is an alternative to using Pvalues when testing for significance.
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Table 4.4: The oneway analysis of variance table.

Source of
Variation

Sum of squares degrees of
freedom

Mean square

Between
treatments

SStreatments =
n
∑a

i=1(ȳi. − ȳ..)
2

a− 1 MStreatments

Error (within
treatments)

SSE = SST − SStreatments N − a MSE

Total SST =
∑a

i=1

∑n
j=1(ȳij − ȳ..)

2 N − 1

where

a = number of treatments
n = number of replicates
N = a ∗ n

yi. =
n∑

j=1

yi,j ȳi. = yi./n i = 1,2,. . . ,a

y.. =

a∑
i=1

n∑
j=1

yij ȳ.. = y../N

F0 =
MStreatments

MSE
(4.8)

4.4 Factor Screening Experiment

Full factorial or fractional factorial experimental designs are common DoE designs
and very effective for screening influential factors. They require all factors of high
interest to be controllable and were hence not considered convenient in this case. The
low amount of plunge units with v1 and v2designs, and plunge units being FDM
manufactured, was also considered a preventing cause.

An experiment with randomized runs with all available plunges, as mentioned in sec
tion 4.1.2, was instead conducted. Multiple linear regression (MLR) was chosen to
be modeled on the obtained experimental data to create an empirical model of the
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relation between the factors and the response. Loworder regression models are com
monly used for creating such empirical models and Montgomery (2013) mentions
its frequent use to analyze data from unplanned experiments such as those including
multiple uncontrollable factors.

This experiment was conducted with the design and heldatconstant levels in Table
4.5, resulting in 6 different treatments. To compensate for the few FDMmanufactured
plunges and the v1 and v2design PU plunges, these were observed with two replic
ations each, unlike the v3design PU plunges observed only once each. A total of 50
runs were conducted in this experiment, of which 2 runs with the FDM plunge with
the unknown design were chosen to be excluded from the modeling. The regression
model was modeled with both response variables for comparison.

Table 4.5: Design and heldatconstant factors in factor screening test.

Factor ID Type Used levels/range

Plunge design pd Categorical v1, v2, v3

Bottom plate design bpd Categorical v1

Plunge type pt Categorical PU,FDM

Transverse carton component tcc Categorical Without

Expansion length el Continuous 7mm

Sensor frame number sf Categorical Average of frames #60  #99

4.4.1 Multiple Linear Regression Theory

In general, the relationship between a response variable y and a couple of independent
socalled predictors or regressor variables x1, x2, . . . , xk can be approximated with
the mathematical model

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ϵ. (4.9)

where ϵ is the error. This is called a multiple linear regression (MLR) model due
to its linear relation between the response variable y and the unknown regression
coefficients βj , j = 0, 1, . . . , k.

It is also possible to use the MLR technique with more complex models, for example,
the equation

y = β0 + β1x1 + β2x2 + β11x
2
1 + β12x1x2 + ϵ. (4.10)
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with the secondorder term x21 and interaction term x1x2. By introducing the linear
terms β3x3 = β11x

2
1 and β4x4 = β12x1x2, equation 4.10 can be linearized and usable

in a MLRmodel with the new form

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ϵ. (4.11)

The regression coefficients are often estimated using the leastsquares method. Sup
pose an experiment with n > k observations on the response variable, then the equa
tion 4.9 can be rewritten in matrix form as

y = Xβ + ϵ (4.12)

where

y =


y1
y2
...
yn

 ,X =


1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
...

...
...

...
1 xn1 xn2 . . . xnk

 ,β =


β0
β1
...
βk

 , and ϵ =


ϵ0
ϵ1
...
ϵk

 . (4.13)

The leastsquares method chooses estimated regression coefficients β̂ so that the sum
of the squares of the errors ϵi, is minimized. It can be shown, as by Montgomery
(2013, p.452), that this is satisfied when

β̂ = (X´X)−1X′y (4.14)

The equation for the fitted multiple regression model becomes

ŷ = Xβ̂. (4.15)

The difference between observed response and corresponding fitted response is called
residual and denoted as ei = yi − ŷ1. The residual sum of square, or often just called
error of the MLR model becomes SSE =

∑n
i=1 e

2
i = e′e. The total sum of squares

for the model is computed with SST =
∑n

i=1 e
2
i and can be split into the error sum

of squares and the model (regression) sum of squares SSR which is computed with

SSR = β̂
′
X′y−

(
∑n

i=1 yi)
2

n
(4.16)

The variance σ2 can be estimated with σ̂2 = SSE/(n− k − 1).
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4.4.2 Hypothesis Testing with Multiple Linear Regression

The hypothesistesting procedure that will be used in this case is called the extra sum
of squares method. It is used to find out the contribution of an individual or a subset
of regression parameters to the model. This is very useful when determining which
predictors should be included to create a wellfounded model. In contrast to the often
used sequential sum of squaresmethod, this method produces results independent on
occurrence order of predictors in the model and therefore gives more reliable insights.
The test requires that the errors in the model have the independent normal distribution
ϵ ∼ NID(0, σ2). This can be checked using a normal probability plot of the resid
uals. If the residuals are scattered unstructured and close to the regression line of this
plot, the normality of the experiment data can be assumed. The experimenter should
focus on observing the center of the plot. The two other plots, residuals versus fits,
and residuals versus order plots should also be observed, in which unstructured and
randomly distributed residuals should be existent.

The hypothesistesting procedure goes as follows. Consider the regression coeffi
cients being partitioned into two sets:

β =

[
β1

β2

]
(4.17)

where β1 is the subset of r coefficients being tested and β2 is the rest k + 1 − r
regression coefficients. Then a hypothesistest can be set up as

H0 : β1 = 0
H1 : β1 ̸= 0

(4.18)

in which F0 can be computed as

F0 =
(SSR(β1|β2)/r

SSE/(n− k − 1)
=

(SSR(β)− SSR(β2))/r

SSE/(n− k − 1)
(4.19)

The numerator can be interpreted as the regression sum of squares of β1 given the
model

y = X1β1 + X2β2 + ϵ. (4.20)

Then F0 can be compared to a tabular value the same way as in section 4.3.1. If F0 >
Fα,r,n−k−1, then H0 can be rejected which implies that it is statistically significant
that at least one of the parameters in β1 is not zero. Consequently, this means that
at least one of the predictors x1, x2, . . . , xr is contributing significantly to the MLR
model. An ANOVA table with Fvalue testing for the entire model and each predictor
in the model will be presented in 7.2.
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4.4.3 Model Adequacy Checking

A common statistical indicator is the Rsquared (R2) value of the model. It can be
interpreted as the proportion of the total variability of y derived from the MLRmodel
and is computed as follows:

R2 =
SSR

SST
(4.21)

Adding more predictors to the model will always result in a higher R2value (fit of
the data). Hence, the adjusted Rsquared defined as

R2
adj =

SSR(n− k − 1)

SST (n− 1)
(4.22)

which takes the number of predictors into consideration, is less biased by the amount
of predictors. A R2

adj that greatly differs from R2, probably implies that many insig
nificant predictors have been added to the model.

Fitting the model to noise instead of the true response (often called signal) is called
overfitting and Harrell (2015, p.72) gives a general thumb rule to not exceed the ratio
of 1:15 between predictors and the number of observations. Hence, given 48 obser
vations, a model of not more than 3 predictors would be legitimate in this case.

A third useful Rsquared is the R2
pred which indicates the predictive capability of the

MLRmodel. It is defined as

R2
adj = 1− PRESS

SST
(4.23)

where PRESS is the prediction error sum of squares and is calculated by square
summing the PRESS residuals. The ith PRESS residual e(i) is calculated by remov
ing the ith observation from the model, fitting the model to the rest n−1 observations
to predict the withheld observation y(i), and then taking the difference between these
two responses e(i) = yi − ŷ(i). PRESS can then be computed as

PRESS =

n∑
i=1

e2(i) (4.24)

Occasionally, a subset of the data has a disproportionate influence on the model, and
in such case, it is important to understand why. For instance, these data points might
have been subject to excessive measurement error and the model might resemble the
true response better if these ”bad” data points are excluded. Such outliers can be
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spotted in the normal probability plot of standardized residuals which are computed
as

dij =
eij

sqrtMSE
(4.25)

If the standardized residuals are normally distributed, 95% of them should fall in
between the ±2 theoretical quantiles. A threshold level for standardized residuals of
±3 is often used to detect outliers.

Outliers can also be detected by computing the hat diagonals hii found in the hat
matrix

H = X(X′X)−1X′ (4.26)

The hat diagonals hii may be interpreted as the amount of leverage yi exerts on ŷi. A
useful guideline to identify outliers is to look for hii > 3(k + 1)/n and hii > 0.99
(Minitab, n.d.).

An objective approach that can be useful to test the model’s ability to predict re
sponse on new data, to detect problems like overfitting or selection bias is the kfold
crossvalidation. Its algorithmwill not be described here but many statistical software
packages have functions for it.

Lastly, good process knowledge is valuable in order to evaluate the model approx
imation of the true response. For instance, the legitimacy of different predictors’
influence on the model can in many cases be reasoned out.

4.4.4 Evolution of Regression Model

A first regression model was constructed with the treatment and allowedtovary
factors mentioned to this point. After analyzing the model adequacy with tools men
tioned in the previous section, many alternative models with different sets of predict
ors and observations could be tested. Both response variables were tested in each
model. The most adequate models found will be presented in chapter 7.

4.5 Experiment With Transverse Carton Components

The last experiment that will be addressed is one conducted with transverse carton
components included in the plunge expansion mechanism as seen in Figure 4.6. A
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new transverse carton component was put in place just as in production, before every
expansion. The experiment consisted of 4 different treatments listed in Table 4.6.
Three PU plunge units of the v3design were selected dependent on plunge stiffness.
One with a very high mmax value, one average, and one with a very low mmax
value. In addition, one v3 FDM plunge with an average stiffness value was included.
Thus, the stiffness factor can be considered categorical in this experiment.

The experiment objective was to explore the correlation between plunge stiffness and
observed difference in response when including transverse carton components. This
could potentially indicate whether stiffness has an impact on treating carton fold
related issues and consequently package seal quality.

(a) Before Expansion. (b) After Expansion.

Figure 4.6: Experiment conducted with a transverse carton component.
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Table 4.6: Design and heldatconstant factors in plunge stiffness assessment experiment.

Factor ID Type Used levels/range

Plunge design pd Categorical v3

Bottom plate design bpd Categorical v1

Plunge type pt Categorical PU,FDM

Transverse carton
component

tcc Categorical With

Expansion length el Continuous 7mm

Sensor frame number sf Categorical Average of frames #60  #99

Mecmesin max value mmax Categorical PU : mmaxlow,PU ,mmaxmid,PU ,
mmaxhigh,PU ,

FDM : mmaxmid,FDM

This experiment is subject to some critical errors related to the experimental design
and violations related to the experiment implementation. Hence, the validity and us
ability of this experiment can be questioned. The results from the experiment will
however be presented in chapter 7. The errors are:

• Observations with transverse carton components were noticed to introduce a
lot of noise caused by the transverse carton component’s random location of
folds.

• Only 4 plunge units were used, one for each treatment. Hence, the variability
between treatments can be related to any factor, not necessarily plunge stiffness.

• The experiment was conducted without randomization. After conducting the
previous experiments, no timedependent extraneous factor had directly been
noticed. To speed up the experiment, each treatment was run sequentially. First
themmaxmid,PU plunge, second themmaxhigh,PU plunge, third themmaxlow,PU 
plunge and finally themmaxmid,FDM .

• The transverse carton component folds created pressure peaks well above the
sensor pressure limit of 1.93MPa. This could be concluded after inspecting
the early data frames of the sensor recordings. Limit pressure of 1.93MPa
was observed after only a few frames, corresponding to a few millimeters of
expansion. Hence, the actual peak pressures could not be recorded at 7mm and
the R1 response is expected to be biased as a result of this.

• One observation was lost in data management.
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5 FEA Model

The aim of this section is to present how the FEA was developed and why so. The
purpose of the FEA is to adequately represent the real pressure distribution between
the package wall and the plunge lip in a plunge expansion mechanism. By fulfilling
that, the FEA is intended to be able to predict how prospective plunge designs function
in reality. In addition, the FEA is to be used in RSM to optimize the plunge design.
Therefore, other factors that are expected to have a large influence on the plunge lip
pressure distribution, such as mesh resolution, coefficients of friction, and choice of
constitutive (material) model are to be assessed.

Optimally, the FEA model should also be robust, computationally efficient, and re
producible in other commercial FEA software packages in extent to what has been
used in this project, ANSYS Workbench 2020 R1.

The software settings used in the following analyses have been chosen based on re
commendations from the ANSYS Mechanical documentation (ANSYS Inc., 2017),
ANSYS lecture material, ANSYS tutorial videos, ANSYS help forum, other FE com
munity fora andwebsites, and thewriter’s subject knowledge retrieved fromFE courses
taken on the university. Mathematical theories and concepts concerning the finite ele
ment method and its modeling technologies, will in general not be elaborated on in
this report. Instead, more softwarerelated and procedural terms and descriptions will
be used.

5.1 Geometry

The CADgeometries were developed in ANSYS DesignModeler for its robust and
easily managed parametric support with ANSYS Workbench. Different instances of
the CAD design, so called design points in ANSYS, can automatically be reproduced
by altering design parameter values this way. This is particularly beneficial when
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conducting structural RSM optimization where many different geometries have to be
simulated.

The plunge expansion mechanism was modeled as a simplified assembly consisting
of three components: The PU part of the plunge, the copper bottom plate, and the in
ductor wall as seen in Figure 5.1. Symmetry was used to scale down the assembly to
a quarter for computational efficiency. All results from the FEA in this report corres
pond only to a quarter of an entire plunge. Vertical force reaction results are however
always multiplied with 4 in this report to be easily compared with the practical equi
valentmmax obtained from the quality control data conducted by ARPS.

Figure 5.1: FEA geometry from ANSYS DesignModeler.
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In reality, the package body blank and the concerned carton component to be welded,
are squeezed inbetween the inductor wall and the plunge lip as seen in Figure 2.2.
To simplify the model and to avoid the complexity of modeling the carton as well,
the two layers of carton were assumed to be a 1mm thick part of the inductor wall.
Therefore the inductor walls were protruded 1mm.

An initial gap of roughly 0.5mm between plunge and the bottom plate was found use
ful to avoid overlapping geometries. This was especially occurring when the bottom
plate indents were substantially different from the plunge indents, causing a varied
gap distance along the plunge circumference.

Further geometrical dimensions are directly taken from drawings provided by ARPS
except for three additional corner fillets visible in Figure 5.2. These were added to
avoid sharp corners and stress singularities and were assumed to have negligible in
fluence on the accuracy of the results. In fact, similar roundings have been observed
in reality due to manufacturing factors and the abrasion taking place in regular oper
ation.

Figure 5.2: Close up of the FEA cross section geometry from ANSYS DesignModeler
showing different roundings used in the geometry.
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CAD Topology faces and edges were merged where possible and without causing
too much geometry distortion. The meshing algorithms used could create smoother
meshes with fewer vertices and edge constraints this way. Extra edges were added on
the middle of some of the earlier mentioned fillets as seen in Figure 5.2. It was found
to help the meshing algorithm create consistent meshes on those fillets.

Deformations in the inductor wall and the copper bottom plate were assumed to be
negligible considering the purpose of the FEA and were therefore modeled as thin
fixed surfaces for computational efficiency.

5.2 Loads and Boundary Conditions

The inductor wall and the copper bottom plate were assumed to have no displacement
and therefore modeled with displacement boundary conditions (see figure 5.3a) set
to zero in all degrees of freedom. That practically results in boundary conditions
similar to fixed supports. Fixed supports could not be applied to rigid surface bodies
in ANSYS.

All faces and edges in contact with the symmetry planes were constrained with fric
tionless supports (see figure 5.3b), meaning no displacement in the normal degree of
freedom.

A displacement in negative ydirection was applied to the upper and inner faces of
the plunge to resemble the plunge expansion mechanism. A real expansion length of
7mm was modeled as 7.5mm displacement distance, taking the initial 0.5mm gap
between plunge and bottom plate into consideration. A frictionless support was also
applied to the inner plunge face as seen in Figure 5.3b to restrict movement in normal
direction. The intention was to simulate the contact to the inner aluminum part of the
plunge as fully bonded.
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(a) Displacement boundary conditions, including
simulated fixed supports. (b) Frictionless support boundary conditions.

Figure 5.3: Boundary conditions.

5.3 Mesh

The assembly was globally meshed using the default automatic meshing algorithm in
ANSYS Workbench but with a few adjustments and additional local settings:

• Linear elements were used and found more stable than quadratic elements. The
large deformations in the plunge occasionally caused overlapping edges and
high distortion errors when higherorder (quadratic) elements were used.

• The node density, i.e. mesh resolution, was increased in curved areas of the as
sembly for geometry preservation. That was obtained by turning on the capture
curvaturesetting with a curvature normal angle of 35° which forces the mesh
ing algorithm to create nodes along geometry curves every 35° change in the
normal direction. A local curvature normal angle of 2° was set on the inductor
wall due to its more gentle geometric curvature.

• The growth rate setting was set globally to 1.5 which kept the refined mesh
regions more concentrated and the element count low.

• The plunge was modeled using solid tetrahedral elements (SOLID285 in AN
SYS). Compared to current technology solid tetra or hexahedral elements, this
element type was found more stable in facilitating solution convergence in the
FEA related to incompressible material behavior. SOLID285elements have
an extra degree of freedom for hydrostatic pressure and hence, good capability
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of modeling near or fully incompressible materials. The use of tetrahedral ele
ments was found to increase the computation time for the simulation due to the
substantially larger amount of elements in the model in comparison to when
using hexahedral elements. Hexahedral elements with a hydrostatic pressure
degree of freedom are however not available in ANSYS. As a result, a compu
tationally more effective structured mesh using hexahedral elements together
with a meshing method such as the sweep method, could not be used.

• The face meshing tool was applied to the fillet on the bottom plate to create
even mesh surfaces on these surfaces.

• The plunge lip, which was seen as the region of interest in the model, was
also meshed with the face meshing tool to create a structured mesh over these
surfaces. A closeup image of The plunge lip mesh can be seen in Figure 5.4b.

• The element size was set to 2mm after assessing (see section 5.3.1) the element
size effect on results of interest and the computation time.

The entire mesh is visible in Figure 5.4a.

The use of rigid surface modeling on the inductor wall and the copper bottom plate
implies that no particular element was used to mesh these parts. Contact elements
can however be meshed onto rigid surfaces which allow pressure to be computed on
these surfaces. The contact element types used were CONTA174 and TARGE170 in
ANSYS.
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(a) Overview image of the mesh for the entire assembly.
(b) Closeup image of mesh in plunge lip

region.

Figure 5.4: Mesh used in FEA.

5.3.1 Element Size Assessment

The procedure of choosing element size for the plunge geometry has required con
sideration of many factors. Smaller elements produce more detailed results and in
general stresses and strains closer to reality. On the other hand, larger elements result
in fewer elements and hence, less computation time. The goal with the element size
assessment is to find a sweet spot in element size. So that the computation time is
reasonable and the results are accurate. I.e, the accuracy of the results are not consid
erably increased when the element size is further lowered.

Accuracy in results in this case is almost entirely limited to the accuracy of the pres
sure distribution on the plunge lip surface. The exact accuracy of point stresses was
wishedfor but not as important. Results in the rest of the FE model was seen as
insignificant as long as the plunge lip pressure distribution was not heavily affected.

Another aspect to consider when choosing element size is model robustness. Ele
ments exposed to the large strains in the model were needed to be of high quality
to avoid high distortion errors and to obtain solution convergence. Element quality

46



can be measured in many metrics. One is the aspect ratio (ratio between the longest
and shortest side of an element) that should be close to 1. Smaller element sizes
have been recommended in FE communities for convergence issues related to large
deformations and contacts. Decreasing the element size on the protruded plunge lip
however resulted in worse element qualities in the most demanding regions of the
model. From experience developing this FEA, a coarser mesh functioned equally
well or even better for the purpose of this FEA in some scenarios.

The element size assessment was carried out by altering the global element size in
4 different FEA simulations to assess the impact on plunge lip pressure distribution.
The resolution of the face mesh on the plunge lip surface was unchanged in all runs.
The friction coefficient between the plunge and the bottom plate was set to 0.1, and
between the plunge and the inductor wall to 0.4. The 3parameter MooneyRivlin
nearly incompressible constitutive model with the parameters described in 7.4.3 was
used. All other settings in the FEA model were identical to other simulations in this
report. 4 Intel i73770 processor cores with a clock speed of 3.4 GHz were used for
all FEA computations in this report, including this experiment. The computation time
for the FEAs with different element sizes will also be presented in the results chapter.

5.4 Contacts

There are two contact regions in the FEAmodel, one between plunge and bottom plate
and one between plunge and inductor wall. ANSYS uses two different element types
for rigidflexible contacts. One contact element side that usually is selected for the
softer more curved side that will undergo more deformation. The other side becomes
the target element side and is usually harder and flatter. The plunge was selected as
the contact side in both contact regions. All contact surfaces used in the model are
visible in Figure 5.5.
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(a) Contact (red) and target (blue)
surfaces in plungeinductor wall
contact region.

(b) Contact surfaces in the
plungebottom plate contact region

(c) Target surfaces in the plungebottom
plate contact region

Figure 5.5: Contact and target surfaces used in FEA.

The contact elements have contact detection points that ”search” for nearby target
surfaces within the pinball radius defined by the user. In a friction contact, the contact
pairs can have 4 different types of statuses in ANSYS; open farfield, open nearfield,
sliding, and sticking. Farfield status requires the least amount of computation and
nearfield status is more complex and has higher computational demands. The most
complex calculations occur when the contact and target elements are in contact, that
is sliding or sticking status. The contact status, normal pressure, and frictional stress
are calculated dependent on chosen contact algorithm.

Both contacts were modeled with friction coefficients, denoted as µ. The contact
between plunge and the bottom plate was modeled with µ = 0.4 based on the approx
imation from the plunge manufacturer and after the experiment described in section
5.4.1. The friction coefficient for the plungeinductor wall contact region was set to
µ = 0.1 based on the assumption of low friction as a result of melted PE plastics as
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mentioned in 1.3. Higher friction coefficient values and the rough contacts settings
in ANSYS, were found to cause convergence difficulties in some simulations due to
contact chattering.

Using contacts in FE models entails complex nonlinear mathematical equations and
uncertainties that are difficult for FE solvers to solve. There are many different al
gorithms and techniques used by commercial FE codes to work around these diffi
culties which in many cases also comes with the cost of less accuracy in results.

Determining appropriate FEmodel settings that operates well together, independently
on simulation factors such as geometry and constitutive model, has been a challenging
and time consuming process but of highest prioritization. Consequently, alternative
settings that yield more accurate results were at times disregarded. The following
listed combination of ANSYS contact settings were able to accomplish converging
solutions for the considered CAD geometries, constitutive models, and other simula
tion settings. They have been used in this entire project. The methodology of finding
these particular settings have mostly been based on trial and error and by reading the
ANSYS documentation.

• Gauss points were used as contact detection points in both contacts. It is a
computational effective option and convergence issues were recognized with
the use of alternative settings.

• Asymmetric contact behaviour was used in both contact regions, meaning that
the contact element nodes are unable to penetrate the target elements but the
target nodes can penetrate the contact elements.

• The Augmented Lagrange contact algorithm was found more stable than other
algorithms and used in both contacts. The algorithm is penaltybased, mean
ing that penetration between contact pairs is penalized with a contact normal
stiffness factor Kn. The contact pressure is computed by iteratively updat
ing the penalty until the Lagrangian multipliers (contact tractions) are found.
The method is less sensitive to the magnitude of Kn and is better at overcom
ing illconditioning of the stiffness matrixK than the purepenalty algorithm.
However, this method usually requires more computation.

• The normal stiffness factor was set to 0.5 in the plungeinductor contact and 0.6
in the plungebottom plate contact. In general, high values lead to convergence
difficulties and low values decrease the accuracy of the results.

• The update stiffnessoption was set to each iteration, aggressive and was found
to remedy chattering problems causing convergence issues. Chattering prob
lems occur when the contact status for multiple elements is close to the limit
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between far and nearfield, or sliding and sticking status. This algorithm auto
matically updates the normal stiffness factor throughout the analysis to con
venient values.

• The option small sliding was turned off. This setting connects contact and tar
get elements only once at the beginning of the analysis and hence, improves
performance and robustness but is not suitable for large deformation analysis.

• The stabilization damping factor was set to 0.0 in the final model but was found
useful in earlier models with a factor value of 0.2 to remedy convergence issues
when present.

• The pinball radius was automatically calculated by the software dependent on
element size in each contact region. In the case of 2mm global element size, the
values were calculated to roughly 0.5mm for the plungeinductor wall contact
and 1.5mm for the plungebottom plate contact.

• The trim contactoption was turned off. This option excludes eventual farfield
contact and target elements before the simulation begins.

• The interface treatment option was set to add offset, ramped effectwith an offset
value of 0.05mm for both contacts. This setting adjustment appeared to remedy
some contact initialization difficulties for some analyses. The alternative adjust
to touchsetting was not useful due to the large initial gaps in both contacts.
Contact pairs were connected using the relatively large pinball radii, ramped
displacement, and a relatively large number of solver substeps instead.

AnAPDL postprocessor script was written with the purpose of computing the contact
pressure variance on the plunge lip surfaces. The script exports the element contact
pressure results on the plunge lip surface at the end of simulation and then calcu
lates the population variance among these. Every individual element contact pressure
is calculated as the average of contact element node normal pressures. The contact
surfaces used to compute pressure results in this script are fewer than the surfaces
of the entire plunge lip contact seen in 5.5a. The uppermost row of surfaces visible
in this image was skipped in the APDL script since they most often contained noisy
or close to zero pressure values. The individual contact element pressure values and
coordinates are in this script saved to a file. The script also computes the contact pres
sure variance between all elements among other statistics, and returns it to ANSYS
workbench to be used as a response variable in the optimization described in chapter
6.
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5.4.1 Friction Coefficient Assessment

The coefficient of friction µ between plunge and the bottom plate was unknown but
estimated by the plunge manufacturer between 0.4< µ <0.5 in loaded condition and
on dry metal surfaces such as the bottom plate. It was also considered difficult and
excessive to conduct physical tests to measure it since the actual value might change
over time and between different packaging machines, plunge units, and bottom plates.

It was however of interest to examine what effect different values on µ had on the
plunge lip pressure distributions in the FEA. Thereupon, four simulations were run
with the coefficient of friction values 0.2, 0.4, 0.6, and 0.8 respectively. Besides
that, the experiment was conducted with the same conditions as in the element size
assessment experiment except from a global element size of 3mm.

It was not confirmed whether the contact between plunge and inductor wall (in reality
between plunge and the two layers of carton), is sliding or sticking. That is, whether
the plunge lip can move vertically upon contact with the carton and hence move the
contact weld with it, or if the plunge lip sticks to the same height as contact is initial
ized. A low friction coefficient that implies sliding conditions was in the end assumed
in this contact as mentioned in the thesis assumptions.

5.5 Constitutive Model

The stressstrain relation in a material is in an FEA specified with a constitutive
model, a mathematical expression usually consisting of strain variables and material
dependent constants. The constants are chosen so that the difference between model
and experimental stressstrain data is minimized. This minimization operation will
hereafter be called fitting.

The plunge body is manufactured in a PU material classified under elastomers. Elast
omers can be modeled with linear elastic theory, i.e. Hooke’s law, but only as a rough
approximation and for very small strains. Instead, modelers often deploy hyperelastic
constitutive models based on strain energy density functions, also known as stored en
ergy functions. Uniaxial, biaxial, and shear test data is optimal for fitting such models
to cover the different modes of strains in an elastomer. Only uniaxial test data have
been used in this project.

Elastomers consist of long and flexible chainmolecules called polymers that canwith

51



stand large strains, often up to several hundreds of percent, without causing perman
ent deformation. Nonlinear elasticity, viscoelasticity, and stress softening after initial
loading cycles known as the Mullins effect, are mechanical phenomena that charac
terise elastomers. The material modeling in this FEA will be limited to static elastic
behavior and consideration of dynamic effects and Mullins effect will be neglected.

There are many staticelastic constitutive models to choose between. Subject research
and a comparison experiment with different models (see section 5.5.2), was used to
decide model. In particular, the review of models for rubberlike materials given by
Ali et al. (2010) has been adopted. More detailed mathematical explanations of the
central concepts of constitutive models for elastomers are taken from Austrell (1997).

5.5.1 Strain Energy Density Function

The strain energy density functionW (λ), that is strain energy per undeformed volume,
can be derived in the onedimensional case by considering a nonlinear elastic bar with
the undeformed length L being elongated the distance u or stretched the length ratio
λ = l/L due to a force P as in Figure 5.6.

Figure 5.6: Nonlinear elastic bar loaded by force P (Austrell, 1997, p.17).

Total strain energy U in the bar is calculated by multiplying the undeformed volume
withW

U = ALW (λ) (5.1)

whereA is the crosssectional area. By assuming energy balance between incremental
work done on the bar by the force P and increment in total strain energy, one gets

Pdu = ALdW = AL
dW

dλ
dλ (5.2)

By inserting du = Ldλ in equation 5.2, the energy balance equation can be further

52



simplified and rearranged to create the relation

P

A
=

dW

dλ
(5.3)

whereP/A equals the nominal stress, i.e. force per undeformed crosssection area de
rived directly from the strain energy density function W (λ). Stresses are computed
similarly in the threedimensional case in finite element codes when a hyperelastic
constitutive model is used. Although, different models have different mathematical
expressions. Different models have also been found useful in different types of ap
plications based on what type of elastomer is to be modeled, what experimental data
is available, and what stretch interval is to be accurately modeled.

Without immersing in the research field of hyperelastic constitutive models, a couple
of them were examined, fit to the available experimental data, and then tested as
described in the following section.

5.5.2 Comparison of Constitutive Models

Constitutive models will in this project be compared by conducting multiple identical
FEA simulations of the plunge expansion mechanism but with different constitutive
models. More exactly, the plunge lip pressure results and vertical plunge force reac
tions corresponding to the different models will be compared.

Many commercial FE codes have functions for fitting constitutive models to exper
imental data. The hyperelastic constitutive models in this project have been fit with
the nonlinear least square fitting method in ANSYS Workbench 2020 R1.

It is important to check for instability when a model has been fit to experimental
data, especially models of higherorder. This can be checked by plotting the strain
energy function W (λ1, λ2) as a function of the two principal stresses λ1 and λ2 for
an incompressible isotropic hyperelastic material. A physically realistic behavior of
the model is obtained when the function is bowlshaped with one extreme point in
W = 0. The model is unrealistic if the plot has more than one extreme point and in
such a case, the finite element equation F = Ku will be to solve. Another thumb
rule that can be used to detect unsatisfying material behavior is to look for negative
slopes in any of the uniaxial, shear, or biaxial stressstrain curves of the model.

The constitutive models in the following paragraphs have been fit to test data and
proven stable in terms of the thumb rule criteria mentioned above. Some of the mod
els were fit with a portion of the available experimental data to obtain this stability.
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Equivalent strains up to roughly 50%were computed in initial FEA runs of the plunge
expansion mechanism. Consequently, model accuracy for strains exceeding 50%was
not prioritized.

ArudaBoyce The ArudaBoyce models are based on statistical mechanical repres
entations of the molecular chains in elastomers. The strain energy function is derived
from assuming that the total strain is equivalent to the strain in all randomly oriented
polymer chains in the material. The model is fit using only uniaxial test data and ma
terial behavior in other strain modes such as simple shear and equibiaxial tension may
not be captured as accurately as in multiparameter models. A 1st order ArrudaBoyce
model fit to strain data up to 100% was found stable and used in the forthcoming ex
periment.

Linear A linear model with a Young modulus fit to strain data up to 450%, i.e.
E =4.48MPa, and a Poisson’s ratio of υ = 0.499 was also created and tested.

Ogden The Ogden constitutive model is an empirical model based on continuum
mechanics in contrast to being based on experimental or physical concepts (Marck
mann and Verron, 2005). It can be very accurate when material data is available from
multiple different tests. The model has material constants as exponents which can
make it difficult to fit to experimental data. The strain energy function can be ex
pressed as a function dependent on the three stretches or the three stress invariants.
The order N of the model can be increased to fit Sshaped curves in large strains. In
the case of incompressibility, the third stretch can be derived from the other two. The
strain energy function is generally written as

W (λ1, λ2, λ3) =
N∑
i=1

2µi

α2
i

(λαi
1 + λαi

2 + λαi
3 − 3) +

1

D1
(J − 1)2 (5.4)

where

λk = The principal stretches k = 1, 2, 3

N = order of the model
αi, µi = material constants where, for a stable model, αiµi > 0

J = Elastic volume ratio. J = 1 for incompressible materials.

(5.5)

MooneyRivlin The Mooney and Rivlin Constitutive model is another model that,
similar to the Ogdenmodel, is based onmathematical concepts and hence has material
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parameters that can be difficult to identify. The strain energy function in its general
form is

W (Ī1, Ī2) =

N∑
i=1,j=0

Cij(Ī1 − 3)(Ī2 − 3)j +
1

D1
(J − 1)2 (5.6)

where

Īk = The strain tensor invariants k = 1, 2, 3

Cij = material constants where C00 = 0, and for a stable model, C01 + C10 > 0
(5.7)

By putting N = 2, α1 = 2, and α2 = −2 in equation 5.4, the 2parameter Mooney
Rivlin model is obtained where C10 = µ1/2 and C01 = µ2/2. The 3parameter
MooneyRivlin has a third material parameter C11.

Yeoh The Yeoh model is a reduction of the polynomial constitutive model. It is
better suited for filled rubbers and is often mentioned as effective at predicting the
stressstrain behavior in all deformation modes even though only a uniaxial tension
test has been conducted.

5.6 Solver and Analysis Settings

The FEA was solved in two load steps with different solver settings. The displace
ment was rampedup from 0mm to 1mm over the first load step with the intention
to initialize contact between contact elements, and from 1mm to 7.5mm during the
second load step. The high nonlinearity in the FEA required many incremental load
substeps for the solution to converge. Especially for the second load step with larger
strains. Substeps are intermediate solution points of a load step in which the finite
element equation F = Ku is solved.

The ANSYS setting automatic time stepping was used for the second load step. The
algorithm optimizes the time length of each substep and consequently the displace
ment size as well. Smaller displacement increments can be applied to sequences of
the simulation with convergence difficulties and otherwise, larger load increments are
used to speed up the simulation. The initial and minimal amount of substeps was set
to 200 and the maximum allowed substeps to 1500. The first load step was not as
difficult to solve and hence, the programcontrolled settings could be used with good
convergence stability.

55



ANSYS has several different solvers to compute the stiffness matrix K in the finite
element equation. An iterative, in contrast to a direct, solver was used due to computer
resource limitations. A direct solver might however be more robust andmore efficient
if applicable, especially for solving Lagrangian multipliers.

5.7 Validating the FEA Model

The FEA with the software settings chosen in previous sections and experiments of
this chapter, could be validated by comparing its plunge lip pressure distribution res
ults with the experimental results.

The FEA was slightly modified for the validation experiments to resemble the pres
sure distribution experiments as closely as possible. The coefficient of friction between
plunge and inductor wall was increased to µ =1.0 to eliminate sliding in this contact.
It was assumed to be higher in the experiments than in production considering the
lack of melted weld plastics functioning as a lubricant. Six real PU plunges (two
of each design) with the geometric deviations th1, th2, tw, tl, plw, and pla were
CADmodeled and then analyzed in the FEA.

The vertical force reactions computed in the FEAs andmeasured in the quality control
stiffness assessment test described in section 2.3.3, could also be used for validation.
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6 Indent Optimization

In this chapter, parts of the theory behind Response Surface Methodology (RSM) will
be summarized. Concurrently, an implementation of it using the final FEA model
described in the previous chapter will be developed. This way, design parameter
values that optimize the contact pressure distribution between plunge and inductor
wall can be found.

RSM will in this case be implemented in ANSYS DesignXplorer. Alternative soft
ware tools with the same capabilities however exist. Such as writing a script in the
open source language R and using it in combination with data gathered from an FEA
software.

The theory in this chapter is mainly based on the chapter about RSM in Montgomery
(2013, Chapter 11), the literature review on RSM by Myers et al. (2004), and the
reviews on response surface designs for computer experiments by Jones and Johnson
(2009) and Joseph (2016). The optimization algorithm theory is based on the two
chapters about genetic algorithms in Arora (2017) and the ANSYS DesignXplorer
User’s Guide (2020).

6.1 Response Surface Methodology

RSM is a methodology covering many statistical and mathematical tools to model and
analyze a process or system. Inmany cases with the intent to optimize it. For instance,
DoE can be used to effectively generate response data of the system under study.
RSM has been a research field for the past 70 years and has been used extensively in
a wide range of industries. It can be used together with both physical and numerical
experimentation, of which an example of the latter is structural FEA.

In RSM employed for structural FEA, DoE is conducted on an FEA model where
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input design parameters are systematically changed to generate data about the relation
between input design factors x and the output responses y. A mathematical response
surface model, also known as a metamodel or surrogate model, can then be fit onto the
data of each response variable to specify the relation betweenx and y. This allows for
predicting the response at any input design parameter combination within the feasible
design space. Which can be used to optimize the system.

If the structural FEA model has been verified, validated, and calibrated so that it can
make accurate predictions of the true system, the optimal design parameter combin
ation of the response surface can be assumed to represent the optimal conditions for
the real system as well. Since the mathematical response surface computationally
is relatively cheap to find extreme points for, the number of FEA simulation can be
reduced and the total time it takes to find an optimal solution lowered.

RSMemployed together with FEA can speed up product development processeswhile
saving expenses spent on building prototypes. On the other hand, conducting de
signed experiments with FEA can be costly and timeconsuming (the same thing ap
plies to the development of the simulation model that may never reach an adequate
level of representing the true system). The FEA run time is largely dependent on the
speed and amount of processors used. It is therefore of great interest to choose an ex
perimental design with a minimal amount of simulations needed, but that at the same
time produces meaningful data for the response surface.

It applies to all experimental designs that the required number of runs grows quickly
with the number of design factors. It is therefore common practice to reduce the
number of design factors if there are many, perhaps in a DoE factor screening, and
then conduct RSM on the most influencing design factors.

The optimization in this chapter is conducted on the FEA model developed in chapter
5, i.e. the 140x120 format plunge, and with a coefficient of friction between plunge
lip and format wall of 0.1. As an initial test, only three design parameters will be
optimized, the three indentation design parameters. Their considered ranges will be
described in the next section.

6.2 Design Parameters

The crosssection Figure 2.4 can be used to locate the design parameters. The corner
indent is derived by subtracting format corner radius with plunge corner radius and the
total carton thickness that was estimated to be 1mm. The plunge lip angle, depicted
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in Figure 4.5, is set to a constant value close to the manufactured mean taken from
quality control data.

The design parameter ranges are listed in Table 6.1 and were limited by two design
constraints. Firstly, pci has a lower constrain of 2.5mm (assuming that the bottom
plate has a 0.5mm smaller indentation) to avoid edge impact with the body carton
component in the plunge expansion mechanism. Secondly, due to the CAD model
configuration, psi could not be set lower or equal to pci.

Process knowledge was used to decide further parameter boundaries, i.e. the op
tima were estimated to be within these ranges. The design parameter ranges were set
relatively narrow to increase the concentration of design points and hence increase
response surface accuracy.

Table 6.1: Selected design parameters.

Description ID Allowable range in optimization

Plunge longside indent pli 3.01− 4.5mm

Plunge shortside indent psi 3.01− 4.5mm

Plunge corner indent pci 2.5− 3mm

6.3 Experimental Designs Used With RSM

The process of choosing a suitable experimental design and mathematical response
surface is largely dependent on the nature of the system under study. The mathem
atical complexity of the plunge FEA responses as a function of the considered input
factor ranges is unknown. Therefore, a few different experimental designs and re
sponse surfaces will be examined and tested in the following two sections.

RSM was initially developed for chemical and process industries and based on the
philosophy of sequential experimentation. I.e. experiments are added to the experi
mental design sequentially. Central Composite Designs (CCD) are very efficient in
such applications. Furthermore, CCDs often include replicated runs, especially in
their central design point, which is beneficial in the case of physical experimentation
where every observation is subject to random error.

FEA is however a deterministic type of simulation, meaning that there are no errors
between replicated runs. Hence, the need for replication, randomization, and blocking
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is eliminated (Wu, 2015). The absence of random error also allows for spreading
out the design points over larger experimental regions. Furthermore, factor levels are
easy to change in computer simulations. As a result, experimental designs with a large
number of factor levels are easier to implement than in physical experimentation. In
conclusion, RSM for computer simulations often has a different approach compared
to RSM for physical experimentation.

6.3.1 Central Composite Design

CCDs generally consist of a 2k factorial design with nf factorial runs, nc center runs,
and 2k axial runs where k is the number of design factors. Figure 6.1 demonstrates
CCDs in the cases of 2 and 3 design factors respectively, assuming factor ranges
between 1 and 1. There are many variants of CCDdesigns such as the rotatable,
the facecentered (figure 6.2), and the spherical design. CCDvariants have different
number of center runs nc (always 1 for deterministic experimentation), and different
αvalues, the distance from the design center to the axial runs. The experimenter
may choose a suitable variant based on what is known about the true system response
curvature. In short, different design variants are good at finding curvature and extreme
points in different regions and directions of the design space.

In the following optimization implementation, the ANSYS default VIFoptimal CCD
will be used. It computes α by minimizing the Variance Inflation Factor (VIF), the
degree of nonorthogonality in the model.

Figure 6.1: Central composite designs for 2 and 3 design variables (Montgomery, 2013).
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6.3.2 BoxBehnken

The BoxBehnken Design (BBD) is an alternative design to the facecentered CCD
(both seen in the Figure 6.2). The design can be very efficient although it gener
ally requires fewer runs than CCDs. Similar to the spherical CCD, all design points
are located equally far away from the design center. BoxBehnken designs are often
used when any extreme (corner) point of the design space is unfeasible to conduct
experiments at.

Figure 6.2: BoxBehnken design to the left and facecentered CCD to the right. Both for 3
design variables. (Montgomery, 2013)

6.3.3 Spacefilling Designs

The facecentered CCDs and the BBDs only require three levels of each design para
meter which often is favorable in physical experimentation where the levels may not
be easily controllable. Spacefilling designs have an almost opposed strategy, the
design points are more evenly distributed throughout the design space to increase the
chance of an arbitrary point in the experimental region being close to a design point.
This feature also allows for response curvature more likely to be detected at all places
in the design space. Two types of spacefilling design will be tested in this project,
the Optimal SpaceFilling (OSF) design and the Latin Hypercube Design (LHD).

Since deterministic simulations have no random error, two design points close to each
other will produce similar results. The objective in an OSF design (also called max
imin distance design and sphere packing designs) is to maximize the minimum dis
tances among design points in the experimental region (see Figure 6.3). One disad
vantage with this design is that design points, by occurrence, might have the same
or similar design parameter levels. If that design parameter has little effect on the
system response, some design points might be wasted in describing this parameter’s
influence on the response. The LHD is a solution to this problem. An LHD of n runs
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is generated by dividing each design parameter range into n equal spaced intervals.
The design points are then placed so that no design parameter interval is observed
multiple times. I.e. design points are placed so that no other design point occurs at
the same level in any dimension (see Figure 6.3).

Figure 6.3: An OSF design to the left and an LHD to the right. Both for 2 design variables
and 7 runs. (Joseph, 2016)

6.4 Response Surfaces

6.4.1 SecondOrder Polynomial Model

CCDs and BBDs are perfect for fitting 2ndorder polynomial surface models. Equa
tion 4.10 is an example of such amodel and in general, polynomialmodels are straight
forward to fit using the leastsquares method. 2ndorder polynomial surface models
are often enough to represent a system in smaller design regions and is sometimes
preferred if the FEA is inaccurate and has large numerical uncertainty.
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6.4.2 Interpolation Models

Joseph (2016) mentions a couple of challenges with modeling deterministic simula
tions with polynomial regressionbased methods. Firstly, the residuals do not exist
in reality and are thus uninterpretable. Secondly, eventually large design spaces are
usually not well modeled with loworder polynomial models.

Interpolating methods such as Kriging, which can model highly nonlinear surfaces
are often preferred in computer simulations (Jones and Johnson, 2009). A Kriging
surface consists of a polynomial model, suitable for describing global curvatures of
the response, and a Gaussian stochastic process that enables local curvature devi
ations. However, interpolation models often entail higher requirements on simulation
response accuracy since the models tangent each experimental design point.

6.5 Indentation Optimization Problem

A complete surrogate model is established when the designed experiments have been
conducted and the response surface has been fit. The model can then be used to
optimize the system dependent on the chosen objective function. In the following
implementation, four different RSM configurations will be tested. They are:

Table 6.2: 4 different RSM configurations.

ID Experimental Design Response Surface Number of
Design Points

RS1 Latin Hypercube Design (LHD) Kriging 15

RS2 Optimal SpacFilling (OSF) Kriging 15

RS3 VIFOptimal Central Compostite
Design (CCD)

2ndorder
polynomial

15

RS4 BoxBehnken Design (BBD) 2ndorder
polynomial

13

The main objective in this design optimization is to homogenize the contact pressure
distribution between the plunge lip and the inductor wall in the FEA. However, using
this objective function solely might cause certain problems. For instance, large fric
tion stresses induced by the plunge tool on the package components are unwanted.
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This might occur for larger indents on the plunge lip where the plunge lip tends to
displace vertically in the end of the expansion mechanism. This phenomenon might
also counteract contact in regions of the plunge lip causing the APDL script to avoid
extracting contact pressures for noncontacting elements. Hence, fewer contact ele
ments will be considered in the variance computation and the results get biased. This
problem was accounted for by introducing a second objective, to minimize the aver
age friction stress in the contact so that normal directed contact is promoted.

The mathematical formulation of the optimization problem becomes:

minimize Varσ(pci, pli, psi)
minimize Avgf (pci, pli, psi)
subject to 2.5 ≤ pci ≤ 3.0

3.01 ≤ pli ≤ 4.5

3.01 ≤ psi ≤ 4.5

(6.1)

where

Varσ = Variance of contact element pressures from the FEA.
Avgf = Average of contact element friction stresses from the FEA.

(6.2)

To increase the likelihood of stable APDL script results, the number of plunge lip sur
faces used in the APDL script computation were decreased compared to as described
in section 5.4. The lower row of surfaces was discarded so that no fillet surfaces were
used (as seen in Figure 6.4)

Figure 6.4: Included surfaces in the computation of contact pressure variance and contact
friction stress.
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6.6 OptimizationUsingMultiObjectiveGeneticAlgorithm

Genetic Algorithms (GAs) are popular in response surface optimization since they do
not require a continuous or differentiable response surface, in contrast to other direct
search methods. Evaluation of points within the design space is the only requirement
and GAs can hence be effective on a wide range of functions including complex re
sponse surfaces. The downsides of GAs are the large number of function evaluations
required and that there is no guarantee that the global optima in the design space is
obtained.

In GAs, the optima of a function are searched for with natureinspired methods. GAs
generally consist of first initializing a random population of designs and then iter
atively ”breeding” new populations with inherited characteristics from the best per
forming designs in the foregoing population. The algorithm is stopped when no fur
ther improvement in terms of the objective function is attainable. GAs consist of three
operators that are used in each iteration:

1. Reproduction. A new equally sized population of designs is randomly se
lected from the foregoing population. Better performing designs are given a
higher probability of being selected and hence, duplicates of the best perform
ing designs are likely.

2. Crossover. The characteristics of the designs in the new population are ex
changed inbetween designs to introduce new variations to the population.

3. Mutation. A safeguard operation that preserves the highest performing char
acteristics from foregoing populations to the new population. This prevents
valuable genetic information from being prematurely discarded.

MultiObjectiveGenetic Algorithms (MOGA) are extended versions of singleobjective
GAs where the definition of fit (previously written as performance) of a design point
is redefined. It is often not possible to find a unique solution to a multiobjective
optimization problem that optimizes all objective functions simultaneously. In fact,
infinitely many possible solutions may exist, called the Pareto optimal set, or Pareto
front. A design point is called Pareto optimal if there exists no other design point
in the design space that optimizes at least one objective function without regressing
another one.

The MOGA stops when a specified percentage of the population design points are
Pareto optimal or when the algorithm has reached a stable state, meaning that no
further substantial change between the populations takes place. The designer then has
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to choose the design point on the Pareto front that is preferred. ANSYSDesignXplorer
gives an option to define the importance of each objective and based on the user input,
the objective functions get weighted into a single objective function. This enables a
single candidate optimal design point to be chosen by the software. In the following
implementation, the importance of the two objectives was set equal.

6.7 Adequacy Checking

After all N FEA design points have been solved in the experimental design, the re
sponse surface needs to be verified after being fitted to the response data. This process
can be performed by introducing further verification design points (conducting fur
ther arbitrary experiments) in the design space and then comparing these responses y
to the equivalent predicted responses ŷ on the response surface. The residuals, i.e. the
difference in predicted and observed verification response values, can then be used to
assess the goodness of fit for the response surface. An identical set of 20 verification
points was used to verify the goodness of fit for all 4 RSM configurations.

One measure that is frequently used to quantify this quality is the root mean square
error (RMSE) also known as root mean square deviation. RMSE is the square root of
population variance in residuals and can hence be interpreted as the standard deviation
of residuals.

RMSE =

√∑N
i=1(ŷi − yi)2

T
(6.3)

Lastly, to assess the overall usability of an RSM configuration and its optimization
objective, the performance of its predicted optimal design will be verified by evalu
ation in the FEA. The computed results at these points can then be compared to the
equivalent FEA results of the v1, v2, and v3 designs. I.e. comparing contact pressure
distribution plots for instance.

TheRSMconfiguration and its objectivewill be considered useful if its optimal design
is observed to be better than the v1, v2, and v3 designs. A perfect RSM would accur
ately predict the true global optimal design in that systems design space.
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7 Results

This chapter contains results from the pressure distribution experiments, the FEA
model experiments, and the FEA optimizations.

7.1 Pilot Experiment  ANOVA

The trial runs and the pilot experiment allowed for many test rig adjustments and
new strategies to diminish or eliminate disturbing factors as mentioned in section
4.2.3. Examples of pressure distribution images recorded in the pilot experiment with
the two different treatments are given in Figure 7.1. A clear difference between the
pressure distributions in corners 1 and 2 (where pixel column 6 and 33 is located) is
noticeable in both figures. To decrease this effect, coaxial realignment between the
plunge assembly and the inductor wall was implemented after this experiment. In
addition, a new sensor was installed after this experiment to diminish any possible
effect caused by air bubbles inbetween the layers of tape.

Furthermore, 7.1a indicates a higher pressure on the long side of the plunge which
potentially can be described by the different indent values between the designs. All
pressure distribution images from the experiment are found in the appendices

67



Sensor Pressure [MPa]

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

    0

0.386

0.772

1.158

1.544

 1.93

(a) pd = v3 (test run #19).
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(b) pd = v1 (test run #20).

Figure 7.1: Pressure distribution images of two different plunge designs.

The first response function R1 was used throughout this experiment. The ANOVA
related statistics are found in Table 7.1 and Equation 7.1.

Table 7.1: ANOVA results from the pilot experiment.

Source of Variation Sum of squares DoF Mean square

Between treatments SSdesign = 1.77e+ 18 1 MSdesign = 1.77e+ 18

Error (within
treatments)

SSE = 9.94E + 16 18 MSE = 5.52e+ 15

Total SST = 1.86e+ 18 19

F0 =
MStreatments

MSE
= 319.51 (7.1)

The tabular Fvalue is Fα,a−1,N−a = F0.05,1,18 = 4.41 < 319.51 from which we can
deduce significant difference between the two treatments means.

Figure 7.2 contains results obtained from R (7.2a and 7.2b) and Minitab (7.2c and
7.2d). The normality and equal variance assumptions required in ANOVA, can be
assumed fulfilled looking at Figure 7.2a. The two theoretical normal distributions
have similar slopes and the observations are approximately located at the lines except
for 3 outliers. No observations are located outside the ±2 quantiles which are unlikely
for normal distributions.

The box plot contains boxes for each treatment with edges representing the lower and
upper quartile, a median line inbetween, blue dots representing the treatment means,
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and the rest of the scattered dots representing observations. The box plot clearly
indicates a difference in response between the two treatments.

The 3 previously mentioned outliers are further visible in figures 7.2c and 7.2d. In
the latter plot, the outliers can be correlated to observations 1, 2, and 6. Aside from
these observations, the residuals seem to have a random and unstructured distribution
which signifies independence among the residuals.

The cause of the outliers is suggested to be related mainly to the rotational misalign
ment in the plunge fixture that was more present in this experiment. The special
adaptor with a rotational reference point that improved the alignments, was imple
mented after this experiment. Hence, the outlier dispersion was expected to decrease
in forthcoming experiments.

(a) Normal probability plot of treatments.

(b) Box plot with scatter of observations. Blue
markers are treatment mean.

s

(c) Residuals over fitted value. (d) Residuals over observation order

Figure 7.2: Result plots for the pilot experiment.
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7.2 Factor Screening Experiment

Arbitrary examples of pressure distribution images recorded with the six different
treatments are given in Figure 7.3. The left column depicts the PU plunge units and
the right column FDM plunge units. Each row represents a pd (plunge design) level
which pressure distributions are visible to differ slightly. It is also noticeable how the
FDM plunge units reached or exceeded the pressure sensing limit of 1.93MPa more
than the PU plunge units.

The plunge expansion mechanism was before this test raised 5mm above the copper
coil, and then lowered 2mm due to the assumed broken pixel row (#16). As a result,
the less sensitive pixel row #22 was reintroduced, which was assumed to be on the
edge of the copper coil in the inductor wall. This was believed to be the best possible
position between two improperly functioning pixel rows even though the pressure
distribution readings were affected. More than that, the implemented adjustments in
advance of this experiment seemed to have a positive effect. Few or no outliers at
all were noticed in this experiment and the pressure distribution images showed more
symmetric loading in the corners of the inductor wall.
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(a) pd = v1, pt = PU (test run #19)
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(b) pd = v1, pt = FDM (test run #48)
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(c) pd = v2, pt = PU (test run #23)
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(d) pd = v2, pt = FDM (test run #50)
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(e) pd = v3, pt = PU (test run #26)
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(f) pd = v3, pt = FDM (test run #49)

Figure 7.3: Sample of pressure distribution images observed with different plunge designs
and types.

A boxplot of the 48 observations grouped into the 6 different treatments is given in
Figure 7.4. The plot indicates that there are significant differences between plunge
designs for PU plunge units but not as much for FDM plunge units. Differences in
treatment variances are also apparent, meaning a possible violation of the ANOVA
assumption of equal variances.

71



Figure 7.4: Box plot with scatter of observations.

In the following 4 sections, 4 different MLR models fitted to the factor screening
experiment data is to be described. Following that, comes a section with a summary of
the 4models containing tables and different types of result plots. All models presented
here have been fit using the first response variable R1. Equivalent models using the
R2 response variable had a substantially poorer fit.

7.2.1 Model A  Initial MLR model

An initial MLR model was developed with factors pd and pt being separated as sug
gested in chapter 4. 48 observations where used for this model of which 42 with
pt = PU and 6 with pt = FDM .

The ANOVArelated statistics are listed in Table 7.2. The results are obtained from
Minitab and R using the methods described in chapter 4. The amount of predictors
used in the model is questionable given only 48 observations. Hence, overfitting
might occur. The most significant predictors are pd, sha, pt, plw, tl, and th1.
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Table 7.2: ANOVA results.

Term DoF SSR(β1|β2) F0 P − V alue

Regression 12 6.55e+ 10 25.48 0.000

sha 1 1.92e+ 9 8.96 0.005

pla 1 5.31e+ 2 0.00 0.999

plw 1 1.35e+ 9 6.30 0.017

tw 1 5.56e+ 7 0.26 0.613

tl 1 1.31e+ 9 6.10 0.018

th2 1 1.28e+ 8 0.60 0.445

th1 1 8.67e+ 8 4.05 0.052

mmax 1 8.94e+ 5 0.00 0.949

mslo 1 4.31e+ 7 0.20 0.656

pd 2 2.13e+ 10 49.79 0.000

pt 1 1.76e+ 9 8.2 0.007

Error 33 7.50e+ 9

Total 47

7.2.2 Model B  Alternative MLR model

The MLR model in this section was developed with the factor pt being integrated
with factor pd to form 6 levels of pd instead. The same 48 observations as in model
B were used for this model. The most significant predictors in the model are pd, plw,
and th1.

The ANOVArelated statistics are listed in Table 7.1.
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Table 7.3: ANOVA results.

Term DoF SSR(β1|β2) F0 P − V alue

Regression 14 7.01e+ 10 58.00 0.000

sha 1 2.16e+ 8 2.50 0.123

pla 1 1.15e+ 8 1.33 0.258

plw 1 4.01e+ 8 4.65 0.038

tw 1 4.42e+ 4 0.00 0.982

tl 1 2.20e+ 7 0.25 0.617

th2 1 4.54e+ 7 0.53 0.474

th1 1 3.12e+ 8 3.61 0.066

mmax 1 1.02e+ 7 0.12 0.733

mslo 1 1.56e+ 7 0.18 0.674

pd 5 3.15e+ 10 72.88 0.000

Error 33 2.85e+ 9

Total 47

7.2.3 Model C  Reduced MLR Model

In this section, a reduced model containing only 3 predictors, is presented. The choice
of predictors is based on the significance level of predictors in the foregoing model.
The FDM plunge unit observations were removed from this model, resulting in a total
of 42 observations. It is possible that leaving out the FDMrelated observations leads
to a more homogeneous data set that is simpler fitting anMLRmodel to. The Plevels
for the remaining predictors have improved in this model compared to the foregoing.

Table 7.4: ANOVA results.

Term DoF SSR(β1|β2) F0 P − V alue

Regression 4 6.06e+ 10 173.67 0.000

plw 1 4.95e+ 8 5.67 0.022

th1 1 5.11e+ 8 5.86 0.021

pd 2 5.07e+ 10 290.84 0.000

Error 37 3.23e+ 9

Total 41
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7.2.4 Model D  Reduced MLR Model with Interaction

In this section, a reduced model containing three predictors, of which one is an inter
action term, is presented. The choice of predictors was found using stepwise MLR
with 10fold crossvalidation in Minitab. The fit of the model was increased using all
48 observations in the model compared to 42 observations. The interaction term can
be interpreted as plunge design pd being dependent on shore A hardness sha.

Table 7.5: ANOVA results for reduced MLR model with interaction.

Term DoF SSR(β1|β2) F0 P − V alue

Regression 7 6.99e+ 10 128.00 0.000

plw 1 5.20e+ 8 6.67 0.014

th1 1 5.48e+ 8 7.02 0.011

pd ∗ sha 5 6.12e+ 10 156.87 0.000

Error 40 3.12e+ 9

Total 47

7.2.5 Model Comparison

Table 7.6 contains a summary of Rsquared statistics for each model. Model A has a
considerably worse fit in all four Rsquared measures than the other models. Model
B has the highest R2value with the same set of predictors, aside from pt being in
tegrated in pd. This signifies that the difference in response related to pd and pt, is
better modeled with 6 individual regression terms as in modelB, than with 2+3 = 5
regression terms as in model A.

The reduced models C andD also have high R2values and as mentioned before, are
less likely overfitted. This is further indicated with their slightly higher R2

pred and
10fold R2 values. That is, these models are likely better at fitting and predicting
”new” data sets or observations if such would be available.
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Table 7.6: Model Summary.

Model R2 R2
adj R2

pred 10fold R2

A 89.73 86.21 76.90 0.00

B 96.09 94.44 91.25 90.62

C 94.94 94.40 93.11 92.12

D 95.73 94.98 93.90 93.76

Figure 7.5 contains normal probability plots of the standardized residuals in contrast to
the observed responses of the separate treatments as in Figure 7.2a. The straight lines
represent theoretical normal distributions. All models can be assumed to follow the
normal distribution assumption of regression modeling judging by the standardized
residuals proximate location to these lines. Furthermore, there are very few residuals
with more extreme values than ±3.

(a)Model A. (b)Model B.

(c)Model C. (d)Model D.

Figure 7.5: Normal probability plot of standardized residuals.

The Pareto charts in Figure 7.6 contain the standardized effects of the model which is
an alternative way of presenting significant predictors in the model based on ttesting.
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The red dashed line corresponds to the chosen significance level α. Significant pre
dictors have longer staples. The plunge design factor pd or the interaction term it
belongs to in model D, is clearly the most influential factor. Followed by that, th1
and plw have a relatively high significance in all models.

(a)Model A. (b)Model B.

(c)Model C. (d)Model D.

Figure 7.6: Pareto chart of standardized effects.

Figure 7.7 depicts the standardized residuals over fitted values. It can be used to
assess the model fit to certain groups of data. In general, the models can be seen to
have more difficulty to model the behavior of observations with high response values.
That is plunge units with less homogeneous pressure distribution. Looking at Figure
7.4 again, these observations are likely the v1plunge units.

77



(a)Model A. (b)Model B.

(c)Model C. (d)Model D.

Figure 7.7: Standardized residuals over fitted value.

The standardized residuals plotted for each model over observation order are depic
ted in Figure 7.8. It is useful to assess if a model is biased to any observation order
dependent factors that might affect the response during the experiment. The plots
show no signs of such behavior which is positive. These plots are also useful to
recognize which observations are more difficult to fit the MLR models to, such as
observations #10, #18, #28, and #44. It is possible that for some reason, more exper
imental errors were present in these runs.
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(a)Model A. (b)Model B.

(c)Model C. (d)Model D.

Figure 7.8: Standardized residuals over observation order.

By taking the regression coefficients βj , j = 0, 1, . . . , k fromMinitab or R, the MLR
relation between response and predictors for model C becomes

RF = −118078 +  26335th1 +  83743plw
+ 52190pdv1 −  6605pdv2 − 45585pdv3

(Pa2) (7.2)

and for model D

RF = −161736 + 85824plw + 27324th1 + sha(1053.6pdv1,PU

− 473.7pdv1,FDM + 362.4pdv2,PU

− 639.3pdv2,FDM − 98.9pdv3,PU − 204.1pdv2,FDM )

(Pa2) (7.3)

The categorical factors are binary and only one can be set to 1 simultaneously.
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7.3 Experiment With Transverse Carton Components

Arbitrary pressure distribution images from every treatment are visible in Figure 7.9.
The folds from the transverse carton components are clearly visible, especially at the
long side as randomly located pressure peaks. All 39 images are available in the
appendices B.3.
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(a)mmaxlow,PU , (test run #6)
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(b)mmaxmid,PU , (test run #15)
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(c)mmaxhigh,PU , (test run #25)
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(d)mmaxmid,FDM , (test run #35)

Figure 7.9: Sample of pressure distribution images observed with different plunge designs
and types.

The boxplot in Figure 7.10 contains R1 response values for the 4 treatments. A clear
difference between treatments is noticeable. The FDM plunge produced the most
homogeneous pressure distribution, followed by the soft plunge, the medium plunge,
and at last the stiffest plunge.
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Figure 7.10: Box plot with scatter of observations.

A regression model with the Mecmesin max stiffness mmax as a categorical factor
with 4 levels was developed. Only 3 degrees of freedom for predictors could be
included in the model as a result of only using 4 plunges in the experiment (thus 4
degrees of freedom in all predictors). The ANOVA Table 7.7 of the regression model
(in practice a oneway ANOVA model) also indicates a clear significance inmmax.
Large errors were also present in the experiment as seen in Figure 7.10 and Table 7.7.
A larger portion of error than in succeeding experiments.

Table 7.7: ANOVA results for the regression model.

Term DoF SSR(β1|β2) F0 P − V alue

mmax 3 5.30e+ 18 36.07 0.000

Error 35 1.71e+ 18

Total 38

The regression model fit in terms of Rsquared statistics is listed in Table 7.8.
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Table 7.8: Model Summary.

R2 R2
adj R2

pred 10fold R2

75.56 73.47 69.76 68.62

The regression model becomes:

R1 = 1979971951 + 526226042mmaxHigh,PU

− 187676508mmaxLow,PU + 133298281

mmaxMid,PU − 471847815mmaxMid,FDM

(Pa2) (7.4)

Figure 7.11 visualizes the response values in terms of R1 and R2 over test run (time).
Clear orderdependent behavior is noticeable in the R2response in 7.11b.

(a) R1 response versus test run. (b) R2 response versus test run.

Figure 7.11: R1 and R2 responses versus test run.

7.4 FEA Model

An arbitrary plunge design was used in the following three experiments in this section.
It has no correlation to the v1, v2, or v3 designs mentioned in this project.
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7.4.1 Element Size Experiment

The results from the element size experiment are shown in Table 7.9. Attention has
been held on the results of highest interest in this FEA, the plunge lip contact pressure
results.

All assembly parts are included in the reported number of elements in the second
column of the table. Notice that most elements are located in the plunge lip region of
the plunge mesh and were left unchanged throughout this experiment. The total num
ber of elements does therefore stay above 60 000 elements even for coarser meshes.
The computation time in the third column time is noticed to have a strong correlation
with the number of elements.

Max Ry in the fourth column of the table, are the maximum vertical force reactions
computed in the FEAs. That is, at full 7.5mm FEA displacement (end of simula
tion), corresponding to 7mm real expansion due to the initial gap in the model. The
computed value is multiplied 4 times to compensate for symmetry and to easier be
compared withmmax from the quality control stiffness assessment test described in
section 2.3.3.

The three columns with pressure values have been computed from the pressure result
files generated by the APDL script. The pressure variance is calculated as in the
sample variance equation 4.7 where yi corresponds to contact element pressures on
the plunge lip surface.

Table 7.9: FEA statistics and plunge lip pressure distribution results for analyses with
different element sizes.

Element
Size [mm]

N. of
Elements

Computation
Time

Max
4 ∗Ry [N]

Pres. Max
[MPa]

Pres.
Mean
[MPa]

Pres.
Variance
[MPa]

4 62433 1h 32m 3001 4.885 2.596 0.705

3 64883 1h 41m 3281 5.010 2.601 0.727

2 74831 1h 54m 3398 4.874 2.574 0.728

1 186848 3h 56m 3402 4.846 2.612 0.738
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7.4.2 Coefficient of Friction Experiment

Table 7.10 contains plunge lip pressure results computed the same way as in the previ
ous section but here instead, dependent on the coefficient of friction between plunge
unit and bottom plate.

Table 7.10: Plunge lip pressure distribution results from FEAs with different friction
coefficients between plunge and copper bottom plate.

µ Max 4 ∗Ry [N] Pres. Max
[MPa]

Pres. Mean
[MPa]

Pres. Variance
[MPa]

0.2 2999 5.208 2.817 0.747

0.4 2965 4.930 2.595 0.723

0.6 3043 4.785 2.378 0.699

0.8 3082 4.662 2.156 0.731

The figures in 7.12 visualize the computed contact pressure results in the FEAs at
full 7.5mm displacement. Each point in the scatter plots represents a contact element
pressure value on the plunge lip surfaces. The left edge of the plot area is equivalent to
the symmetry line of the short side. The xaxis represents the distance in millimeters
along the undeformed plunge circumference and ends at the symmetry line of the long
side.

Both the max and mean pressure values in the table, and the pressure distribution
plots indicate that the pressure results increase when the coefficient of friction µ is
decreased.

It is furthermore worth pointing out that Max 4 ∗ Ry is not substantially affected by
the change in µ.
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(b) µ = 0.4
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(c) µ = 0.6
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(d) µ = 0.8

Figure 7.12: Plunge lip pressure distribution from FEAs with different friction coefficients
µ between plunge and copper bottom plate. Plots have inaccurate aspect ratios.

7.4.3 Constitutive Model Assessment

The results from the simulations with the seven different constitutive models are
presented in Table 7.11, Figure 7.13, and Figure7.14. The results indicate that all
the constitutive models produce similar results except the linear model. One hypere
lastic model was modeled nearly incompressible and no substantial difference could
be found in its results in comparison with the other incompressible hyperelastic mod
els.
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Table 7.11: Plunge lip pressure distribution statistics dependent on different constitutive
models.

Constitutive
Model

Upper
Limit
ε

Incompressible Mathematical
Parameters [MPa]

Pres.
Max
[MPa]

Pres.
Mean
[MPa]

Pres.
Vari
ance
[MPa]

Arruda
Boyce

100% yes µ = 4.8605, λ =
7.3603e+ 7, D1 = 0

4.751 2.201 0.573

Linear 420% nearly E = 4.48, υ = 0.499 4.124 0.871 0.295

Mooney
Rivlin

150% yes C10 = 1.1643, C01 =
1.3553, D1 = 0

5.097 2.317 0.641

Mooney
Rivlin

420% yes C10 = 0.90913, C01 =
1.577, C11 =

0.030822, D1 = 0

4.934 2.252 0.619

Mooney
Rivlin

420% nearly C10 = 0.90913, C01 =
1.577, C11 =

0.030822, D1 =
0.0080446 (Poisson’s

ratio=0.49)

4.996 2.318 0.622

Ogden 150% yes µ1 = 14.977, α1 =
0.70576, D1 = 0

5.134 2.403 0.671

Yeoh 100% yes C10 = 2.4303, D1 = 0 4.746 2.180 0.562

The force reaction plot further indicates that the hyperelastic models deform similarly
throughout the simulation. Contact with the inductor wall can be seen as initialized at
roughly 4mm displacement. The linear model has a different deformation character.
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Figure 7.13: Force reaction in the ydirection as a function of FEA displacement and
constitutive model.
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Figure 7.14 signifies that no substantial difference in pressure distribution is notice
able between the hyperelastic constitutive models.
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(a) ArrudaBoyce 1st order with strain data up

to 100%. Incompressible.
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(b) Linear with strain data up to 420%.

Nearly incompressible.
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(c) 2parameter MooneyRivlin with strain

data up to 150%. Incompressible.
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(d) 3parameter MooneyRivlin with strain

data up to 420%. Nearly incompressible.
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(e) 3parameter MooneyRivlin with strain

data up to 420%. Incompressible.
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(f) Ogden 1storder with strain data up to

150%. Incompressible.
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(g) Yeoh 1storder with strain data up to

100%. Incompressible.

Figure 7.14: Plunge lip pressure distribution from FEAs with different constitutive models.
Plots have inaccurate aspect ratios.

The 2parameter MooneyRivlin model was decided to be used in all forthcoming
FEAs. Its fit to test data between 25% and 150% strain is visualized in Figure 7.15
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Figure 7.15: Uniaxial, biaxial, and shear stressstrain curves for 2parameter
MooneyRivlin model. Blue markers are uniaxial compression and tension test
data.

7.4.4 FEA Validation

Table 7.12 contains FEA pressure distribution statistics for each of the 6 plunge units.
The pressure statistics indicate much higher contact pressures in the FEA than in ex
periments. The table also contains both measured and computed vertical force reac
tions that show little correlation.
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Table 7.12: Results from FEA validation experiments with 2 arbitrary plunge units from
every plunge design.

Plunge Details Mecmesin
Results

FEA Results

Serial
Num
ber

pd mmax
(Meas
ured)
[N]

4∗ Vertical Force
Reaction @7.5mm
Expansion (FEA) [N]

Pres. Max
[MPa]

Pres.
Mean
[MPa]

Pres.
Variance
[MPa]

40 v1 2320 3023 13.244 3.128 2.586

07 v1 2286 2598 15.224 2.677 2.705

35 v2 2177 2821 12.136 2.686 2.561

25 v2 2548 2789 14.737 2.682 2.846

110 v3 2242 3003 16.558 3.055 3.296

012 v3 2705 2943 14.772 2.948 2.850

The pressure distribution results in Figure 7.16 from the FEA validation experiments
are noticeably different from previous simulations. The visibly more concentrated
pressure peaks are assumed to be a result of using a coefficient of friction high enough
to prevent sliding in the contact.

There aremainly 5 similarities between the FEA and experimental results that indicate
a relatively realistic FEA model. They are:

• The midlong side pressures in the v1 and v3designs are significantly lower
than other designs and have no or little contact at all in higher ycoordinates.

• The corner pressures in v2designs are lower.

• The midlong side pressures in v2designs are vertically more spreadout.

• All results have higher pressures at the bottom of long sides.

• The beginning of the long side is often the region with the highest pressures.
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(b) From experiment, pd = v1, serial#40.
pci=2.5mm, pli=5mm, psi=3.5mm
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(c) From FEA, pd = v1, serial#07.
pci=2.5mm, pli=5mm, psi=3.5mm
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(d) From experiment, pd = v1, serial#07.
pci=2.5mm, pli=5mm, psi=3.5mm
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(e) From FEA, pd = v2, serial#35.
pci=3mm, pli=3.5mm, psi=3.5mm
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(f) From experiment, pd = v2, serial#35.
pci=3mm, pli=3.5mm, psi=3.5mm
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(g) From FEA, pd = v2, serial#25.
pci=3mm, pli=3.5mm, psi=3.5mm
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(h) From experiment, pd = v2, serial#25.
pci=3mm, pli=3.5mm, psi=3.5mm

10 20 30 40 50 60 70 80 90 100

1

2

3

y
-c

o
o

rd
. 

[m
m

]

FEA Plunge Lip Pressure Distribution [MPa]

0

2

4

6

8

(i) From FEA, pd = v3, serial#110.
pci=2.5mm, pli=4mm, psi=4mm
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(j) From experiment, pd = v3, serial#110.
pci=2.5mm, pli=4mm, psi=4mm
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(k) From FEA, pd = v3, serial#012.
pci=2.5mm, pli=4mm, psi=4mm
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(l) From experiment, pd = v3, serial#012.
pci=2.5mm, pli=4mm, psi=4mm

Figure 7.16: Plunge lip pressure distributions.

7.5 Indent Optimization

In this section, the four different RSM configurations will be compared by looking
at their RMSE in relevant responses and the pressure distribution of their suggested
optimal designs.
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The 4 different RSM configurations are visible in Figure 7.17. The grey markers
are some of the FEA experiments pressure variance responses as a function of psi,
pli, and pci. The pressure variance response surfaces are also visible in the plots as
functions of pli and psi and with the corner indent parameter pci having a constant
value of 2.75mm. Slight differences between response surfaces are visible and all of
them have relatively flat minima near the center of the design space.

(a) Latin Hypercube Design + Kriging Response
Surface.

(b) Optimal SpaceFilling Design + Kriging
Response Surface.

(c) VIFOptimal Central Composite Design +
2ndorder polynomial Response Surface.

(d) BoxBehnken Design + 2ndorder polynomial
Response Surface.

Figure 7.17: Pressure variance response surface as a function of plunge long side and short
side indents. pci = 2.75mm. Grey markers are DoE design points,

Table 7.13 contains a summary of the RSM configurations and their respective good
ness of fit in terms of contact pressure variance RMSE and average friction stress
RMSE. RS2 has the response surface with the best fit to pressure variance data and
RS3 has the response surface with the best fit to average friction stress data.
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Table 7.13: Goodness of fit data for the 4 different RSM configurations.

RSM Information
Root Mean Square Error
(20 Verification Points)

ID Experimental
Design

Response
Surface

Number of
Design
Points

Pressure
Variance
[MPa2]

Average
Friction

Stress [MPa]

RS1 LHD Kriging 15 0.115 0.0042

RS2 Optimal SF Kriging 15 0.043 0.0039

RS3 CCD
VIFOptimal

2ndorder
polynomial

15 0.075 0.0024

RS4 BBD 2ndorder
polynomial

13 0.056 0.0182

Figure 7.18 visualizes the goodness of fit of the 4 RSM configurations in predicted
vs. observed charts. All response values have been normalized. The yellow markers
represent the pressure variance response data and the blue markers, average friction
stress data. Square markers are design points from the DoE that the response surfaces
are fitted to. Round markers are verification design points. The Kriging interpolation
response surfaces (7.18a and 7.18b) are visible having a perfect fit to the DoE data.
The optimal spacefilling RSM configuration seems to predict the verification points
better than others. It has the best fit for higher response values as well.
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(a) Latin Hypercube Design + Kriging
Response Surface.

(b) Optimal SpaceFilling Design + Kriging
Response Surface.

(c) VIFOptimal Central Composite Design +
2ndorder polynomial Response Surface.

(d) BoxBehnken Design + 2ndorder
polynomial Response Surface.

Figure 7.18: Observed vs. predicted design point values.
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Table 7.14 contains the response (output) and design parameter (input) values for
optimal designs, 1 for each RSM configuration. In addition, three equivalent FEAs
are listed for the v1, v2, and v3 140x120 plunges. The results are verified, meaning
that they have been computed with the FEA with that design.

It is noticeable how the pressure distribution is least homogeneous with the v1 design,
followed by v2 and then by the optimized designs and the v3 design. The RS2 optimal
design received the lowest pressure variance (most homogeneous) even though the
differences to the next designs are negligible. There is a smaller observed difference
in average friction stress between the designs.

The optimal designs are similar to the v3 design but however with larger corner in
dents (pci).

Table 7.14: Design parameter values and verified results for optimal designs obtained from
the 4 different RSM configurations and three old 140x120 designs.

Contact Results (Verified) Design Parameter Values [mm]

ID Pressure
Variance
[MPa2]

Average
Friction

Stress [MPa]

psi pli pci

RS1 1.031 0.240 3.94 3.89 2.68

RS2 1.027 0.222 3.95 3.84 3.00

RS3 1.048 0.228 3.79 3.94 2.91

RS4 1.095 0.220 3.85 4.08 2.89

v1 1.820 0.210 3.50 5.00 2.50

v2 1.116 0.249 3.50 3.50 3.00

v3 1.090 0.247 4.00 4.00 2.50

The contact pressure distribution plots for the 7 designs, v1, v2, v3, and the 4 optimal
designs from different RSM configurations, are visible in Figure 7.19. High pressures
are apparent on the lower areas on the sides for all designs. The designs that have
larger corner indents generally have lower corner pressures and smaller pressure peaks
in the upper areas of the corners.
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2ndorder polynomial Response Surface.

10 20 30 40 50 60 70 80 90 100

1

1.5

2

2.5

y
-c

o
o
rd

. 
[m

m
]

FEA Plunge Lip Pressure Distribution [MPa]

0

2

4 (g) BoxBehnken Design + 2ndorder
polynomial Response Surface.

Figure 7.19: FEA plunge lip pressure distribution for the four RSM optimizations and the
v1, v2, and v3 designs for reference.
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8 Discussion

This chapter begins with a list of accumulated limitations of this project. The res
ults from the pressure distribution experiments, the FEA experiments, and the indent
optimization will then be discussed. How the thesis methodologies and results were
capable of achieving the objectives, will be assessed simultaneously as subjects are
addressed.

8.1 Limitations of Study

Several limitations have been chosen to avoid pitfalls and to constrain the scope of
the project to a level in accordance with the time frame. They are:

• The effects on the package seal quality caused by carton folds were not con
sidered in the FEA nor the physical experiments except from the experiment
with transverse carton components. A few conclusions can be drawn from this
experiment and are further discussed in section 8.4.

• Dynamic and softening behaviour of the plunge material were neglected in the
FEA modeling. So were changes in material properties due to environmental
factors such as humidity and temperature as well.

• Themechanical behavior and effects of carton components were not considered
in the FEA. The model was limited to analysis of the pressure distribution
between the plunge and the inductor wall. However, the inductor wall was
protruded with the thickness of the package components to more accurately
resemble the actual distance between plunge lip and reaction components.

• Only three assessment experiments have been taken into consideration when
developing the FEA in this project. The contact stiffness factors in both con
tacts are other settings whose levels potentially has a large influence on the
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contact pressure levels. This can be tested in a fourth assessment, although the
convergence stability might be endangered for higher contact stiffness factor
levels.

The outcome of these simplifications are partially unknown and would, if considered,
enhance the certainty of the research to develop awellgrounded framework for plunge
tool optimization. Especially consideration taken to the carton folds as they have been
a recurrent issue for ARPS. It was not found out how an effective and not too complic
ated consideration of carton folds would have been practically executed in the scope
of this research.

The other two simplifications were however chosen in accordance with personnel at
ARPS with deep subject knowledge and assumed to have relatively little effect on
research accuracy.

8.2 Pilot Experiment  ANOVA

The pilot experiment indicated normality, observation independence, and similar treat
ment variances aside from 3 outlier observations. These are suggested to be caused by
rotational misalignment of the plunge installment in these runs and could be remedied.
The ANOVA Fvalue results using response function R1, indicating a significant dif
ference in treatment means, can therefore be approved. The equivalent results using
the R2 response function were less significant.

The experiment can be concluded to be successful considering its objective, to ensure
significant treatment variances, to detect and treat test rig variance before the main
experiments, and to test the response function.

8.3 Factor Screening Experiment

Looking at the box plot in 7.4, the differences in treatment variances are remarkable
which might indicate violations of ANOVA assumptions. It is on the other hand not
definitive for the overall experiment validity. The treatment means are still clearly
separate for instance.
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The difference in treatment variances as seen in 7.4 for PU plunge units, is believed
to be caused by several factors. One is the different treatment population sizes, the
v1 and v2 PU plunge units have fewer observations and thus less determined distri
butions. There is a possibility that this causes larger variances by occurrence. On
the contrary, the smaller populations include replicate runs which should imply less
variance. This applies to the FDM plunge units especially.

The smaller variances among treatments with lower response values could also be
caused by the pressure reading limit of the sensor. This cutoff effect of pressure
peaks results in less recorded variance than in reality. As mentioned, this is especially
noticeable for FDMplunge units. The box plot 7.4 indicates a much lower response
variance for FDM populations.

8.3.1 Possible Use of FDM in Prototyping

Unfortunately, no correlation between PU and FDMplunge units with the same design
have been noticed except for design v3. That is, the FDM plunges produced pressure
distributions vastly different from the PUplunge as seen in boxplot 7.4. This is be
lieved to be caused by:

• In contrast to PU plunge units, they are not bonded to their aluminum adaptor,
enabling more radial deformation.

• They are manufactured with an inner lattice structure (infill) that gives them
different deformation properties compared to solid materials. As an effect, the
measured shore A hardness values does not portray the entire plunge unit.

• They had pointier and thinner plunge lips that possibly caused pressure amp
litudes exceeding the sensor reading limit and thus, resulting in low variance
between column means.

Other possible causes with less known influence are:

• They have nonisotropic material properties caused by their filament structure.

• The geometries between PU and FDM plunge units differ not only in the meas
ured dimensions but possibly also in other regions (surfaces, edges, etc) due to
different manufacturing methods.
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8.3.2 Screening Significant Factors

The 4 different MLRmodels had adequate fit and showed signs of meeting regression
assumptions. Hence, the significant factors in these models are likely to be significant
in reality as well. The most trustworthy models are the reduced models C and D
judging from the four different Rsquared measures and the plots of the standardized
residuals. However, validation of the MLR models can be enhanced in several ways
and Harrell (2015, p.110) points out that testing the model on a new data set is an
especially effective one.

All of the 4 different MLR models distinguished the pd factor as the most significant.
This is an important finding since it confirms that the indentation method is effective
in changing the plunge lip pressure distribution. It is also promising that the other
factors considered showedmuch less contribution to variance in pressure distribution,
which is an important finding in robustness terms.

After assessing the different MLR models and their respective adequacy, the second
most significant factors after pd are: th1 (height 1 deviation) and plw (plunge lip
width). th1 is believed to be directly related to the effective expansion length of the
mechanism and hence, might realistically also affect the pressure distribution vari
ance. A physical explanation of relating plw to the pressure distribution variance
could be that a wider plunge lip results in more plunge lip volume which causes more
deformation resistance in radial expansion. Especially in corners where the plunge is
protruded further, and as a result, the plunge is deformed unevenly when the plunge
lip width is deviating.

The more insignificant factors are: tw (width deviation), tl (length deviation),mmax
(Mecmesin stiffness max value), mslo (Mecmesin stiffness slope), and pla (plunge
lip angle). The insignificance of the pla factor can possibly be explained with the use
of the R1 response function since it only calculates the mean values for each pixel
column and hence ignore vertical pressure differences.

It is important to understand that the chosen response variable in this experiment does
not have to be correlated to package welding quality. Hence, the significant factors
pointed out here may not be significant when producing a good package weld. The
objective of this experiment has been to identify the most significant factors contrib
uting to homogeneous pressure distribution.
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8.4 Experiment With Transverse Carton Components

A correlation was found between Mecmesin stiffness and homogeneous pressure dis
tribution (response function R1) for the PU plunge units as seen in the boxplot in
Figure 7.10. The softest PU plunge unit produced the most homogeneous pressure
distributions among PUplunges and the stiffest plunge produced the least homogen
eous pressure distributions. The mmaxmid,FDM plunge with a measured mmax
value close to the mmaxmid,PU plunge does however not comply with this trend, it
producedmore homogeneous pressure distributions than any other plunge unit despite
its average stiffness. A similar anomaly is seen in the foregoing experiment which
further signifies that the tested FDM plunge units are insufficient representations of
their geometric PU equivalents. On the other hand, the homogeneous distribution
produced by FDM plunge units can in this case as well potentially be affirmed by the
sensor pressure limit.

A physical explanation of the trend seen between PU plunges could be that softer
plunge units are more capable of enclosing the protruded folds, resulting in an in
creased contact surface area, and hence a more evenly distributed expansion force.
This capability should be reflected in the shore A hardness of the plunge units. How
ever, the related plunge units were measured toMsha°  Dsha/2° for the stiffest and soft
est PU plunge units, Msha° for the PU plunge unit with average stiffness, and Msha° +
Dsha° for the FDM plunge unit. The proposition of enclosingcapability can therefore
be questioned by this fact. However, as mentioned before, the shore A measurement
test should be reviewed due to the violation of ISO standards for such tests.

The 4 different Rsquared values signifies a reasonably good fit of the model and
therefore significance in the experiment treatments. However not as good as in the
factor screening experiment. This probably has to do with the transverse carton folds
that are assumed to have caused the many outliers visible in the boxplot in Figure
7.10.

As mentioned in section 4.5, this experiment was subject to several errors and ex
perimental design violations such as not utilizing randomization. As seen in Figure
7.11b, external factors were seen to build up over time (test runs) and affected the R2
response. It is expected to have affected the R1 response and hence the model fit as
well. In conclusion, the influencing factors of the experiment outcome is difficult to
determine.
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8.5 FEA Model

The element size experiment showed relatively random and small dispersion in con
tact pressure results dependent on element size. It is worth mentioning that the mesh
in the plunge lip region was intact in all 4 experiment runs. It is possible that the com
puted pressure results are subject to substantial singularityrelated error and that the
plunge lip mesh needs to be further refined to reflect the real pressure values and to
be successfully used as a response variable in the RSM optimization. An alternative
interpretation could be that the contact pressure values from the simulation with 1mm
element size are the most accurate. To find out, further experimental runs, with over
all smaller element sizes, should be able to produce more converged contact pressure
results that could be used for comparison.

It is remarkable how the element count suddenly grows with smaller element sizes
in the element size experiment, the same goes for the computation time. It is also
noticeable how the reaction force max4 ∗ Ry steadily grows before converging for
element size 2mm and 1mm. Accuracy in results can hence be concluded to be a
tradeoff to computation time in this case. 2mm was finally considered to be an
appropriate global element size.

Finding a wellfunctioning mesh has to large extent been a trial and error procedure
and the chosen meshing method is by no mean an optimal one. Further study in mesh
methodologies to obtain even better results is encouraged.

The coefficient of friction experiment was successful in assessing how the coefficient
of friction (µ) value impacts plunge lip contact pressure. The pressure generally de
creases with higher µvalues and does not affect the pressure variance significantly.
These results cohere with increased friction stresses for simulations with higher µ
values and hence resisted radial expansion of the plunge. It can therefore be con
cluded that an approximated and potentially inaccurate value on µ is not devastating
for the purpose of this FEA.

Lastly, the choice of hyperelastic constitutive model was seen to not significantly af
fect the results considering the objectives of this FEA. Consequently, the 2parameter
MooneyRivlin model randomly chosen to be used in further simulations. It was
however observed that the linear elastic model generated completely different res
ults. Linear models should therefore be avoided for modeling elastomer plunges in
the future.
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8.5.1 FEA Validation

The comparison of FEA and experimental pressure distributions have several visual
similarities as mentioned in section 7.4.4. The differences in pressure amplitude are
however remarkable. Factors that are believed to be responsible for these differences
are:

• The sensor pressure limit of 1.93MPa suppressed the actual pressure distribu
tion peaks and thus caused lower average pressures.

• The uniaxial material test data does not describe the actual material properties
enough. Further experiments, for instance related to shear and compression
stresses, since the FEA is subject to these deformation modes to a large degree,
could enhance the accuracy of the constitutive model.

• The available material test data are inadequately representing the actual mater
ial properties of the PU in the plunge units tested.

• The carton and tape layers in the physical experiments act as cushioning and
distributes the contact pressure over a larger area than the plunge lip itself. As
a result, the average pressure is decreased and the pressure peaks are lowered.

• The CAD and the real plunge geometries vary in dimensional features such as
deviating surfaces and edges not considered. Hence, the simulation deforma
tion of the plunge differs from the actual.

The nonexistent correlation between measured Mecmesin force reaction and FEA
vertical force reaction is also remarkable. The FEA force reaction has shown no sign
of being subject to substantial numerical error in other experiments (see Tables 7.10
and 7.9). In this FEA experiment however, the values differentiate with almost 450N.
The differences are suggested to be caused mainly by how the geometric deviations
were implemented in the CADmodel and how the CADmodel in general differs from
the real plunge geometries.

The adequacy in terms of modeling pressure distributions has always been more im
portant than modelling correct pressure magnitudes. The overall adequacy of the
FEA model should be assessed dependent on what use case it is purposed for. In
the following section, the model adequacy in terms of adapting plunge tools will be
assessed.
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8.6 Indent Optimization

The 4 RSM configurations produced similar response surfaces with slightly varying
prediction capability in terms of RMSE. The choice of experimental design and re
sponse surface model is therefore seen as important.

Figure 7.18 contains predicted versus observed responsecharts for the 4 RSM con
figurations. The CCD and BBD experimental designs with 2ndorder polynomial re
sponse surfaces have good prediction capability for lower response values but less so
for higher response values. The OSF design used together with a Kriging response
surface model managed to model the system with better prediction capability in the
entirety of the design space.

It is worth mention that the goodness of fit for the OSF model is relatively low how
ever, the prediction errors for some of the design points are high. Whether the errors
are too high is difficult to address without more testing in reallife applications. It
can be assumed that a model has reached a sufficient level of adequacy when it can
generate wellfunctioning plunge designs for several different package formats.

The accuracy of modeling the system and hence the prediction capability, is expected
to increase for all 4 RSM configurations if more design points are used in the DoE.
This will increase the resolution of the system response. It is unclear whether the 2nd
order polynomial response surfaces will be capable of modeling the potentially more
complex curvature of the system. The Kriging interpolation model, however, should
perform better in this task.

A noticeable difference between the 4 optimized designs exists in design parameter
values but also in contact pressure variance. However, all of them had the lowest con
tact pressure variance together with the v3 design which is a good sign of optimization
relevancy.

One strength of the contact pressure variance variable is its independence to the av
erage contact pressure magnitude. The variation in magnitude between measured
and computed magnitude mentioned in the foregoing section and in section 7.4.4 is
therefore seen as immaterial. At least for the purpose of minimizing contact pressure
homogeneity.

The pressure distributions of the optimized designs in Figure 7.19 are however not
so homogeneous as one might have hoped for. The contact pressure variance, and
consequently the response variable, are to, a large degree, affected by the pressure
peak regions on the upper and lower edges of the plunge lip. These peaks are also
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expected to have caused relatively flat response surface optima.

A new less skewed response variable that avoids the inclusion of pressure peaks in
the variance calculation (if possible) could result in optimized more homogeneous
pressure distributions. Such a response variable could in addition generate a more
expressed optimum that facilitates the decision of optimal indentation values. More
than that, the objective of minimizing contact pressure variance is seen as adequate.

An alternative approach to reduce the influence of pressure peaks on plunge lip edges
could be to model the plunge lip with a blunt radius of 20mm or so. It would not
significantly differentiate the CADmodel from the real plunge tool but probably even
out the pressure peaks over the vertical middle of the plunge lip.

The second optimization objective of minimizing average friction stress in the plunge
lip contact is seen as helpful. A single objective function of minimizing the pressure
variance was found to converge to the highest possible indentation values in initial
RSMs which caused unwanted substantial vertical lip movement.

The implementation of RSM to optimize the indentation design parameters is con
sidered promising for future plunge tool development. With relatively small designed
experiments (15 or 13 design points), the methodology was successful in finding in
dentation values for 3 design parameters.

The OSF design used together with an interpolation response surface model such
as Kriging, has shown the best system modeling capability. Proposed methodology
adjustments that can enhance the stability and usability of the RSM configuration are:

• Developing a slightly different response variable with better capability of in
dicating useful homogeneous pressure distribution.

• Adding a slight radius over the entire plunge lip with an estimated radius of
20mm in the CAD model. It can potentially even out contact pressure peaks
near the plunge lip edges that are noticed to confuse the current contact pressure
variance response variable.

• Increasing the number of design points in the experimental design.
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9 Conclusions

An alternative plunge tool adaptation framework has been developed and reached
a proofofconcept state in this thesis. It is intended to be transferable to any new
package format and be adjustable to alternative use cases. It has been built with the
functions in ANSYSWorkbench 2020 R1 but should be implementable on other FEM
software packages in combination with a statistical programming language such as
R. The setup time for such a tool has been estimated by ARPS to one week but it
depends on many factors such as: which software to be used, available resources, and
competence. This thesis covers many of the obstacles encountered when developing
such a tool and will hopefully at least be of much help to anyone who proceeds with
the same development.

A purposebuilt FEAmodel serves as the core of the framework. It has proven to pro
duce plunge lip pressure distribution results at a level of detail previously not avail
able. However, the magnitude of the simulated contact pressure is faroff but this fact
is expected to have little importance to the framework usecase.

Physical experiments have been conducted to validate the model. The model showed
promising performance for the purpose of the FEA although further validation and
model adjustments are needed in terms of other results. The significance of some
model uncertainties such as element size, coefficient of friction, and choice of con
stitutive model, have been assessed by testing multiple configurations. In both sys
tems, high pressures in the transition zone between plunge lip corner and sides were
detected.

A regression analysis based on experimental design theory has been performed on
FEA modelequivalent physical experiments. It has objectively identified the plunge
design as the most influential factor, contributing to the plunge pressure distribution,
followed by plunge height and lip width. Other system factors such as plunge stiff
ness and hardness had little influence on pressure distribution but probably more on
transverse carton folds. The regression analysis has therefore been useful for mainly
three things: Firstly, to confirm that the plunge pressure distribution effectively can
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be adjusted with the use of plunge lip indentation. Secondly, that most system factors
can be neglected in the framework but that deviations in plunge height and lip width
should be paid attention to.

Thirdly, large differences between the pressure distribution of FDMmanufactured and
PU plunge units have been identified. The differences are likely not dependent on the
experiments themselves. The use of FDM prototyping in its current state to examine
the performance of prospected PU plunge designs is therefore questionable. However
possible with a couple of suggested adjustments to the AM method. The suggested
adjustments are: bonding the FDM body to the aluminum plunge tool adaptor. Using
a solid core structure instead of infill. Explore alternative AM methods with higher
geometric preservation and more isotropic material properties.

RSM was used together with the FEA model to optimize the plunge tool’s three in
dentation design parameters after a hypothetical objective function. Four different
RSM configurations have been verified and compared. An optimal spacefilling ex
perimental design used together with a Kriging interpolation response surface was
most capable of modeling the FEA response.

An optimized plunge design can this way be obtained in roughly 24 hours using 4
cores of an average desktop computer from 2013. This framework has thus the poten
tial to enable high performance in the first plunge tool design iteration. In contrast, the
existing iterative design process often requires up to 3 iterations. Further validation
and adjustment to ensure that the optimized plunge design actually performs well for
multiple package formats is however recommended. The most recommended adjust
ment is to choose a more relevant response variable from the FEA and if needed, more
design points in the experimental design could ease for higher optimization algorithm
decisiveness.

The engineering tools presented in this report are encouraged to be used in other pro
cess improving applications as well. Some of them are cheaper and quicker to imple
ment if data is available, such as regression analysis to trace responses to influential
factors and to increase the understanding of any system. Setting up a functioning
FEA and RSM environment requires more resources but if implemented, large sav
ings on development cost and time can be made in addition to enhancing the plunge
performance.
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10 Recommendations for Further Re
search

These are ideas and insights for further research that have been brought tomind during
the project course. They are listed in a random order and it is up to ARPS to decide
what points are appropriate to address.

• Further development of the plunge design.

– Flodberg, Eriksson et al. (n.d.[a]) found that the variable crosssection of
the plunge is causing less plunge lip pressure in the corners. A constant
or nearconstant crosssection could be realized by radially extending the
aluminum part of the plunge. Currently, the crosssection is more exten
ded in the corners. An optimal radius of the aluminum part of the plunge
could be obtained by setting this dimension as an input factor in an RSM
optimization. The plunge lip pressure distribution could that way poten
tially be further homogenized.

– Both experimental and FEA data indicates increased plunge lip pressures
in the transition zones between corner and sides. A redesigned plunge cir
cumference profile could eliminate these pressure peak zones and produce
more pressure in the corners.

• Further research on transverse carton component folds.

– How they can be avoided.
– Inspect themmore closely using a microscope to understand how they can
be treated.

– How they are affected by increased/decreased pressure and shear friction
(the plunge design). What is an optimal plunge design that resolves issues
with base carton folds, maybe not homogeneous pressure distribution?

– Conduct experiments with an objective to determine optimal plunge lip
stiffness and contact pressure.
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– Further research in whethermmax (Mecmesin stiffness) is themost influ
encing factor in treatment of transverse carton folds. Statistical analysis
could potentially reduce the amount of discarded plunge units.

• Further explore AM technologies. Use Hagelqvist (2018) and other AM know
ledge in ARPS as a basis.

– In the use of producing prototypes. FDMplunges should be printed solid
to resemble the PUplunge properties more. Glue FDMprinted plunge
onto aluminum part of a plunge for instance.

– In the use of producing PU fabrication molds.
– To replace PU plunges.

• Verify the quality control, its noise factors (durometer, Mecmesin equipment,
operator errors, etc...), and its objective. Vieira et al. (2020) gives an evaluation
of uncertainty on Shore hardness measurements that potentially could be of
good use.

• Explore newmeasurementmethods used in quality control such as touchtrigger
probes or 3Dscanners that can be used to compare manufactured plunges with
CADmodel. Detect deviating edges and surfaces. Use statistical analysis to
relate tolerance avoidance to plunge performance and manufacturing causes.

• Conduct more pressure distribution experiments.

– Create a CauseandEffect diagram together with all involved personnel.
The effect (response) should ultimately be package weld quality but can
alternatively be contact pressure distribution such as in this report. Dis
cuss the impact of each cause. Choose new factors to study and con
duct designed experiments to obtain objective insights on process im
provement. For example, use the guideline in Coleman and Montgomery
(1993).

– More replications and fully randomized experiments to assess the effect
of base carton folds on the pressure distribution.

– Using sensors that has a sufficient cutoff sensing limit for the experiments
( 10MPa). Further, diminish noise factors.

– With more material data (plunge units) and possibly more factors (elab
orate on expansion length, AM plunges, etc.), factor levels, and replica
tions to more thoroughly identify significant system factors. Although it
is possible that the plunge design factor on its own can make the package
welding process robust.

• Apply more thoroughly methods of validating the structural FEA.
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– Conduct FEA and experimentation on a simpler geometry that has fewer
error factors (basic cylinder or similar). Assess the need for further or
improvedmaterial tests and test data. Create comparison graphs in system
responses.

– For example, such methods that use Bayesian statistical methodology and
likelihood methodology as proposed by Bayarri et al. (2007).

– Consider changing friction coefficient between plunge and inductor wall.
It is currently 0.1, almost frictionless which leads to sliding and level
ing of the contact pressure distribution. In reality, base cartons might be
restricting vertical movement.

Further studies in optimization methodologies of structural FEAs.

• Other types of experimental designs or improved designs used in this report.

• Other types of response surfaces or predictive methods such as sparsegrid or
neural networks.

• Use of generative design algorithms.

Explore the possibilities of adjusting induction heat distribution.

• Is it possible to increase heat in corners to increase melting of PE and increase
seal quality?

• Conduct designed experiments to optimize induction heat parameters.
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A Appendix A

A.1 Initial Activity List

• Attain adequate material properties of the polyurethane material used for the
plunge tools.

• Develop a FEA of the plunge expansion mechanism. Assess the significance
of model simplifications in interest of saving computational and experimental
resources, and software independency.

• Validate the FEAmodel by conducting appropriate experiments with attention
to induced pressure distribution between plunge and package components dur
ing the welding mechanism.

• Use the FEA to optimize a plunge design in terms of 4 design parameters in the
CAD model.

• Literature review of AM technologies and materials with the goal to find al
ternatives that meet the requirements for plunge tools. The considered require
ments are related to attributes such as fatigue strength, stiffness, surface finish,
manufacturing time, and cost.

• Use the FEA and manufactured prototypes to explore the potential use of AM
plunge tools.
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B Appendix B

B.1 Pilot Experiment

Figure B.1: Pressure distribution images from the pilot experiment. A v3 design plunge
unit (EP20210426#111) and a v1 design plunge unit (WaM 201201#40) being
tested in random order. The v3 plunge is tested at run 1, 3, 6, 8, 9, and 1519.
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B.2 Factor Screening Experiment

Figure B.2: Pressure distribution images from the factor screening experiment.
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expansion # Plunge Serial Design

1 EP20210426#111 v3
2 EP 20210426#106 v3
3 3D 1 v2
4 WaM 201201#40 v1
5 EP 20210426#049 v3
6 EP20210426#110 v3
7 EP20210426#119 v3
8 EP 20210426#062 v3
9 EP 20210426#077 v3
10 WaM 201201#13 v1
11 WaM 201201#34 v2
12 EP 20210426#075 v3
13 EP 20210426#034 v3
14 EP20210426#120 v3
15 3D 3 v3
16 EP 20210426#093 v3
17 EP 20210426#058 v3
18 WaM 201201#35 v2
19 WaM 201201#07 v1
20 EP 20210426#061 v3
21 WaM 201201#24 v1
22 EP 20210426#045 v3
23 WaM 201201#25 v2
24 EP20210426#112 v3
25 WaM 201201#07 v1
26 EP20210426#118 v3
27 EP 20210426#092 v3
28 EP 20210426#012 v3
29 EP 20210426#073 v3
30 3D 2 v4
31 WaM 201201#13 v1
32 EP 20210426#070 v3
33 EP20210426#111 v3
34 WaM 201201#22 v2
35 EP20210426#123 v3
36 EP 20210426#048 v3
37 EP 20210426#055 v3
38 WaM 201201#24 v1
39 WaM 201201#22 v2
40 WaM 201201#34 v2
41 EP 20210426#047 v3
42 EP 20210426#114 v3
43 WaM 201201#35 v2
44 WaM 201201#40 v1
45 EP 20210426#076 v3
46 WaM 201201#25 v2
47 3D 4 v1
48 3D 1 v2
49 3D 3 v3
50 3D 2 v4
51 3D 4 v1

Table B.1: Plunge units used in each respective expansion in the factor screening
experiment.
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B.3 Experiment With Transverse Carton Components

Figure B.3: Pressure distribution images from the experiment with transverse carton
components.
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B.4 Experiment 6

Figure B.4: Pressure distribution images from the sixth experiment. Plunge EP
20210426#012 is being tested three times without a transverse carton
component and then seven times with.
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B.5 Experiment 7

Figure B.5: Pressure distribution images from the seventh experiment. Plunge EP
20210426#012 is being tested without a transverse carton component at
different expansion lengths. Starting with 5.5mm, then increased with 0.5mm
for every run up to 9.5mm.
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C Appendix C

C.1 ANSYSMechanical APDLScript for ComputingVer
tical Force Reaction

FINISH
/post1

! (s − select a new set) (NAME − name of component or assembly to be selected)
nsel,all
cmsel,s,bc_displacement

!select those elements connected to the selected nodes, 1=only elements with all nodes in the selected
set.
esln,s
nlist

*get,my_min_noden,node,,num,min
*get,my_SB,active,0,set,sbst !saving the number of substeps in quasi static tension test
*dim,RESULTS,TABLE,my_SB,3,,TIME !the table storing the results

!the loop for storing the _time_
*do,i,1,my_SB
set,2,i
*get,tt,active,0,set,time
RESULTS(i,1)=tt !saving the _time_ to the first column in the table
RESULTS(i,3)=UY(my_min_noden)
*enddo

!(nnum − the name of the resulting parameter) (ELEM − entity keyword) (0,count − number of nodes
in the selected set)
*get,my_nnum,node,0,count

*do,i,1,my_SB
set,2,i !loadstep 2, substep i
tsum=0.0
tnoden=0
*do,j,1,my_nnum

tnoden=ndnext(tnoden)
temp=0.0
*get,temp,NODE,tnoden,rf,fy
tsum=tsum + temp

*enddo
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RESULTS(i,2)=tsum
*enddo

! write results to file
filen=’..\..\freac’
filen=strcat(filen,chrval(tsum))
*cfopen,filen,’csv’
*vwrite,’Time’, ’ForceY’, ’DispY’
%C, %C, %C
*vwrite,RESULTS(1,1),RESULTS(1,2),RESULTS(1,3)
%G, %G, %G
*cfclos
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