
MASTER’S THESIS 2022

Integration and Evaluation of
WebRTC in an Existing .NET
Environment
Simon Tenggren, Martin Gottlander

ISSN 1650-2884
LU-CS-EX: 2022-05

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-05

Integration and Evaluation of WebRTC in
an Existing .NET Environment

Integration och utvärdering av WebRTC i
en existerande .NET miljö

Simon Tenggren, Martin Gottlander

Integration and Evaluation of WebRTC in
an Existing .NET Environment

Simon Tenggren
si6187te-s@student.lu.se

Martin Gottlander
bte15mgo@student.lu.se

March 1, 2022

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Jörn Janneck, jorn.janneck@cs.lth.se
Tore Paulsson, tore.paulsson@axis.com

Examiner: Per Andersson, per.andersson@cs.lth.se

mailto:si6187te-s@student.lu.se
mailto:bte15mgo@student.lu.se
mailto:jorn.janneck@cs.lth.se
mailto:tore.paulsson@axis.com
mailto:per.andersson@cs.lth.se

Abstract

WebRTC is a recently standardized technology for establishing peer-to-peer
connections for transmitting real-time video, audio, and data. It can dynam-
ically find the best way to connect two peers to each other depending on the
networks the peers are located on. The authors alongside Axis Communications
AB wish to explore whether WebRTC is a viable streaming solution for their
current Video Management Solution (VMS) software, as well as if it is possible
to integrate with existing features in their .NET environment. Two WebRTC
implementations, GStreamer and SIPSorcery, were evaluated, both against each
other and against an existing streaming solutions used at Axis Communications.
They were evaluated on metrics such as end-to-end latency, the time it takes to
establish a connection and start displaying a stream, as well as CPU and memory
usage. The performance of the WebRTC implementations were also evaluated
for situations when the connection could be established as a pure peer-to-peer
connection and for situations when a server has to relay data to be able to traverse
restrictive networks.

The WebRTC implementations generally performed better in the case of the
time-to-stream metric, however significantly were e�ected when using a relaying
server. The latency test implied that WebRTC was equivalent to the existing
streaming solution, while during the CPU and memory usage experiments, the
WebRTC implementations performed slightly worse. The integration with the
current .NET environment used at Axis could be done, and several of the features
that are present in the VMS software, while other require more work, or change
of the currently used protocols.

The two WebRTC implementations perform similarly but di�er in the avail-
able features and supported protocols. GStreamer is more mature and supported,
and gives access to finer granularity of network and media processing, however it
is more di�cult to integrate into the existing environment compared to SIPSor-
cery, due to the additional software required to be installed and interacted with.
Comparatively SIPSorcery which is semantically similar to the WebRTC API in
most modern web browsers, which eases the transition from web development
to .NET applications.

Keywords: WebRTC, Peer-to-peer, Evaluation, Streaming, WPF, .NET

2

Acknowledgements

The authors would like to thank the following Axis employees: Felix Kaaman for their sup-
port on understanding and implementing the Axis decoding and rendering components,

Jonas Cremon for their support in debugging the WebRTC implementation on the net-
work cameras,

Anders Magnusson for answering our questions concerning the current peer-to-peer stream-
ing solution.

The authors would also like to thank Aaron Clauson, developer and maintainer of the
SIPSorcery repository, for his quick communication and feedback on the issues we posted
during the writing of this thesis.

3

4

Contents

1 Introduction 7
1.1 Related Work . 8
1.2 Limitations . 9
1.3 Contributions . 10
1.4 Description of remaining chapters . 10

2 Technical Background 11
2.1 WebRTC Related Technologies . 11

2.1.1 Network Address Translation (NAT) 11
2.1.2 Session Traversal Utilities for NAT (STUN) 13
2.1.3 Traversal Using Relay around NAT (TURN) 14
2.1.4 Interactive Connectivity Establishment (ICE) 15
2.1.5 Session Description Protocol (SDP) 17
2.1.6 Simple WebRTC Connection Establishment 18
2.1.7 WebRTC at Axis . 19

2.2 Current Streaming Solutions at Axis . 19

3 Approach 21
3.1 Method . 21
3.2 Implementation . 21

3.2.1 Common Components . 22
3.2.2 SIPSorcery WebRTC Implementation 25
3.2.3 GStreamer WebRTC Implementation 26

3.3 Theory . 28
3.3.1 Evaluating Managed Languages . 28
3.3.2 Evaluating the WebRTC implementations 29
3.3.3 Time to Stream . 29
3.3.4 Latency . 30
3.3.5 Memory Usage . 31
3.3.6 CPU Usage . 31

5

CONTENTS

4 Evaluation 33
4.1 Experimental Setup . 33
4.2 Results . 33

4.2.1 WebRTC Primitives . 33
4.2.2 Time to Stream . 34
4.2.3 Latency . 35
4.2.4 Memory Usage . 36
4.2.5 CPU Usage . 36
4.2.6 Data . 38

4.3 Discussion . 38
4.3.1 WebRTC Implementation Primitives 39
4.3.2 Time to Stream . 40
4.3.3 Latency . 42
4.3.4 Memory Usage . 42
4.3.5 CPU Usage . 44

4.4 Features . 44
4.4.1 Client Side Dewarping and Digital PTZ 44
4.4.2 Audio playback and transmission 45
4.4.3 Scrubbing . 45

5 Conclusions 47
5.1 Reflections on the project . 48
5.2 Authors Recommendations . 49
5.3 Future Work . 49

6 Appendix 51

References 53

Appendix A Data 59

Appendix B Examples and Information 65

6

Chapter 1

Introduction

WebRTC (Web Real-Time Communication) is a standard for establishing peer-to-peer con-
nections and streaming real-time video, audio, and data. The standard has been in develop-
ment for several years and since January of 2021 it was announced by the Internet Engineering
Task Force (IETF) and World Wide Web Consortium (W3C) as an o�cial standard. [28] The
WebRTC standard is built upon a set of technologies that are available through ECMAScript
API’s in many modern web browsers, which allow users to establish reliable and flexible
peer-to-peer communication channels between a wide variety of di�erent platforms such as
mobile, Internet-of-Things (IoT) devices, and browsers. The WebRTC API[27] as defined by
W3C has also been integrated in libraries targeting some native desktop applications, see Ap-
pendix table B.1 for full list. The shared standard and API allows developers and companies
to reuse much of the code and infrastructure to support new devices and platforms. Several
popular day-to-day applications such as Discord, Facebook Messenger and Google Meets, use
WebRTC in both their desktop, web, and mobile clients to facilitate their video and audio
services. [26]

Previously establishing fast and reliable peer-to-peer connections have been a big chal-
lenge. Peers can be on di�erent networks, behind one or more NATs and/or firewalls and
have no idea on how to reach each other through the internet. As such the traditional method
has been to use a server as an intermediary which both peers are aware of which they can con-
nect to and exchange data on. If a peer-to-peer connection would be an absolute necessity
a non-standardized homebrew would have to be used that may or may not find the optimal
way of establishing the peer-to-peer connection. One of the big advantages of the WebRTC
is that it eliminates the need for complex homebrew solutions and the need for a server to
act as an intermediary, WebRTC solves this problem in a open and standardized way, and
can dynamically find the best way to connect two or more peers.

Axis Communications AB ("Axis") is leading the market within IoT video devices and
wish to explore the possibility of using WebRTC in their Video Management Systems (VMS);
AXIS Companion (ACC) and AXIS Camera Station (ACS). Furthermore, they wish to com-
pare and evaluate WebRTC implementations against their existing solutions on aspects such

7

1. Introduction

as; establishing peer-to-peer connections, latency, and the time from requesting video until
a video stream can be shown. All of which are of great importance to their end customers.

ACC and ACS di�er in scale and use case, however they have several things in common;
these applications are written in the C# UI framework Windows Presentation Foundation
(WPF) released in 2006 as part of the .NET Framework 3.0, and use common proprietary
solution for decoding and rendering video, developed in-house at Axis, as well as support-
ing several video manipulation features such as Digital Pan-Tilt-Zoom (PTZ) and client side
dewarping which allow the users to explore and manipulate the image which is rendered.

WPF is widely used by many developers and companies the world over, but as Microsoft
develops their other UI-frameworks such as Universal Windows Platform (UWP) and WinUI,
WPF has not been given the same treatment as it once had. A prime example of which
is native support for WebRTC. WPF applications have to rely on solutions developed for
cross-compatibility such as XAML-islands which supplies WPF applications with some of the
support that is available in UWP. [21] As the common rendering solution currently available
at Axis is built for rendering in WPF applications without the use of these cross-compatibility
solutions it is in the interest of Axis to have a more modular and WPF oriented solution that
can easily integrate with the features that Axis VMS solutions already o�er, to retain many
years of hard work in developing features which are unique to many of Axis’ products.

Problem statement
The research questions posed are the following:

1. When integrating WebRTC as as a streaming solution that interacts with IoT devices
made by Axis, how does it compare with the current streaming solutions at Axis in
terms of various quality and reliability metrics?

2. Can the WebRTC solution(s) support the same features that exist in the current stream-
ing solution at Axis? That is the following:

(a) Client Side Dewarping and Digital PTZ

(b) Audio Playback and Transmission

(c) Scrubbing

1.1 Related Work
To answer the first research question the solutions need to be tested and benchmarked to
be able to evaluate metrics regarding quality and reliability. In order for our work to be
comparable to other works this project started with literature studies to review the current
state of testing and benchmarking for WebRTC.

García et al. has published several papers on WebRTC. Kurento: the Swiss army knife of We-
bRTC media servers [13] presents Kurento which is a WebRTC media server in Java while the
WebRTC stack and other media processes are implemented using the media pipeline frame-
work GStreamer. Together with Kurento comes the Kurento Testing Framework [15][12]
which o�er automated functional, performance and Quality of Experience tests for We-
bRTC based web applications. In this case, functional tests include testing that media is

8

1.2 Limitations

received through detecting color and recording media communication events. Performance
tests considers the latency between sent frame to received frame and is measured automat-
ically through synchronization of clocks and Optical Character Recognition, to be able to
read a timestamp that the sender transmits. Kurento Testing Framework also allows for test-
ing at scale through the creation of fake browsers to generate various amount of tra�c, and
finally it supports Docker containers to be able to configure network conditions, such as
congestion or specific network configurations that a�ect WebRTC tra�c.

Gouaillard et al.[16] also aims at creating a generic testing platform for WebRTC through
the KITE project. This project test WebRTC at many di�erent levels such as compliance
testing for the W3C specification of WebRTC, as well as interoperability between browsers
and even native desktop applications. In the future work section of their paper, Gouaillard
et al. state that a programmatically configurable network with regards to firewall rules and
bandwidth is a must have but it is not clear if this is has yet been implemented in the KITE
engine testing suite.

Amirante et al. introduces Jattack [10] which is a stress test tool for WebRTC enabled
server side components. This tool is based on Janus media server and the paper evaluates Jat-
tack performance in terms of CPU and memory usage when multiple presenters and viewers
are using the same Janus media server. This paper also measures number of negative acknowl-
edgements (NACK) to gain insight on whether and when the media is degrading from adding
more and more concurrent peer connections to the server.

Taheri et al. presents WebRTCBench [11] which is a tool for performance assessment of
browser implementations of the WebRTC specification on di�erent architectures. This work
is dedicated to finding bottlenecks and thus gives a good indication on where improvements
could be made. Three distinct parts are evaluated which are; session establishment time,
latency on the channel that transmits arbitrary data (e.g not video or sound) and media engine
performance. WebRTCBench has not been updated since 2015 but gives an approach to
measure session establishment time which is an important quality for Axis.

1.2 Limitations
WebRTC requires several components to function, namely two peers, a signaling server, and
optimally a number of Interactive Connectivity Establishment (ICE) servers. The work in
this thesis is limited to the implementation of a receiving peer since the sending peer is cur-
rently being implemented at Axis, but has not been thoroughly evaluated for video streaming.
In this context, the sending peer is an IP-camera sending live video to the receiving peer, and
thus the communication between the peers after connection has been made is mainly focused
on unidirectional video communication.

The signaling server has already been implemented with a defined protocol which allows
for authentication using Axis’ authentication services. As such the performance of the sig-
naling server and the sending peer will not be modified and evaluated, however the authors
hope that the work done can be used as support for decisions regarding eventual modifica-
tions to both the network cameras WebRTC implementation and the signaling service. The
current streaming solution will not be discussed in detail due to disclosure concerns, as such
the solution will only be compared in terms of performance and not in terms of implemen-
tation.

9

1. Introduction

There exists several di�erent video codes that can be used to decode and encode video
frames in a stream, such as VP8, VP9, H.264, and H.265 among others. Di�erent encodings
can be either lossy or not, allow for di�erent bitrates, quality, and have di�erent speed when
encoding and decoding the sent/received frames. Comparisons between encodings have been
performed extensively before by other parties and as such is not a topic that is discussed in
this thesis. The experiments carried out in this thesis will be done using the codec H.264,
which is the most used codec in production.

1.3 Contributions
There have been a few papers published that evaluate WebRTC through di�erent approaches
but the target of the evaluations are browser implementations of the WebRTC specification
and how they fare on di�erent devices and networks. This report contributes to the research
area through extending benchmarking to the .NET framework.

Simon Tenggren contributed primarily to the implementation of interacting with the
signaling service, implementing the SIPSorcery package, the tools used to benchmark the
implementation, developing the scripts used to extract the data from the benchmarks, as
well as presenting the data. Martin Gottlander contributed primarily to researching the
benchmarking methods, the GStreamer implementation, and performing the benchmarks.
Both authors contributed equally to the report.

1.4 Description of remaining chapters
• Technical Background

– The technical background describes the technologies that WebRTC use to solve
the problem on how to establish peer-to-peer connections in di�erent network
and firewall configurations, why they exist, which role they perform and how
they a�ect the quality of service and quality of experience of the end user.

• Approach

– Describes the methods used to answer the research questions stated above. De-
scribes the methodology behind evaluating the WebRTC implementations, and
other quality of service metrics. As well as the implementations themselves.

• Evaluation

– Discusses and presents the data which resulted from the methodology described
in the previous chapter.

• Conclusions

– The conclusions drawn from the experiments, the possible improvements that
can be made in the future, and the authors recommendation to Axis on the best
way forward if they decide to use WebRTC in their VMS solutions.

10

Chapter 2

Technical Background

2.1 WebRTC Related Technologies
The WebRTC standard published its first working draft in October of 2011. [18] Several
changes has been made since, and the o�cial standard was published in January of 2021 and
is continuously updated. The WebRTC standard is built on several di�erent existing tech-
nologies and standards to allow users to establish reliable and secure peer-to-peer connections
to exchange live media.

These are primarily the Session Description Protocol (SDP), Interactive Connectivity Es-
tablishment (ICE), Session Traversal Utilities for NAT (STUN), and Traversal Using Relay
NAT (TURN). The WebRTC standard specifies how and when to use the aforementioned
technologies and how they relate to the API. WebRTC also requires the use of a signaling ser-
vice to exchange information between the peers that wish to establish a connection, however
this is intentionally left out of the standard to allow for developers to use which ever method
and technologies they prefer, everything from WebSockets to carrier pigeons. [22] This al-
lows for additional functionality to be moved to the signaling service such as authentication
and keeping track of the available STUN and TURN servers the peers can use.

What follows is a description of relevant technologies that is required to understand
WebRTC and the underlying problem which merits implementing WebRTC, and finally how
they come together to actually solve this problem.

2.1.1 Network Address Translation (NAT)
NAT is a router function that modifies the network address in an IP-header and is often used
to route tra�c from local networks to the public network. A NAT is installed at the gateway
to the public backbone network, where all addresses are globally unique. The NAT holds
a translation matrix and binds local IP-addresses to a global IP-address. Since translation
happens on the gateway where that NAT is configured, the endpoints that are located behind

11

2. Technical Background

this NAT does not know which address it can be reached with from the public network.
This becomes a problem for peer-to-peer applications where both peers need to find out the
address of the other peer to be able to start communication.

A NAT that is configured as dynamic has a pool of public IP-addresses but can reassign
the mapping it has between local IP-addresses and public IP-addresses. If the NAT cannot
route tra�c for an internal host because it currently has no public IP-addresses available, it
responds with an ICMP "Destination Unreachable" message. When a public IP-address that
has been mapped to a local IP-address has not been used for a timeout duration, the NAT
removes this mapping which allows it to use the public IP-address for another endpoint on
the local network.

The most common configuration is referred to as Network Address/Port Translator (NAPT)
or Port Address Translation (PAT). Using this configuration, multiple local IP-addresses
can use the same public IP-address simultaneously through utilizing di�erent ports. This
is achieved by mapping the local IP-address that want to initiate communication, to a public
IP-address and port. In a short summary, there are two ways this mapping can be done.

Y1 Y2

NAT

X

External

Internal

X:xX:x

X2':x2'X1':x1'

Y1:y1 Y2:y2

Figure 2.1: NAT Address and Port mapping

Figure 2.1 illustrates a NAT configured gateway working between an internal (local) net-
work and an external (public) network. In the figure, the local endpoint with IP-address
X wants to communicate with two di�erent external endpoints with IP-address Y1 and Y2
respectively. When the packets that are destined for Y1 and Y2 reach the NAT the source
IP-address and port values in the IP-header are reassigned from X:x to X1’:x1’ and X2’:x2’
respectively if the mapping is an Endpoint-Dependent Mapping. This means that di�erent end-
points that are communicating with X through the NAT will use a di�erent mapped address
and port tuple to reach X.

12

2.1 WebRTC Related Technologies

However, if the mapping is an Endpoint-Independent Mapping, the reassigned IP-address
and port X1’:x1’ and X2’:x2’ would be equal. All endpoints communicating with X through
X:x would use the same mapping to reach X.

The NAT also filters inbound packets according to the same two categories. If a NAT is
configured to use Endpoint-Independent Filtering, it allows all packets through independently
of the source of the packet. Meanwhile, Endpoint-Dependent Filtering only allows packets from
external endpoints that the internal endpoint previously has sent a packet to. These NAT
behaviours were originally defined in RFC 4787[9] and the description is derived from that
document.

The purpose of this section was to highlight the inherent problem that NATs impose
on peer-to-peer connections. If two endpoints both are on a private network behind one or
more NATs and they want to establish a peer-to-peer connection, they have to do so by some
means of traversing these NATs.

The following sections describe how this is done through the use of the protocols STUN,
TURN and ICE in the context of the mappings and filters that have been introduced in this
section.

2.1.2 Session Traversal Utilities for NAT (STUN)
STUN enables an endpoint to determine the public facing IP and port that the NAT is using
as a mapping for the endpoints actual IP and port. Furthermore it is often used to check
connectivity between endpoints and it is also used as a keep-alive to maintain the bindings
that a NAT has created to ensure that a binding stays alive as long as needed without the
need for re-establishing the connection.

STUN works through STUN binding requests and STUN binding responses. The STUN
binding request simply instructs the STUN server to reply with a STUN binding response.
When the request passes a NAT, the NAT creates a mapping and forwards the packet with
the mapping as the source of the packet to the STUN server. The binding response from the
STUN server includes an attribute called "mapped-address" and the server sets the "mapped-
address" attribute as the source of the incoming packet. When the originator receives the
STUN binding response it learns the address which the NAT has mapped its local address to
through reading the "mapped-address" attribute.

Keep-alive is practical because dynamic NATs will remove a mapping as soon as it thinks
it is not being used so it can be reused by another connection. Therefore, a STUN server
must make sure that this mapping is not removed until connectivity checks are completed.
A simple diagram describing the STUN binding request and response can be seen in 2.2.

Figure 2.2: An example of the STUN binding request and response.

STUN is run using UDP, however it can also be implemented with the Transmission
Control Protocol (TCP) and Transport Layer Security (TLS), which allows for additional

13

2. Technical Background

security to be implemented. To distinguish between which underlying protocols are used,
when using TCP/TLS the name STUNS is used, while using UDP it is simply referred to as
STUN.

2.1.3 Traversal Using Relay around NAT (TURN)
If both endpoints are behind a NAT that is using Endpoint-Dependent Mapping and Filter-
ing, a direct peer-to-peer connection cannot be established. Each NAT that is traversed needs
to know the address of the destination address before it can create a mapping for this session
which makes UDP hole-punching impossible as this technique relies on both endpoints open-
ing a connection towards the other at the same time. Furthermore, Endpoint-Dependent Fil-
tering makes it impossible to open a session with a server that another endpoint can utilize.
With Endpoint-Independent Filtering, an endpoint could ask a public facing server for the
address that the server is using to communicate with it and then publish this information for
another endpoint to use.

NATs that use Endpoint-Dependent Mapping is observed in less than 20% of cases but if
a NAT is using Endpoint-Dependent Mapping it is probably also using Endpoint-Dependent
Filtering[20]. As this combination makes peer-to-peer communication impossible, a workaround
is needed if the service is going to be delivered at all.

An intermediate server on the public network can be used to relay messages since both
peers can only open a connection towards an endpoint on the public internet and the NATs
only allow incoming packets from external endpoints that internal endpoints have previously
sent packets to. TURN is a relay extension to the STUN protocol that is created to solve this
particular problem. A TURN server is a server that implements the TURN protocol and
relays messages for clients.

TURN extends STUN through adding Allocate Requests, Allocate Success Response and
Refresh Request/Response.

The Allocate Request is used to request an allocation of resources, in the form of a trans-
port address, on the TURN server. The TURN server replies with the address it has allocated
for communication and the mapped address it saw as the source of the request. When a peer
wishes to communicate with another peer through a TURN server it does this through the al-
located relay address. The TURN server holds a mapping between relay addresses and server
reflexive addresses to be able to relay communication correctly. Figure 2.3 describes the pro-
cess of allocating addresses on a TURN server and how the media is later relayed through
the allocated addresses. As an allocation has been successfully added, peers can send data
through a Send Indication message and the TURN server relays data to the intended end-
point through a Data Indication message. This introduces a problem as Send Indications are
not authenticated and a malicious attacker could use Send indications to get the authenti-
cated TURN server to relay for the attacker. This is mitigated through permissions that the
client needs to install on a TURN server. This way, the TURN server does not violate the
intended Endpoint-Dependent Filtering function that the TURN server traverses.

Just like how STUN can be implemented using TCP/TLS so can TURN, which is re-
ferred to as TURNS. This does not add any additional security when relaying the data using
WebRTC, since the media is already encrypted using Datagram Transport Layer Security
(DTLS), however it can aid in traversing firewalls.

14

2.1 WebRTC Related Technologies

Figure 2.3: Allocating addresses in a TURN server and relaying me-
dia through it.

2.1.4 Interactive Connectivity Establishment (ICE)
ICE is a protocol used to find paths through private and public networks to be able to set up
peer-to-peer connections. The beginning of this process is to gather ICE-candidates. There
are four types of ICE-candidates; host, server reflexive, peer reflexive, and relay. Host candi-
dates are gathered from the physical and logical interface on the host and are the IP-addresses
as they are used within the private network. Server reflexive candidates are gathered by mak-
ing STUN Binding requests to a STUN-server on the public network to be able to discover
the mapping that the NAT has assigned between the public IP:Port pair and the local IP:Port
pair. Relay candidates are gathered through TURN allocate requests. Relay candidates are
the most reliable candidates as these candidates can be used to traverse all mentioned NAT
behaviours, however, they are the least e�cient because they can introduce latency when re-
laying data. Peer reflexive candidates stand out because they are or not discovered during the
gathering phase but later, during the connectivity checks phase.

After the candidates have been gathered, the candidates need to be exchanged between
the peers that want to initiate a peer-to-peer connection. This is done through signaling
which, to reiterate, is a channel that both peers can use and it is used to transfer all the

15

2. Technical Background

information needed to set up the peer-to-peer connection. Usually this comes in the form of
a signaling server.

When both peers have received their respective remote ICE-candidates, they start check-
ing if they can reach the other peer. This is where the gathered candidates come in as they
represent the possible ways to connect to the other endpoint. Each peer creates pairs of their
locally gathered candidates and matches them to received remote candidates. Each peer use
these candidate pairs by sending STUN binding requests from the base of the locally gath-
ered candidate (which then maps to a "server reflexive/mapped address" upon entering the
public internet), to the matched remote candidate. If the peer receives this request, the peer
replies with a STUN binding response which contains the address that the NAT has mapped
for the address of the source sending the request. If this mapped address is not already in the
requesting agents list of local ICE candidates, it is created as a peer reflexive candidate and
added to this list.

Let’s cover a few scenarios to get a feel for how this achieves NAT-traversal.
First consider two endpoints which are both behind NATs employing endpoint indepen-

dent mapping and filtering. This is the trivial case as each NAT will accept any incoming
packets from the other endpoint and a peer-to-peer connection can be made as long as one
endpoint knows the mapped address of its peer. If one NAT employs endpoint dependent
filtering but the the rest of the configuration stays the same, a direct peer-to-peer connection
is still possible. The peer with the restrictive NAT just needs to open a connection towards
its peer, before this peer can reach back to the peer behind the restrictive NAT. As both
endpoints will try all the candidate pairs, this will eventually happen. If both peers are be-
hind NATs that employ endpoint independent mapping and endpoint dependent filtering,
things start to become more complicated. Now both peers need to open a connection toward
the other before it can receive packets from the other peer. This is what is known as "hole-
punching". To achieve this in a timely manner, connectivity checks are performed in order
based on a priority which is included in the ICE-candidates. The peers agree on a priority
order through pairing remote and local candidates and combining the priority attribute of
the pair with a well defined standardized formula. The priority order is calculated based on
the type of the ICE candidate where the recommendation is that host candidates have the
highest priority, then reflexive candidates, and finally relay candidates with the lowest prior-
ity. Then the peers open connections toward the other according to this priority order. An
example of the structure of an ICE candidate, can be seen in figure 2.4.

Gathering of all ICE candidates must be completed before the connectivity checks can be
started and this implies several round trips to potentially several STUN and TURN servers
just to gather the candidates. To improve time to connection further, Trickle ICE [19] can be
utilized. Trickle ICE allows ICE candidates to be sent through signaling as soon as they have
been gathered which allows the connectivity check phase to start sooner.

candidate:2116 1 udp 659136 10.85.129.66 65396 typ host generation 0

Figure 2.4: Example ICE Candidate, with the type host with a pri-
ority of 659136.

16

2.1 WebRTC Related Technologies

2.1.5 Session Description Protocol (SDP)
The Session Description Protocol (SDP) [7] is used by WebRTC to exchange information
regarding the session that the peers wish to establish. This session is negotiated between
the peers to try to establish the various forms of media, encodings, transport protocols, and
more. The anatomy of an SDP message consists of several lines of <type>=<value> where
the type consists of a single case-sensitive character and the value is text where the structure
is dependant on the type. Each SDP message has several required and optional type-value
pairs. The required types are the following:

• v: The protocol version of the SDP message. As of writing the value is always 0.

• o: The originator and the session identifier.

• s: The name of the session.

• t: The time the session should be active, specified as a start and stop time. If the session
is managed by another protocol the value is 0 0.

Even though not technically required for an SDP message, the type m, the media descrip-
tion, is implied if the peers wish to exchange and kind of media stream, be it video, audio, or
application data. The media descriptions value is split into the following four sub-fields:

• <media>: The type of media, such as video or audio.

• <port>: The port number the media is sent and/or received on.

• <proto>: The transport protocol(s) that media sent over, such as UDP or RTP.

• <fmt>: The format of the media, depends on the protocol(s) specified in the protocol
sub-field. For RTP the value is the RTP payload type number.

The SDP message may also include any number of attribute lines, which further describe
the session and/or the media. These are in the format a=<cat>:<category-value>. Com-
mon attribute lines in the WebRTC sessions describe the framerate for the video or a dynamic
RTP payload type which can be used to map from media format value to a encoding and clock-
rate. In WebRTC the local ICE candidates that are generated can also be sent as additional
attribute lines.

In WebRTC the SDP is used in conjunction with the Session Initiation Protocol (SIP) [6]
using the Answer-O�er model. [5] The O�er-Answer model entails that the peers that wish
to establish a session has one peer (initiator) who generates an o�er describing the session
they wish to establish, the receiving peer (respondent) receives the o�er and generates their
answer and sends it to the initiator.

The answer that is generated depends on the o�er that was received, for example if the
o�er specifies a media stream that the respondent doesn’t have the capabilities of providing
the o�er may be rejected when it arrives. For example if the initiator wants to establish a
video stream, but the respondent has no possibility of generating such a stream, the o�er
may be rejected immediately. This can only occur once and is not an ongoing negotiation,
if the answer or o�er is not a session that can be provided the answer or o�er is rejected

17

2. Technical Background

and the process has to restart again. The respondent may change several of the lines session
description present in the o�er. Importantly the respondent may remove codecs and/or pro-
tocols from the media descriptions that they cannot use for various reasons, such as lack of
implementation.

An example WebRTC o�er received from a network camera can be seen in appendix
figure B.1.

2.1.6 Simple WebRTC Connection Establishment
The above mentioned technologies all come together to solve the issue of creating a reliable
peer-to-peer connection which can stream live media, which in turn forms the WebRTC
standard.

WebRTC in its simplest form can be described using a simple triangle model, where the
peers sit at each base of the triangle while the signaling server sits at the top. (See figure
2.5) Both peers have information on how to reach the common signaling server and how
to communicate with it. The signaling server has one job, to relay information necessary for
establishing a peer-to-peer connection in a structured manner. There are usually steps before
the WebRTC session starts which entails initial contact with the signaling server to register
each peer so that the signaling server can relay messages to the peers when the actual session
starts, however this step is highly specific to the implementation of the signaling server, and
is as such not worth discussing further.

The WebRTC session starts by one of the peers (initiator) generating an SDP o�er which
contains a description of the session that it wishes to establish with the other peer (respon-
dent), this o�er is then relayed through the signaling server. The respondent generates an
SDP answer message upon receiving the o�er. The generated answer depends on the content
of the o�er and the capabilities that are available for the respondent, such as sending video or
audio with specific codecs. This message is again relayed through the signaling server, and the
initiator can verify that the answer is still valid. Thus the peers that are initiating a session
have an agreement on how the media can be transmitted. Once the o�er has been sent by
the initiator, or received by the respondent, the peers can start gathering their candidates,
by contacting their ICE servers, such as TURN and/or STUN they might be aware of, as well
as gathering from their local interfaces. These candidates are relayed through the signaling
server as they are gathered, and received at the other peer. This process is often done by
both peers simultaneously. After the peer receive the other peers ICE candidates they can
start performing connectivity checks, until they find a pair that can be used to send me-
dia. This check uses the ICE candidates priorities set by the respective peers to establish the
connection that they both would prefer and is possible depending on the NAT and firewall
configurations that both peers are behind. Once this process is done, either a connection can
be established and the peers can start sending media directly to each other, or no connection
could be established due to the candidates sent are not su�cient to support the connection
due to various reasons such as NAT or firewalls prohibiting the connection.

Figure 2.6 describes the process of establishing a peer connection. Once the peer connec-
tion is established the signaling server is technically no longer needed unless the peers are
disconnected and the session has to be restarted, or the peers wish to renegotiate their peer
connection.

18

2.2 Current Streaming Solutions at Axis

Signaling Server

WebRTC Client

Media

Network Camera

Signaling Signaling

Figure 2.5: WebRTC Triangle Model

2.1.7 WebRTC at Axis
Axis have established infrastructure to support WebRTC, including private STUN, TURN,
and signaling servers, as well as support for streaming data, audio, and video from some of
their latest devices. Recently support for tunneling HTTP data over the WebRTC data chan-
nel was released for ACC which allows users to manage devices which support WebRTC, in
an embedded web browser by forwarding the HTTP tra�c received through the WebRTC
data channel. Attempts have been made to allow streaming of video in their VMS using
the open source, Microsoft developed, Mixed-Reality WebRTC package, but limitations of
unsupported video codecs for WPF have made the e�orts di�cult and time consuming. Re-
cently the use of WebRTC has been implemented for its capabilities to act as a proxy where
users can use the HTTP tra�c transferred by the data channel to interact with the cameras
settings. This feature has already been released earlier as a part of ACC.

2.2 Current Streaming Solutions at Axis
Axis have several di�erent ways of streaming video from the network cameras to di�erent
applications, one of the more common ones is to run a proxy program which relays tra�c
on a specific port to a relay server which in turn connects to a webserver located on the
network camera. The camera responds with video inside a Matroska container, which is
continuously streamed through the response body. This process is fast and flexible, allowing
it to be rendered in both Axis VMS solutions and even web browsers which has support for
depacking Matroska and decoding the encoded video data. However the solution is limited,
allowing only for a one-way channel where only video can be transmitted. The proxy itself is
also quite self contained and requires additional configuration and registration of the devices
to function. This is achieved through additional HTTP requests which are sent to the proxy.

19

2. Technical Background

Initiator Signaling Server Respondent

SDP Offer SDP Offer

SDP Answer SDP Answer

Generate
Answer

ICE
Candididate(s)

ICE
Candidate(s)

ICE
Gathering

ICE
Gathering

Connection
Establishment

Media

Figure 2.6: Simple Peer Connection establishment timeline detail-
ing the interaction between the peers and the signaling server.

20

Chapter 3

Approach

3.1 Method
There are several interesting metrics when evaluating the performance of a streaming solu-
tion, concerning both the quality of service (QoS) and quality of experience (QoE). For QoS
the metric measured is latency, while for the QoE metrics the time-to-stream is measured.
Additionally the CPU and memory usage is measured to ensure that the WebRTC streaming
solutions are not too resource expensive compared to Axis contemporary streaming solutions.
The end customer should be able to run WebRTC in their VMS software without noticing a
significant di�erence in performance.

As such an implementation is developed in the form of a WPF application using several
common components and easily isolated and exchangeable implementation specific compo-
nents that can be used in evaluating the various QoE and QoS metrics, as well as the CPU
and memory usage metrics for the di�erent WebRTC implementation and the current Axis
developed streaming solution.

3.2 Implementation
Three di�erent implementations of receiving and rendering H.264 video in a .NET Frame-
work 4.8 WPF applications were developed, using two di�erent open source projects SIP-
Sorcery, and GStreamer. As well as the Axis proprietary HTTP Proxy solution as a reference
to evaluate WebRTC. The WebRTC implementations utilize common components, such as
interacting with the signaling server using a predefined protocol, and using the Axis authen-
tication service. The application is a proof-of-concept for streaming and rendering video
to the user using the .NET environment currently in use at Axis. The application is built
upon existing Axis components, such as their dependency injection package, UI package,
and rendering and decoding package. This is all to mimic the actual environment that is cur-

21

3. Approach

rently used in Axis’ VMS solutions. The dependency injection package also allowed for easy
swapping of implementation specific components, such as the WebRTC implementation by
simply changing a single line and recompiling the program.

H.264 Encoding
H.264 encoding was used for both WebRTC implementations, as well as the HTTP proxy to
which they are compared. H.264 is a well supported (92% support by developers in 2018)[8]
ISO-standardized video encoding standard is designed to be used in several di�erent areas,
from live video conferencing, to high definition Blu-Ray recordings. [17] Since the di�erent
use cases for H.264 vary and have di�erent requirements, the H.264 standard supports sev-
eral di�erent profiles for these di�erent use cases. There are three main profiles in H.264;
baseline, main, and high, which all have their variations. The baseline profile is the most
basic of the profiles, best suited for embedded devices which have to make the most use of
their limited power. The baseline profile requires less computation to encode the video, how-
ever the compression rate will su�er as a result. Generally using the main and high profiles
will require more of the encoders and decoders while using less bandwidth due to the higher
compression rate.

In H.264 the encoded frames have three di�erent types, namely Intra-coded (I) frames,
Predictive (P) frames, and Bi-predictive (B) frames. The I-frame acts as a checkpoint and
contains all the necessary information to render a single image. The P-frames include the
changes in the image data and can be used in conjunction with other frames to create a
new image using a previously encoded frame. B-frames are similar except that they use two
frames as reference points instead of one. A stream using the baseline profile will not use
the B-frames and only relies on the I- and P-frames. Generally the more total B-frames the
better the video compression rate. As the frames di�er in function they also di�er in size
and is dependent on the stream that is captured. The size of the frames vary, where I-frames
are the largest since they contain all the information necessary to decode and render a single
frame, the predictive frames however depend on the previously used frames as well as the
changes in the image, e.g. a stream with lots of movement result in larger will generally result
in larger predictive frame, while a stream with small to low amounts of movement will result
in smaller frames.

3.2.1 Common Components
There are components reused in both implementations, and these are components related to
Axis infrastructure and rendering solutions.

The common components are the following:

• Authentication Service

• Signaling Service

• Decoding and Rendering pipeline

An image describing the implementation and the common components can be seen in figure
3.1.

22

3.2 Implementation

Implementation Specific

Video Frame
Source

Decoding and
rendering
pipeline

WebRTC Video Streaming Application

Peer Connection

DepayloadingNetwork Input

Signaling
Service

Authentication
Service

RTP H.264 MediaFrame

Figure 3.1: An overview of the components in the implementations.

The common components are included in some of the measurements, with the exception
of the authentication service which could be isolated and ignored in all of the measurements.
The rendering pipeline is a necessary part of measuring the latency, since the decoding and
rendering of the frames are taken care of here. The signaling service is an essential part in
the Time to Stream measurement, since it is essential in relaying messages between the peers
to establish a peer-connection.

Authentication Service
The authentication service allows the user to authenticate itself to be able to interact with
both the signaling server and the devices to which he wishes to establish peer connections
with. This process is currently very manual, requiring an access token to be generated by
manual username and password authentication at least once every hour. However this can
be done ahead of time of any experiments, allowing this process to be isolated, and as such
the procedure is not reflected in any of the experiments.

Once the authentication procedure has been performed the client has been supplied with
a token that allows them to interact with the signaling server. The signaling service uses this
token to verify that the client has registered the camera that it wishes to establish a WebRTC
session with and that the camera is registered with the signaling server. If the token is valid
the signaling can proceed and the session can be established.

Signaling Service
For signaling between peers and server to function, a common protocol must be used. This
is left out of the WebRTC standard by design choice and can be implemented in what ever
manner the developers may choose. At Axis a signaling server and its protocol was already
established which uses WebSockets to communicate with both the client and the camera.
Two important and notable features of the signaling service includes the validation of the
access token received from the authentication service, as well as assigning the STUN and
TURN servers to both peers. As such the peers do not need to make any separate look-ups
to other services or have a predetermined list of possible ICE servers that may or may not be
available.

23

3. Approach

The Decoding and Rendering Pipeline
Axis uses a common rendering and decoding pipeline in several of their available VMS solu-
tions, this pipeline will not be discussed in detail due to issue of possibly disclosing several
techniques that might hurt competitive advantages, but an abstracted view will be given to
supply the reader of an overview of how it relates to the work the authors have implemented.
The rendering pipeline uses several proprietary data structures and formats to determine
how and when to render specific frames which are received through di�erent media connec-
tions. The pipeline is constructed of a chain of several components which manipulate the
data into a format which can be rendered in a WPF application using Axis’ UI packages. The
pipeline needs two important types of information from any media connection using H.264
encoded video, the sequence parameter sets (SPS) and picture parameter sets (PPS), as well
as obviously the H.264 frame data. The SPS and PPS contain information concerning how
H.264 frames should be decoded and rendered, such as the resolution and profile information
that the video is encoded with. For WebRTC these can be found in the SDP o�er received
from the network camera and are encoded as a Base64 string, and can be seen in the example
SDP o�er in figure B.1. This information is extracted and converted into an Axis proprietary
format, called a MediaInfo-frame. It is important that this frame is passed before any H.264
frames are, otherwise it is impossible to decode and render the frames properly as a live video.

The H.264 frames need to be aligned properly for the information in the MediaInfo-frame
to be valid, as such the raw H.264 data has to contain the NAL unit header which describes the
type of frame that is sent through the pipeline (I/P/B frames), the I-frames additionally need
to be marked as such. When the H.264 has been extracted and marked they are converted to
another of Axis proprietary formats, a MediaFrame which can be sent through the pipeline.

For WebRTC, both the extraction of the SPS, PPS, and the depacketization of the raw
H.264 data is dependent on the implementation. The HTTP Proxy solutions for the same
process are already implemented by Axis.

Implementation Specific Components
Both WebRTC implementations have components specific to themselves, that relate to the
WebRTC internals such as networking, depayloading the received data, as well as managing
the peer connection. There are several features and di�erences between the SIPSorcery and
GStreamer implementations. These di�er from the language which they are implemented in
and the support of di�erent network protocols. A list detailing some of the most notable
di�erences can be seen in table 3.1.

Feature SIPSorcery GStreamer
Native C# X

IPv6 X
TURN X X
STUN X X

RTP Jitter bu�er X
TCP/TLS X

UDP X X

Table 3.1: The features present in the WebRTC implementations

24

3.2 Implementation

3.2.2 SIPSorcery WebRTC Implementation
SIPSorcery is an open source library which aims to simplify the process of real-time commu-
nications in .NET applications, supporting audio, video, and data transfer depending on the
intended usage.

SIPSorcery notably supports WebRTC and closely follows the o�cial API documenta-
tion by W3C [27] making it simple for developers to implement a working WebRTC solution
if they are already familiar with how it is done in modern web browsers.

SIPSorcery is a pure C# library without the use of any wrappers making it easy to im-
plement into existing .NET applications. It also flexible in how it is used, allowing users to
specify many common codecs for audio and video, even though it might not support decod-
ing and/or rendering them itself, but being able to produce the correct SDP answers and
o�ers to negotiate the media transfer. When the media later arrives, e.g. encapsulated in a
RTP packet, the user can subscribe to the received packets and themselves use a custom de-
payloader to handle the received encoded media, however for H.264 payloads SIPSorcery has
support for extracting the encoded video frames which are present in one more RTP packets.

SIPSorcery however lacks some critical features which are necessary for a complete We-
bRTC implementation, most notable SIPSorcery have no support for TLS, which results in
that the TURNS and STUNS protocols not being supported, only supporting regular TURN
and STUN. This can be crucial when considering privacy, as the stream is at risk for leaking
the IP-addresses of the peers when relayed. Note that the data content itself will be encrypted
and that this is a privacy concern and not a security concern.

It also currently has no support for generating IPv6 ICE candidates, limiting the number
of possible host candidates that can be used.

When streaming video over RTP, SIPSorcery currently has no jitter bu�er implementa-
tion. A jitter bu�er is used to reconstruct the RTP packets in the order they are meant to be
received, as well as remove any possible duplicates. A jitter bu�er is often used when stream-
ing over best-e�ort protocols such as UDP to improve the user experience by intentionally
causing a small delay to reconstruct the stream as it was intended by adding the RTP packets
in the correct order according to their sequence number. Without a jitter bu�er encoded
frames can be decoded and rendered out of order causing video artifacts, or the stream ren-
dering entire frames out of order. It is especially important when streaming encoded video
such as H.264 where it is crucial that the frames arrive in the correct order.

Using SIPSorcery
SIPSorcery is available to download and use in .NET application through the NuGet package
manager, the version evaluated in this thesis concern version 5.2.3 released in June of 2021. To
establish a peer connection in SIPSorcery the only requirement is the RTCPeerConnection
object that manages SDP, STUN and TURN servers, and ICE candidates. The peer connec-
tion object is entirely event based and fires events when needed, such as when a local ICE
candidate is ready to be sent via the signaling server. The developer, just like how it behaves
in WebRTC in browsers, is responsible to capture these events in the application and forward
it to the signaling server. The opposite is also true. When video data is available it is also fired
as an event, in this case as a H.264 video frame reconstructed from one or more RTP packets.
When the frame is ready SIPSorcery represents it with several parameters, however the most

25

3. Approach

important of which is the timestamp of the encoded frame, as well as the encoded frame in
the form of any array of bytes. This information can then be used to pass to video decoding
and rendering pipeline.

Optimizing Connection Establishment Time
For a WebRTC connection to be established a X.509 certificate needs to be created and
signed. This is to ensure that the tra�c sent between the peers is encrypted using DTLS.
The default in SIPSorcery is to create a new self-signed certificate for each connection that
is made, in the constructor of the PeerConnection-object. This is a costly operation that
hinders the overall time for the connection to be established. However the certificate can be
created ahead of time, and still be unique for each connection. This reduces the time that
is needed for the connection to be established significantly. As such this optimization was
performed in the measurements taken.

3.2.3 GStreamer WebRTC Implementation
GStreamer is a multimedia framework that is based on linking media processing elements
into a pipeline to complete a media related workflow. The elements that constitutes a pipeline
contains pads and filters. The pads are the interface to the outside world in the form of sink
pads and source pads where the sink pad is the pad that receives data while the source pad is
the pad that output data after the data has been processed by the filter within the element.
An element can contain multiple source pads and/or sink pads which is useful for multiplex-
ing audio and video into a single stream. In our case, video and audio is received on the same
channel and needs to be demultiplexed before it can be decoded and rendered.

GStreamer has a plug-in element called webrtcbin which is an abstraction of the tech-
nologies that WebRTC builds upon and is used to make it easier for developers to create We-
bRTC applications through GStreamer. Moreover, GStreamer already had support for the
technologies that WebRTC builds upon before WebRTC was even drafted and webrtcbin
actually just connects these technologies in a single interface to conform with the WebRTC
standard. This means that RTP (and RTCP) over UDP (or TCP) exists within webrtcbin as
well as the ICE agent that is responsible for creating STUN and TURN messages to gather
ICE candidates and check for connectivity. In essence, it does everything the PeerConnec-
tion defined in the ECMAScript API can. The sinkpad(s) of this element receives media from
a device or file and the sourcepad(s) outputs data that has been received on the negotiated
channel. As there can be multiple channels open at the same time and since each channel can
be have a multiplexed stream, we need to subscribe on each pad that the webrtcbin creates.
In 3.2 it is shown how a multiplexed stream with audio and video is demultiplexed within
the webrtcbin and how we subscribe on the source pads that are created. As rendering func-
tionality comes from an Axis proprietary solution we let GStreamer unpack the payloads and
then sink the raw bytes into an element called appsink. From appsink we can emit the raw
bytes and pipe it into the Axis proprietary solution for decoding and rendering.

The webrtcbin plugin is labeled by the GStreamer community as "bad" which denotes
that it is not up to par with the standard of GStreamer (missing documentation, tests, and/or
active maintainer) and if the plug-in breaks, it is up to the community to patch it. The

26

3.2 Implementation

Figure 3.2: GStreamer Pipeline for video and audio

somewhat lacking documentation can make this plugin hard to work with, especially when
the developer is not used to the GStreamer framework.

GStreamer is written in C but has bindings for C# in the library GStreamer-Sharp which
are the bindings that are used for the experiments carried out for this thesis.

The HTTP Proxy Implementation
To compare WebRTC as a viable streaming solution one of the many peer-to-peer streaming
solutions used at Axis is implemented in the application. This comes in the form of a HTTP
Proxy which relays tra�c from the network camera to the application using H.264 encoded
video contained inside the Matroska container format. [24] The proxy runs as a separate
process which is spawned while running the program. The HTTP Proxy comes with much of
the functionality built into the WebRTC standard, but is not built on any publicly available
standard itself. For example the data is relayed much like it would be when relaying data
through a TURN server, but instead uses a proprietary solution which is not built to the
TURN specification.

The HTTP Proxy uses the same common components above, with the exception of the
signaling server. Instead the HTTP Proxy is configured using several HTTP request. One to
configure the server to relay the data, one to add the network camera as a remote peer.

The stream is also supplied through HTTP request, where the response body contains
the stream which is continuously read from and fed into the Axis decoding and rendering
solution.

Unlike the WebRTC implementations, the HTTP Proxy can be configured in much more
discrete steps, where the connection can be established first, before requesting the actual
stream. To give the a fair comparison between the implementations however, the entire time
to stream is measured as the time it takes to configure the HTTP proxy, with the exception
of the authentication service, until the HTTP request which contains the stream can be read
and fed into the decoding and rendering pipeline.

An overview of the configuration and request of video streams in HTTP proxy can be

27

3. Approach

seen in 3.3

Network Camera

RELAY SERVER

Client

1

2

0

Application HTTP Proxy

Authentication
Server

3

0. Get Authentication Token
1. Configure P2P Proxy
2. Add the Network Camera as remote peer
3. Send HTTP Stream Request, responds with Matroska Stream

Decoding and
Rendering

Figure 3.3: Overview of the HTTP Proxy used to retrieve Matroska
streams.

Differences between Network Setups
The peer-to-peer connection in WebRTC can vary depending on the network the peers are
located on as well as the type of the peer connection that was established, of particular in-
terest is the di�erence between using TURN to relay the stream, compared to using a direct
connection. This can be controlled by changing the transport policy that is being used for
the peer connection in the WebRTC implementations. To change which type of connection
that is used, the choice between two transport policies is available, the all and relay transport
policies. When using the all transport policy the WebRTC implementations will consider all
types pairs that can be used, that includes host, server reflexive, and relay connections. If the
networks allow for it, a host connection will always be preferred and used due to the host
candidates being given a higher priority. However if the relay transport policy is used, the
implementations will only consider candidates which use TURN to relay the data, by only
producing candidates with the relay attribute and only testing the connection on received
ICE candidates which also posses the relay attribute. Even though a TURN server does not do
any processing of the media data an additional delay can be expected both when establishing
the connection due to the process of authenticating against the TURN server and allocating
the relay address.

3.3 Theory
The measurements are taken using di�erent methods, which are described below.

3.3.1 Evaluating Managed Languages
Important to note is that C# is a Just-In-Time (JIT) compiled language and is also managed,
in this case using the .NET Framework. Measuring performance in JIT compiled and man-

28

3.3 Theory

aged languages are di�erent from measuring in Ahead-Of-Time compiled and un-managed
languages such as C or C++. [23] As the JIT compiler will optimize code on the fly and the run-
time management will perform garbage collection at non-deterministic times during the ex-
ecution of the program. As such a proper benchmark should measure both the warm-up state
of the program, where the JIT compiler has yet applied much of its optimization, and the
steady-state performance where optimization is finished and the performance improvement
is statistically determined to be insignificant. There is however some limitations which did
not allow us to measure the steady-state performance during the benchmarks, namely that
the network camera is limited in its capabilities and cannot supply us with the many connec-
tions that is required for the .NET application to reach it’s steady-state. There is also the issue
of measuring performance of the application when one of inescapable variables that a�ect
the performance is the network which is used. The measurements could therefore only be
taken from the first connection that is established when the program is run for the first time,
this done several times to get data to see the worst and best case performance for the start-
up state of the application. All the benchmarks were measured with the programs compiled
with release compilation options, which performs some minor ahead-of-time optimizations,
such as dead code elimination.

3.3.2 Evaluating the WebRTC implementations
To evaluate and find potential bottlenecks in the SIPSorcery and GStreamer WebRTC imple-
mentations a method closely relating to the method used in WebRTCBench was developed.
[11]. WebRTCBench was developed for a similar use case, namely to evaluate the di�erent
WebRTC implementations present in the web browsers Mozilla Firefox and Google Chrome.
WebRTCBench is used to measure several primitives relating to the internals of the imple-
mentations and how well they perform, these primitivies are isolated as much as possible
from variables such as the network they are located on. These measurements are taken as the
di�erence between timestamps at di�erent events relating to a specific part of the implemen-
tation. These measurements relate to the overall performance of a WebRTC implementation,
such as the time to perform the hole-punch procedure which is necessary for the peer connec-
tion to be established. WebRTCBench was written for web browsers and couldn’t be directly
ported to .NET, however the same methodology and many of the same measurements is ap-
plied to measure the internals of the SIPSorcery and GStreamer WebRTC implementations.
A table detailing how each primitive is measured, and what it measures is found in 3.2.

It is important to note that several of the metrics overlap each other, therefore the com-
bined time does not represent the total time it takes to establish a peer-connection, but all
steps are needed for it be established.

3.3.3 Time to Stream
The time to stream is measured in a similar way to the WebRTCBench primitives for the
WebRTC implementations. An additional timestamp is taken when the signaling server is
initially contacted to start the session, and the timestamp when depacketization has finished
were used to see when the Axis decoding and rendering pipeline can start reading the frames.
For the HTTP Proxy the timestamp is taken instead when the first configuration message
is sent to the HTTP Proxy, and then another timestamp is taken when the HTTP Stream

29

3. Approach

WebRTC Implementation primitives
Measurement Beginning Event Ending Event Description
Initialize Peer Connec-
tion

Before creating a
new PeerConnection
object.

After creating a
new PeerConnection
object.

The time it takes to
initialize a new Peer-
Connection object.

O�er Time Before setting the o�er
SDP in the PeerCon-
nection object.

After setting the o�er
SDP in the PeerCon-
nection object.

The time to parse and
set the remote descrip-
tion generated by the
peer.

Answer Generation Before generating the
answer.

After the local descrip-
tion has been gener-
ated and set.

The time to generate
and set the local de-
scription. (SDP An-
swer)

ICE Hole Punch Time The first ICE candi-
date from the remote
peer is added to
the PeerConnection
object.

The peer connection
has been established.

The time it takes to
find a connection be-
tween the peers.

Depacketization Time First RTP packet ar-
rives.

The first encoded
H.264 frame is ex-
tracted.

The time it takes to de-
packetize one or more
RTP packets to extract
a full H.264 frame.

Table 3.2: List of the measurements to evaluate the WebRTC imple-
mentations.

response has been resolved and the response body can be read. As such the Time to Stream
can be calculated using 3.1 for the WebRTC implementations and using 3.2 for the HTTP
Proxy.

TTSWebRTC = tFirst depacketized f rame − tContact Signaling Server (3.1)

TTSHTTP = tHTTP Stream Response Resolved − tStart HTTP Proxy con f iguration (3.2)

3.3.4 Latency
The method for evaluating the end-to-end latency was recommended by employees at Axis,
as it accurately reflects the perceived latency by the user of the VMS solutions. It consists
of using a network camera to record its own stream, thus showing the stream that is being
rendered as the stream is simultaneously being recorded and streamed. Both the "real" and
rendered stream have timestamps which shows the time to the millisecond. The latency is
then derived from the di�erence between the "real" stream and the stream that is rendered.
This is done by recording five minutes of continuous streaming with the screen recording
tool OBS Studio [3], which records the stream at 60 frames per second. Measurements are
taken from when stream starts, and then every 30 seconds to ensure that the streams latency
does not vary drastically during the duration of the experiment.

A figure of the method used to measure latency can be seen in figure 3.4 where the upper
timestamp corresponds to the "real" stream and the timestamp below corresponds to the
rendered stream. In the figure a latency of 660 milliseconds can be observed.

30

3.3 Theory

Figure 3.4: The setup used to measure the latency.

3.3.5 Memory Usage
The memory usage is measured using the dotMemory profiling software developed by Jet-
Brains. [1] dotMemory attaches itself to the running application and measures both managed
and unmanaged memory. With dotMemeory the possibility of taking snapshots of the mem-
ory usage at di�erent moments can be utilized. A conditional snapshot option was used to
capture the memory usage of the di�erent streaming solutions every minute of a five minute
stream. This is also used to identify any potential memory leaks in the implementations.
The memory is measured in total megabytes used by the running process, which includes
the entire application, including the decoding and rendering pipeline and in the case of the
WebRTC implementations, also the signaling service.

3.3.6 CPU Usage
To capture the average load of the CPU for the di�erent streaming solutions the profiling tool
dotTrace developed by JetBrains is used. [2] dotTrace much like dotMemory attaches itself
to the running process, but instead of profiling the memory usage, instead collects statistics
on the CPU, such as the most expensive functions which is usually used to find information
which can be used to optimize the program. Importantly for our measurements however is
that the total load the program causes on the CPU is also captured. The load is measured from
the start of the program and during a stream for a duration of six minutes. dotTrace can then
be used to find the average CPU load in a window of time specified by the user. When the
program is first starting the CPU usage spikes, which could be the result of a great number of
things, such as the JIT compiler performing optimizations. After a while the program reaches
a steadier state, where the CPU usage is stable. As such two measurements are included, the
minute where the stream is starting up, and the last five minutes where the CPU usage is in
a streaming in a steadier state. See figure 3.5.

31

3. Approach

Figure 3.5: Visualization of the CPU Usage measurement.

32

Chapter 4

Evaluation

4.1 Experimental Setup
To be able to test the connection between using TURN relay and a direct peer-to-peer con-
nection the ICE agent was restricted to one of two transport policies, relay or all. If the ICE
agent is configured to use relay as its transport policy it will only gather relay candidates,
and if it use all as its transport policy it will gather all candidates it can. As relay candidates
have the lowest priority and host candidates have the highest priority, the all transport policy
yielded connections established using host candidates. In a real life scenario, the transport
policy would most likely always be set to all since it is preferable to use a host or server reflex-
ive candidate over a relay candidate. However not all connections can be established using
only host candidates, which is why it important to test the di�erences when using a TURN
server, and using the di�erent transport policies achieves this without the need to emulate
di�erent networks.

The transmitting network camera used was the Axis M1135, which streamed 1920x1080p
resolution video.

4.2 Results
The results for the experiments can be seen below.

4.2.1 WebRTC Primitives
The results for the experiment evaluating the primitives for the WebRTC implementations,
inspired by the WebRTCBench methodology, for both transport policies can be seen in table
4.1.

33

4. Evaluation

The experiments revealed that the largest di�erence when changing the transport policy
from all to relay was the time for ICE Hole punching, where it increased the average time by
1775.34 ms, and 425.91 ms for the SIPSorcery and GStreamer implementation respectively.
The other significant changes were seen in the depacketization time for the SIPSorcery imple-
mentation when using the relay transport policy, where depacketization time was increased
by on average 49.1 ms, and the initialization of the peer connection object in the GStreamer
implementation where the change of transport policy to relay had a minor increase.

The other primitives did not show a significant change while changing the transport
policy.

Mean±SEM result times of WebRTC Primitives
Implementation
and Transport
policy

Init. Peer Con-
nection

O�er Time Answer time ICE Hole punch-
ing

Depack

SIPSorcery All 74.63 ± 1.37 ms 153.76 ± 3.04 ms 32.31 ± 1.50 ms 209.83 ± 3.08 ms 14.45 ± 1.40 ms
GStreamer All 49.72 ± 1.43 ms 300.51±43.39 ms 93.82 ± 2.34 ms 155.14 ± 8.53 ms 14.86 ± 0.47 ms
SIPSorcery Relay 78.90 ± 2.49 ms 152.10 ± 3.57 ms 28.14 ± 1.00 ms 1985.17 ± 203.19

ms
63.96 ± 4.88 ms

GStreamer Relay 62.94 ± 9.82 ms 294.69±28.40 ms 92.69 ± 6.25 ms 581.05±17.44 ms 13.57 ± 0.60 ms

Table 4.1: The resulting Mean ±Standard Error of the Mean (SEM)
times for the di�erent WebRTC primitives

4.2.2 Time to Stream
The time to stream was measured 30 times for both WebRTC implementations with both of
the transport policies, as well as the HTTP Proxy. A box plot, including outliers found in
the measurements can be seen in figure 4.1. While a table of the data can be found in A.4.
The experiment showed that the WebRTC implementations outperformed the HTTP Proxy
when using both transport policies.

The median time to stream was 1211.7 ms for the GStreamer using All, 929.0 ms for
SIPSorcery using All, 1802 ms for GStreamer using Relay, 3717.15 ms for SIPSorcery using
Relay, and 5193.95 ms using the HTTP Proxy. Using SIPSorcery with the relay transport
policy gave an increased spread, resulting in an Interquartile Range (IQR) of 1999.72 ms.
The other measurements had a comparatively low IQR, where the IQR was 204.25 ms for
GStreamer All, 170.43 ms for SIPSorcery All, 202.3 ms for GStreamer Relay, and 172.13
ms for the HTTP Proxy.

These metrics also show that using the relay transport policy e�ects the time to stream
significantly, in the case of the GStreamer implementation mostly in the actual time to
stream, with a di�erence in median time to stream of 1802ms−1211.7ms = 590.3ms. And in
the SIPSorcery implementation it manifested in an even larger di�erence with 3717.15ms−
929ms = 2788.15ms and with a much larger spread between the values.

The data gathered on SIPSorcery with the relay transport policy, split itself into two very
distinct groupings, where the 14 lowest values were observed between 1401ms and 1946ms,
while the remaining 16 values ranged between 3717.1ms and 4488.5ms. This leaves a gap of
about 1700ms were no values were observed.

34

4.2 Results

GStreamer All SIPSorcery All GStreamer Relay SIPSorcery Relay HTTP Proxy

1,000

2,000

3,000

4,000

5,000

6,000

7,000

T
im

e
(m

s)
Time to Stream

Figure 4.1: The Time To Stream for the three streaming solutions
with di�erent transport policies.

4.2.3 Latency
The stream latency was only measured once for each of the implementation and both the
transport policy, and in the case of the GStreamer implementation another two measure-
ments with a RTP jitter bu�er configured with an extra 200 milliseconds of delay, to examine
if the stream quality was e�ected. The results from the stream latency measurements can be
seen in figure 4.2 and the raw data can be seen in table A.6.

The best (lowest) mean latency was observed in the GStreamer implementation using the
all transport policy without a jitter bu�er, where mean latency was observed to be 397.5 mil-
liseconds, while the worst (highest) latency was observed in the GStreamer implementation
using a 200 millisecond jitter bu�er using the relay transport policy, with a mean latency of
631.1 milliseconds.

In both WebRTC implementations using the relay transport policy increased the ob-

35

4. Evaluation

served latency. In the case of the SIPSorcery implementation the mean latency compared to
using the all transport policy increased by 21.3 milliseconds, resulting in an observed mean
latency for the relay transport policy of 421 milliseconds. While the GStreamer implemen-
tation the mean observed latency increased by 42.7 milliseconds, resulting in a mean latency
using the relay transport policy of 440.1 milliseconds.

As a reference using the HTTP Proxy, a mean latency of 418.9 milliseconds was observed.
During the experiment the streams did have variations in the latency, where the largest

di�erence during the stream could be observed in the GStreamer All with the jitter bu�er,
where the lowest observed latency was 549 milliseconds, and the highest was 664 millisec-
onds. This was followed by the HTTP Proxy where the lowest observed latency was 364
milliseconds, and the highest was 366 milliseconds. The most stable latency was observed in
the SIPSorcery implementation using the all transport policy, where highest observed latency
during the stream was 401 milliseconds, while the lowest was 397 milliseconds.

The variations where larger when using the relay transport policy for both WebRTC
implementations, where changing the transport policy in the SIPSorcery implementation
caused the variation during the stream to increase from 4 milliseconds using the all trans-
port policy to 82 milliseconds using the relay transport policy. In the case of the GStreamer
implementation without a jitter bu�er, the change caused the largest variation of latency to
change from 40 milliseconds to 87 milliseconds when changed from the all transport policy
to relay.

4.2.4 Memory Usage
The memory usage was measured five times for each implementation, the average for each
minute of streaming for each of the implementations can be seen in 4.3, and individual exper-
iments for each of the implementations can be seen in figures A.1, A.2, and A.2. The memory
usage showed that the WebRTC implementations both had higher memory footprint com-
pared to the HTTP Proxy. The GStreamer implementation had the highest average memory
usage, with an average of 380 MB when considering all data. The highest observed memory
usage was also observed in the GStreamer implementation, where 408.41 MB was used. In
second place was the SIPSorcery implementation, with a total average memory usage of 367.4
MB used. With a maximum observed memory usage of 377.07 MB. The best performing im-
plementation was the HTTP Proxy implementation, where the total average memory usage
was 350.1 MB, and maximum observed value of 358.18 MB. However, as previously men-
tioned the HTTP Proxy uses a second process to manage the connection to the relay server
which was not included in the measurements.

4.2.5 CPU Usage
The CPU usage was measured five times for each of the implementations. The results of the
CPU usage experiment can be seen in 4.4, and the data can be seen in table A.7. Both the
WebRTC implementations had higher CPU usage, both during the start-up and streaming
phases. Where the on average the GStreamer implementation used 3.6% and 3.28% during
start-up and streaming respectively, followed by the SIPSorcery implementation with 3.46%
and 3.06%. The HTTP Proxy performed best with on average only 2.14% and 1.82% used
during the start-up and stream phases respectively. But as mentioned above, the HTTP Proxy

36

4.2 Results

0 30 60 90 120 150 180 210 240 270 300

300

400

500

600

700

800

900

1,000

Seconds Streaming

La
te

nc
y

(m
s)

Stream Latency During Six Minutes of Streaming

GStreamer All 0 Jitter
GStreamer All 200 Jitter
GStreamer Relay 0 Jitter

GStreamer Relay 200 Jitter
SIPSorcery All

SIPSorcery Relay
HTTP Proxy

Figure 4.2: Stream Latency

37

4. Evaluation

1 2 3 4 5
340

345

350

355

360

365

370

375

380

385

390

395

400

369.88

377.16

382.86
384.88 385.12

364.95 365.9 366.67
370.08 369.54

350.81 349.56 350.19 350.16 350.23

Minutes Streaming

A
ve

ra
ge

M
em

or
y

U
se

d
(M

B)
Memory Usage During Five Minutes of Streaming

GStreamer
SIPSorcery

HTTP Proxy

Figure 4.3: The average total memory usage of the implementations
at each minute during five minutes of streaming.

uses an additional application in addition to the main application, which was not included
in the measurements.

4.2.6 Data
The data for all experiments can be found in Appendix A.

4.3 Discussion
WebRTC is a more complex and has several other features which are not present in the HTTP
Proxy, and one should take that into account when observing the data gathered, especially
in the case of memory and CPU usage, as the HTTP Proxy is in essence a very lightweight
streaming solution.

38

4.3 Discussion

GStreamer SIPSorcery HTTP Proxy
0

1

2

3

4 3.6 3.46

2.14

3.28
3.06

1.82

A
vg

.%
us

ed

CPU Usage

Start-Up
Streaming

Figure 4.4: CPU Usage during startup and streaming.

4.3.1 WebRTC Implementation Primitives
The measures show that the largest di�erence between transport policies was the time spent
for the ICE Hole punching process, this was true both for the SIPSorcery implementation
and the GStreamer implementation. It was especially apparent when viewing the SIPSorcery
data, where the time spent for hole punching was almost eleven times the amount of time
it took for the all transport policy. This drastic increase was not seen in the GStreamer
implementation, where the di�erence on average only increased by slightly less than four
times.

That relay introduces a delay is not surprising, after all, the connectivity checks have to
be relayed through a public facing server. However the reason for why the SIPSorcery im-
plementation causes such a significant increase is unknown since both implementation were
tested on the same network against the same TURN server. If there would be any e�orts
made to optimize the time to establish a peer connection for the SIPSorcery implementation
the recommendation would be to focus on why the ICE Hole punching process is increased
much more compared to the GStreamer implementation. One observation we made was that
GStreamer generated many more ICE candidates, which would mean that there are more ICE
candidates that need to be tested during the connectivity checks. However, this does not seem
to a�ect the connection setup time negatively. One consideration is that the camera uses the
GStreamer framework for WebRTC and interoperability between implementations could
be a factor. The standardisation of WebRTC sets out to give di�erent platforms a common
specification for real-time communication but as the WebRTC specification develops to in-
corporate new technologies, adherence to the current specification may vary and this does
leave some problems for interoperability.

The o�er and answer generation times did not change when changing the transport pol-
icy, which is excepted since they are not related to the type of connection that is established
and only concerns itself with the session that is established in terms of the type of media that
is going to be exchanged and which protocols it will use.

39

4. Evaluation

As the time for ICE Hole Punching was so large the GStreamer outperformed the SIPSor-
cery implementation when using the relay transport policy, and thus the time-to-stream was
faster when relaying. The SIPSorcery implementation outperformed the GStreamer imple-
mentation when using the all transport policy, although the consequences were not as great
in comparison and did not a�ect time-to-stream as drastically.

4.3.2 Time to Stream
Both WebRTC implementations, using either of the transport policies was shown to outper-
form the HTTP Proxy. The GStreamer implementation was shown to be more consistent and
established a connection faster in the case of the relay transport policy, while in the case of the
all transport policy the SIPSorcery implementation was slightly faster. The di�erence in the
median time to stream for the all transport policy was 1211.7ms−929ms = 282.7ms millisec-
onds in favour of the SIPSorcery implementation. While the di�erence in the median time
to stream for the relay transport policy was much greater, 3717.5ms − 1802ms = 1915.5ms
milliseconds in favour of the GStreamer implementation.

However, as mentioned above the SIPSorcery implementation using the relay transport
policy seems to have split itself into two distinct populations, with a significant gap between
them. To visualize this, a simple histogram can be seen in figure 4.5

The measurements were taken at di�erent moments, during multiple sessions, which
could explain the large gap by the network, or the TURN server being overloaded during one
of the sessions, however due to how the data was processed, it is unfortunately not possible
in hindsight to trace individual measurements, as the exact date and time were not included.

This problem became apparent after performing the benchmarks, and might have been
mitigated by emulating a network and using a private TURN server for testing, instead of
using a shared network, as well as TURN server which is in production. Similarly to how it
was done by Garcia et al. [15].

As mentioned above the HTTP Proxy is configured in multiple steps, where time to
stream includes both the time it takes to configure the proxy and request the stream. This
allows users to configure the proxy ahead of time and request the stream later, which is not
possible in WebRTC. If one where to look at the act of requesting the stream in isolation how-
ever, (see table A.5) the median time for the stream request to resolve is 2694 milliseconds,
with lowest observed time of 2579.8 milliseconds. If compared to the WebRTC implemen-
tations worst observed case, both the GStreamer and SIPSorcery implementations using the
all transport policy still perform better with 1844.7 and 2373.1 milliseconds respectively.
However when looking at the median time when using the relay transport policy, only the
GStreamer implementation outperforms the HTTP Proxy, while SIPSorcery implementation
is significantly worse.

As such it is important to take into account the amount of tra�c that will be using TURN
to relay the data in the VMS applications, as the observed time to stream will be depending
on the customers network setup, and as such the time to stream metric will vary significantly
between local connections, peer-to-peer connections over the public internet and those who
use a TURN server to relay the tra�c over the public internet.

Some outliers were present in the measurement, both in the WebRTC implementations,
as well as the HTTP Proxy. These could have occurred for several reasons, for instance re-
lating to the services that are used in establishing a connection, and the camera which the

40

4.3 Discussion

Figure 4.5: Visualization of the distinct split of observed values in
the SIPSorcery implementation using the relay transport policy.

WebRTC connection is made to. The services, such as the signaling service and the TURN
servers, are known to be slower when subject to a "cold start" where the servers have been idle
for some time when the first request is made. It is however not possible to single out these
instances, since the service is used not only by the authors but also by customers of Axis.

The camera itself also only supports a maximum of three concurrent WebRTC streams,
which would share the already limited resources of both memory and the CPU, some e�orts
were made to minimize the resources used on the network camera, by reading the log output
of the software managing the WebRTC connections, however due to the authors having lim-
ited access to the software running the WebRTC client it is still a possibility that resources
were used when starting a new connection.

Comparison between Optimized and Default SIPSorcery Connec-
tion Establishment
When collecting the data for the SIPSorcery implementation a optimization was made that
made the time to stream significantly faster, which entailed generating a DTLS certificate
ahead of time of creating the Peer Connection object, however the default behaviour is to
create the certificate inside the Peer Connection objects constructor. Depending on which
method the time to stream will be a�ected significantly. The di�erence can be seen in figure
4.6.

The Time to Stream metrics for the SIPSorcery implementation was significantly a�ected
by the connection establishment optimization. Reducing the overall time to stream by an

41

4. Evaluation

average of 1299 ms for the all transport policy, and 796 ms for the relay transport policy. The
spread of the total time to stream for the all transport policy was also significantly smaller,
170.43 IQR compared to 812 for the all transport policy.

It is possible this could be improved even further, since there are several algorithms to
that could be used to create a self-signed certificate. Using ECDSA (Elliptic Curve Digital
Signature Algorithm) is a promising alternative. This is because ECDSA is a lot faster than
RSA in general, which is the algorithm that SIPSorcery use for creating certificates if no
certificate is provided. Furthermore, the WebRTC specification [27] states under section 4.9
Certificate Management that "If an application does not provide the certificates configura-
tion option when constructing an RTCPeerConnection a new set of certificates MUST be
generated by the user agent. That set MUST include an ECDSA certificate with a private key
on the P-256 curve and a signature with a SHA-256 hash". Thus SIPSorcery does not comply
with the specification on this and if developers do not take this into account one can expect
the connection establishment time to be delayed because of the extra time of generating an
RSA key for the certificate [25].

4.3.3 Latency
The latency was measured for di�erent transport policies, and in the case of the GStreamer
implementation, also di�erent jitter bu�er duration. All implementations had a stable la-
tency during the entire five minutes that it was measured. The lowest (best) latency was mea-
sured for the GStreamer implementation using the all transport-policy with a jitter bu�er
duration of 0 milliseconds, with an average latency of 397.45 milliseconds. While the highest
(worst) latency was measured using the GStreamer implementation using the relay transport
policy using a jitter bu�er with 200 milliseconds of extra latency.

The latency measurements split itself into two distinct groups, the GStreamer imple-
mentation using a jitter bu�er with an extra 200 milliseconds of latency with both transport
policies, and the rest of the measurements. This is not surprising since when using a jitter
bu�er latency is traded o� for better stream quality.

Both WebRTC implementations using the relay transport policy showed a reduction in
stream quality, where the image was sometimes rendered out of order and had significant
video artifacts. As such the results of the latency measurements had to be taken at times
around the thirty second intervals where the image was clear and both timestamps could be
read clearly.

The process of collecting the latency was very manual and tedious, a better alternative
which would automate the process but requires additional work and has been implemented
in previous end-to-end latency tests for WebRTC, would be to use Optical Character Recog-
nition (OCR) using the same method. Using OCR would result in more measurements per
experiment and without the need for manual recording and playback of the stream. This
solution does require synchronized clocks between connected peers.

4.3.4 Memory Usage
The memory usage showed only a small di�erence between the di�erent streaming solutions
if one where to consider the total memory used as relative to each other. The highest average

42

4.3 Discussion

All Relay All With Pregen Relay With Pregen

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

T
im

e
(m

s)
SIPSorcery Time to Stream

Figure 4.6: Di�erence in Time to Stream when generating the cer-
tificate ahead of time.

memory usage was observed in the GStreamer implementation, but the SIPSorcery imple-
mentation used 96.7% of the memory of the GStreamer implementation, while the HTTP
Proxy, not including the additional process that is required for it to function, used on av-
erage 92.4% of the average memory of the GStreamer implementation. This can probably
be attributed to that many components, such as the Axis decoding and rendering pipeline is
used by all of the implementations.

When performing the experiments the GStreamer implementation had one measurement
which impacted the averages significantly, where the memory usage jumped from using 377.8
MB in the first minute of the stream, to using 408.4 MB at the fifth minute. The other
measurements however saw a somewhat consistent grouping, where the memory usage ex-
pectantly fluctuated during the stream, since memory is acquired when needed, and released
whenever the garbage collector has deemed it as no longer in use. This also caused the spread
in the data to be significantly larger than if the measurement would be ignored. What caused

43

4. Evaluation

this significant jump in memory usage is unknown, a theory could be that the garbage col-
lector deemed that the memory was still in use and did not release it, however this is hard to
both prove and disprove as it would not be repeatable due to the unpredictable nature of the
garbage collector.

Using the data gathered we can observe that WebRTC applications have an extra cost
compared to the very lightweight HTTP Proxy solution. If one where to invest no extra time
in making any additional optimizations, i.e. establishing one peer connection for each stream
that is shown, as it is done in the proof-of-concept WebRTC implementations, one could
naively draw the conclusion that WebRTC implementations would use about 15 - 35 extra
MB (depending on the implementation) of extra memory per stream compared to the HTTP
Proxy. However the signaling service component could be reused in subsequent streams,
which would in practice mean that the next stream would not increase the memory usage as
much as the first. It is therefore di�cult to give an exact number, since one would need to
investigate the cost of each of the components which are present in the WebRTC implemen-
tations, but an increased cost would be expected nonetheless.

4.3.5 CPU Usage
All streaming solutions did not show a large stress on the CPU, this can be mainly due to
that Axis decoding and rendering solution uses the GPU to accelerate the process.

The HTTP Proxy was found to be the clear winner where, the WebRTC implementations
used almost twice the amount of the CPU on average. As mentioned, the HTTP Proxy is
simple and lightweight, and the CPU Usage certainly echoes that statement. The WebRTC
implementations require more several moving parts in one application to function, but at
the same time WebRTC o�ers more features, but it comes with the cost of extra CPU usage.
However since the auxiliary process for the HTTP Proxy was not profiled and measured, the
exact cost is di�cult to estimate.

4.4 Features
To answer research question 2, the application used the existing Axis packages to provide a
minimum viable example of the features.

4.4.1 Client Side Dewarping and Digital PTZ
Client Side Dewarping, as the name suggests, is the process of taking a warped image, and
render a dewarped that is easier for the user to digest. Digital PTZ emulates the physical
PTZ capabilities of cameras by digitally zooming, panning, and tilting the image without the
need to interact with actual physical hardware. The feature was implemented, but not in the
same scope as the solution that is present in the current VMS solutions, but su�cient as a
proof-of concept. An image demonstrating the e�ects of digital PTZ can be seen in 4.7. More
advanced client side dewarping techniques could be applied, e.g. dewarping a fish-eye lens
to a panoramic view, however as of writing the Axis’ Rendering and decoding solution does
not have the capabilities for these transformations.

44

4.4 Features

4.4.2 Audio playback and transmission
Audio playback and transmission is one of the staples of WebRTC, however for it to function,
i.e. actually playing back the audio, the encoded data needs to be depayloaded and decoded.
Currently the network cameras WebRTC implementation only supports the OPUS codec
for audio. [4] This posed to be a problem, since Axis’ proprietary decoding and rendering
solution does not support it at the time of writing.

However the current WebRTC implementation on the network cameras is implemented
using GStreamer, which has support for sending encoded audio with a variety of di�erent en-
codings which are supported in the decoding and rendering pipeline. One of these encoding
is the common G.711 encoding, which is a mandatory to support in browser implementations
of WebRTC. Using this encoding the GStreamer has support for depacketization from RTP
packets, the SIPSorcery implementation would however require the implementation of the
depacketizer as it is not currently included in the library.

In the case of transmission any of the available codecs that is supported by GStreamer
could be used, the same goes for GStreamer on the client side. For SIPSorcery encoding and
packetization would have to be implemented to successfully transmit audio over WebRTC.

4.4.3 Scrubbing
Scrubbing entails that during a playback session the user can pause, play, and move back and
forward while watching the video. However as WebRTC is primarily used as a live streaming
solution, this feature would require an extension which could support this feature. One of
the features of WebRTC which as gone largely unmentioned in this thesis is the possibility
of sending arbitrary data over data channels. This could unlock several features, including
scrubbing, while still enjoying a fully peer-to-peer connection. A proposed solution would be
that during a playback session the user can, using the data channels, send a request to change
the current streamed video to certain point in time, for which the network camera can change
the currently streamed video by sending the closest I-frame before the time requested and
the additional P and B-frames which are required to reach the requested time. The client
then needs to collect the frames required to reach their requested time. Using this proposed
solution, the change in content is achieved without the need for renegotiation of the stream.

45

4. Evaluation

Figure 4.7: Example of digital PTZ being applied to a live video
stream.

46

Chapter 5

Conclusions

The benchmarks performed on the WebRTC implementations, using one of Axis’ current
streaming solutions as a reference showed that WebRTC can perform as good in the time to
stream metric under certain circumstances, near equivalent during the latency test, and worse
in the measurements concerning the CPU and memory usage measurements. The use of the
relay transport policy showed that using TURN servers to relay tra�c had a strong impact
on the time to stream metric, and gave varied results which impacted the QoE negatively.

The features were achieved by successfully integrating WebRTC with current decoding
and rendering solutions developed at Axis, while WebRTC is still in the development stage
at Axis, where the software that run on the devices and infrastructure is still being developed.
As such more work has to be performed to get all the features working, which mostly includes
support for the protocols that are specified in the WebRTC specification.

As such we answer the research questions with the following:
When integrating WebRTC as a streaming solution that interacts with IoT devices made

by Axis, how does it compare with the current streaming solutions at Axis in terms of various
quality and reliability metrics?

When integrating WebRTC as a streaming solution that interact with the Axis current
environment and devices the quality and reliability metrics varied with the use of TURN
servers to relay the tra�c, which led to decreased performance and quality of experience,
especially in the time to stream metric. Latency from the data gathered seemed to perform
better or equivalent with some expected additional latency when using TURN servers to
relay the data. CPU and memory usage were all worse when compared to the HTTP Proxy
while running the experiments with a Axis M1135 Network Camera.

As for research question 2:
Can the WebRTC solution(s) support the same features that exist in the current stream-

ing solution at Axis? That is the following:

• (a) Client Side Dewarping and Digital Pan-Tilt-Zoom (PTZ)

• (b) Audio Playback and Transmission

47

5. Conclusions

• (c) Scrubbing

Some of the same features are supported, but some requires additional work.

• (a) Has support through the Axis decoding and rendering solution.

• (b) Requires additional support for the OPUS codec in the decoding and rendering
solution, or a change from the current codec on the network camera to one which is
currently supported in the rendering and decoding pipeline, such as G.711.

• (c) Requires additional work, since controlled playback is not the primary use case of
WebRTC, but the features present in WebRTC could hypothetically be leveraged to
achieve features such as scrubbing.

5.1 Reflections on the project
The method used by WebRTCBench was very helpful when evaluating the internals of the
WebRTC implementations, as it could identify which of the steps of the connection estab-
lishment process was acting as bottlenecks which would e�ect QoE metrics such as time-to-
stream. During the experiments the observation could be made early that the initialization
of the peer connection object in the SIPSorcery library was a clear bottleneck and as such
the authors could investigate further, which resulted in the optimization where the DTLS
certificate could be generated ahead of time which resulted in better time-to-stream mea-
surements.

The dotMemory profiling tool was used in a similar manner. When performing the mem-
ory usage experiments a severe memory leak could be found in the GStreamer implementa-
tion which could be fixed. dotTrace could be used in the common WebRTC components to
find the most expensive function which could decrease the over-all read loop for converting
the H.264 frames into the MediaFrames which are then passed to the decoding and rendering
solution.

As the WebRTC application that is used on the network camera used in experiments
is still in development it did not allow us perform all the experiments that we would have
wished to perform. For example we could not reach steady state performance in the client
application since the camera allows only three concurrent video session to be active at any
given moment.

Even though it is out of scope for the thesis, the authors feel that it is important to men-
tion that when using both WebRTC implementations with the relay transport policy, several
video artifacts have been present in the video stream, as well as the streaming freezing occa-
sionally. The authors suspect that this is due to dropped packets which is likely because of
network congestion. Upon further investigation, neither GStreamer’s webrtcbin nor SIPsor-
cery’s PeerConnection seems to implement congestion control which could be the explana-
tion to why the stream sporadically freezes.

Performing all benchmarks on a deployed black-box infrastructure has both upsides and
downsides. The downside includes the previously mentioned problem of not knowing the
exact reason for the video artifacts and freezes, while also being unable to test for the di�erent
network configurations that the system could be exposed to. While the upside is that of a
realistic view of the performance when using the currently deployed infrastructure.

48

5.2 Authors Recommendations

5.2 Authors Recommendations
The results showed that WebRTC in both evaluated implementations could compete with
the currently used peer-to-peer streaming solution on metrics such as latency, memory us-
age, CPU usage. While outperforming the currently used streaming solution on the time-to-
stream metrics.

Both WeRTC implementations performed similarly and could be used as a suitable alter-
native to the currently used streaming solutions, however only after some additional work
to support the current features in their VMS, such as audio and scrubbing which currently
are not supported. Furthermore, congestion control needs to be added as well as proper
certificate generation for SIPSorcery.

The two open-source solutions which were evaluated both performed similarly. If all fea-
tures are essential, such as IPv6 and TCP/TLS support proves to be essential, the GStreamer
implementation is the only one which supports them as of writing, however GStreamer comes
with it own drawbacks. The most notable is that GStreamer is not a native C# library, and
additional software has to be installed for the library to be used, in contrast the SIPSorcery
library is simple to integrate into an existing application.

GStreamer is a powerful media processing framework but with power comes complexity
and likely implies higher cost in terms of development time. GStreamer does have a (much)
larger community and a developed ecosystem which is meritable considering how the We-
bRTC specification is likely to have continuous revisions and updates. As the cameras are
using GStreamer’s WebRTC implementation, it may prove useful to use GStreamer for the
client as endpoints would share the same framework for WebRTC. This would allow for
easier exchange of knowledge within Axis and a code-base that can easier be collectively un-
derstood between teams. Furthermore, interoperability between WebRTC implementations
is not guaranteed, especially if (or when) the specification is updated, and using the same
framework would eliminate this issue.

5.3 Future Work
The measurements were taken on a single M1135 Axis Network Camera, due to limitations
of the current firmware needed to run WebRTC on the network camera, the authors could
not perform many tests on a device which has less powerful hardware, this may impact the
performance of metrics such as time to stream and latency, since many operations, e.g. encod-
ing video, can be quite intensive. As such we recommend performing the same experiments
on cheaper hardware to ensure that the performance meets the requirements for all of Axis
devices.

As this technology grows within Axis and more devices and servers needs to be con-
nected through WebRTC, it will be important to monitor how the system would behave
before pushing into production. For this purpose it would be beneficial to emulate network
configurations and conditions, as done by García et al. and proposed by Gouaillard et al.[16]
and include this in a testing framework. Furthermore, work has been performed in Analysis
of video quality and end-to-end latency in WebRTC by García et al. [14] that gives an approach
for automating testing for video quality and end-to-end latency which could be included in
such a testing framework to automate testing in both emulated networks and real networks.

49

5. Conclusions

In this work only one camera is displayed at a given time and the client is connected to
the camera through pure peer-to-peer except when a TURN server is relaying. This setup
would make scalability on the client di�cult as the client would have a hard time processing
many concurrent peer-to-peer connections. In future work, it would be interesting to look
at implementing demuxing at the client side to allow for a media server to multiplex the
stream of many cameras and send the media in a single stream. This could increase bandwidth
e�ciency, while also decreasing the amount of ports that has to be used by the device running
the client. Furthermore, the client would not have to decode multiple streams which could
reduce the computational e�orts for the device running the client.

The performance when using TURN to relay the peer-to-peer tra�c was significantly
worse when compared to when the tra�c was sent directly between the peers. As for la-
tency, this is expected as the tra�c is relayed through a server located abroad while when
using STUN the tra�c runs on the local network. However, artifacts and freezes should be
avoidable when using relay and an investigation to why the performance deteriorates while
relaying the tra�c would allow for a great impact of the usability of WebRTC at Axis. As
discussed, we suspect that congestion control will improve these qualities but further inves-
tigation could be done on metrics such as the bandwidth, CPU, and memory requirements
that is required for the TURN server to support the requirements on QoE that is expected
by the users of Axis VMS.

50

Chapter 6

Appendix

51

6. Appendix

52

References

[1] dotMemory: a Memory profiler & Unit-Testing Framework for .NET by JetBrains.
https://www.jetbrains.com/dotmemory/.

[2] dotTrace: .NET Performance Profiler by JetBrains. https://www.jetbrains.com/
profiler/.

[3] Open Broadcaster Software | OBS. https://obsproject.com/.

[4] Opus Interactive Audio Codec. https://opus-codec.org/.

[5] An O�er/Answer Model with the Session Description Protocol (SDP). Rfc, June 2002.
https://datatracker.ietf.org/doc/html/rfc3264.

[6] SIP: Session Initiation Protocol. Rfc, June 2002. https://datatracker.ietf.org/
doc/html/rfc3261.

[7] SDP: Session Description Protocol. Rfc, July 2006. https://datatracker.ietf.
org/doc/html/rfc4566.

[8] Bitmovin Video Developer Report 2018, September 2019. https://go.bitmovin.
com/hubfs/Bitmovin-Video-Developer-Report-2018.pdf.

[9] F. Audet, Ed. Network Address Translation (NAT) Behavioral Requirements for Unicast
UDP . Rfc, January 2007. https://datatracker.ietf.org/doc/html/rfc4787#
section-4.1.

[10] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano. Jattack: a webrtc load testing
tool. In 2016 Principles, Systems and Applications of IP Telecommunications (IPTComm), pages
1–6, 2016.

[11] Taherri Sajjad et al. WebRTCBench: A Benchmark for Performance Assessment of
WebRTC Implementations. Institute of Electrical and Electronics Engineers (IEEE),
2015.

53

https://www.jetbrains.com/dotmemory/
https://www.jetbrains.com/profiler/
https://www.jetbrains.com/profiler/
https://obsproject.com/
https://opus-codec.org/
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc4566
https://go.bitmovin.com/hubfs/Bitmovin-Video-Developer-Report-2018.pdf
https://go.bitmovin.com/hubfs/Bitmovin-Video-Developer-Report-2018.pdf
https://datatracker.ietf.org/doc/html/rfc4787#section-4.1
https://datatracker.ietf.org/doc/html/rfc4787#section-4.1

REFERENCES

[12] Boni Garcia, Francisco Gortazar, Luis Lopez-Fernandez, Micael Gallego, and Miguel
Paris. Webrtc testing: Challenges and practical solutions. IEEECommunications Standards
Magazine, 1(2):36–42, 2017.

[13] Boni Garcia, Luis Lopez-Fernandez, Micael Gallego, and Francisco Gortazar. Kurento:
The swiss army knife of webrtc media servers. IEEE Communications Standards Magazine,
1(2):44–51, 2017.

[14] Boni Garcia, Luis Lopez-Fernandez, Francisco Gortazar, and Micael Gallego. Analysis
of video quality and end-to-end latency in webrtc. In 2016 IEEE GlobecomWorkshops (GC
Wkshps), pages 1–6, 2016.

[15] Boni García, Luis López-Fernández, Micael Gallego, and Francisco Gortázar. Testing
framework for webrtc services. 01 2016.

[16] Alexandre Gouaillard and Ludovic Roux. Real-time communication testing evolution
with webrtc 1.0. In 2017 Principles, Systems and Applications of IP Telecommunications (IPT-
Comm), pages 1–8, 2017.

[17] Hari Kalva. The H.264 Video Encoding Standard. IEE Multimedia, 13(4):86–90, 2006.

[18] Ian Hickson. WebRTC 1.0: Real-time Communication Between Browsers, October
2011. https://www.w3.org/TR/2011/WD-webrtc-20111027/.

[19] IETF. Trickle ICE: Incremental Provisioning of Candidates for the Interactive Connec-
tivity Establishment (ICE) Protocol . Rfc, November 2017. https://tools.ietf.
org/id/draft-ietf-ice-trickle-15.html.

[20] Anna Maria Mandalari, Miguel Angel Diaz Bautista, Francisco Valera, and Marcelo Bag-
nulo. Natwatcher: Profiling nats in the wild. IEEE Communications Magazine, 55(3):178–
185, 2017.

[21] Microsoft Corporation. Host WinRT XAML controls in desktop apps (XAML Islands).
https://docs.microsoft.com/en-us/windows/apps/desktop/modernize/
xaml-islands.

[22] Ryan Poonolly. Pigeon RTC: Setup video chats using carrier pigeons! https:
//cpoonolly.com/pigeon-rtc/.

[23] Stephen M. Blackburn et al. Wake Up and Smell the Co�ee: Evaluation Methodology
for the 21st Century. Communications of the ACM, 2008.

[24] The Matroska Organization. What is Matroska? https://www.matroska.org/
what_is_matroska.html.

[25] Dhanashree Toradmalle, Rohan Singh, Het Shastri, Nikita Naik, and Vishal Panchidi.
Prominence of ecdsa over rsa digital signature algorithm. In 2018 2nd International Confer-
ence on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social,
Mobile, Analytics and Cloud) (I-SMAC), 2018 2nd International Conference on, pages 253–257,
2018.

54

https://www.w3.org/TR/2011/WD-webrtc-20111027/
https://tools.ietf.org/id/draft-ietf-ice-trickle-15.html
https://tools.ietf.org/id/draft-ietf-ice-trickle-15.html
https://docs.microsoft.com/en-us/windows/apps/desktop/modernize/xaml-islands
https://docs.microsoft.com/en-us/windows/apps/desktop/modernize/xaml-islands
https://cpoonolly.com/pigeon-rtc/
https://cpoonolly.com/pigeon-rtc/
https://www.matroska.org/what_is_matroska.html
https://www.matroska.org/what_is_matroska.html

REFERENCES

[26] Jozsef Wazz. How Discord Handles Two and Half Million Concurrent Voice
Users using WebRTC, September 2018. https://blog.discord.com/
how-discord-handles-two-and-half-million-concurrent-voice-users-using-webrtc-ce01c3187429.

[27] World Wide Web Consortium. WebRTC 1.0 API Documentation. https://www.w3.
org/TR/webrtc/.

[28] World Wide Web Consortium, Internet Engineering Task Force. Web Real-Time
Communications (WebRTC) transforms the communications landscape; becomes a
World Wide Web Consortium (W3C) Recommendation and multiple Internet Engi-
neering Task Force (IETF) standards, January 2021. https://www.w3.org/2021/
01/pressrelease-webrtc-rec.html.en.

55

https://blog.discord.com/how-discord-handles-two-and-half-million-concurrent-voice-users-using-webrtc-ce01c3187429
https://blog.discord.com/how-discord-handles-two-and-half-million-concurrent-voice-users-using-webrtc-ce01c3187429
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
https://www.w3.org/2021/01/pressrelease-webrtc-rec.html.en
https://www.w3.org/2021/01/pressrelease-webrtc-rec.html.en

REFERENCES

56

Appendices

57

Appendix A

Data

Individual experiments for SIPSorcery memory usage, MB

Experiment
Minutes Streaming

1 2 3 4 5
1 371.15 374.12 366.83 373.86 375.86
2 360.92 362.74 366.49 367.14 363.23
3 366.79 367.74 364.67 369.97 368.84
4 352.87 354.2 362.54 362.65 363.85
5 373.04 370.68 372.84 377.07 375.91

Table A.1: Data for the Memory usage during five minutes of stream-
ing in the SIPSorcery implementation.

Individual experiments for GStreamer memory usage, MB

Experiment
Minutes Streaming

1 2 3 4 5
1 377.83 394.12 405.09 407.9 408.41
2 361.24 368.52 383.96 384.76 388.5
3 362.19 366.71 371.51 374.29 370.73
4 378.35 384.54 383.52 383.64 382.76
5 369.78 371.91 370.21 373.79 375.2

Table A.2: Data for the Memory usage during five minutes of stream-
ing in the GStreamer implementation.

59

A. Data

1 2 3 4 5

340

360

380

400

420

Minutes Streaming

M
em

or
y

U
se

d
(M

B)

GStreamer Memory Usage During Five Minutes of Streaming

Figure A.1: Individual Experiments on the Memory usage of the
GStreamer implementation.

1 2 3 4 5

340

360

380

400

420

Minutes Streaming

M
em

or
y

U
se

d
(M

B)

SIPSorcery Memory Usage During Five Minutes of Streaming

Figure A.2: Individual Experiments on the Memory usage of the SIP-
Sorcery implementation.

60

1 2 3 4 5

340

360

380

400

420

Minutes Streaming

M
em

or
y

U
se

d
(M

B)

HTTP Proxy Memory Usage During Five Minutes of Streaming

Figure A.3: Individual Experiments on the Memory usage of the
HTTP Proxy implementation.

Individual experiments for HTTP Proxy memory usage, MB

Experiment
Minutes Streaming

1 2 3 4 5
1 343.55 342.86 342.53 343.05 344.84
2 356.89 353.81 356 355.34 355.82
3 347.46 347.74 347.96 345.88 347.04
4 358.08 356.98 357.07 358.17 356.38
5 348.05 346.39 347.41 348.37 347.05

Table A.3: Data for the Memory usage during five minutes of stream-
ing in the HTTP Proxy implementation.

61

A. Data

Sorted Raw Time to Stream Data in milliseconds
GStreamer All SIPSorcery All GStreamer Relay SIPSorcery Relay HTTP Proxy
898.6 789.2 1552.9 1401 5081.6
946.3 821.4 1553 1560.7 5086.7
977.3 823.4 1581.7 1562.2 5088.4
1022.3 829.2 1582.6 1594.1 5091.1
1055.1 832 1597.6 1691.6 5102.3
1095 840.9 1620.9 1700.3 5117.5
1139.9 842 1673.6 1723.5 5125.1
1158.1 842.4 1702 1800.3 5137.7
1158.4 842.4 1712.4 1809.2 5143.7
1165.3 844.8 1739.9 1840.7 5164
1172.7 850.6 1744.3 1858.7 5177.6
1174.8 885.9 1777.6 1886.4 5182.6
1182.4 917.1 1784.4 1940.3 5184.9
1198.6 920 1798.7 1946 5190
1206.7 928.9 1800 3717.1 5190.9
1216.7 929.1 1804 3717.2 5197
1218.8 946 1815 3717.7 5203.8
1235.6 966.5 1825 3726.9 5222.8
1236.1 966.6 1837.9 3727.9 5227.9
1290.3 976 1841 3753.9 5239
1298 990.4 1860.2 3758.7 5248.2
1338.2 1002.1 1880.1 3782.3 5256.5
1370.5 1016.4 1915.8 3808.9 5329.6
1375.9 1046.8 1921.4 3809.6 5354.8
1377.7 1101.4 2066.6 3830.1 5366
1429.9 1360.3 2074.6 3872.4 5373.7
1561.1 1379.9 2164.1 3876.6 5420.9
1572.3 1491.7 2386.4 3907.5 5597.1
1608.7 2085.7 2470.7 3927 5698.9
1844.7 2373.1 2797.7 4488.5 7199.9

Table A.4: Time To Stream data in milliseconds for all streaming
alternatives and di�erent transport policies.

62

Time for the steps in the Time to Stream metric for the HTTP Proxy
Session Establishment Stream Request Time To Stream
2505.6 3191.3 5698.9
2428.5 2773.3 5203.8
2645.7 2706.1 5354.8
2514.8 2730.4 5248.2
2476.3 2718.7 5197
2513.2 2626.5 5143.7
2515.5 2620.1 5137.7
2502.4 2584 5088.4
2479.6 2939.3 5420.9
2476.5 2639 5117.5
2508.7 3082.4 5597.1
2471 2901.7 5373.7
2491 2671 5164
2532.9 2646 5184.9
2524.8 2837.2 5366
2506.3 2579.8 5091.1
2539.1 2585 5125.1
2575.6 4622.3 7199.9
2515.5 2740 5256.5
2544.7 2781.9 5329.6
2486.9 2597.8 5086.7
2478.9 2621.4 5102.3
2473.6 2715.3 5190.9
2529 2648.6 5182.6
2560.3 2662.6 5227.9
2446.2 2633.4 5081.6
2535.9 2681.9 5222.8
2471.5 2714.5 5190
2611.3 2624.7 5239
2465.4 2710.2 5177.6

Table A.5: The time for the two steps in the time to stream metric
for the HTTP Proxy. Note that there is code run between the end of
the session establishment and the beginning of the stream request,
which results in the time to stream to be slightly larger than the sum
of the two.

63

A. Data

Stream Latency during 300 seconds of streaming in milliseconds
Implementation 0 s 30 s 60 s 90 s 120 s 150 s 180 s 210 s 240 s 270 s 300 s Mean
SIPSorcery All 400 400 400 400 397 400 400 401 400 400 400 399.8
SIPSorcery Relay 459 400 462 400 400 481 402 401 399 428 400 421.1
GStreamer All 0 Jitter 400 400 406 406 366 400 400 400 394 400 400 397.5
GStreamer All 200 Jitter 594 606 587 600 549 594 600 664 600 599 640 603.0
GStreamer Relay 0 Jitter 464 452 480 393 409 394 479 478 479 406 408 440.2
GStreamer Relay 200 Jitter 658 662 663 599 680 680 594 600 599 600 600 631.1
HTTP Proxy 364 459 400 466 456 464 400 401 398 400 400 418.9

Table A.6: The stream latency during 300 seconds of streaming.

CPU Usage Data in Pairs, % CPU used.
GStreamer SIPSorcery HTTP Proxy

Start-Up Streaming Start-Up Streaming Start-Up Streaming
3.6 3.5 3.6 3.3 1.8 1.6
3.1 2.2 3.6 3.2 2.4 2
2.9 2.9 3.8 3.3 1.7 1.5
4.1 3.7 3.1 2.7 2.4 2
4.3 4.1 3.2 2.8 2.4 2

Table A.7: The data for the Start-Up and Streaming CPU usage in
the streaming implementations. In the pairs they were measured.

64

Appendix B

Examples and Information

65

B. Examples and Information

List of Native WebRTC Implementations
Name Language Source
WebRTC native APIs C++ https://webrtc.

github.io/webrtc-org/
native-code/
native-apis/

Pion Go https://pion.ly,
https://github.com/
pion/webrtc/

aiortc Python https://github.com/
aiortc/aiortc

RawRTC C++ https://github.com/
rawrtc/rawrtc

GStreamer C https://gstreamer.
freedesktop.org/
documentation/webrtc/
index.html

webrtc-rs Rust https://github.com/
webrtc-rs/webrtc

SIPSorcery C# https://github.com/
sipsorcery-org/
sipsorcery

MixedReality-WebRTC C# https://github.
com/microsoft/
MixedReality-WebRTC

Table B.1: Native WebRTC Libraries

66

https://webrtc.github.io/webrtc-org/native-code/native-apis/
https://webrtc.github.io/webrtc-org/native-code/native-apis/
https://webrtc.github.io/webrtc-org/native-code/native-apis/
https://webrtc.github.io/webrtc-org/native-code/native-apis/
https://pion.ly
https://github.com/pion/webrtc/
https://github.com/pion/webrtc/
https://github.com/aiortc/aiortc
https://github.com/aiortc/aiortc
https://github.com/rawrtc/rawrtc
https://github.com/rawrtc/rawrtc
https://gstreamer.freedesktop.org/documentation/webrtc/index.html
https://gstreamer.freedesktop.org/documentation/webrtc/index.html
https://gstreamer.freedesktop.org/documentation/webrtc/index.html
https://gstreamer.freedesktop.org/documentation/webrtc/index.html
https://github.com/webrtc-rs/webrtc
https://github.com/webrtc-rs/webrtc
https://github.com/sipsorcery-org/sipsorcery
https://github.com/sipsorcery-org/sipsorcery
https://github.com/sipsorcery-org/sipsorcery
https://github.com/microsoft/MixedReality-WebRTC
https://github.com/microsoft/MixedReality-WebRTC
https://github.com/microsoft/MixedReality-WebRTC

v=0
o=- 4385423089851900022 0 IN IP4 0.0.0.0
s=-
t=0 0
a=ice-options:trickle
a=group:BUNDLE video0 application1
m=video 9 UDP/TLS/RTP/SAVPF 96
c=IN IP4 0.0.0.0
a=setup:actpass
a=ice-ufrag:lsJx+7d6hsCyL8K6m8/KbgcqMqizaZqy
a=ice-pwd:zFUTJmx6hNnr/JRAq2b3wOtmm88XERb3
a=rtcp-mux
a=rtcp-rsize
a=sendrecv
a=rtpmap:96 H264/90000
a=rtcp-fb:96 nack pli
a=framerate:30
a=fmtp:96 packetization-mode=1;profile-level-id=42E01F;sprop-parameter-sets=Z00AKeKQDwBE/LNwEBAaUABt3QAZv8wA8SIq,aO48gA==
a=ssrc:3776670536 msid:user3344942761@host-c94b5db webrtctransceiver11
a=ssrc:3776670536 cname:user3344942761@host-c94b5db
a=mid:video0
a=fingerprint:sha-256 AE:1C:59:19:00:7B:C2:1C:85:95:0C:6C:8C:14:E8:67:A4:7D:D0:AE:90:5D:8F:BB:D7:5B:95:49:03:6E:94:8F
m=application 0 UDP/DTLS/SCTP webrtc-datachannel
c=IN IP4 0.0.0.0
a=setup:actpass
a=ice-ufrag:lsJx+7d6hsCyL8K6m8/KbgcqMqizaZqy
a=ice-pwd:zFUTJmx6hNnr/JRAq2b3wOtmm88XERb3
a=bundle-only
a=mid:application1
a=sctp-port:5000
a=fingerprint:sha-256 AE:1C:59:19:00:7B:C2:1C:85:95:0C:6C:8C:14:E8:67:A4:7D:D0:AE:90:5D:8F:BB:D7:5B:95:49:03:6E:94:8F

Figure B.1: An example WebRTC SDP O�er Message

Client Hardware specification:

• CPU

– Manufacturer: Intel

– Architecture: 64 Bit

– Cores: 8

– Clock rate: 3,6 GHz

• Memory

– Size: 16 GB

– Clock rate: 2666 MHz

• Graphics Card:

– Manufacturer: Nvidia

– Name: GTX 1060

– Memory: 3GB DDR5

– Base clock rate: 1,5 GHz

Figure B.2: Hardware used in the benchmarks running the receiving
client.

67

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-02-18

EXAMENSARBETE Integration and Evaluation of WebRTC in an Exisiting .NET Environment
STUDENTER Simon Tenggren, Martin Gottlander
HANDLEDARE Jörn W Janneck (LTH), Tore Paulsson (Axis Communications AB)
EXAMINATOR Per Andersson (LTH)

Utvärdering av WebRTC i moderna
videohanteringssystem

POPULÄRVETENSKAPLIG SAMMANFATTNING Simon Tenggren, Martin Gottlander

WebRTC utvärderas mot samtida videoströmnings-lösningar i Axis .NET miljö för
att undersöka ifall de kan mäta sig mot en av Axis nuvarande lösningar, samt ifall
WebRTC kan användas med de funktionerna som slutanvändarna förväntar sig.

Att hitta den optimala uppkopplingen mellan två
parter som kan sitta på två väldigt olika och re-
striktiva nätverk har traditionellt varit ett knepigt
problem, men med introduktionen av WebRTC
kan dessa uppkopplingar hittas på ett dynamiskt,
säkert, och standardiserat sätt! Vilket är av in-
tresse för både utvecklare och slutanvändare.

I detta examensarbete har WebRTC utforskats
som ett alternativ till en av Axis Communications
videoströmnings-lösningar i deras videohanter-
ingssystem. Genom att integrera videoströmning
över WebRTC från Axis nätverskameror kunde
mätvärden som har en stor påverkan på använ-
darupplevelsen, så som fördröjning och uppkop-
plingshastighet. Samt värden som mäter hur my-
cket extra resurser som krävs vid användning av
WebRTC. All mätning gjordes i den nuvarande
miljön vilket gav en realistisk inblick i hur up-
plevelsen skulle vara hos slutkunden av video-
hanteringssystemen!
Två implementationer av WebRTC utvärder-

ades. Båda under omständigheter som påverkar
vilken sorts av uppkoppling som skapas mot
nätverkskameran. Antingen en reläuppkoppling
där en server agerar som en brevbärare mellan
kameran och datorn, eller en direktuppkoppling
där uppkoppling sker direkt mellan nätverkskam-

eran och applikationen utan en tredje part. (Se

bild) Resultatet visade att WebRTC kan tävla

Direktuppkoppling

Reläuppkoppling

TURN

mot Axis samtida lösning när det kom till för-
dröjning i videoströmmen, och slå Axis lösning i
uppkopplingshastighet. Dock varierade uppkop-
plingshastigheten vid reläuppkopplingar markant,
vilket resulterar i en skiftande upplevelse. Jämfört
med Axis nuvarande lösning var WebRTC dock
mer resurskrävande. De funktioner som förväntas
finnas i Axis videohanteringssystem kunde använ-
das direkt efter integrationen av WebRTC, eller
kräver minimala ändringar, t.ex. i form av byte
av protokoll, för att exempelvis kunna spela upp
ljud som skickas över WebRTC uppkopplingar.

	Introduction
	Related Work
	Limitations
	Contributions
	Description of remaining chapters

	Technical Background
	WebRTC Related Technologies
	Network Address Translation (NAT)
	Session Traversal Utilities for NAT (STUN)
	Traversal Using Relay around NAT (TURN)
	Interactive Connectivity Establishment (ICE)
	Session Description Protocol (SDP)
	Simple WebRTC Connection Establishment
	WebRTC at Axis

	Current Streaming Solutions at Axis

	Approach
	Method
	Implementation
	Common Components
	SIPSorcery WebRTC Implementation
	GStreamer WebRTC Implementation

	Theory
	Evaluating Managed Languages
	Evaluating the WebRTC implementations
	Time to Stream
	Latency
	Memory Usage
	CPU Usage

	Evaluation
	Experimental Setup
	Results
	WebRTC Primitives
	Time to Stream
	Latency
	Memory Usage
	CPU Usage
	Data

	Discussion
	WebRTC Implementation Primitives
	Time to Stream
	Latency
	Memory Usage
	CPU Usage

	Features
	Client Side Dewarping and Digital PTZ
	Audio playback and transmission
	Scrubbing

	Conclusions
	Reflections on the project
	Authors Recommendations
	Future Work

	Appendix
	References
	Appendix Data
	Appendix Examples and Information

