
MASTER’S THESIS 2022
Optimizing regression
benchmarking for network
video products
Thomas Rodenberg

ISSN 1650-2884
LU-CS-EX: 2022-08

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-08

Optimizing regression benchmarking for
network video products

Optimering av regressions benchmarking av
nätverkskameror

Thomas Rodenberg

Optimizing regression benchmarking for
network video products

Thomas Rodenberg
fte13tro@student.lu.se

March 3, 2022

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Amilcar Molina, Amilcar.Molina@axis.com
Masoumeh Taromirad, masoumeh.taromirad@cs.lth.se

Examiner: Per Runeson, per.runeson@cs.lth.se

mailto:fte13tro@student.lu.se
mailto:Amilcar.Molina@axis.com
mailto:masoumeh.taromirad@cs.lth.se
mailto:per.runeson@cs.lth.se

Abstract

Monitoring and maintaining the quality of the software is a critical com-
ponent of the software development process. Identifying which changes to a
codebase introduce performance regressions is essential to address the issues ap-
propriately. However, the process of identifying these changes is increasingly
hard with the growing rate of software release and development.

This thesis is a case study investigating a method of identifying the causes
of performance regressions in the context of large-scale benchmarking of in-
development firmware. Using version control logs and benchmarking tools for
the codebase in question, the method seeks to minimize human intervention in
the identification process. The result was a tool that performs benchmarks for a
set of custom-built firmware. The process assesses at which point in the control
logs a change in performance was introduced. Ultimately, the method aims to
increase the e�ciency and developer-feedback of regression benchmarking in an
applied context.

Keywords: performance benchmarking, regression benchmarking, regression cause iden-
tification, benchmark automation

2

Acknowledgements

I would like to thank Masoumeh Taromirad and Per Runeson at LTH. Both of whom have
been helpful with all things regarding the writing of the report as well as always providing tips
and guidance. I would also like to especially thank my supervisor at Axis Communications,
Amilcar Molina, for always helping me and answering my questions. Further, I would also
like to express my gratitude to Hampus Sandell, Ola Söder, Madhavi Kagganti, and all the
other members of the internal benchmarking team for their support and eagerness to help
during this thesis. Additional thanks to Tomas Westling along with the rest of the people at
Axis, for their help, friendly reception and inspiration.

3

4

Contents

1 Introduction 7
1.1 Problem formulation . 7
1.2 Goal . 7
1.3 Case company . 8

2 Methodology 9
2.1 Research method . 9
2.2 Research components . 11

2.2.1 Literature review . 11
2.2.2 Interviews . 11
2.2.3 Problem conceptualization . 12
2.2.4 Solution . 12
2.2.5 Evaluation . 13

3 Background and related work 15
3.1 Performance and performance regressions 15
3.2 Related work . 15
3.3 Benchmarking . 17
3.4 Software configuration management . 17

4 Benchmarking at Axis 19
4.1 An overview . 19
4.2 The firmware . 20
4.3 The stakeholders . 21
4.4 The benchmarks . 22

4.4.1 The scenarios . 23
4.4.2 The results . 23

4.5 Project specification . 23

5

CONTENTS

5 The solution 25
5.1 The design . 25
5.2 Setup . 26

5.2.1 Input . 27
5.2.2 Database interaction . 27
5.2.3 Reproducing the regression . 27
5.2.4 Evaluating results . 27

5.3 Search . 28
5.3.1 Bisection . 29
5.3.2 Branching conditions . 29
5.3.3 Building firmware . 29
5.3.4 Stopping condition . 29
5.3.5 Result . 30

6 Evaluation 31
6.1 Data collection . 31
6.2 Execution results . 32

6.2.1 Successful results . 32
6.2.2 Non-reproducible results . 34
6.2.3 Inconclusive results . 35

6.3 Resource consumption . 37
6.4 A model for time estimation . 39
6.5 Results from the evaluation . 39

7 Discussion 41
7.1 Conclusions from the evaluation . 41
7.2 The tool in practice . 42
7.3 Data selection . 42
7.4 Future work . 43

8 Conclusion 45

References 47

Appendix A Interview Questions 53

Appendix B Tools 55
B.1 Git . 55

B.1.1 Git bisect . 55
B.2 Docker . 56
B.3 Jenkins . 56
B.4 Yocto . 56
B.5 Bitbake . 57

6

Chapter 1

Introduction

1.1 Problem formulation
In the software development process, monitoring and maintaining the quality of the soft-
ware is critical. However, maintaining a high level of quality is increasingly hard with the
growing rate of software release and development. Software systems failures are often due to
performance issues rather than functional bugs, of which performance regressions are often
the most critical. [9] The introduction of performance regressions is a common occurrence
that needs to be dealt with in a timely manner to keep up the momentum of the development.
Typical performance regressions include increased CPU or memory resource utilization, in-
creased system boot time, and degradation of response time.

Identifying the changes that introduce regressions to a codebase is critical to continuously
assure a certain quality standard of the software in development. This is because it is not until
the cause is identified that a regression can be appropriately dealt with. It often remains a task
carried out after a system is built and deployed in the field or dedicated performance testing
environments. Large amounts of resources are required to detect, locate and fix performance
regressions at such a late stage in the development cycle. Finding ways to identify the cause
of performance changes while minimizing manual human intervention is a field of study
that is of high interest. The number of required resources would be significantly reduced if
developers were notified whether a code change introduces performance regressions earlier
during development.

1.2 Goal
This project aims to investigate and provide a suitable way for identifying the code-commit
that is responsible for a given regression. Addressing this problem will make the development
of new firmware easier for the development teams since they have an entry point to the cause

7

1. Introduction

of the performance problem. Ultimately the product of this work should be a deployable tool
that potentially could be run daily together with Axis current benchmarking suites or serve
as a Proof of Concept for a future potential tool. Additionally, this report will present a case
study in how to automate regression cause identification while answering and discussing the
following questions:

RQ1: How is the benchmarking carried out currently at Axis? What are their main
concerns?

RQ2: What would be the main functionalities of the target solution, and how would
it address the relevant challenges?

RQ3: In what ways would the solution a�ect their current practices? Is it a feasible
tool for Axis to utilize, and if so, in what capacity?

1.3 Case company
Axis Communications AB is a leading producer of network-oriented technology with a vast
array of products, mainly consisting of surveillance cameras. The company was founded in
Lund 1984, which still houses its principal o�ce and headquarters. As of 2021, they employ
over 3800 people in more than 50 countries worldwide. Since they outsource their manu-
facturing, the main focus of their business is the design and development of the hardware
and software of their products. This makes software quality key to their success, and a lot of
resources are directed into quality assessment of various kinds.

A large and growing base of video network devices means new products are constantly
developed and software updates are regularly released. To validate the devices’ quality and
functionality, extensive testing is performed continuously. New firmware is built daily and is
then benchmarked to detect changes in the performance as soon as possible. Since they have a
large base of devices receiving software updates regularly, it is very hard to e�ectively identify
and diagnose the root cause of performance regressions, which is currently done manually.
A promising improvement is to automate the process of identifying the cause of regressions,
and hence, Axis looks for ways to implement this within their benchmarking practices.

8

Chapter 2

Methodology

2.1 Research method
Van Aken [28] claims that a research paradigm refers to the combination of the types of
research questions, the methodologies allowed to answer them, and the nature of the pur-
sued products. He further claims that scientific research can be separated into three major
paradigms:

1. Formal sciences

2. Explanatory sciences

3. Design sciences

Within this framework, formal sciences refer to empirically void fields such as mathemat-
ics, while explanatory sciences describe the empirical sciences. However, the goal of design
science is to develop knowledge for the design and development of artifacts. Examples of the
classes of problems design science aim to address are; construction problems or improving
the performance of existing entities, that is, to solve improvement problems. For example,
engineering sciences and medical science fall into the realm of design science.

Since software and software development are designed artifacts, Runeson et al. [22] argue
that the research related to software (and software development) can be appropriately framed
as design scientific. However, the boundary between explanatory and design sciences is not
always clear. Research often includes elements explaining a naturally occurring phenomenon
for which an intervention is designed and validated. However, the software engineering re-
search ultimately aims to develop and validate practically practical methods, technologies,
and tools to provide improved software engineering practices for industry.

The design scientific approach can divided into the following sub components:

9

2. Methodology

Figure 2.1: An illustration of the interplay between problem and
solution as well as between theory and practice in design science
research." by Engström et al. "How software engineering research
aligns with design science : a review." [13], licensed under CC BY 4.0

Problem conceptualization is the activity of analyzing the problem, identifying its
constituent parts and the context of which it is part. While it serves as a basis for the
research activity, it is not a purely descriptive endeavor and is often intertwined with
the activity of solution design.

Solution design refers to the activity of formulating a solution to the problem at hand.
Here, many alternative solutions, previous research, and case studies are considered.

Instantiation refers to the activity of implementing a solution to a specific problem.

Abstraction refers to the activity of describing the key design decisions for a solution.

Empirical validation refers to the activity of evaluating the implemented solution in
its context. The primary goal of empirical validation is to assess whether the proposed
solution is feasible for the given problem. The scope of the design knowledge gained in
a study can be extended by systematically extending the validation scope in subsequent
studies.

This model is, however, not strictly ordered, and di�erent activities can be revisited mul-
tiple times during the course of research. Design science is a paradigm used in many di�erent
research fields. It is instantiated in many di�erent variants. These points reflect mainly what
is most relevant within software engineering. Figure 2.1 depict how the design scientific ac-
tivities can interact in order to create knowledge.

10

https://creativecommons.org/licenses/by/4.0/

2.2 Research components

Each of these activities was applied to some extent within the execution of the thesis.
However, the activities that were of main focus were problem conceptualization and solution
instantiation. Solution design and instantiation were conducted in unison while, at each step,
empirically validating each iteration. Once a proper instantiation was made, the activity of
abstraction and a more systematic validation were conducted.

2.2 Research components
2.2.1 Literature review
An essential step of planning and conducting a research project is first to review the available
literature on the intended subject. To do this, Thiel [27] proposes a series of important steps:

1. Keyword searching

2. Selection of relevant papers

3. Review of paper abstract for relevance

4. Review of complete paper for relevance

5. Critical analysis of the results as they apply to the new research project

In this project, these steps were followed when selecting relevant papers. This was done
with keywords such as; performance regression, benchmarking software, regression benchmarking,
performance testing, software performance, microbenchmarks software, regression cause identification.
When read, the papers found were organized according to relevance. When the most relevant
papers were identified their references were reviewed for further information.

2.2.2 Interviews
In case studies, interviews are often an important source of data. In interview-based data
collection, a series of questions are asked to a set of participants about the areas of interest in
the case study. These interviews can be divided into unstructured, semi-structured, and fully
structured. [21] In an unstructured interview, the interview conversation will develop based
on the interest of the subject and the researcher. In a fully structured interview, all questions
are planned in advance and asked in the same order as in the plan.

In a semi-structured interview, questions are planned but are not necessarily asked in
the same order as they are listed. The development of the conversation in the interview can
decide in which order the di�erent questions are handled and allow for certain improvisa-
tion and exploration of the studied subject. Further, concerning the scope of the questions,
interviews can be structured according to three general principles: the funnel, the pyramid
and the time-glass. [23] The funnel model begins with open questions and progresses towards
more specific ones during the course of the interview. The pyramid model begins with spe-
cific questions but moves towards open questions. The time-glass model begins with open
questions, tightens the structure in the middle, and opens up again at the end of the interview.

11

2. Methodology

The main goal of conducting interviews at Axis was to better understand how their
benchmarking is conducted, how performance issues are identified and dealt with, and how
they hope to improve that. Three semi-structured interviews were conducted with two mem-
bers of the internal benchmarking team and the platform manager, who all deal with these
issues daily. All interviews in this thesis were held in person and were not recorded. The
structure of the interviews was based on the time-glass model. Appendix A presents the gen-
eral interview outline, including the questions that all the interviews had in common. Each
interview focused on di�erent aspects of the problem and included di�erent questions with
di�erent overall scopes.

2.2.3 Problem conceptualization
Each problem needs to be understood within its conceptual framework. The outcome of the
problem conceptualization is expressed in terms of a set of problems with a corresponding set
of target solutions. For instance, a problem could be described in terms of a group of target
users, their questions and tasks, and their measurements or data. Therefore, problem con-
ceptualization is closely connected to the solution design and can usually not be performed
in isolation. Further, the conceptualization often needs to be repeated at di�erent abstrac-
tion levels depending on the solution. The first level would be the stakeholder’s problem
description and, in the case of a tool, reaching the level of implementation details. [22]

In order to successfully carry out this project, a su�ciently broad conceptualization of the
current methods of regression cause identification in use at Axis was needed. A set of criteria
for a target solution could eventually be formulated from the literature review, the interviews
and a review of available written material internally at Axis. Insights into the problem were
also gained from attending daily meetings held with the internal benchmarking team, where
the latest benchmarking results were discussed.

2.2.4 Solution
By its nature, the theoretical contributions of design science research are context-dependent.
The knowledge gained consists of prescriptive recommendations most often captured in the
concept of technological rules. [22] Van Aken defines a technological rule as "a chunk of gen-
eral knowledge, linking an intervention or artifact with a desired outcome or performance in
a certain field of application." This means that the prescribed intervention is not exclusively
for a specific situation but a general prescription for a class of problems, although it might
be a limited one. [28]

The design knowledge within the technological rule aims to help software engineering
professionals design customized solutions to their specific problems. One could generalize
it to be the stakeholder’s desired e�ect of applying a potential intervention in a specified
context. Expressing this explicitly can help identify and communicate the core value-creating
aspects of the research. [22]

To be able to provide an answer to RQ2 and RQ3 a target solution to the problem was
needed. An instantiation of this target solution was made during the project, where the
implementation was made in phases. Di�erent parts of the final solution were produced and
assessed separately at first. Much of the implementation was heavily based on the di�erent
tools researched within the scope of the problem conceptualization. This meant that the

12

2.2 Research components

activities of solution design and implementation were partly performed in conjunction with
each other.

2.2.5 Evaluation
Within the design scientific paradigm, the intervention is the object of the validation study,
exposing the product of the project to its intended context. The context refers to where the
research is conducted, and the expected e�ect defines the validation criteria. This indicates
that a real software engineering context as a validation context is suitable for design science
research. For this reason, case studies have been brought forward as the natural research
methodology in design science. Extending the scope of the validity for intervention is done
by either applying it to new contexts or by reasoning about its validity within another context
by comparing its key characteristics. [22]

One of the results of the conceptualization was a specification of requirements for this
thesis project. Evaluating whether these were met, however was not an inherently obvious
process. An empirical validation of the solution in its intended context was made utilizing
the backlog of known performance regressions. This approach of evaluating the solution was
informed by the results of the interviews conducted at Axis. The results of this were to be
used to validate whether the intended functionalities of the target solution, with respect to
RQ2, were present and, additionally, serve as basis for a discussion regarding RQ3.

Data was gathered with the goal of evaluating the overall utility of the solution. The
produced data consisted of:

• The results from the benchmarks conducted during execution of the solution.

• The resulting conclusions reached (The identified cause, or lack there of).

• Additional data relevant for the process and its execution (which commits were built,
benchmarked and in which order).

• The time spent executing the distinct stages of the process.

Assessing the validity of the results could not be done objectively since known regression
causes were not available for the corresponding backlog of regressions. Evaluation of the
individual results were therefore to a large extent done manually.

13

2. Methodology

14

Chapter 3

Background and related work

3.1 Performance and performance regressions
In the ISO 25010 standard, performance e�ciency is defined as the performance relative to
the amount of resources used under stated conditions. This characteristic is one of eight key
software quality components and is composed of the following sub-characteristics: [7]

Time behaviour - degree to which the response and processing times and throughput
rates of a product or system meet requirements.

Resource utilization - degree to which the amounts and types of resources used by a
product or system meet requirements.

Capacity - degree to which the maximum limits of a product or system parameter meet
requirements.

Although performance regressions are not all bugs, they usually have a direct impact
on the experience of a system and large software systems failures have been found to more
often be due to performance issues rather than functional bugs. Dealing with performance
regressions remains a task that is carried out after a system is built and deployed in the field
or dedicated performance testing environments. This means that large amounts of resources
are required to locate and fix performance regressions at such a late stage in the development
cycle. The amount of required resources can be significantly reduced if developers are notified
whether a code change introduces performance regressions earlier during development. [9]

3.2 Related work
Within the context of industry, the goal of regression testing is generally to get confidence
that the system changes have not introduced unwanted system behavior rather than to find

15

3. Background and related work

explicit errors. The regression testing scope depends on the projects’ timing and risk analysis
for incoming changes. Minhas et al. concluded that test automation is mainly reliant on
in-house tools, allowing for faster and better alignment between the testing process, testing
strategy, and tool support. [19] Further, test strategy definitions were often to be an ad hoc
practice among the companies involved in the study, which confirms the need for in-house
and flexible tooling.

E�orts to, with greater precision, identify and detect regressions in software performance
have been many and ranged from a wide array of di�erent approaches. In a study by Chen
and Shang, [10] a statistical performance evaluation on a large number of individual commits
from ten releases of Hadoop, and additional commits from five releases of RxJava was con-
ducted. After first filtering out the irrelevant commits, they performed benchmarks on four
physical performance metrics; CPU usage, Memory usage, I/O read, and I/O write to measure
performance. In order to minimize noise, they repeated the execution of their benchmarks
30 times independently and used a statistical approach to evaluate whether or not a perfor-
mance regression had been introduced. By comparing performance metrics that are measured
during the tests or performance microbenchmarks, they were able to identify whether any of
the studied commits introduced performance regressions. These e�orts were made to collect
a sample of performance regression introducing commits for further investigation. [10]

Daly et al. [11] in their used a particular change point detection algorithm called E-
Divisive mean to detect performance changes. The implementation was made to a system
that runs thousands of benchmarks periodically, usually every 2 hours or 24 hours, produc-
ing one or more scalar values as a result. Additionally, they also had to integrate it into an
existing performance testing system and visualize the results so that engineers could triage
and use the gained information. Through these e�orts, they were able to drop their false posi-
tive rate for performance changes while qualitatively making the entire process smoother and
more productive, catching smaller regressions. [11]

Another study by Shang et al. [25] proposed an approach to automatically detect perfor-
mance regressions using regression models on clustered performance counters. The approach
analyzes all collected counters instead of focusing on a limited number. Some of these perfor-
mance counters were, for instance, CPU and memory. First, the counters were clustered to
determine the number of which was su�cient to truly represent the performance of the given
system. Statistical tests were then conducted to select the target performance counters for
which the regression models were then built. The models were then applied to new versions
of the system to detect performance regressions. The approach could successfully detect both
injected and real performance regressions in the two case studies, one open-source and one
enterprise. [25]

A study by Heger et al. [15] uses an approach that builds a hybrid regression detection
strategy where the main components are bisection of revision graphs and analysis of per-
formance annotated call trees. Their method integrates root cause analysis into the existing
development infrastructure using performance-aware unit tests and the revision history. As
a part of the approach, the Git bisection algorithm was extended to identify the changes that
introduced a performance problem. [15]

Additionally, Alcocer et al. [24] proposed an interactive visualization to compare perfor-
mance variations caused in a set of software versions and performed controlled experiments
to show the viability of their approach when identifying and understanding performance re-
gressions and improvements. [24] Another approach suggests prioritizing test cases in perfor-

16

3.3 Benchmarking

mance regression testing for collection-intensive software, where test prioritization is based
on performance impact analysis that estimates the performance impact of a given code revi-
sion on a given test execution. [20]

3.3 Benchmarking
In the book Systems Benchmarking, Kounev et al. define a benchmark as follows: “A bench-
mark is a tool coupled with a methodology for the evaluation and comparison of systems or
components with respect to specific characteristics, such as performance, reliability, or secu-
rity.” [17] Using the definition of performance expressed in section 3.1, better performance
would mean more work accomplished in either shorter time, using fewer resources or with
increased capacity. Depending on the context, high performance may involve; high respon-
siveness when using the system, high processing rate, low amount of resources used, or high
availability of the system’s services.

Benchmarks are mainly characterized by: workloads, metrics, and measurement method-
ology. Workloads determine under which usage scenarios and conditions measurements
should be performed. The metrics determine what values should be derived based on mea-
surements to produce the benchmark results. Lastly, the measurement methodology defines
the overarching process to execute the benchmark, collect measurements, and produce the
final results. If one were to limit the tests to some specific system component, that would
constitute a microbenchmark. [17]

For best usability, a complete regression benchmarking process should be as automatic
as possible so that human attention only is needed when an anomaly has been detected. The
requirement of automation means that a machine has to obtain, compile, and deploy both
the software under development and the benchmarks, execute the benchmarks on the soft-
ware under development, monitor the execution, and store and analyze the results. To meet
these challenges, Kalibera et al. [16] proposes the use of generic benchmarking environments
that supports automated deployment, execution, and monitoring of benchmarks and related
software. This should also be applied to repositories for storing data in a standard format
that serves as a data source for analysis and visualization tools.

This thesis has been heavily focused performing benchmarks and using their results to
draw various conclusions regarding the codebase under investigation.

3.4 Software configuration management
As modern software development often is conducted by large teams and complex organi-
zations, it is common for many versions of the same software to be deployed in di�erent
locations or systems. Since its often necessary to develop di�erent parts of the software in
parallel, to locate and fix bugs, it is of absolute importance to get, build, and run various
versions of the software to determine in which version or versions the problem occurs. [12]

Software configuration management, SCM, is the process of tracking and controlling
software changes. A configuration management system must include a history of changes
made to each file. When working correctly, this can guarantee the reproducibility of a piece of
software across many hosts. Basic SCM requirements encompass the four categories described

17

3. Background and related work

below.

1. Version control - the process of keeping track of all changes to every file, supporting
parallel development by enabling easy branching and merging. Every type of object
that evolves in the software development environment must be version-controlled.

2. Environment management - providing a consistent, flexible, inexpensive, and repro-
ducible environment to compile, edit, and debug software. Environment management
is the process that selects and presents the appropriate version of each file in a way that
enables the development tools to work smoothly.

3. Build management - the process of building software components and also documents
the contents of each software build. The documentation must be complete enough and
reliable enough to recreate the environment that created the build in the future (for
making patches and debugging problems).

4. Process control - a set of policies and enforcement mechanisms to ensure that the soft-
ware is developed according to a defined development methodology. Process controls
include; monitoring, notification, access control, and reporting. These controls must
be flexible, enabling development organizations to customize their environment to
support their chosen policies. [18]

The concept behind the solution presented in this thesis relies on the bisection of com-
mits in version control logs to draw various conclusions regarding the codebase under inves-
tigation. Furthermore, environment management was critical to the implementation of the
solution.

18

Chapter 4

Benchmarking at Axis

This chapter presents an overarching picture of the current benchmarking practices at Axis,
the case company. The information presented is a combination of the results of semi-structured
interviews, discussions with the projects supervisor and research into the written documen-
tation which has been available.

4.1 An overview
At Axis, much e�ort and resources are spent ensuring the quality of their products. Di�erent
teams ensure di�erent aspects of performance at di�erent levels of development and depart-
ments. The internal benchmarking monitors’ the performance of a large selection of their
products once they are in production. Since firmware for these products is continuously be-
ing developed, a system is in place at Axis to build and test new firmware daily. This means
that changes can be introduced from any given day to the next.

It is then the Release Coordinators’ job to look over the results of these benchmarks to
assess whether a regression has occurred in any of the relevant metrics. The results are or-
ganized in plots similar to figure 4.1, which monitor a set of the most critical metrics. If an
issue is detected, it is of high priority to, as accurately as possible, identify the cause and no-
tify the person or team responsible. That way, avoidable regressions can be reverted swiftly
and e�ciently. Regressions can, however, be caused by factors other than firmware, such as
issues with the network, or changes to the benchmarking software. These factors need to be
excluded before an issue can be appropriately tracked. New findings are, for this reason, usu-
ally discussed in the daily meeting with the benchmarking team before further investigation.

Once a regression is identified, an email is sent to the development team responsible,
and if they acknowledge the issue, a ticket (task) can be produced to address it. Issues are
tracked through Jira [1], a proprietary issue tracking product developed by Atlassian that
allows bug tracking and agile project management. Members of the internal benchmarking
team estimate that a weekly average of three potential regressions are detected, of which

19

4. Benchmarking at Axis

A B C D E F G H I J K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
·106

Version

Sc
en

ar
io
.M

et
ri

c.
Re

su
lt

Product 1
Product 2
Product 3

Figure 4.1: An example of how the performance for a given metric
can vary for three di�erent products. Product 1 is stable, Product 2
has a change in performance, which is introduced in version H and
is reverted in version J, and Product 3 has a far less obvious and noisy
performance result.

one usually results in a ticket. Cases where a ticket is not produced are, for instance, when
regressions in performance are anticipated, such as when new features are introduced.

Regression findings are noted and kept in a table regardless of whether the issue is ad-
dressed, or a ticket is made concerning it. An entry in the table specifies which product
or products, firmware version, and metrics a given regression has been observed. The table
essentially contains the documented history of notable regressions from the internal bench-
marking at Axis. An overview of the general process can be found depicted in figure 4.2.

4.2 The firmware
Firmware is a specific class of computer software that is built into an embedded systems
product and stored in nonvolatile memory, such as ROM, EPROM, or FLASH. Firmware is
also known in the industry as embedded software or low-level software since it provides low-level
control for a device’s specific hardware. Major firmware components optionally include an
operating system, kernel, device drivers, and application code. [26]

The firmware referred to in the context of this project is the firmware which is in develop-
ment at Axis. The firmware are updated five times a week, for each product, through a shared
software platform. The software platform controls, builds and maintains the firmware for a

20

4.3 The stakeholders

all the products that use Axis OS. Axis OS is the operating system used by a large selection of
Axis products. As described in figure 4.2, each update to any of the products on the platform
is made through the platform and each new firmware version is built through the platform.

Every daily firmware update has a version, which is shared by all products and represents
a snapshot of the state of the platform at the time the firmware was built. This is practical
since large amounts of source code are shared amongst a large number of products. Further,
an earlier version of any firmware can easily be accessed and reproduced through the version
control history of the platform. Each daily firmware update is the main subject of the internal
benchmarks.

Figure 4.2: The role of the internal benchmarks at Axis is to provide
feedback regarding the performance of their products to the devel-
opers of their firmware. The coloured backgrounds represent the
domain of the department which labels them.

4.3 The stakeholders
At Axis, the department responsible for the internal benchmarks is the Data Diagnostics Man-
agement department (DDM). DDM’s role at large is to gather and analyze data related to Axis

21

4. Benchmarking at Axis

products’ performance. The internal benchmarking team consists of a group of six engineers
from the Data Diagnostics Management department and one engineer from the Platform Man-
agement department, the Release Coordinator. This team conducts daily meetings where the
results of the latest benchmarks are reviewed and discussed. The benchmarking team devel-
ops and maintains the benchmarking software and makes sure that it runs smoothly every
day. The Platform Management department is responsible for managing the Axis OS, which
partially means making sure that there is a daily firmware build for each product that is
working and is stable.

All parties involved in the development of the products at Axis have a stake in how the
performance of the products they are working on evolves on a regular basis. As one of the
team members puts it when asked whom the stakeholders were for the internal benchmark-
ing: "Everyone." The main stakeholders are, however, the Platform Architects, the Development
Teams, and ultimately, the Global Product Manager of Axis OS.

The main channel of communication for the benchmarking team with its stakeholders is
maintained by a quarterly report produced by DDM at large, containing information on their
activities, including the benchmarks. This ensures that all interested parties are kept aware of
their activities and have access to their most important new developments. A meeting is also
held in conjunction with this report where important stakeholders and development teams
can attend after reading the report. The report is produced by an Experienced Engineer from
the benchmarking team, and their most significant findings, changes, and issues are included
in the report. Additional communication with the development teams is maintained through
the Platform Coordinator when performance changes are anticipated or detected.

4.4 The benchmarks

The benchmarking tool currently used at Axis was put into use in 2016 to monitor the per-
formance of their products more e�ciently and to be able to catch regressions as soon as
they are introduced. Only a handful of roughly 7-20 products with the most functionality
were tested on introduction. At the time of writing, however, over 100 di�erent products
are being benchmarked and monitored daily. These benchmarks are carried out three times
a night, five times a week for all the relevant products. The time consumption of one bench-
marking suite is, on average, about 1 hour and 30 minutes. The tests are carried out over the
network using an open-source automation tool called Jenkins, which enables scheduling jobs
having jobs trigger each other, among other things. [4]

The benchmarking environment is kept as generic as possible, using a standardized code-
base for every product, much like what Kalibera et al. recommend. [16] That is, a Docker
image is built of the environment and stored in a database, which can then be easily de-
ployed on a Jenkins server. The benchmarks are conducted over the network, which is how
the products are utilized in practice. The process iterates through a set of predefined scenar-
ios gathering measurements relating to the performance of the products. Some of the main
principles regarding Docker and Jenkins are included in Appendix B.

22

4.5 Project specification

4.4.1 The scenarios
Several di�erent test scenarios are run while extracting the measurements to gain a su�-
ciently detailed understanding of the realistic performance of the products. These scenarios
include, for instance, idle, high-load, etc. An entire suite usually runs for about an hour and
a half, logging over 800 separate metrics over 16 scenarios. For some noisy metrics, mea-
surements are made several times to produce an average result. Each benchmarking scenario
focus on a di�erent aspect of the performance of the products. Examples of some of the main
scenarios utilized in this project are:

Boot-time: Collects various measurements relating to the startup time of the unit.

Idle: Scenario collecting all measurements while the unit is turned on but idle, with
no outside interaction or streams running.

Edge: Scenario measuring resource consumption while enabling motion detection,
mainly collecting measurements relating to CPU usage and availability of memory.

High-load: Unit running a high load, collecting measurements relating to CPU usage
and availability of memory.

Rtsp-response: Scenario measuring response time and latency with regards to the real-
time streaming protocol.

The benchmark scenarios can also be executed in isolation, which means that if one is
interested in validating the performance of a specific metric, it would not be necessary to
run the entire one and a half hours of benchmarks to do so. These are what will be referred
to as microbenchmarks in this report.

4.4.2 The results
The results produced by the benchmarks are stored in JSON files, which are loaded to a
database, and inspected through a visualization tool. The visualization tool is highly cus-
tomizable, making it easy to adjust and filter what is monitored, which is important when
tracking the results of over 100 products. The primary metrics being closely monitored are;
boot-time, system ready time, CPU-usage, flash utilization, real-time streaming latency, memory
available, firmware size, and parameter response time.

For easier inspection, some metrics are tracked as groups based on which integrated cir-
cuits the products operate. Since these products share most of their hardware this usually
means that they share large amounts of their functionality and software as well. Tracking
groups of products can be helpful when the results of a metric are particularly noisy since the
results can get an average of a more significant number of measurements.

4.5 Project specification
From the various interviews and discussions with the projects supervisor at Axis, it became
clear that the focus of this thesis would be on aiding the identification of the cause of regres-
sions in the benchmarked products’ performance. The units of possible causes of regressions,

23

4. Benchmarking at Axis

in this case, were the individual commits to the Axis OS platform. Identifying the cause of a
regression would incorporate; building firmware from commits to the platform and bench-
marking these to be able to pinpoint which commit introduced the regression.

The process was to be fully automated while being available as a tool at the disposal of
the people for whom it would be relevant to use. The tool should be containerized in such
a way that it is accessible and executable on an automation server, similar to their existing
benchmarking practices. That way, anyone can utilize it whenever a noticeable regression
has occurred with minimal e�ort. The main criteria for the thesis implementation eventually
boiled down to the following:

1. Benchmarks conducted on firmware built from intermediate commits to the Axis OS
platform

2. Automated search for the commit where a given performance regression was intro-
duced.

3. An implementation containerized and deployed on an automation server.

These criteria relate to the second question raised by RQ1, the main concerns with the
benchmarks and how to develop their process further. The criteria also serve as a basis for
an answer to the first question in RQ2, addressing some of the main functionalities of the
target solution.

24

Chapter 5

The solution

This chapter presents an overview of the solution to the problem this thesis sets out to ad-
dress. To aid in the abstraction of the overall solution, it has been separated into a set of
distinct components.

5.1 The design
The result of this project is a tool that automatically performs a given benchmark for a
set of custom-built firmware to pinpoint where a change in performance has been intro-
duced. Much like Chen and Shang’s study [10], the design utilizes the concept of running
microbenchmarks on commit level to be able to evaluate where regressions in performance
have been introduced. Since the benchmarking tool in current use at Axis has the option
to run each scenario individually, these were utilized to reduce the tool’s overall resource
consumption.

Similar to the study by Heger et al., [15] the tool uses a variation of the git bisection
concept to find which commit in the version control logs to evaluate next. Firmware from
the commits intermediate to the two relevant versions is built. These are then benchmarked
to assess which direction in the version control logs to branch next. The search process is
repeated until two adjacent commits have been benchmarked, and the search is unable to
branch further. At that point, the solution will have an answer to where the regression is
introduced in the version control logs.

To further meet the specification the tool should be simple to use and executable on
an automation server. This meant containerizing it so that it could be run from virtually
any environment. Containerizing the source code together with a suitable environment is
helpful for the maintainability of the project and its ease of use. The structure of the process
is a straightforward procedure that takes a set of input parameters based on which it goes
through a set of predefined stages necessary to reach a conclusion. The procedure has divided
into two parts: Setup and Search.

25

5. The solution

Figure 5.1: The execution flow overview of the solution.

5.2 Setup

The setup stage handles input information, loads needed information from the databases, and
verifies whether or not the performance regression from the previous benchmarking results
can be reproduced. When triggered, the setup also performs a cleanup and preparation of the
tools environment. A concise description of the setup process is depicted in the upper half
of figure 5.1. The main components of the setup are presented in the following subsections.

26

5.2 Setup

5.2.1 Input
For a tool of this nature to be able to run properly, certain information has to be provided.
The input parameters needed for the tool to execute are:

Metric - specifying for which benchmarked metric the regression has been detected.

Product - specifying which product model to use.

Unit IP - specifying the IP-address for the unit to use.

Version - specifying for which version of daily development firmware the regression
first was observed.

The product and metric are needed as input parameters to get the reference results from
the database, which contains the benchmarking results. Since the benchmarks are conducted
over the network with a physical machine, the IP-address of a specific unit is needed. How-
ever, the IP-address parameter is provided automatically when the tool is executed on the
automation server.

5.2.2 Database interaction
All results from the internal benchmarks are stored in a database. The old results for the
relevant versions and product are needed as a reference to evaluate any new benchmarking
results. These results are retrieved from the database. Firmware for the two relevant versions
can are also retrieved from a separate database which saves a significant amount of time
compared to the process of building them.

5.2.3 Reproducing the regression
To properly search for the cause of regression, benchmarks for the previously run firmware
versions need to be executed again to see if the regression can be reproduced. The main rea-
son for this is that regressions can be introduced by factors other than the changes in the
firmware, such as broken product units, bad network connection, or changes to the bench-
marking software. To better filter out irrelevant causes of regressions, the microbenchmark
associated with the given metric is executed. These results are then compared to the ones
previously gathered in the regular benchmarking suites.

5.2.4 Evaluating results
When the tool is triggered, it is assumed that a regression is present in the reference results
for the given product and metric. The results of each new microbenchmark are compared
to reference results. The reference results correspond to an average of the results from the
nightly benchmarks for the given version and metric. A regression is considered reproduced
if the results show that:

|Are f − Atool | < |Bre f − Atool | ∧ |Bre f − Btool | < |Are f − Btool |

27

5. The solution

or

|Btool − Atool | > |Bre f − Are f | × 0.8

Where B represents the current version that demonstrated a regression and, thus, is under
the investigation. A represents the version preceding it. Are f denotes the old result (from the
database) for version A and Bre f for version B. Atool and Btool denote the new results from
the microbenchmarks conducted as a part of the tool’s execution. All results correspond to
the benchmarking metric specified in the input.

Since the assumption is made that a regression is present in the reference results, the over-
all evaluation is kept simple. The evaluation also supports missing results since a firmware
update might have caused the error.

5.3 Search
If the same regression is reproduced, the goal is to search for the commit responsible for the
regression. The method used to pinpoint where the regression was introduced is a variation
on the binary search algorithm. The process aims to, in an iterative manner, branch closer
and closer to the commit which introduced the regression. For each step of the search, a
new firmware has to be built, and a new microbenchmark has to be conducted. A concise
description of the search process is depicted in the lower half of figure 5.1. A visualization of
the search process is presented in figure 5.2 The main components of the search are presented
in the following subsections.

Figure 5.2: The search process for the regression cause identifica-
tion process. A and B are firmware versions and A-1 to A-15 are the
individual commits which separate them.

28

5.3 Search

5.3.1 Bisection
Firstly, the platform repository is cloned, and the commit logs for the relevant versions are
extracted and processed. As the title suggests, a commit at the center of two previously
benchmarked points in the version control history is selected. Which two points to bisect
depends on which "direction" the latest result indicate according to the branching condition.
This principle is shown in figure 5.2. The commits to the platform are all the same regardless
of which product or metric, is dealt with and within the scope of this project, all commits
are treated as equally relevant. The concept is based on the Git Bisect functionality in git, for
which a brief summary is included in Appendix B.

5.3.2 Branching conditions
With each consecutive benchmark result, the search continues, branching to either before
or after the latest benchmarked commit based on whether the regression is present or not.
Similar to the earlier evaluation, a regression is considered reproduced if the results show
that:

|Atool −Cn| > |Btool −Cn|

Where Atool and Btool once again denote the results from the microbenchmarks for the
specified metric, conducted as part of the tools setup stage. Cn denotes the corresponding
results from the commit under consideration. The comparison is made with respect to the
results produced when reproducing the regression. This means that they will have been pro-
duced using the same microbenchmark on the same machine under similar circumstances,
which makes the results less susceptible to variations due to outside factors compared to the
previous results from the database.

If the condition isn’t met, the assumption is made that regression is introduced at some
point after the commit.

5.3.3 Building firmware
In the platform repository, the tools needed to build firmware are included. The wanted
commit can be built using Bitbake once it has been "checked out". Provided with the speci-
fied product for which to build firmware, the building process is automatic and results in a
firmware image that can be loaded into the product. The process of building the firmware
is slow and can sometimes result in an error. When an error occurs, the tool automatically
changes to an adjacent commit if an error is encountered when building firmware. Figure 5.3
depicts the principle components for this process. A brief presentation of Bitbake is included
in Appendix B

5.3.4 Stopping condition
Once the search has nowhere to branch, that is, when two adjacent commits have been bench-
marked, and the regression is present in the latter commit and not the former, the stopping
condition has been met. The figure 5.2 shows an example of this scenario, where the results

29

5. The solution

Figure 5.3: For the purposes of this thesis, the needed components
for building new firmware are a suitable environment, a commit
from which to build and the intended product the firmware is for.

for commit A-4 and A-5 indicate that the stopping condition has been met. Since A-5 is
the earliest commit where the regression has been detected, this commit is concluded to be
responsible for its introduction.

Additionally, edge cases such as when building errors are present between commits where
the results indicate that the regression has been introduced somewhere in between also stop
any further search. If building errors have been produced with every build between two
commits where the results indicate that the change has been introduced, the process also
stops.

5.3.5 Result
Information needed during the process of running the tool, such as which metric to evaluate,
which benchmark scenario configuration to execute, the results from the benchmarks, and
commit logs, are all stored in an object shared by the di�erent components of the tool. This
information, together with the outputs of the builds and benchmarks, is available in real-time
during the execution. The shared data object and the resulting identification is outputted
and uploaded to a database once the process is finished. This way, the results that the iden-
tification is based on can be inspected and evaluated both during and after the process is
finished.

30

Chapter 6

Evaluation

Evaluation refers to the activity of empirically validating the implemented solution in its in-
tended context. The primary goal of empirical validation is to assess whether the proposed
solution is feasible for the given problem. For this thesis, that meant executing an implemen-
tation of the proposed solution on a selection of observed regressions, and for each evaluate
whether the tool is applicable and whether the identified cause seems correct. Further, the
evaluation seeks to asses which cases the tool could and could not be used, as well as analyzing
its time consumption.

6.1 Data collection
The data presented in this chapter was the resulting data produced by an implementation
based on the design described in chapter 5. The set of input variables used, version, product,
and metric, were extracted from the backlog of known performance regressions. Each element
of the backlog consisted of one, or a set of products, which version and in what performance
metric the change in performance was observed. The same regressions can often be detected
in groups of products, ranging between anything from two to as many as 20 or 30. This is to
be expected since many products share functionality and hardware. However, the cause of
these regressions are usually the same, and including large amounts of, essentially, the same
data was deemed both unnecessary and potentially skewing of the data.

For this reason, only one of the products for any observed regression was included to
avoid redundancy in the presented data unless the results diverged significantly. The usable
subset from the backlog was further reduced by the lack of availability of old firmware in the
database and the lack of specific products in the product pool utilized for the project.

With these constraints in consideration, a set of 37 separate executions of the tool were
included as the basis for evaluation. To evaluate the performance of these executions, the
relevant benchmarking results and their reference results are presented as plots. Since none
of these observed regressions had a previously identified cause, the evaluation of the tools’

31

6. Evaluation

ability to identify causes had to be made on a case-by-case basis, reviewing and interpreting
the plots manually.

The time consumption for the di�erent stages of each execution was also gathered to
better assess whether the method is useful in a practical context. The stages of focus are;
building firmware, performing benchmarks, and connection setup.

6.2 Execution results
Out of the 37 executions, 22 identified a cause for the regression. For one it was unable to
pinpoint a definitive commit due to a building error, and the remaining 14 executions were
unable to reproduce the regression which had previously been observed for the given set of
circumstances. Utilizing these statistics as a basis for evaluation is not very helpful, however,
since the identified causes have not been validated.

To concisely present the results of the evaluation, each execution has been placed in one
of three categories. The categories are successful, non-reproducible and inconclusive. The cate-
gorizations were made through inspecting and judging the plots manually one by one. The
category of unclear results includes the cases where several executions using the same param-
eters produced divergent results. Since the categories successful and non-reproducible make up
the majority of the results, only a subset of the executions from these categories will be pre-
sented in this chapter. Table 6.1 contains the partitioning of executions belonging to each
category.

Category Number of Executions
Successful 19
Non-reproducible 13
Inconclusive 5
Total 37

Table 6.1: The amount of executions corresponding to each category.

6.2.1 Successful results
The results from a subset of the executions placed in the Successful category are featured in
figure 6.1. Each plot shows the benchmarking results for the specified metric. The left- and
rightmost data points correspond to the firmware available from the daily builds. The indices
between them correspond to the bisected commits, each marked with a number specifying
its placement in the version control log. The identification is deemed reliable as long as the
measurements do not show excessive signs of noise and variation.

32

6.2 Execution results

Figure 6.1: Examples of executions where a successful identification
was made.

33

6. Evaluation

6.2.2 Non-reproducible results
Some executions were unable to produce similar results to the reference results for which the
regressions had been identified previously. A subset of the executions from this category are
included in the figure 6.2. In the last plot of figure 6.2 the regression is not reproduced, the
only such instance in the executions used for evaluation. For the remaining executions, the
regression was present in the firmware which it previously had not been. This indicates that
the regression had been introduced externally, to anything from the benchmarking software,
to the infrastructure, the network, or the units themselves.

However, getting non-reproducible results was expected since not only changes to the
platform impact the benchmarking results. The inability to reproduce a regression can also
be informative regarding the cause since the changes to the platform can, in most cases, be
ruled out as potential causes. Although the cause of these regressions remains unidentified,
the ability to determine what they are is outside the scope of this project.

Figure 6.2: Examples of executions where the tool was unable to pro-
duce results similar to the reference results.

34

6.2 Execution results

6.2.3 Inconclusive results
The executions that produced ambiguous results were placed in this category. The results
from these are featured in figures 6.3, 6.4 and 6.5. The examples included in this category
highlight some of the problems with the current implementation, which are important to
keep in mind for any future use of a tool of this nature.

The execution featured in figure 6.3 was unable to pinpoint a specific commit due to a
building error associated with one of the potential points of introduction. The building er-
ror meant that the corresponding benchmark could not be performed. Since the concerned
commit, in this case, is the last and both the adjacent commit had been benchmarked ear-
lier, the execution stops. In practice, this meant that the tool narrowed down the potential
regression causes to the two marked in the plot.

Figure 6.3: An example of an execution where a building error made
a conclusive identification impossible.

Figure 6.4 includes the results from two separate executions of the same regression in-
stance. Each execution resulted in a di�erent identified point of introduction where neither
was deemed su�ciently convincing given the variations in the benchmark results. Noisy met-
rics indicate that more measurements would be needed, from which a statistically informed
identification could be made. This functionality is, however, not incorporated in the solution
and would likely be extremely time-consuming. Moreover, the regression could be caused by
any number of combinations of commits which would render any specific identification im-
possible to make.

Another case involving two diverging results is included in figure 6.5. Similar to the pre-
vious example, the variations in the benchmarks results are great enough to alter the course
of the execution.

35

6. Evaluation

Figure 6.4: A case where two separate executions gave di�erent re-
sults, both of which unreliable.

Figure 6.5: Another case where two separate executions gave di�er-
ent results.

36

6.3 Resource consumption

6.3 Resource consumption
To assess whether the tool is feasible to use in a practical context, the time consumption for
the di�erent stages of each execution was gathered. This is highly relevant since one of the
main concerns at Axis regarding their benchmarking practices is to improve the rate and
e�ciency of the feedback to the developers. The regression cause identification process is a
time-consuming activity, whether it be manual or automatic. A box-plot of the time spent
executing each finished execution (with a resulting identification) is shown in figure 6.6.
Visible in the plot is that the execution times vary dramatically, with an average of about 2
hours and 42 minutes.

Figure 6.6: Box-plot distribution of the execution time of all finished
executions.

To better understand the variations in time consumption, individual components were
monitored. More specifically, the time spent benchmarking, building firmware, and connect-
ing to the unit. The connection process involves establishing communication to the unit,
loading it with the intended firmware, and preparing it for the following benchmarks. This
process is repeated with every benchmark. A box-plot of the time spent connecting is shown
in the figure 6.7. The average time spent connecting to a unit was 2 minutes and 42 seconds.

Scenario Average Time Consumption (min) Number of Cases
Boot-time 11:47 3
Idle 2:51 12
Edge 5:50 6
High-Load 10:23 3
Rtsp-Response 4:56 2
Firmware-Upgrade 14:53 4
Mjpeg 3:43 2

Table 6.2: Average time consumption for each microbenchmark uti-
lized. Note that one case would correspond to either 2 or more
benchmarks depending on reproducibility.

37

6. Evaluation

Figure 6.7: Box-plot distribution of all the unit connection times.

Since the microbenchmarks utilized is one of the main components which would vary
across executions, it was deemed more helpful to separate these. Table 6.2 shows the average
time consumption for each utilized microbenchmark.

Figure 6.8: Box-plot distribution of all the build times.

In figure 6.8 box-plots of the time spent building firmware is presented. The left plot
shows the time distribution of all the builds while the right one shows the distribution as-
sociated with each chronological build for an execution. The first firmware build usually
consumes the most time since it involves setting up the building environment needed to pro-
duce firmware. The following builds appear to have very similar distributions. The average
time consumed building firmware was 15 minutes and 51 seconds, while for the first build it
was 31 minutes, and the rest 9 minutes.

The components included in the time consumption evaluation have significant varia-
tions in their results. Some of the discrepancies for firmware builds are likely associated with
which products model it was built for. However, the lack of execution data makes any rigor-
ous evaluation of this di�cult, within the scope of this thesis. Additionally, the build time

38

6.4 A model for time estimation

measurements were conducted in such a way that the occasional build errors are incorpo-
rated into the build time of the next commit which was built successfully. The two factors
mentioned above are likely significant contributors to the deviations in build time data.

6.4 A model for time estimation
Execution time varies greatly depending on the target microbenchmark scenario, which makes
the average time consumption can be misleading as a reference for future executions. Further,
the data is skewed towards certain scenarios, as is shown in table 6.2. Since it is of interest
to better estimate the time consumption of an execution before it is made, a simple model
can be derived from treating the components of the execution separately. The model can be
expressed as follows:

(timebm + timec) × numberbm + timebd × numberbd = timetot (6.1)

Where timebm denotes the execution time for the given benchmark, timec the connection
time and numberbm the estimated number of benchmarks needed to finish. timebd denote
the firmware build time and numberbd the estimated number of builds. Using the averages
presented in the previous section, it is possible to estimate the time consumption based on
the gathered data. The average number of commits to the platform for any given version is
54, in which case, six bisections are needed to find the cause. That means eight benchmarks
are needed, including the initial two.

Utilizing (6.1) with the averages presented in the previous section to estimate the time
consumption for an execution involving the Idle scenario gives (2.85+2.70)×8+15.85×6 ≈ 2
hours and 20 minutes. Likewise, an estimation for the Firmware-Upgrade scenario gives
(14.89 + 2.70) × 8 + 15.85 × 6 ≈ 3 hours and 56 minutes.

6.5 Results from the evaluation
The evaluation has been aimed at empirically validating the implemented solution in its in-
tended context. Execution data was gathered to conclude whether the proposed solution is
feasible for the given problem. Although the amount of useful execution data was found to be
limited, enough was gathered to make an overall assessment of the tool. Table 6.1 summarizes
the execution results from the evaluation of the tool in terms of its intended use. In 33 out of
the 37 executions, the tool performed its role to the extent which could be expected. These
include the executions put in the successful and non-reproducible categories along with the
inconclusive execution featured in figure 6.3 since the results produced were the most specific
possible under the circumstances.

39

6. Evaluation

40

Chapter 7

Discussion

This chapter serves as an overall reflection of the results presented in the previous chapter,
along with a discussion of the various biases, and threats to validity present in both the data
collection and the solution as a whole. The final section also explores some thoughts regarding
the future development possibilities of the project.

7.1 Conclusions from the evaluation
The solution showed itself to be potentially useful, providing a seemingly accurate result in
19 out of the 37 performed executions. In 13 of the executions the tool was not applicable but
could be informative in a wider search for regression causes. The remaining five executions
consisted of cases where the identifications made were inconclusive. Overall the tool was
found to perform its role to the expected extent in 33 out of the 37 executions, given that the
non-reproducible results and building errors could not be avoided under the circumstances.

As previously stated in chapter 4, the regular benchmarking practices at Axis involve
roughly 1 hour and 30 minutes for approximately 100 products three times a day, five times
a week. This adds up to 1.5 × 3 × 5 × 100 = 2250 hours of benchmarks a week. The
frequency of regression detection is about three cases a week according to the interviews.
If the tool used for each of these, the average time consumption would be 2.72 × 3 = 8.16
hours per week if all were successful, and less if some of the cases were non-reproducible. This
would make the overall resource consumption for using the tool in these cases an increase of
8.16 ÷ 2250 = 0.36%, which is not a significant increase.

As shown by the examples in figures 6.4 and 6.5, executions with the same set of param-
eters can give vastly di�erent results. These examples show how variation in the results can
alter the course and classification of the execution. Since these variations could be present in
any metric, the results from this tool cannot always be taken at face value and should be in-
terpreted by an expert before being acted upon. Some metrics are much more prone to these
variations than others which means that a person with expertise should be able to evaluate

41

7. Discussion

these cases with su�cient skepticism.
The executions in 6.4 showed an indication of having gradual increases in their results.

Although di�cult to conclude in this case, it highlights the potential issue of gradual re-
gression introductions. If a regression is introduced gradually over several commits to one
version the solution presented would not be able to pinpoint these introductions su�ciently.
Only the first result above a certain threshold would be identified. The insights gained from
the examples in figure 6.5 challenged some of the seemingly obvious categorizations of cases
with non-reproducible results. Most of the cases of non-reproducible results included in the
evaluation had been executed several times to address this issue. For any potential future use,
this issue should be kept in mind.

Benchmarking and firmware building are time-consuming processes. For the tool to reach
a conclusion, it needs to perform both of these activities repeatedly. This made time con-
sumption one of the main bottlenecks for any further development of the proposed solution.
Had it been able to produce firmware or benchmark results faster, statistical methods could
be utilized to better evaluate inconclusive results. For most cases, however, the simple thresh-
old solution proved su�cient.

7.2 The tool in practice
Towards the later stages of the project at Axis, the tool was put into use for the regressions
detected in their daily benchmarks. The execution of version V11.0 to V11.1 included in figure
6.1 is an example of an identification made in the intended practical context of the work at
Axis. The execution of version V2.0 to V2.1 in figure 6.2 is another example. Since then it
has been put into regular use by the platform coordinator, whose job it is the evaluate the
benchmarking results and maintain a dialog with the developers.

The overall lengthy time consumption for the tool is one of its drawbacks. It is, however,
less time-consuming than performing the same process manually and the ease with which
it can be used makes it a potentially useful complement to the practices in place at Axis.
The resources needed for it to run are an automation server index and a unit to perform
benchmarks on, both of which are available in abundance at Axis.

An additional resource needed to keep the tool useful at Axis is overall maintenance. Like
any piece of software which is a part of a larger system, regular maintenance and updates are
likely to be needed in case changes were to be made to the systems that the tool utilizes.

The evaluation showed that the tool was able to function in its intended context much
like it was intended. The criteria from the Project specification were met and the overall
resource consumption was not found to be excessive. Thus, to address RQ3, I would deem it
feasible to use in the context which it has tested.

7.3 Data selection
The work behind chapter 6 on evaluation was an attempt to assess the validity of the solution
in a practical context. The basis of evaluation did, however, prove to be more limited than
first expected, since the number of usable cases was reduced by factors such as availability
of firmware and product units. Furthermore, the observed regressions in the backlog had

42

7.4 Future work

no explicitly documented cause, making it di�cult to assess the validity of the results of the
executions.

The subset of regression evaluated could also be subject to certain biases. The method
used for detecting regressions was a manual inspection of plots, often made up of averages
over various products. This approach introduces certain biases which ultimately have in-
fluenced the basis of evaluation for this thesis. Furthermore, the limited time frame of the
regressions evaluated may also be subject to biases regarding which aspects of the various
firmware were being developed at that time.

7.4 Future work
Although the presented solution proved itself potentially useful there are many ways in which
it could be improved. The tool could incorporate further automation, such as, anomaly detec-
tion of the daily benchmarking results. Another thesis conducted by Dageson and Hedesand
explores various methods of anomaly detection in this context at Axis. [14] If combined suc-
cessfully, this would further minimize manual human intervention, and the tool could be
executed in conjunction with the benchmarks, thus, producing results earlier in the day.

The current design of the tool takes no account of which metric it evaluates other than
in its choice of microbenchmark to match it. However, some metrics are the product of an
average taken from several measurements. These metrics are usually the most susceptible to
noise and variation and have a corresponding standard deviation metric available. This means
that a possible way to address the issues raised with inconclusive results due to variations is
to incorporate the corresponding metrics in their assessment.

To improve e�ciency, there could be ways to filter the commits to the platform, reduc-
ing the number of potential points of regression introduction. However, this would require
extensive knowledge of the platforms’ various source code components, along with its uti-
lized packages and libraries. Hence, the usefulness of this approach is highly speculative but
potentially worthy of exploration.

Another way to potentially improve time e�ciency is to parallelize the execution of the
benchmarks and the building of firmware. This approach was not pursued during the devel-
opment of the tool since the branching direction could not be assessed until the benchmark
was finished. Hence, two potential firmware would have to be built for each bisection where
only one was utilized. If parallelization was found to decrease time consumption significantly,
however, it could be pursued.

If greater time e�ciency was be achieved or is deemed less relevant, repeating bench-
marks to incorporate analysis of statistical distributions of the results is an option to im-
prove the rigor of the benchmark result assessment of the tool. Especially if coupled with the
approach of utilizing related metrics (averages and standard deviations).

43

7. Discussion

44

Chapter 8

Conclusion

The work of this thesis has been a case study investigating a method of identifying the causes
of performance regressions in the context of large-scale benchmarking of in-development
firmware at Axis Communications. Utilizing a design scientific approach, the project set out
to assess how the current practices at Axis were conducted and where its main concerns were.
A solution addressing the relevant challenges was then developed and subsequently evaluated
in its intended context.

The proposed solution utilizes the version control logs of their software platform, firmware
build- and benchmarking tools for their products to pinpoint regression introducing com-
mits. The method used sought to minimize human intervention in the regression cause iden-
tification process. An evaluation assessed that the proposed solution was successful in identi-
fying the causes of more than half of the regressions it was tested on, where the unsuccessful
cases were mostly due to an inability to reproduce the previous regression results.

Although time-consuming to execute, the overall resource consumption was found to be
negligible compared to the overall benchmarking currently in practice. New regressions are
detected each week and the process of diagnosing them can be tedious. Therefore, the tool
developed was found feasible to use for the process of identifying regression causes when
these cases come up in the day-to-day workings at Axis.

45

8. Conclusion

46

References

[1] A brief overview of jira. https://www.atlassian.com/software/jira/guides/
getting-started/overview. (Accessed 2021-11-23).

[2] Getting started: The yocto project® overview. https://www.yoctoproject.org/
software-overview/. (Accessed 2022-01-7).

[3] Infrastructure. https://www.jenkins.io/projects/infrastructure/. (Ac-
cessed 2022-01-7).

[4] Jenkins. https://www.jenkins.io/. (Accessed 2022-01-7).

[5] Pipeline as code with jenkins. https://www.jenkins.io/solutions/pipeline/.
(Accessed 2022-01-7).

[6] What is a container? https://www.docker.com/resources/what-container.
(Accessed 2022-01-7).

[7] ISO/IEC 25010. Systems and software engineering—systems and software quality re-
quirements and evaluation (square)—system and software quality models. 2011.

[8] Scott Chacon and Ben Straub. Git Tools, pages 181–277. Apress, Berkeley, CA, 2014.

[9] Jinfu Chen. Performance regression detection in devops. In 2020 IEEE/ACM 42nd In-
ternational Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
pages 206–209, 2020.

[10] Jinfu Chen and Weiyi Shang. An exploratory study of performance regression intro-
ducing code changes. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 341–352, 2017.

[11] David Daly, William Brown, Henrik Ingo, Jim O’Leary, and David Bradford. The use
of change point detection to identify software performance regressions in a continuous
integration system. In Proceedings of the ACM/SPEC International Conference on Perfor-
mance Engineering, page 67–75, New York, NY, USA, 2020. Association for Computing
Machinery.

47

https://www.atlassian.com/software/jira/guides/getting-started/overview
https://www.atlassian.com/software/jira/guides/getting-started/overview
https://www.yoctoproject.org/software-overview/
https://www.yoctoproject.org/software-overview/
https://www.jenkins.io/projects/infrastructure/
https://www.jenkins.io/
https://www.jenkins.io/solutions/pipeline/
https://www.docker.com/resources/what-container

REFERENCES

[12] N. Deepa, B. Prabadevi, L.B. Krithika, and B. Deepa. An analysis on version control
systems. In 2020 International Conference on Emerging Trends in Information Technology and
Engineering (ic-ETITE), pages 1–9, 2020.

[13] Emelie Engström, Margaret-Anne Storey, Per Runeson, Martin Höst, and Maria Teresa
Baldassarre. How software engineering research aligns with design science: a review.
Empirical Software Engineering, 25:2630, 2020.

[14] André Hedesand and Oliver Dageson. Abnormality detection in diagnostics data from
network cameras. Master’s Theses in Mathematical Sciences. Lund University, 2021. Stu-
dent Paper. https://lup.lub.lu.se/student-papers/search/publication/
9068634.

[15] Christoph Heger, Jens Happe, and Roozbeh Farahbod. Automated root cause isola-
tion of performance regressions during software development. In Proceedings of the 4th
ACM/SPEC International Conference on Performance Engineering, ICPE ’13, page 27–38, New
York, NY, USA, 2013. Association for Computing Machinery.

[16] Tomas Kalibera, Lubomir Bulej, and Petr Tuma. Generic environment for full automa-
tion of benchmarking. In Proceedings of the 1st International Workshop on Software Quality
(SOQUA), pages 182–196. GI, September 2004.

[17] Samuel Kounev, Klaus-Dieter Lange, and Jóakim von Kistowski. Benchmarking Basics,
pages 3–21. Springer International Publishing, Cham, 2020.

[18] David B. Leblang and Paul H. Levine. Software configuration management: Why is it
needed and what should it do? In Jacky Estublier, editor, Software Configuration Manage-
ment, pages 53–60, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

[19] Nasir Mehmood Minhas, Kai Petersen, Jürgen Börstler, and Krzysztof Wnuk. Regression
testing for large-scale embedded software development – exploring the state of practice.
Information and Software Technology, 120:106254, 2020.

[20] Shaikh Mostafa, Xiaoyin Wang, and Tao Xie. Perfranker: Prioritization of performance
regression tests for collection-intensive software. In Proceedings of the 26th ACM SIG-
SOFT International Symposium on Software Testing and Analysis, ISSTA 2017, pages 23–34.
Association for Computing Machinery, 2017.

[21] Colin Robson. Real world research : a resource for social scientists and practitioner-researchers.
Blackwell, 2002.

[22] Per Runeson, Emelie Engström, and Margaret-Anne Storey. The design science
paradigm as a frame for empirical software engineering. In Contemporary Empirical Meth-
ods in Software Engineering, pages 127–147, Germany, 2020. Springer.

[23] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Softw. Engg., 14(2):131–164, April 2009.

[24] Juan Pablo Sandoval Alcocer, Fabian Beck, and Alexandre Bergel. Performance evolu-
tion matrix: Visualizing performance variations along software versions. In 2019 Working
Conference on Software Visualization (VISSOFT), pages 1–11, 2019.

48

https://lup.lub.lu.se/student-papers/search/publication/9068634
https://lup.lub.lu.se/student-papers/search/publication/9068634

REFERENCES

[25] Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora. Automated
detection of performance regressions using regression models on clustered performance
counters. In Proceedings of the 6th ACM/SPEC International Conference on Performance Engi-
neering, page 15–26, New York, NY, USA, 2015. Association for Computing Machinery.

[26] Gary Stringham. Chapter 1 - introduction. In Gary Stringham, editor, Hard-
ware/Firmware Interface Design, pages 1–18. Newnes, Boston, 2010.

[27] David V. Thiel. Literature search and review, page 27–72. Cambridge University Press,
2014.

[28] Joan E van Aken. Management research based on the paradigm of the design sciences:
the quest for field-tested and grounded technological rules. Journal of management studies,
41(2):219–246, 2004.

49

REFERENCES

50

Appendices

51

Appendix A

Interview Questions

1. What is your title and what is your relation to the current internal benchmarking? What
does your role entail?

2. Are there other major benchmarking or performance testing going on at Axis? Is there
any communication there?

3. What has been your previous approaches in this area and how long has the workflow been
how it is today?

4. How frequently do the benchmarks reveal a performance issue?

5. What does the current system of issue tracking look like?

6. Who are the main stakeholders of the daily internal benchmarking?

7. What does the current dialog with the stakeholder look like?

8. What does the current dialog with the development teams look like? Would a tool like
this improve this in any way?

9. Whats your expectation of firmware bisection and do you expect to utilize these types of
solutions more in the future? Would a tool like this e�ect the dialog with the development
teams?

10. Do you have an idea of how to more rigorously evaluate the overall performance of a tool
like this?

11. Do you have any useful advice or information you would like to share which was not
covered by these questions?

53

A. Interview Questions

54

Appendix B

Tools

B.1 Git
Git is an advanced version control system created in 2005 and has got wide extensive sup-
port of the open-source community, consisting of quality developers behind. Git provides
easy control over changes made to source code in both linear and nonlinear software devel-
opment. Git supports branching, undoing, merging, among other things and is by far the
most popular version control system available as of writing. Git has a distributed repository
type with cryptographic integrity where every file and commit is checksummed documented
and rebuildable. [12]

In addition to being primarily for version control, Git also includes features to provide
debugging functionalities to source code projects. Since Git is designed to handle nearly any
type of content, these tools are fairly generic, but they can often aid bug identification or
culprit when or where things went wrong. [8]

B.1.1 Git bisect
Git bisect is a command that performs a binary search through the commit history of a reposi-
tory to help with identification of which commit introduced an issue. It is used by first telling
it a "bad" commit that is known to contain the bug, and a "good" commit that is known to be
before the bug was introduced. Then git bisect picks a commit between those two endpoints
and asks you whether the selected commit is "good" or "bad". It continues narrowing down
the range until it finds the exact commit that introduced the issue. [8]

The bisection process used in this thesis is however implemented manually to more easily
log useful information. The same principles apply however.

55

B. Tools

B.2 Docker
Docker is a set of platform as a service products that use operating system level virtualization
which allows software to be delivered in packages which are called containers. A container is
a standard unit of software that packages up code and all its dependencies so that an appli-
cation can run quickly and reliably from one computing environment to another. A Docker
container image is a small, standalone, executable package of software that includes every-
thing needed to run an application: code, runtime, system tools, system libraries and settings.

When an image is executed a container is built and run according to the image speci-
fication. Containerized software ensures that it always will run the same, regardless of the
infrastructure. Containers isolate software from its environment and ensure that it works
uniformly despite di�erences for instance between development and staging. Docker is avail-
able for both Linux and Windows-based applications. [6]

B.3 Jenkins
Jenkins is a self-contained, open source automation server which can be used to automate all
sorts of tasks related to building, testing, and deploying software. Jenkins can be installed
through native system packages, Docker, or run standalone by any machine with a Java Run-
time Environment installed and provides hundreds of plugins to support building, deploying
and automating any project. Often used as a simple CI server or turned into the continuous
delivery hub for any project, it can easily distribute work across multiple machines, helping
drive builds, tests and deployments across multiple platforms faster. [4]

As an independent open source project, Jenkins maintains most of its own infrastructure
including services which help keep the project running. This includes anything from oper-
ating virtual machines and distribution networks, to project-specific applications developed
to make the development of Jenkins core and plugins more e�cient. [3]

The default and most common interaction model with Jenkins, is web UI driven, requir-
ing users to manually create jobs, then manually fill in the details through a web browser.
This allows the user to create and manage jobs to test and build multiple projects. It also
keeps the configuration of a job to build, test and deploy separate from the actual code being
built, tested and deployed. [5]

B.4 Yocto
The Yocto Project is an open source project which aim is to help developers make cus-
tom Linux-based systems for embedded products, regardless of hardware architecture. The
project provides a set of tools and an ecosystem where technologies, software stacks, configu-
rations and best practices used to create tailored Linux images for embedded devices, can be
shared. Further, the project contributes a standard to delivering software stacks and hard-
ware support which allows for the interchange of software configurations and builds. The
tools can be used to build and support customizations for multiple hardware platforms and
software stacks in a scalable and maintainable way. The project originated from, and works

56

B.5 Bitbake

with the OpenEmbedded Project which is where some of the meta-data and its build system
are derived from. [2]

Yocto at its core combines, maintains and validates the three following key development
elements:

1. A set of integrated tools to make working with embedded Linux successful, such as
automated building and testing, processes for board support and license compliance,
as well as component information for custom embedded Linux-based systems

2. A reference embedded distribution

3. The OpenEmbedded build system, co-maintained with the OpenEmbedded Project

B.5 Bitbake
Bitbake is the build system which the Yocto project utilizes. A scheduler and execution engine
which parses recipes and configuration data for a custom Linux distribution builds. BitBake
recipes specify how a particular package is built. They include all the package dependencies,
source code locations, configuration, compilation, build, install and remove instructions as
well as the metadata for the package in standard variables. Related recipes are consolidated
into a layer.

Bitbake then creates a dependency tree to order the compilation, schedules the compila-
tion of the included code. Ulimately the building of specified Linux image is executed, where
an image is a binary form of a Linux distribution intended to be loaded onto an embedded
device. During the build process dependencies are tracked and native or cross-compilation of
the package is performed. As a first step in a cross-build setup, the framework will attempt
to create a cross-compiler toolchain suited for the target platform. [2]

57

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-02-17

EXAMENSARBETE Optimizing regression benchmarking for network video products
STUDENT Thomas Rodenberg
HANDLEDARE Masoumeh Taromirad (LTH)
EXAMINATOR Per Runeson (LTH)

Identifiera orsaken till
prestandaförändringar

POPULÄRVETENSKAPLIG SAMMANFATTNING Thomas Rodenberg

För att kunna upprätthålla god prestanda i ständigt uppdaterade kodbaser behövs
regelbunden prestandatestning. När en förändring upptäcks vill man identifiera dess
orsak så snabbt och effektivt som möjligt. Detta arbete har fokuserat på att utveckla
ett verktyg som utför denna identifiering automatiskt.

Axis Communications är en ledande utvecklare
av olika nätverksprodukter med ett huvudfokus
på övervakningskameror. Mjukvaran till deras
produkter uppdateras dagligen varvid omfattande
tester görs för att säkerställa att mjukvarans pre-
standa inte försämrats genom ändringarna. Pre-
standatestningen omfattar mätningar för egen-
skaper såsom CPU- och minnesanvändning för
mer än 100 olika produkter. Upptäcks en pre-
standaförsämring (regression) för någon av dessa
krävs det att man kan identifiera var den intro-
ducerats för att kunna åtgärda problemet. Varje
daglig mjukvaruuppdatering består av en sam-
ling mindre deluppdateringar från en mängd olika
utvecklingsgrupper på företaget. Då arbetet att
identifiera vilken deluppdatering som orsakat en
försämring ofta kan vara krånglig och tidskrä-
vande vill man kunna automatisera denna process
så mycket som möjligt.
Prestandatestningen är mycket tidsomfattande

men kan delas upp i korta delmoment som
fokuserar på en delmängd av alla de mätningar
som normalt utförs. Verktyget som utveck-

lats kombinerar de nedkortade delmomenten från
de befintliga prestandatesten med en sökning
genom deluppdateringarna för att automatiskt
kunna säkerställa var försämringar introducerats.
Sökningen görs på baserat på resultaten från pre-
standatesten där man kan detektera en tydlig
förändring för den drabbade egenskapen. När ex-
ekveringen är färdig skall verktyget kunna återge
vilken deluppdatering som är skyldig till försäm-
ringen, förutsatt att den kunnat återskapas.
Som utvärdering på arbetet sattes verktyget

i praktisk användning vid både nyupptäckta
försämringar och ett urval av de tidigare noter-
ade försämringarna som fanns tillgängliga. Bris-
tande tillgänglighet av tidigare bekräftade orsaker
gjorde att utvärderingen av verktygets identifier-
ing fick göras manuellt. Verktygets resursåtgång
utvärderades också som underlag för huruvida en
framtida användning och utveckling var relevant.
Den praktiska utvärderingen kunde fastställa att
verktyget var framgångsrikt i majoriteten av de
testade fallen samt visade potential att kunna an-
vändas och vidareutvecklas på Axis.

	Introduction
	Problem formulation
	Goal
	Case company

	Methodology
	Research method
	Research components
	Literature review
	Interviews
	Problem conceptualization
	Solution
	Evaluation

	Background and related work
	Performance and performance regressions
	Related work
	Benchmarking
	Software configuration management

	Benchmarking at Axis
	An overview
	The firmware
	The stakeholders
	The benchmarks
	The scenarios
	The results

	Project specification

	The solution
	The design
	Setup
	Input
	Database interaction
	Reproducing the regression
	Evaluating results

	Search
	Bisection
	Branching conditions
	Building firmware
	Stopping condition
	Result

	Evaluation
	Data collection
	Execution results
	Successful results
	Non-reproducible results
	Inconclusive results

	Resource consumption
	A model for time estimation
	Results from the evaluation

	Discussion
	Conclusions from the evaluation
	The tool in practice
	Data selection
	Future work

	Conclusion
	References
	Appendix Interview Questions
	Appendix Tools
	Git
	Git bisect

	Docker
	Jenkins
	Yocto
	Bitbake

