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Abstract

Cardiotography, CTG, is a monitoring method that is commonly used during childbirth. The method
measures the fetal heart rate, FHR, alongside the uterine contractions, TOCO. Clinicians use this
tool to evaluate the health of the infant, and to observe changes which might imply hypoxia, lack of
oxygen supply, for the fetus. However, abnormalities in the CTG are often non-specific, making the
interpretation difficult.

This master’s thesis aims to extract features from the CTG and to use these features in differ-
ent types of machine learning classifiers to predict the child’s health after birth. The target is to
make the interpretation of the CTG easier for clinicians and to find patterns that could imply hypoxia.

By using the gestational age as the first feature, it was decided to split the data into two cases,
preterm pregnancies and full term including postterm pregnancies. For each case, the gestational
age was tested as a feature in different classifiers, which provided a benchmark for comparison when
testing new features. During the investigation of the FHR signal, a total of eight features were tested.
The extracted features were tested with the gestational age separately, followed by a test using all
derived features, and lastly a test using all features but the gestational age was made. Some features
increased the classifiers’ sensitivity, or specificity, but none made the predictions significantly more
accurate.

The conclusions of this thesis were that the gestational age should only have been used for stratifying
the data into two separate cases, since it for the preterm pregnancies carried much information, there-
fore derived features did not contribute with further information. For the other case, the gestational
age did not carry any information which showed in the results of the last two tests when using all
features together. The extracted features should have been tested in different combinations of each
other to see if they contributed with correlating information or not. Additional research is required
to create an accurate prediction model, e.g., by investigating how the FHR signal correlates with the
TOCO signal.
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1 Introduction

In Sweden, during the year of 2020, a total of 353 babies were stillborn, and 268 died during their
first living year, which were 2.37 per 1000 living births [1, 2]. For comparison, in the beginning of
the 1900s approximately 10 percent died within their first living year, and in the middle of the 1960s
it was 1 percent [2]. Labour includes different risks, for the mother as well as the child. To reduce
these risks, cardiotocography was introduced in the 1960s as a monitoring method [3, 4]. Even if
the number of deaths has decreased throughout the decades, it is still high in the year of 2020. This
raises the question of what can be done further to reduce the number of deaths. Is there a possibility
to strengthen and expand the use of cardiotocography?

Cardiotocography, CTG, is a biophysical method that combines the recording of the fetus heartbeat,
cardio, and the uterine contractions, TOCO. Assessment is made by examining the FHR baseline
and variability, along with the contractions [3]. Through CTG, clinicians evaluate the state of the
fetus and if the fetus is negatively affected [3, 4].

A risk, during childbirth, is mechanic stress which stems from the uterine contractions and affects
the brain and/or umbilical cord. This can lead to hypoxia. Another risk is metabolic stress which is
when the gas exchange between the mother and fetus is reduced. This is due to the circulation in the
placenta being decreased or stopped. The fetus has during the pregnancy developed resilience and
would normally manage these stresses during birth. If the resilience is compromised or the stresses
are unusually high, the ability to handle the stress will not be enough, this is known as distress. Dis-
tress affects the vital functions of the fetus and can lead to brain injuries - or in worst case, death [3, 4].

Deviations and abnormalities in the CTG can be non-specific, they can occur even when there is
no present danger to the fetus, making the interpretation difficult. These difficulties have been
designated as a reason for the increasing amount of acute cesarean sections in the 1970s [3]. The
FIGO guidelines are used when interpreting the CTG. There is however some concern regarding
these guidelines, Spilka et al. showed in a study that reaching an agreement on CTG evaluations is
hard, even when several clinicians evaluated the CTG, manifesting the complication, and difficulty
of interpreting the CTG [5].

1.1 Aim and Research Questions

The aim with this master thesis, which stems from the difficulties interpreting the CTG, is to inves-
tigate if there is any information in the CTG which indicates that the fetus is not doing well, for
example, suffering from asphyxia. If such information can be found, this could be used to aid pro-
fessionals in the interpretation of CTG, and reduce the uncertainty. The idea is try to find features
that distinguishes a birth with a good outcome from a bad outcome, and compare different machine
learning techniques to see if one technique can extract information from the features better than
others.

The outcome that will be used is the Apgar Score measured at five minutes after birth. The Apgar
Score is a metric between 0 and 10, where 10 is an indication that the child is doing well. An Apgar
Score below 7 will be considered, and referenced, as a bad outcome, whereas an Apgar Score between
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7 to 10 will be considered, and referenced, as a good outcome [6]. The definition of Apgar Score will
be further explained in section 2.1.2.

To reach said aim, the following research questions are going to be examined:

• Are there patterns in the CTG that distinguish a good outcome from a bad outcome?

• How do found features affect the results of predictions, when compared to a naive model?

• Which machine learning technique performs the best?

2



2 Background

This chapter presents background information used as a foundation in this project. Starting with
information about obstetrics, specifically cardiotocography and Apgar Score. Then follows a brief
explanation of artificial neural network and Bayes’ theorem. The last part is the related work section
which aims to acquaint the reader with previous work that has been made, and some articles that
are referenced to in this report.

2.1 Obstetrics

In this section, the aim is the introduce the vital information about pregnancy, labour and delivery.
A pregnancy should last between 37 to 41 weeks, this is called full term. Giving birth before week
37 is called preterm, and passed week 41 is called postterm [7]. During birth the fetal needs to
handle periods without normal oxygen supply which happens during labour due to the contractions
compressing the umbilical cord or decreasing the blood flow to the placenta, this is called acute
hypoxia or asphyxia. Acute asphyxia can lead to fetal acidosis and death [4].

2.1.1 Cardiotocography

Cardiotocography, CTG, is a method used during labour to detect fetal hypoxia, which is lack of
oxygen in the blood and in the tissues. The CTG measures the fetal heart rate, alongside with uterine
contractions. The FHR signal is measured by using a Doppler sensor, or electrode on the fetal scalp.
The TOCO signal is measured by using an external pressure sensor. Figure 1 presents a CTG, where
the upper signal is the FHR, and the lower signal is the TOCO. The FHR signal is measured in beats
per minute, bpm, while the TOCO signal does not have a unit. The signal registration has to be at
least 20 minutes before assessment [3].

Figure 1: Cardiotocography with FHR signal at the top and TOCO signal at the bottom. The unit on the
y-axis is bpm which is the FHR signals unit. The contraction signal does not have a unit. [8]

Based on these signals, the state of the fetus is evaluated throughout the labour. The contractions,
which should not have a frequency of more than 4-5 in a period of 10 minutes, affects the FHR signal.
As seen in Figure 1, clear decelerations in the FHR are linked to contractions [3]. When the fetus
is exposed to contractions, which can lead to increased pressure to the head and compression of the
umbilical cord, it has a reflective response and decreases the FHR. The variables that are taken into
consideration when evaluating the FHR signal are the following [3]:
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• Baseline Fetal Heart Rate
The average FHR, not including accelerations or decelerations, for a period of at least ten
minutes. Normal baseline for full term birth is 110-150 bpm, while it can be up to 160 bpm for
a preterm birth.
A baseline FHR of less than 120 bpm is known as bradycardia, where a lesser value is more se-
rious and is a pathological pattern. A baseline FHR of more than 150 bpm is called tachycardia
and can be a sign of hypoxia.

• Baseline Variability
The variability of the baseline FHR which should be 5-25 bpm.

• Acceleration
Increase in FHR-signal of at least 15 bpm from baseline, which lasts for at least 15 seconds.
There should be at least two or more accelerations in a 20 minute period each hour. If the fetal
is asleep accelerations might not be present.

• Deceleration
Temporary decreases in FHR-signal. The decelerations are classified as uniform early, uniform
late, variable uncomplicated or variable complicated depending on shape and duration. The
most worrying being late decelerations, which is a sign of limited oxygenated maternal blood
to the placenta due to a contraction. This leads to hypoxemia for the fetus, who reacts with
lowering the FHR.

If all said variables meet their expected value, the CTG is classified as normal. The CTG is classified
as suspicious if the baseline FHR is between 100-110 bpm or 150-170 bpm, or if there are no or
few accelerations, or the variability is larger than 25 bpm, or the decelerations are lasting longer
than 60 seconds or have a big amplitude. If there are numerous variables that deviate, such as, the
baseline FHR is lower than 100 bpm or higher than 170 bpm, or there are uniform, i.e., U-shaped,
decelerations which can both be seen during and after a contraction, or the FHR looks like a sine
curve, the CTG is pathological. The most dangerous case is when the FHR signal does not have
any variability or accelerations present, the classification is then preterminal. The fetus has ways of
handling the pressure during labour, however, when the pressure is increased or have been ongoing
for a long period of time, the risks of brain injuries increases [3].

By using CTG, it is possible to detect and diagnose threatening or manifest hypoxemia. Hypoxia
occurs after prolonged hypoxemia, which is low oxygen content in the blood. Hypoxia can lead to or-
gan failure, irreversible tissue damages and death. Abnormalities are more common in the expulsion
stage, where the risks of hypoxia increase, due to the contraction intensity increasing [3].

2.1.2 Apgar Score

After birth, clinical professionals evaluates the infant’s health by using the Apgar Score. The Apgar
Score is the sum of these considered features; breathing, heart rate, skin colour, muscle tone, and
response to stimulation. All features are given a score between 0 to 2, where the higher means the
better. The Apgar Score is evaluated at 1, 5, and 10 minutes after birth, and is in a range from
0 to 10, where the higher the score, the better the newborn is doing. The Apgar Score determines
the degree of possible asphyxia, e.g., a sign of asphyxia is if the infant’s skin colour leans more blue
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rather than pink [6]. At five minutes, the classification for ranges of the Apgar Score can be defined
as: 7-10 reassuring, 4-6 moderately abnormal, and 0-3 abnormal [9].

2.2 Bayes’ Theorem

A useful tool in machine learning is Bayes Theorem which gives an idea of the relationship between
input data and output classes. In a classification problem, where the probability of a class given an
observation should be derived, Bayes Theorem is defined as

P (Ci|x) =
P (Ci)P (x|Ci)

P (x)
, P (x) 6= 0, (1)

where there are i different classes Ci, and x is an observation. Common to all data points is the
density function P (x), P (Ci) is the prior distribution for class i, and P (x|Ci) is the density function
of the data points belonging to class Ci which is derived from the training data under the assumption
there is a certain distribution. The posterior probability P (Ci|x) is derived by using prior knowledge
[10, 11].

2.3 Artificial Neural Networks

Artificial Neural Networks, ANNs, or Neural Networks, NNs, are nonlinear statistical models [12].
Figures 2 and 3 depict the structure of neural networks. As seen the neural network consists of nodes,
also called units, and connections, known as edges, between the nodes. Figure 2 shows the usage of
one neuron, which is the simplest form of a neural network and is referred to as perceptron [13]. The
network is fed with the input X. The parameters weight w and bias b are optimized to minimize the
error of the network. The input Xi, for i = 1, ..., n, is multiplied with weight wi, and for all i they
are summed together with the bias b. This total sum is fed into function f to produce an output y
[12]. The output is defined by the general formula [10]

y = f(wTX + b) = f

(
n∑

i=1

wiXi + b

)
= f(w1X1 + ...+ wnXn + b). (2)

Figure 3 shows the usage of multiple neurons and edges, ordered in layers. All layers except the first
and last are known as hidden layers. When using more layers the neural network is called a deep
neural network. A fully connected layer is when an output is fed as an input to all neurons in the
next layer.

Figure 2: Structure of the smallest neural network, only one perceptron [14].
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Figure 3: Structure of a neural network with N hidden layers [15].

2.3.1 Activation Functions

Activation functions are used to transform the several inputs into an output within a certain range,
and to introduce non-linear complexities in a NN. There are numerous activation functions to chose
from when designing a neural network, both in hidden layers and output layer, depending on what
is sought after. One can for example use the sigmoid function, also known as the logistic function,
which is defined as

f(x) =
1

1 + e−x
. (3)

The sigmoid function maps the results within the range 0 to 1. This can be a good pick when the
result should be a probability. The softmax function, or the normalized exponential, also produces a
probability, but does so for more than one class. The softmax function is defined as

f(xi) =
exi∑K
j=1 e

xj

for i = 1, ...,K, x = (x1, ..., xK) ∈ RK . (4)

If one wants another range the hyperbolic tangent, tanh, is an option. It maps within the range -1
to 1 using the function

f(x) =
ex − e−x

ex + e−x
. (5)

A benefit of this function is that is maps negative inputs to a negative output. The rectified linear
unit (ReLU) is in some literature referred to as the default activation function [10]. It is is defined
as f(x) = max{0, x}. This function outputs provided input value x if x ≥ 0 or 0 if x < 0. One
advantage with the ReLU function is the sparsity it provides with the ability to output a true zero
value. The sparsity can make learning less time consuming and also simplifying the model. A down
side with ReLU is when the input to the activation function is negative, meaning that the output will
always be zero and therefore never activate the unit. This can cause weight swings when optimizing
the model [10]. To get around this issue, one can instead use Leaky ReLU which allows negative
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inputs. The Leaky ReLU function is defined as

f(x) =

αx, if x < 0,

x otherwise,
(6)

where α is a small scaling factor [16]. Some of the aforementioned activation functions are shown in
Figure 4 below.

(a) Sigmoid: f(x) = 1
1+e−x (b) Tanh: f(x) = ex−e−x

ex+e−x (c) ReLU: f(x) = max{0, x}

Figure 4: Different activation functions [17].

2.3.2 Loss Function

To optimize the performance of a network one wants to optimize an objective function. With neural
networks it is typically sought after to minimize the error of an objective function, which is also
referred to as loss function, L. For example, mean squared error can be used for regression problems,
or if one has a classification problem cross-entropy can be used. The cross-entropy is defined as [13]

L(y, ŷ) = −
m∑
i=1

yilog(ŷi), (7)

where for each class i = 1, ...,m, yi ∈ {0, 1} is binary indicator and ŷi is the predicted probabilities.
The cross-entropy outputs probabilities that are an indication of which class the input belongs to. To
reduce the loss, an optimization algorithm, such as gradient descent, or stochastic gradient descent,
is used to find suitable updates for the hyperparameters within the network [10].

2.3.3 Weights and Biases

The parameters that are updated in a neural network are the weights and biases. The weights tell
the strength of the connections between neurons, and they are updated as

w← w − α
(
∂L

∂w

)
, (8)

where ∂L
∂w =

(
∂L
∂w1

, . . . , ∂L
∂wn

)
, and α is the learning rate, which can be updated with each iteration

step [13]. The invariant part of predictions are captured by the biases which are constant terms.
Note that the biases and weights can be updated regardless of one another [12] [13].

To update the weights and biases, a neural network uses back-propagation. Forward propagation
is shown in Figure 2 and Figure 3, where the input is fed forward until the network produces an
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output and a scalar cost. When the scalar cost is sent backward through the network, it is utilizing
the back-propagation. This is done such that the scalar cost can influence the calculations of the
gradients, and therefore improve the model.

2.3.4 Data Set Augmentation

Large imbalance in collected data creates a problem when classifying, since the accuracy of the
classification will be a reflection of the underlying distribution of the classes. The classifier becomes
biased towards the majority class. To reduce the imbalance in a set of data, one can create new, fake
data of the underlying class by transforming the inputs in the training set, this is known as data set
augmentation. Creating synthetic data can be done by adding random noise to the inputs [10].

2.4 Related Work

In the aspiration of making the interpretation of CTG easier numerous studies have been made. Some
propose methods to computerize the FIGO guidelines and use these as features in machine learning
applications or neural networks, while some present methods to automatically extract patterns in
the CTG.

Romano et al. presented a software for automatic analysis of the FHR [18]. Nidhal et al. aimed
to derive a computerized baseline of the FHR signal [19]. Agostinelli et al. studied a different ap-
proach to the FHR baseline and aimed at finding the correct statistical baseline which they derived
as mean(FHR ±∆ FHR), where ∆ FHR is equal to 8 bpm or 10 bpm. It was found, both statistically
and clinically, that ∆ FHR = 10 bpm [20]. This was used in a study by Sbrollini et al. who tried
to automatically detect decelerations in the FHR signal, and classified these according to the FIGO
guidelines, i.e., early or late, V-shaped or U-shaped [21]. Labaj et al. studied how one could extract
the correlation between the FHR decelerations and the contractions [22]. Chung et al. used spectral
analysis of the FHR variation to predict fetal distress [23].

V. Chudác̆ek et al. studied different features for classification of the FHR signal. It was found
that many features correlate and therefore contribute with the same information. The best features
were number of accelerations, number of decelerations and the interval index which contributed with
uncorrelated information to the classifier [24]. The importance of the decelerations, specifically its
depth and duration, was also mentioned by Spilka et al. [25]. They tried to detect fetal acidosis using
machine learning, specifically sparse support vector machine. Georgoulas et al. also used support
vector machine to predict the risk of metabolic acidosis based on the FHR [26]. Jezewslo et al. used
neural networks to classify CTG traces in order to predict the pH-value [27]. Fontenla-Romero et al.
used artificial neural networks to create a real time extraction of features from the FHR signal [28].
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3 Method

In this section, the data used, examined features, and evaluation are explained. Firstly, the data that
was available for this project is introduced, and it is explained how it was preprocessed. Secondly, the
selection of features are explained and motivated. Finally, the training and evaluation of classification
methods are described. All programming was done in matlab.

3.1 Data Set

For this project the gathered data consisted of 98,328 different labours. For each labour, the CTG,
and clinical data had been collected. All cases collected were one child cases. The clinical data
consisted of the following collected information:

• Study ID

• Parity - number of previous births

• Smoking - yes/no and to what extent

• Ablatio placentae - serious complication

• Pre-eclampsia - serious blood pressure condition

• Gestational age - length of pregnancy in days

• Gender

• Weight

• Weight Deviation

• Mode of Delivery

• Apgar Score at 1 minute

• Apgar Score at 5 minutes

• Vital Status

• pH-value

• Neonatal Care

• IVH - intraventricular bleeding, bleeding into the brain’s ventricular system

• HIE - hypoxic ischemic encephalopathy, type of brain dysfunction

• Spasms

• Malformation.

The information of interest in this project was the Apgar Score at 5 minutes. The number of samples
having a 5-minute Apgar Score lower than 7 was 1621, making it 1.65% of the data set.
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The collected CTG measurements contained FHR and TOCO signals, sensor type for each signal,
indication of the quality of the signals, time vector, and patient id. For FHR, the sensor type was
either ultrasound or scalp electrode. For TOCO, the sensor type was external pressure. The data
points were recorded with a frequency of 4Hz, however for some samples this varied. The time vector
sometimes contained negative time stamps or jumps. In Figure 5, a CTG is shown, with the x-axis
being time in minutes, where x = 0 is where the signal ends. The blue coloured signal is the FHR,
the red is the TOCO, yellow is sensor type for FHR, purple is sensor type for TOCO, and khaki is
the quality of the signal. The TOCO signal was sometimes not registered, a possible reason is that it
was uncomfortable for the patient to have the external pressure sensor on, therefore it was removed.

Figure 5: Example of CTG. Blue coloured signal is the FHR, the red is the TOCO, yellow is sensor type
for FHR, purple is sensor type for TOCO and khaki is the quality of the signal. The x-axis is the time in
minutes in descending order, meaning that the signal ends at x = 0. The y-axis is in beats per minute.

3.1.1 Exclusion of Samples

One supplied variable in the clinical data was vital status. It contained information if the infant
had died antepartum, intrapartum or postpartum. The antepartum cases were evaluated, since if
the child had passed away before labour, there would not be any possible action to prevent this. In
total 125 samples had information that the child died antepartum. After further evaluation it was
found that 52 of these samples had a CTG that lasted for at least 30 minutes, the other 73 samples
were excluded. The 52 cases were checked manually to see if the CTG had some sort of feasible
information, i.e., the signal contained a clear FHR signal. If so, it would contradict the information
of the infant being dead antepartum, hence those samples could still be used. Out of the 52 samples,
14 were determined to be used, and 38 were excluded.

Some samples had multiple variables missing in the clinical data, for example no specified gen-
der, making the existing variables questionable. One sample had all variables missing. All of these
samples were excluded, which was a total of 33.
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3.1.2 Segmentation

The collected CTG data rarely contained a continuous signal throughout the labour, as seen in Figure
6. The reason behind this might be that it is common to check the CTG upon arrival, wait for the
labour to progress and then check the CTG intermittently. Due to this inconsistency, it was decided
to use segments that contained a continuous signal for a 30 minute period, since theoretically at least
a 20 minute recording is needed for assessment. A continuous signal was defined as no interruption
that lasted longer than 5 seconds, where 5 seconds was selected on account of the sample rate not
always being 4Hz. It was also checked that the FHR signal was not equal to 0 for more than 50%

of the continuous signal. The reasoning behind this was having a measurement but no FHR signal
would skew the results. In Figure 7, it is visualized how the measurement can be longer than 30
minutes, but not contain a FHR signal throughout.

A 30 minute segment, with a 30 seconds offset, was looked for in each CTG. The 30 second off-
set was set due to most segments total time never being exactly 30 minutes, but rather 29.9 etc. If
the signal was shorter than 30 minutes, or it did not contain any segment of length 30 minutes, it
was excluded. These thresholds excluded a total of 14,070, data samples whereof 253 were cases with
bad outcome. All of these 253 cases were checked manually to ensure none was excluded by mistake.
It was found that 11 out of the 253 could be used. All of them contained negative time jumps so
they were extracted manually.
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Figure 6: Figure of CTG, visualizing the interruptions in the recording. Blue coloured signal is the FHR,
the red is the TOCO, yellow is sensor type for FHR, purple is sensor type for TOCO and khaki is the quality
of the signal. The x-axis is the time in minutes in descending order, meaning that the signal ends at x = 0.
The y-axis is in beats per minute.
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Figure 7: Figure of CTG, visualizing the motivation of having a threshold on the FHR signal when extracting
segments. Blue coloured signal is the FHR, the red is the TOCO, yellow is sensor type for FHR, purple is
sensor type for TOCO and khaki is the quality of the signal. The x-axis is the time in minutes in descending
order. The y-axis is in beats per minute.

If the signal at hand was corresponding to a bad outcome, i.e., 5-minute Apgar Score lower than
7, it was checked if the found segment was longer than 40 minutes, or if the signal contained more
segments, of length 30 minutes or more, than the chosen one. If so, it was used in the augmentation
step to generate more data. If the segment was originally longer than 40 minutes, a new segment
was created by a shift of at least 10 minutes. If there were more segments in original signal, these
were used as well. For example, in the Figure 6 above, there are three visible segments. The one to
the right is not 30 minutes, hence it was ignored. The other two segments are both longer than 30
minutes, therefore both segments might be used when augmenting.

3.1.3 Linear Interpolation to Remove Missing Data

The FHR signals in the CTG suffers from missing data, some more than others. Figure 8a depicts a
segmented FHR signal, where it can be seen that many data points are equal to zero. The main part
of the FHR signal is around 150 bpm which indicates that the zero values are missing data, in this
particular case it was 34% of the entire signal. Note that this FHR signal still shows a specific pattern,
and should therefore still be used in the study. To remove the missing data, linear interpolation was
used. The result after using linear interpolation is shown in Figure 8b. If the beginning or the end
of the FHR signal consisted of only missing values, these were added as the nearest non-zero value
in the FHR signal with random added noise of ±5 bpm.
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(a) Original FHR signal.
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(b) Interpolated FHR signal.

Figure 8: Figure of CTG, the left shows original signal, and the right shows the signal after linear interpo-
lation. Blue coloured signal is the FHR, the x-axis is the time in minutes in descending order, meaning that
the signal ends at x = 0. The y-axis is in beats per minute.

3.2 Extraction of Features

To examine possible features, the very first step made with the data was to divide it into a training
set and a test set with the ratio 70:30 using stratification on the different outcomes, i.e., making
sure that both sets contained same ratio of cases with bad outcome. The test set was put aside
and was not used until it was time to test the final model. The training data, with the number
of samples being 58,850, was used to find appropriate features and train models. The aim was to
find features that would distinguish cases with good outcome and cases with bad outcome. For each
feature, histograms are presented, visualizing the normalized proportions for each outcome, where
red coloured histogram is the cases with bad outcome, and blue coloured histogram is cases with
good outcome. The proportions were normalized, since the number of cases with good outcome is
much greater than the number of cases with bad outcome. Given Bayes’ Theorem, see Equation
1, the target was to visualize how often the bin corresponding to the features value was present in
the data, i.e., P(x|good outcome), blue colour, or P(x|bad outcome), red colour, and see if there
was different distributions for the separate outcomes considering their respective histograms. Even
if the distributions were overlapping, the examined feature was used to train models to see if it could
increase the performance.

The first feature introduced was from the clinical data, and it was used to derive a threshold for
the upcoming features derived from the CTG. The next features examined the FIGO guidelines,
trying to estimate the FHR baseline, and extract information from this in different manners. Then
follows the FHR short term variability, and interval index, two features taken from a related study,
followed by the last feature, the mean absolute deviation of the FHR

3.2.1 Gestational Age

A given parameter in the clinical data was the gestational age, i.e., the length of pregnancy in days,
was picked as first feature due to being a known fact before birth. In Figure 9, histograms of said
parameter are shown to visualize the distribution of cases with good outcome versus bad outcome.
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Note that there are samples at number of days equal to 0, which is not a possible gestational age.
This is an indication of missing data, though some of these sample had the given information that the
infant was taken to neonatal care, i.e., the infant was not doing well after birth and needed intensive
care, or the samples had a given Apgar Score. The ones which had an Apgar Score lower than 7 in
the fifth minute were kept, and the samples which had an Apgar Score higher than or equal to 7 were
excluded, which was 38 samples. This decision was made due to the knowledge of low Apgar Score,
or neonatal care are highly correlated with preterm birth [29].

Figure 9: Histograms of gestational age in days. The y-axis is the normalized proportions. The cases
with bad outcome are shown in red colour, and the cases with good outcome are shown in blue colour. The
proportions of the data adds up to 1 for each colour.

To avoid that this parameter alone is the decisive information, the data was split into two cases:

Case 1 : Preterm, Samples with pregnancy length in days ≤ 258,

Case 2 : Full term including postterm, Samples with pregnancy length in days ≥ 259.

The split was chosen based on the clinical definition of a full term pregnancy being 37 weeks, i.e, 259
days. There was no overlap in these sets since the cases who are preterm have a bad Apgar Score
due to other reasons. Having an overlap would increase the possibility of blurring the results. The
number of samples in case 1 was 3,405, and in case 2 there was 55,445 .

3.2.2 Estimation of Fetal Heart Rate Baseline

The FHR baseline is a crucial part when interpreting the CTG, since most patterns clinicians con-
sider are in relation to the baseline. The theory, see [3], defines the baseline as the mean of the
FHR signal without accelerations and decelerations, hence it was desired to ”remove” these. Using
the equation MA(FHR ±10bpm), see [20], where MA was put to a moving average over a 20 minute
sliding window, gave an estimation of an area which the baseline could be within.
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Figure 10a shows a segmented CTG signal, including the FHR signals estimated baseline thresh-
olds, in cyan colour. To exclude the accelerations and decelerations, all data points above and below
the estimated baseline thresholds were removed, see Figure 10b. The arithmetic mean of the re-
maining FHR data points were used as baseline when deriving further features that depend on the
baseline, the result shown in 11, where the estimated baseline is shown in green colour.
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Figure 10: Figure of CTG recordings. In Figure a), the estimated baseline threshold is shown in cyan
colour. In Figure b), the FHR values above, and below the baseline threshold have been removed. Blue
coloured signal is FHR, and red coloured signal is TOCO. The x-axis is the time in minutes in descending
order, meaning that the signal ends at x = 0. The y-axis is in beats per minute.

Figure 11: Figure of CTG recording, with the estimated baseline in green colour. Blue coloured signal is
FHR, and red coloured signal is TOCO. The x-axis is the time in minutes in descending order, meaning that
the signal ends at x = 0. The y-axis is in beats per minute.
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Bradycardia
Using the estimated baseline, described previously, gave the possibility to investigate if the FHR
signal had signs of bradycardia. Bradycardia is when the FHR signal baseline is less than 120 bpm,
where the lower, the worse [3], hence a threshold of 120 bpm was used when classifying the presence
of bradycardia.

Figure 12a shows the histograms of bradycardia for case 1, and Figure 12b shows the histograms
for case 2.

(a) Case 1. (b) Case 2.

Figure 12: Histograms of bradycardia using a threshold of baseline to be less than 120 bpm. The y-axis is
the normalized proportions. The cases with bad outcome are shown in red colour, and the cases with good
outcome are shown in blue colour. The proportions of the data adds up to 1 for each colour

Tachycardia
Tachycardia is when the FHR signal baseline is more than 150 bpm [3]. This was derived in the
same manner as bradycardia, though instead checking if the estimated baseline was above 150 bpm.
Figure 13a shows the histograms of tachycardia for case 1, and Figure 13b shows the histograms for
case 2.
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(a) Case 1. (b) Case 2.

Figure 13: Histograms of tachycardia using a threshold of the baseline to be greater than 150bpm. The
y-axis is the normalized proportions. The cases with bad outcome are shown in red colour, and the cases
with good outcome are shown in blue colour. The proportions of the data adds up to 1 for each colour.

Estimation of Accelerations
From the baseline estimation, it was also of interest to investigate if the accelerations could be a
good feature. An acceleration was defined such that if a data point was 5 bpm higher than the upper
estimated baseline threshold. The reasoning behind this is that an acceleration is 15 bpm higher than
the FHR baseline, this is depicted in Figure 14, where the red points are classified as accelerations.
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Figure 14: Figure of CTG recording, with the estimated baseline threshold in cyan colour, and the estimated
accelerations in red colour. Blue coloured signal is FHR, and red coloured signal is TOCO. The x-axis is
the time in minutes in descending order, meaning that the signal ends at x = 0. The y-axis is in beats per
minute.

The histograms below show the distributions for each outcome having the estimated number of
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accelerations as observation. Figure 15a shows case 1, and Figure 15b shows case 2.

(a) Case 1. (b) Case 2.

Figure 15: Histograms of estimated accelerations in FHR signal. The cases with bad outcome are shown
in red colour, and the cases with good outcome are shown in blue colour. The proportions of the data adds
up to 1 for each colour.

Estimation of Decelerations
A deceleration is a temporary decrease in the FHR signal [3]. The number of decelerations was
estimated using the lower baseline threshold, where all FHR values below was deemed a deceleration.
Figure 16 shows the number of estimated decelerations in red colour.
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Figure 16: Figure of CTG recording, with the estimated baseline threshold in cyan colour, and the estimated
decelerations in red colour. Blue coloured signal is FHR, and red coloured signal is TOCO. The x-axis is
the time in minutes in descending order, meaning that the signal ends at x = 0. The y-axis is in beats per
minute.

The histograms below shows the distributions for the each outcome having the estimated number of
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decelerations as observation. Figure 17a shows case 1, and Figure 17b shows case 2.

(a) Case 1. (b) Case 2.

Figure 17: Histograms of estimated decelerations in FHR signal. The cases with bad outcome are shown
in red colour, and the cases with good outcome are shown in blue colour. The proportions of the data adds
up to 1 for each colour.

Linear Regression of the Moving Average
The moving average of the FHR signal was also investigated by using linear regression. It was of
interest to examine whether or not the slope could be a possible feature, i.e., if the slope being
increasing or descending was a distinguishing factor. The moving average was, as before, derived
from a 20 minute sliding window. Figure 18 shows the interpolated FHR signal, with its moving
average in yellow, and fitted line in black. Figure 19a shows the histogram for derived slopes for case
1, and Figure 19b shows the histogram for derived slopes for case 2.
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Figure 18: Figure of CTG recording. Blue coloured signal is FHR, red coloured signal is TOCO, yellow
line is moving average using 20 minute sliding window of the FHR signal and the black line is the moving
average fitted by using linear regression. The x-axis is the time in minutes in descending order, meaning that
the signal ends at x = 0. The y-axis is in beats per minute.

(a) Case 1. (b) Case 2.

Figure 19: Histograms of slope of line derived using linear regression on moving average of the FHR signal.
The cases with bad outcome are shown in red colour, and the cases with good outcome are shown in blue
colour. The proportions of the data adds up to 1 for each colour.

3.2.3 Short Term Variability and Interval Index

To capture the unseen variability, the short term variability, STV, and its possible influence was
investigated. The STV was derived from 60 seconds of the FHR signal, and it was defined as [24]

STV =

∑24
i=1 |sFHR(i+ 1)− sFHR(i)|

24
, (9)
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where sFHR(i) = FHR(10 × (i − 1) + 1), i.e., the FHR signal taken once every ten samples. From
the STV, the interval index can be derived as [24]

II =
STV

std[sFHR(i)]
, (10)

where std is the standard deviation. If the denominator returned 0, i.e., the FHR signal at every
ten samples do not change at all, the last sample was added with 1 bpm, forcing a small standard
deviation, and getting a large II.
To decrease the sizes of the STV and the II, being 30 values each since being derived from a 30
minute signal, to reduce the dimensions, the mean absolute deviation of each were tested as features.

Figure 20a shows the histograms of STV for case 1, and figure 20b shows the histograms of STV for
case 2. Figure 21a shows the histograms of II for case 1, and Figure 21b shows the histograms of II
for case 2.

(a) Case 1. (b) Case 2.

Figure 20: Histograms of mean absolute deviation of the short term variability. The y-axis is the normalized
proportions. The cases with bad outcome are shown in red colour, and the cases with good outcome are
shown in blue colour. The proportions of the data adds up to 1 for each colour.
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(a) Case 1. (b) Case 2.

Figure 21: Histograms of mean absolute deviation of the interval index. The y-axis is the normalized
proportions. The cases with bad outcome are shown in red colour, and the cases with good outcome are
shown in blue colour. The proportions of the data adds up to 1 for each colour.

3.2.4 Mean Absolute Deviation

To capture the changes over time in the signal, and investigate the spread of the FHR signal, the
mean absolute deviation, MAD, of the FHR signal was used. Figure 22a shows histograms for case
1, and Figure 22b shows histograms for case 2.

(a) Case 1. (b) Case 2.

Figure 22: Histograms of mean absolute deviation. The y-axis is the normalized proportions. The cases
with bad outcome are shown in red colour, and the cases with good outcome are shown in blue colour. The
proportions of the data adds up to 1 for each colour.

3.3 Models

With the found features, multiple models were trained. All models used different techniques with the
idea to compare the various methods, and not fully rely on one approach. The algorithms used were
support vector machine, short SVM, k-nearest neighbours, short KNN, and decision tree, short DT,
all of them made by using existing functions in matlab. The interested reader can find the theory
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behind these methods here [12].

Along with SVM, KNN and DT, a neural network was also implemented, since it allowed tuning
the network parameters. The neural network contained input layer, followed by the layers: fully
connected of size 10, activation function ReLU, fully connected of size 2, softmax function, and the
classification as output. The structure was set after trial and error, tuning the learning rate with
initial rate, and drop factor, adding more layers with different output sizes, as well as subtracting
layers, changing number of epochs, etc.

To be able to derive a mean and standard deviation of the four classifiers, 10-fold cross valida-
tion was used. The mean and standard deviation was sought after to give a better understanding of
the results.

3.3.1 Data Set Augmentation

To delete the imbalance of the data set, augmentation was used to reach a 50-50 ratio between cases
with good and bad outcomes. For each k-fold, the training sets were augmented, but the validation
set was not.

For a case with bad outcome, it was checked if new segments could be extracted, see subsection
3.1.2 Segmentation. For a sample, the number of possible new segments were checked, including
shifts. If the number of possibilities were the same as the number of wanted additional samples, all
possibilities were used. If there were more possibilities than wanted, the selection was randomized.
If there were less possibilities than wanted, all possibilities were evenly added to reach wanted num-
ber. Say that it was desired to augment by adding a sample 20 times. If this sample had one new
segment, but no shifts, the original sample was used 10 times and the new segment was used 10 times.

When no possible shift or new segment was found in cases with bad outcome, the same segment
was used multiple times. To not add the same data, and make the classifiers biased, noise was added
to all features. The noise was derived from 10% of the mean of the feature, which was then multiplied
with a randomly drawn number from the distribution N (0, 0.2). The reasoning behind this was to
decrease the probability of adding a high valued noise. All samples that had a good outcome also
got noise added to their features. This was done because the noise should not influence the classifiers.

Lastly, the features X were normalized to be within the range 0 to 1, using the equation

X ′ =
X −Xmin

Xmax −Xmin
. (11)

The scaling was done to keep all features within the same range, since the classifiers are distance
based algorithm, and each feature should contribute proportionately.

3.3.2 Evaluation

The models made predictions on the validation data set which was not augmented. This procedure
was repeated such that all folds were the validation set once. To compare all results between the
different approaches, all classifiers were compared to each other with respect to their F1 score. The
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confusion matrix along with accuracy, sensitivity and specificity were also derived, but the F1-score
tells how good the quality of the predictions are which is why it was chosen to be the main comparison
parameter. True positive was defined as case with bad outcome that was predicted as such.

Algorithm 1 summarizes the approach previously explained.

Algorithm 1

1. Split training observations into K folds. For each k = 1, ..., K:

(a) Data set augmentation on all but the kth fold of the training data.

(b) Train models using the augmented folds.

(c) Predict using the left-out kth fold as validation data.

2. Compute the mean and the standard deviation for accuracy, sensitivity, specificity and F1-score.

The first step was to derive a threshold to be able to evaluate if a feature would improve the result or
not. All models, ANN, DT, KNN, and SVM were trained using the gestational age as single feature.
Then each presented feature were used alongside the gestational age to see if it would improve the
results for the classifiers. It was then tested to use all presented features in the models, followed by
a test using all features but the gestational age. Lastly, the best performing models with features,
for each case, were trained using all training data, and then got to predict on the test data.

24



4 Results

In this section the results are presented. The section is split into cases, i.e., case 1 and case 2. For
each case, all described features were used to train different classifiers. A positive prediction is clas-
sifying a sample as a case with bad outcome, i.e., Apgar Score will be lower than 7, and therefore
a negative prediction is classifying a sample as a case with good outcome, i.e., Apgar Score will be
equal to or higher than 7. The results are presented in tables. Each table contain the mean and
standard deviation of accuracy, sensitivity, specificity, and F1-score from all predictions done on the
validation set. To summarize and compare the results, the F1-scores for all features are presented
in a common table. The presented results are briefly discussed to make it easier for the reader to
compare tables for each classifier. Further discussion of the results will be in the next section.

Confusion matrices for all results can be found in Appendix . They were excluded from this section
to keep it comprehensible and simple.

Firstly, the results, when using gestational age as single feature, are presented, followed by results
when using gestational age together with another derived feature. Then the models were trained on
all derived features, followed by using all, but the gestational age, as features.

At the end of this section, predictions using the test data are made by using the best model, for
each case.

4.1 Classifications for Case 1

Case 1 contained all samples with gestational age less than than or equal to 258 days.

4.1.1 Naive Models

In this part, results of the naive classifiers are presented. All classifiers were trained with gestational
age as a feature. In Table 1 the mean and standard deviation of accuracy, sensitivity, specificity and
F1 score are presented.

All classifiers got a low mean in sensitivity, i.e., troubles classifying cases with bad outcome. Con-
sidering the F1-score, SVM was the best performing classifier. The KNN was the worst in regards to
the F1-score, though it did have the highest sensitivity. These results were used as thresholds when
adding new features to the models.
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Table 1: Tables of results from classifiers using different methods (specified in each table), having the
gestational age as a feature. Each table shows the mean ± standard deviation of accuracy, sensitivity,
specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8849 ± 0.0113
Sensitivity 0.5164 ± 0.1096
Specificity 0.9181 ± 0.0137
F1-score 0.4227 ± 0.0621

b)

KNN mean ± std
Accuracy 0.7786 ± 0.0446
Sensitivity 0.5627 ± 0.1306
Specificity 0.7980 ± 0.0540
F1-score 0.2962 ± 0.0552

c)

DT mean ± std
Accuracy 0.8573 ± 0.0303
Sensitivity 0.5308 ± 0.1347
Specificity 0.8867 ± 0.0382
F1-score 0.3801 ± 0.0710

d)

ANN mean ± std
Accuracy 0.8072 ± 0.2604
Sensitivity 0.4739 ± 0.1472
Specificity 0.8373 ± 0.2922
F1-score 0.3686 ± 0.1231

4.1.2 Bradycardia

In addition to the gestational age, all models in this section had presence of bradycardia as a second
feature. In Table 2 the mean and standard deviation of accuracy, sensitivity, specificity, and F1-score
are presented.

Looking in table 2, the added feature made small differences for the SVM, KNN, and DT classi-
fiers. Compared to the naive results, all three classifiers either increased the mean of sensitivity, and
decreased the mean of specificity, or the other way around. The ANN classifier suffered from many
false positives, meaning that the added feature did not provide useful information.

Table 2: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and bradycardia as features. Each tables shows the mean ± standard deviation of accuracy,
sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8781 ± 0.0224
Sensitivity 0.5235 ± 0.1014
Specificity 0.9101 ± 0.0262
F1-score 0.4156 ± 0.0607

b)

KNN mean ± std
Accuracy 0.7327 ± 0.0856
Sensitivity 0.5659 ± 0.1045
Specificity 0.7478 ± 0.0927
F1-score 0.2705 ± 0.0681

c)

DT mean ± std
Accuracy 0.8637 ± 0.0261
Sensitivity 0.5090 ± 0.0847
Specificity 0.8956 ± 0.0279
F1-score 0.3842 ± 0.0623

d)

ANN mean ± std
Accuracy 0.4194 ± 0.2464
Sensitivity 0.6107 ± 0.3196
Specificity 0.4026 ± 0.2967
F1-score 0.1342 ± 0.0514
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4.1.3 Tachycardia

In addition to the gestational age, all models in this section also had presence of tachycardia as a
second feature. In Table 3 the mean and standard deviation of accuracy, sensitivity, specificity, and
F1-score are presented.

The derived results in Table 3 does not present improvement compared to the naive results in Table
1. Comparing the classifiers between each other, one can see that the KNN classifier had the highest
number of false positives, and therefore the lowest specificity which this classifier also had when only
using one feature. Decision tree also increased in sensitivity, but lowered its specificity, while the
SVM did the opposite. The SVM classifier outperforms the other techniques when comparing the
F1-score, and it also did a minor improvement from the naive classification. The ANN classifier got
the lowest F1-score.

Table 3: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and tachycardia as features. Each table shows the mean ± standard deviation of accuracy,
sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8866 ± 0.0191
Sensitivity 0.5055 ± 0.0723
Specificity 0.9209 ± 0.0177
F1-score 0.4262 ± 0.0683

b)

KNN mean ± std
Accuracy 0.5962 ± 0.0422
Sensitivity 0.6298 ± 0.0722
Specificity 0.5931 ± 0.0439
F1-score 0.2059 ± 0.0290

c)

DT mean ± std
Accuracy 0.7436 ± 0.0494
Sensitivity 0.5483 ± 0.0952
Specificity 0.7612 ± 0.0493
F1-score 0.2653 ± 0.0603

d)

ANN mean ± std
Accuracy 0.3592 ± 0.2205
Sensitivity 0.6416 ± 0.3006
Specificity 0.3340 ± 0.2658
F1-score 0.1374 ± 0.0231

4.1.4 Number of Accelerations

In addition to the gestational age, all models in this section also had the number of accelerations as a
feature. In Table 4 the mean and standard deviation of accuracy, sensitivity, specificity and F1-score
are presented.

The ANN classifier did not find any information using this feature, hence it was disregarded. Con-
sidering the F1-score, in Table 4, both KNN and DT made improvements, mostly due to finding
true negatives better. The SVM classifier still had a specificity of 91%, as it had for the naive case,
making a good separation of true negatives and false positives. The ANN classifier did not improve.
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Table 4: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and the number of accelerations as features. Each table shows the mean ± standard deviation
of accuracy, sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8813 ± 0.0144
Sensitivity 0.5200 ± 0.0928
Specificity 0.9139 ± 0.0130
F1-score 0.4191 ± 0.0645

b)

KNN mean ± std
Accuracy 0.7042 ± 0.0329
Sensitivity 0.5408 ± 0.0936
Specificity 0.7190 ± 0.0345
F1-score 0.2329 ± 0.0428

c)

DT mean ± std
Accuracy 0.7284 ± 0.0295
Sensitivity 0.5305 ± 0.0831
Specificity 0.7462 ± 0.0347
F1-score 0.2439 ± 0.0304

d)

ANN mean ± std
Accuracy 0.4324 ± 0.1448
Sensitivity 0.6155 ± 0.1943
Specificity 0.4159 ± 0.1714
F1-score 0.1517 ± 0.0268

4.1.5 Number of Decelerations

In addition to the gestational age, all models in this section also had the number of decelerations as a
feature. In Table 5 the mean and standard deviation of accuracy, sensitivity, specificity and F1-score
are presented. Adding this feature did not improve the results for any classifier, and SVM was still
the best performing one.

Table 5: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and number of decelerations as features. Each table shows the mean ± standard deviation of
accuracy, sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8769 ± 0.0222
Sensitivity 0.5299 ± 0.0688
Specificity 0.9081 ± 0.0220
F1-score 0.4185 ± 0.0657

b)

KNN mean ± std
Accuracy 0.7204 ± 0.0212
Sensitivity 0.5619 ± 0.0628
Specificity 0.7346 ± 0.0260
F1-score 0.2490 ± 0.0207

c)

DT mean ± std
Accuracy 0.7292 ± 0.0450
Sensitivity 0.5478 ± 0.0993
Specificity 0.7455 ± 0.0510
F1-score 0.2524 ± 0.0476

d)

ANN mean ± std
Accuracy 0.3804 ± 0.2516
Sensitivity 0.6549 ± 0.2860
Specificity 0.3557 ± 0.2982
F1-score 0.1413 ± 0.0400

4.1.6 Slope of Fitted Line

In addition to the gestational age, all models in this section also had the slope of fitted line as a
feature. In Table 6 the mean and standard deviation of accuracy, sensitivity, specificity and F1-score
are presented. The tables show a minor improvement in F1-score for the SVM, but not for the KNN
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and DT. The ANN classifier got a higher accuracy than 50% which had not happened since the naive
model, but it still had the lowest F1-score.

Table 6: Tables of results from classifiers using different methods (specified in each table), and the gestational
age and slope of fitted line as features. Each table shows mean ± standard deviation for accuracy, sensitivity,
specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8852 ± 0.0134
Sensitivity 0.5094 ± 0.0616
Specificity 0.9190 ± 0.0134
F1-score 0.4232 ± 0.0472

b)

KNN mean ± std
Accuracy 0.7145 ± 0.0275
Sensitivity 0.5198 ± 0.0937
Specificity 0.7321 ± 0.0298
F1-score 0.2312 ± 0.0364

c)

DT mean ± std
Accuracy 0.7721 ± 0.0307
Sensitivity 0.5164 ± 0.0928
Specificity 0.7951 ± 0.0381
F1-score 0.2718 ± 0.0359

d)

ANN mean ± std
Accuracy 0.5655 ± 0.2285
Sensitivity 0.4357 ± 0.2930
Specificity 0.5768 ± 0.2757
F1-score 0.1213 ± 0.0540

4.1.7 Short Term Variability

In addition to the gestational age, all models in this section also had the mean absolute deviation,
MAD, of the short term variability as a feature. In Table 7 the mean and standard deviation of
accuracy, sensitivity, specificity and F1-score are presented. This feature did not provide any further
information when trying to separate the outcomes.

Table 7: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and MAD of the short term variability as features. Each table shows the mean ± standard
deviation of accuracy, sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8796 ± 0.0199
Sensitivity 0.5201 ± 0.0869
Specificity 0.9120 ± 0.0227
F1-score 0.4170 ± 0.0569

b)

KNN mean ± std
Accuracy 0.6837 ± 0.0382
Sensitivity 0.5020 ± 0.0695
Specificity 0.7001 ± 0.0420
F1-score 0.2086 ± 0.0307

c)

DT mean ± std
Accuracy 0.7380 ± 0.0190
Sensitivity 0.4628 ± 0.0545
Specificity 0.7628 ± 0.0206
F1-score 0.2260 ± 0.0253

d)

ANN mean ± std
Accuracy 0.4102 ± 0.2430
Sensitivity 0.6195 ± 0.3007
Specificity 0.3914 ± 0.2912
F1-score 0.1335 ± 0.0490
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4.1.8 Interval Index

In addition to the gestational age, all models in this section also had the mean absolute deviation of
the interval index as a feature. In Table 8 the mean and standard deviation of accuracy, sensitivity,
specificity and F1-score are presented. Having this as an additional feature, did not improve any
result comparing to the naive models.

Table 8: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and MAD of the interval index as features. Each table shows mean ± standard deviation for
accuracy, sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8840 ± 0.0130
Sensitivity 0.5160 ± 0.0696
Specificity 0.9171 ± 0.0132
F1-score 0.4234 ± 0.0513

b)

KNN mean ± std
Accuracy 0.6978 ± 0.0226
Sensitivity 0.5586 ± 0.0959
Specificity 0.7103 ± 0.0240
F1-score 0.2336 ± 0.0375

c)

DT mean ± std
Accuracy 0.7527 ± 0.0216
Sensitivity 0.5473 ± 0.1097
Specificity 0.7711 ± 0.0297
F1-score 0.2661 ± 0.0352

d)

ANN mean ± std
Accuracy 0.3233 ± 0.3086
Sensitivity 0.7112 ± 0.3750
Specificity 0.2883 ± 0.3699
F1-score 0.1312 ± 0.0497

4.1.9 Mean Absolute Deviation

In addition to the gestational age, all models in this section also had the mean absolute deviation
of the interpolated FHR signal as a second feature. In Table 9 the mean and standard deviation
of accuracy, sensitivity, specificity and F1-score are presented. No improvements were made from
adding this feature. The SVM classifier showed the least deterioration, while both the KNN and DT
models had higher sensitivity, however they had lower specificity. The ANN was, yet again, excluded
from discussion due to bad results.
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Table 9: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and MAD of the FHR as features. Each table shows mean ± standard deviation for accuracy,
sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8834 ± 0.0133
Sensitivity 0.5160 ± 0.0696
Specificity 0.9165 ± 0.0129
F1-score 0.4224 ± 0.0539

b)

KNN mean ± std
Accuracy 0.6840 ± 0.0310
Sensitivity 0.5377 ± 0.0641
Specificity 0.6972 ± 0.0328
F1-score 0.2201 ± 0.0291

c)

DT mean ± std
Accuracy 0.7081 ± 0.0479
Sensitivity 0.5518 ± 0.0560
Specificity 0.7222 ± 0.0540
F1-score 0.2403 ± 0.0310

d)

ANN mean ± std
Accuracy 0.3418 ± 0.3493
Sensitivity 0.6823 ± 0.4208
Specificity 0.3111 ± 0.4184
F1-score 0.1218 ± 0.0558

4.1.10 All Features

In this section all features were used when training the classifiers. In Table 10 the mean and standard
deviation of accuracy, sensitivity, specificity and F1-score are presented. The SVM still outperforms
all the other classifiers, even if it got lower results than the naive SVM model.

Table 10: Tables of results from classifiers using different methods (specified in each table), using all derived
features. Each table shows mean ± standard deviation for accuracy, sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8758 ± 0.0111
Sensitivity 0.5337 ± 0.0706
Specificity 0.9065 ± 0.0122
F1-score 0.4145 ± 0.0435

b)

KNN mean ± std
Accuracy 0.7903 ± 0.0279
Sensitivity 0.4021 ± 0.0856
Specificity 0.8252 ± 0.0266
F1-score 0.2423 ± 0.0557

c)

DT mean ± std
Accuracy 0.7971 ± 0.0237
Sensitivity 0.4879 ± 0.1080
Specificity 0.8249 ± 0.0232
F1-score 0.2842 ± 0.0600

d)

ANN mean ± std
Accuracy 0.4871 ± 0.1643
Sensitivity 0.5261 ± 0.2198
Specificity 0.4835 ± 0.1978
F1-score 0.1420 ± 0.0237

4.1.11 All but One Feature

In this section all features, but the gestational age, were used when training the classifiers. In Table
11 the mean and standard deviation of accuracy, sensitivity, specificity and F1-score are presented.
Comparing these results to the naive models shows that these models performed worse, every single
F1-score decreased, most notably for the SVM classifier. These results, compared to the ones derived
when training on all features, also shows a big decrease in the F1-score. The ANN classifier seems to
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be affected the least when not having the gestational age as a feature, though it still had very high
standard deviation compared to the other classifiers.

Table 11: Tables of results from classifiers using different methods (specified in each table), using all derived
features, but the gestational age. Each table shows the mean ± standard deviation of accuracy, sensitivity,
specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.7316 ± 0.0153
Sensitivity 0.3450 ± 0.1273
Specificity 0.7663 ± 0.0214
F1-score 0.1716 ± 0.0599

b)

KNN mean ± std
Accuracy 0.7662 ± 0.0262
Sensitivity 0.2064 ± 0.0602
Specificity 0.8166 ± 0.0296
F1-score 0.1270 ± 0.0368

c)

DT mean ± std
Accuracy 0.7477 ± 0.0236
Sensitivity 0.2494 ± 0.0615
Specificity 0.7926 ± 0.0259
F1-score 0.1401 ± 0.0328

d)

ANN mean ± std
Accuracy 0.4937 ± 0.1653
Sensitivity 0.4990 ± 0.1961
Specificity 0.4933 ± 0.1963
F1-score 0.1377 ± 0.0229

4.1.12 Comparison: Features vs Features and Classifiers vs Classifiers

Table 12 shows the F1-score for all different classifier techniques with respective features used. Note
the lower mean for all classifiers when excluding the gestational age. The highlighted value was
deemed to be the best classifier and best combination of features, due to having the highest mean.

Table 12: Table of F1-score for all classifiers with respective features.

F1-score SVM KNN Decision Tree ANN
*Gestational Age 0.4227 ± 0.0621 0.2962 ± 0.0552 0.3801 ± 0.0710 0.3686 ± 0.1231
Bradycardia & * 0.4156 ± 0.0607 0.2705 ± 0.0681 0.3842 ± 0.0623 0.1342 ± 0.0514
Tachycardia & * 0.4262 ± 0.0683 0.2059 ± 0.0290 0.2653 ± 0.0603 0.1374 ± 0.0231

#Accelerations & * 0.4191 ± 0.0645 0.2329 ± 0.0428 0.2439 ± 0.0304 0.1517 ± 0.0268
#Decelerations & * 0.4185 ± 0.0657 0.2490 ± 0.0207 0.2524 ± 0.0476 0.1413 ± 0.0400

Slope & * 0.4232 ± 0.0472 0.2312 ± 0.0364 0.2718 ± 0.0359 0.1213 ± 0.0540
STV & * 0.4170 ± 0.0569 0.2086 ± 0.0307 0.2260 ± 0.0253 0.1335 ± 0.0490
II & * 0.4234 ± 0.0513 0.2336 ± 0.0375 0.2661 ± 0.0352 0.1312 ± 0.0497

MAD & * 0.4224 ± 0.0539 0.2201 ± 0.0291 0.2403 ± 0.0310 0.1218 ± 0.0558
All Features 0.4145 ± 0.0435 0.2423 ± 0.0557 0.2842 ± 0.0600 0.1420 ± 0.0237

All Features excl. * 0.1716 ± 0.0599 0.1270 ± 0.0368 0.1401 ± 0.0328 0.1377 ± 0.0229
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4.2 Classifications for Case 2

Case 2 contained all samples with gestational age larger than or equal to 259 days.

4.2.1 Naive Models

In this part results of the naive classifiers are presented. All classifiers were trained with the ges-
tational age as a feature. In Table 13 the mean and standard deviation of accuracy, sensitivity,
specificity and F1 score are presented. Table 13 shows that the F1-scores were very low, implying
that the separation between the outcomes were not enough when only using this feature. These
results were used as threshold when training new models using added features.

Table 13: Tables of results from classifiers using different methods (specified in each table), having the
gestational age as feature. Each table shows the mean± standard deviation of accuracy, sensitivity, specificity,
and F1-score.

a)

SVM mean ± std
Accuracy 0.8548 ± 0.0094
Sensitivity 0.2348 ± 0.0457
Specificity 0.8613 ± 0.0094
F1-score 0.0328 ± 0.0068

b)

KNN mean ± std
Accuracy 0.5345 ± 0.1084
Sensitivity 0.4786 ± 0.1009
Specificity 0.5351 ± 0.1104
F1-score 0.0212 ± 0.0032

c)

DT mean ± std
Accuracy 0.6662 ± 0.0364
Sensitivity 0.3194 ± 0.0719
Specificity 0.6699 ± 0.0372
F1-score 0.0196 ± 0.0042

d)

ANN mean ± std
Accuracy 0.7962 ± 0.1400
Sensitivity 0.2209 ± 0.0805
Specificity 0.8023 ± 0.1422
F1-score 0.0266 ± 0.0100

4.2.2 Bradycardia

In addition to the gestational age, all models in this section also had presence of bradycardia as a
feature. In Table 14 the mean and standard deviation of accuracy, sensitivity, specificity and F1-score
are presented. No improvement can be seen for any of the classifiers.
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Table 14: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and bradycardia as features. Each table shows the mean ± standard deviation of accuracy,
sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8847 ± 0.0258
Sensitivity 0.1882 ± 0.0797
Specificity 0.8921 ± 0.0268
F1-score 0.0321 ± 0.0079

b)

KNN mean ± std
Accuracy 0.4508 ± 0.0633
Sensitivity 0.5283 ± 0.1028
Specificity 0.4500 ± 0.0647
F1-score 0.0197 ± 0.0032

c)

DT mean ± std
Accuracy 0.6443 ± 0.0473
Sensitivity 0.3421 ± 0.0714
Specificity 0.6474 ± 0.0483
F1-score 0.0197 ± 0.0032

d)

ANN mean ± std
Accuracy 0.4489 ± 0.2339
Sensitivity 0.5542 ± 0.2451
Specificity 0.4478 ± 0.2389
F1-score 0.0204 ± 0.0023

4.2.3 Tachycardia

In addition to the gestational age, all models in this section also had presence of tachycardia as a
feature. In Table 15 the mean and standard deviation of accuracy, sensitivity, specificity, and F1-score
are presented. The results shows no overall improvements.

Table 15: Tables of results from classifiers using different methods (specified in each table), and the ges-
tational age and tachycardia as features. Each table shows the mean ± standard deviation of accuracy,
sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8888 ± 0.0038
Sensitivity 0.1883 ± 0.0459
Specificity 0.8962 ± 0.0038
F1-score 0.0341 ± 0.0082

b)

KNN mean ± std
Accuracy 0.5107 ± 0.0633
Sensitivity 0.5475 ± 0.1034
Specificity 0.5103 ± 0.0646
F1-score 0.0229 ± 0.0035

c)

DT mean ± std
Accuracy 0.6523 ± 0.0201
Sensitivity 0.4111 ± 0.0760
Specificity 0.6548 ± 0.0205
F1-score 0.0241 ± 0.0042

d)

ANN mean ± std
Accuracy 0.5068 ± 0.2541
Sensitivity 0.4785 ± 0.2641
Specificity 0.5071 ± 0.2596
F1-score 0.0194 ± 0.0032

4.2.4 Number of Accelerations

In addition to the gestational age, all models in this section also had the number of accelerations
as a feature. In Table 16 the mean and standard deviation of accuracy, sensitivity, specificity, and
F1-score are presented. No improvements can be seen compared to the naive models. Note that
for the ANN classifier, the standard deviation of the accuracy, sensitivity and specificity increased,
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meaning that the predictions vary much and the classifier could not find information to separate the
outcomes.

Table 16: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and the number of accelerations as features. Each table shows the mean ± standard deviation
of accuracy, sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.7966 ± 0.0591
Sensitivity 0.3057 ± 0.1195
Specificity 0.8018 ± 0.0609
F1-score 0.0300 ± 0.0047

b)

KNN mean ± std
Accuracy 0.6351 ± 0.0108
Sensitivity 0.3748 ± 0.0526
Specificity 0.6378 ± 0.0107
F1-score 0.0210 ± 0.0033

c)

DT mean ± std
Accuracy 0.6258 ± 0.0082
Sensitivity 0.4128 ± 0.0749
Specificity 0.6281 ± 0.0082
F1-score 0.0225 ± 0.0041

d)

ANN mean ± std
Accuracy 0.5183 ± 0.2558
Sensitivity 0.4706 ± 0.2538
Specificity 0.5189 ± 0.2612
F1-score 0.0196 ± 0.0026

4.2.5 Number of Decelerations

In addition to the gestational age, all models in this section also had the number of decelerations as a
feature. In Table 17 the mean and standard deviation of accuracy, sensitivity, specificity and F1-score
are presented. Comparing the classifiers to each other, not including ANN due to bad results, the
SVM performed best. Comparing to the naive models, the SVM increased its sensitivity, but lowered
in specificity, the same happened for the DT, while the KNN did the opposite.

Table 17: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and the number of decelerations as features. Each table shows the mean ± standard deviation
of accuracy, sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.7622 ± 0.0266
Sensitivity 0.3504 ± 0.0706
Specificity 0.7666 ± 0.0274
F1-score 0.0298 ± 0.0045

b)

KNN mean ± std
Accuracy 0.6327 ± 0.0082
Sensitivity 0.4094 ± 0.0584
Specificity 0.6350 ± 0.0083
F1-score 0.0227 ± 0.0033

c)

DT mean ± std
Accuracy 0.6172 ± 0.0065
Sensitivity 0.3886 ± 0.0595
Specificity 0.6196 ± 0.0069
F1-score 0.0207 ± 0.0030

d)

ANN mean ± std
Accuracy 0.3801 ± 0.1423
Sensitivity 0.5677 ± 0.1531
Specificity 0.3781 ± 0.1453
F1-score 0.0187 ± 0.0019
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4.2.6 Slope of Fitted Line

In addition to the gestational age, all models in this section also had the slope of fitted line as a
feature. In Table 18 the mean and standard deviation of accuracy, sensitivity, specificity and F1-score
are presented. The ANN classifier still had the lowest F1-score. The other classifiers got better at
finding the true negatives than the naive models did which shows in their increased specificity.

Table 18: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and slope of fitted line as features. Each table shows mean ± standard deviation for accuracy,
sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.9146 ± 0.0170
Sensitivity 0.1554 ± 0.0607
Specificity 0.9226 ± 0.0176
F1-score 0.0359 ± 0.0095

b)

KNN mean ± std
Accuracy 0.6686 ± 0.0145
Sensitivity 0.3506 ± 0.0640
Specificity 0.6720 ± 0.0144
F1-score 0.0217 ± 0.0044

c)

DT mean ± std
Accuracy 0.7353 ± 0.0146
Sensitivity 0.2782 ± 0.0632
Specificity 0.7401 ± 0.0151
F1-score 0.0214 ± 0.0043

d)

ANN mean ± std
Accuracy 0.4764 ± 0.3303
Sensitivity 0.5203 ± 0.3332
Specificity 0.4760 ± 0.3373
F1-score 0.0196 ± 0.0040

4.2.7 Short Term Variability

In addition to the gestational age, all models in this section also had the mean absolute deviation,
MAD, of the short term variability as a feature. In Table 19 the mean and standard deviation of
accuracy, sensitivity, specificity, and F1-score are presented. The SVM, KNN, and DT classifiers
improved their results, but all got a lower sensitivity than the naive models. The ANN was excluded
from comparison due to low means and high standard deviations.
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Table 19: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and MAD of the short term variability as features. Each table shows the mean ± standard
deviation of accuracy, sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8587 ± 0.0184
Sensitivity 0.2090 ± 0.0426
Specificity 0.8655 ± 0.0187
F1-score 0.0302 ± 0.0062

b)

KNN mean ± std
Accuracy 0.6157 ± 0.0119
Sensitivity 0.4543 ± 0.0498
Specificity 0.6174 ± 0.0118
F1-score 0.0241 ± 0.0029

c)

DT mean ± std
Accuracy 0.7497 ± 0.0109
Sensitivity 0.2971 ± 0.0426
Specificity 0.7545 ± 0.0109
F1-score 0.0242 ± 0.0038

d)

ANN mean ± std
Accuracy 0.4022 ± 0.2510
Sensitivity 0.5922 ± 0.2381
Specificity 0.4002 ± 0.2561
F1-score 0.0204 ± 0.0021

4.2.8 Interval Index

In addition to the gestational age, all models in this section also had the mean absolute deviation,
MAD, of the interval index as a feature. In Table 20 the mean and standard deviation of accuracy,
sensitivity, specificity and F1 score are presented. The SVM classifier got the best F1-score. The
ANN had the highest sensitivity rate, but suffered from many false positives, and high standard
deviations.

Table 20: Tables of results from classifiers using different methods (specified in each table), having the
gestational age and MAD of the interval index as features. Each table shows the mean ± standard deviation
of accuracy, sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8188 ± 0.0560
Sensitivity 0.2797 ± 0.1094
Specificity 0.8245 ± 0.8245
F1-score 0.0308 ± 0.0054

b)

KNN mean ± std
Accuracy 0.5860 ± 0.0133
Sensitivity 0.4266 ± 0.0582
Specificity 0.5877 ± 0.0133
F1-score 0.0211 ± 0.0030

c)

DT mean ± std
Accuracy 0.7642 ± 0.0314
Sensitivity 0.2679 ± 0.0735
Specificity 0.7695 ± 0.0322
F1-score 0.0231 ± 0.0046

d)

ANN mean ± std
Accuracy 0.5315 ± 0.2453
Sensitivity 0.4830 ± 0.2785
Specificity 0.5320 ± 0.2507
F1-score 0.0184 ± 0.0075

4.2.9 Mean Absolute Deviation

In addition to the gestational age, all models in this section also had the mean absolute deviation,
MAD, of the interpolated FHR signal as a feature. In Table 21 the mean and standard deviation
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of accuracy, sensitivity, specificity, and F1-score are presented. The SVM classifier was still best
performing, even if it got lower sensitivity than the naive SVM did. The KNN and DT also improved
compared to their naive versions, where in this case they got a higher specificity. The ANN classifier,
yet again, got high standard deviations.

Table 21: Tables of results from classifiers using different methods (specified in each table), having the
gestational age, and MAD of the FHR as features. Each table shows the mean ± standard deviation of
accuracy, sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8829 ± 0.0293
Sensitivity 0.1849 ± 0.0673
Specificity 0.8902 ± 0.0300
F1-score 0.0318 ± 0.0094

b)

KNN mean ± std
Accuracy 0.6059 ± 0.0098
Sensitivity 0.4008 ± 0.0813
Specificity 0.6081 ± 0.0102
F1-score 0.0208 ± 0.0041

c)

DT mean ± std
Accuracy 0.7367 ± 0.0125
Sensitivity 0.2866 ± 0.0671
Specificity 0.7415 ± 0.0129
F1-score 0.0222 ± 0.0048

c)

ANN mean ± std
Accuracy 0.5844 ± 0.1838
Sensitivity 0.4334 ± 0.2151
Specificity 0.5860 ± 0.1879
F1-score 0.0191 ± 0.0073

4.2.10 All Features

In this section all features were used when training the classifiers. In Table 22 the mean and standard
deviation of accuracy, sensitivity, specificity and F1-score are presented. The ANN got the best
sensitivity, even if it was worse than the naive ANN results. The SVM, KNN and DT increased
compared to their naive models, and SVM was the best performing with this combination of features.

Table 22: Tables of results from classifiers using different methods (specified in each table), having all
derived features. Each table shows the mean ± standard deviation of accuracy, sensitivity, specificity, and
F1-score.

a)

SVM mean ± std
Accuracy 0.8887 ± 0.0034
Sensitivity 0.1882 ± 0.0431
Specificity 0.8961 ± 0.0035
F1-score 0.0341 ± 0.0076

b)

KNN mean ± std
Accuracy 0.7108 ± 0.0298
Sensitivity 0.3073 ± 0.0506
Specificity 0.7151 ± 0.0301
F1-score 0.0220 ± 0.0047

c)

DT mean ± std
Accuracy 0.8622 ± 0.0205
Sensitivity 0.1640 ± 0.0526
Specificity 0.8696 ± 0.0208
F1-score 0.0246 ± 0.0082

d)

ANN mean ± std
Accuracy 0.4653 ± 0.1198
Sensitivity 0.5475 ± 0.1142
Specificity 0.4645 ± 0.1222
F1-score 0.0211 ± 0.0016
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4.2.11 All but One Feature

In this section all features, but the gestational age, were used when training the classifiers. In Table
23 the mean and standard deviation of accuracy, sensitivity, specificity and F1-score are presented.
Comparing the classifiers shows that SVM, KNN, and DT got similar accuracy, where SVM had a
better sensitivity. The ANN classifiers had the highest sensitivity, but the simultaneously the lowest
specificity. When comparing to the results using all features, it should be noted that the SVM
classifier did not show any differences at all when classifying the cases with bad outcome.

Table 23: Tables of results from classifiers using different methods (specified in each table), utilizing all
derived features, but the gestational age. Each table shows the mean ± standard deviation of accuracy,
sensitivity, specificity, and F1-score.

a)

SVM mean ± std
Accuracy 0.8888 ± 0.0041
Sensitivity 0.1883 ± 0.0418
Specificity 0.8962 ± 0.0043
F1 Score 0.0341 ± 0.0071

b)

KNN mean ± std
Accuracy 0.8941 ± 0.0069
Sensitivity 0.1175 ± 0.0114
Specificity 0.9023 ± 0.0070
F1 Score 0.0227 ± 0.0027

c)

DT mean ± std
Accuracy 0.8908 ± 0.0075
Sensitivity 0.1364 ± 0.0348
Specificity 0.8987 ± 0.0076
F1 Score 0.0255 ± 0.0067

c)

ANN mean ± std
Accuracy 0.5759 ± 0.1510
Sensitivity 0.4282 ± 0.1825
Specificity 0.5775 ± 0.1544
F1 Score 0.0207 ± 0.0044

4.2.12 Comparison: Features vs Features and Classifiers vs Classifiers

In Table 24, the F1-scores for all different techniques, with varying features, are presented. For
every combination of features, the F1-score had been low throughout. Note the small difference
when excluding the gestational age as feature. The result highlighted in yellow, was deemed the best
performing model and feature combination, due to having the highest mean.

Table 24: Table of F1-score for all classifiers with respective features.

F1-score SVM KNN Decision Tree ANN
*Gestational Age 0.0328 ± 0.0068 0.0212 ± 0.0032 0.0196 ± 0.0042 0.0266 ± 0.0100
Bradycardia & * 0.0321 ± 0.0079 0.0197 ± 0.0032 0.0197 ± 0.0032 0.0204 ± 0.0023
Tachycardia & * 0.0341 ± 0.0082 0.0229 ± 0.0035 0.0241 ± 0.0042 0.0194 ± 0.0032

#Accelerations & * 0.0300 ± 0.0047 0.0210 ± 0.0033 0.0225 ± 0.0041 0.0196 ± 0.0026
#Decelerations & * 0.0298 ± 0.0045 0.0227 ± 0.0033 0.0207 ± 0.0030 0.0187 ± 0.0019

Slope & * 0.0359 ± 0.0095 0.0217 ± 0.0044 0.0214 ± 0.0043 0.0196 ± 0.0040
STV & * 0.0302 ± 0.0062 0.0241 ± 0.0029 0.0242 ± 0.0038 0.0204 ± 0.0021
II & * 0.0308 ± 0.0054 0.0211 ± 0.0030 0.0231 ± 0.0046 0.0184 ± 0.0075

MAD & * 0.0318 ± 0.0094 0.0208 ± 0.0041 0.0222 ± 0.0048 0.0191 ± 0.0073
All Features 0.0341 ± 0.0076 0.0220 ± 0.0047 0.0246 ± 0.0082 0.0211 ± 0.0016

All Features excl. * 0.0341 ± 0.0071 0.0227 ± 0.0027 0.0255 ± 0.0067 0.0207 ± 0.0044
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4.3 Final Models

In this section, the final result are presented. For each case, the best performing model are trains
using the best performing combination of features.

4.3.1 Case 1

For the antepartum cases, the best performing was SVM using gestational age and tachycardia as
features. The results of predicting on the test data is shown in table 25.

Table 25: Results from final SVM model using gestational age and tachycardia as features.

SVM
Accuracy 0.8873
Sensitivity 0.5758
Specificity 0.9190
F1 Score 0.4856

4.3.2 Case 2

For the full term cases, the best performing was SVM using gestational age and the slope of fitted
line from moving average of the FHR as features. The results of predicting on the test data is shown
in table 26.

Table 26: Results from final SVM model using gestational age and slope of fitted line as features.

SVM
Accuracy 0.8130
Sensitivity 0.2980
Specificity 0.8184
F1 Score 0.0318
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5 Discussion

This section discusses the approach, derived features and results of the project.

5.1 Segments

The original CTG recordings were cut into 30 minute segments. The selection of using 30 minute was
mostly based on the theoretically threshold of at least 20 minutes for clinicians when interpreting the
CTG. A segment longer than 30 minutes was not selected because it would exclude more samples.
However, finding features could be made using shorter or longer segments as well. The theoretical
threshold are for clinicians who use medical definitions while non-theoretical features might not be
bound to this threshold. No comparison between different length of the segments was made.

Furthermore, the segmentation was selected based on when a signal did not have more than a 5
second time jump between samples. This threshold was selected due to the discontinuity in the time
vector, for example the time stamps could be (0, 0.25, 0.75, 2.5, 2.75, 3). There were also cases where
the time stamps included a impossible value, for example (0, 0.25, 0.75, 2500, 1, 1.25). Due to this
the cases with bad outcomes were checked manually since the middle time stamp is an outlier, and
should not lead to a bad case being excluded. However, a 5 seconds threshold could be to small,
and increasing this would include more cases with a good outcome. Firstly, a 1 second threshold
was chosen, this excluded 13,527 data samples. Comparing this to the 5 seconds threshold which
excluded 12,841 samples. The main difference in these exclusions were the number of good cases.

Another threshold for the segments was that the FHR signal had to contain at least 50% non-
zero values. This threshold was chosen arbitrarily, and no comparison between different thresholds
were made. This may have been too high since the missing data points were afterwards removed
with linear interpolation. Though, the cases with bad outcome, that were initially excluded, were
all checked manually, which ”saved” 11 out of 253, due to having negative time jumps. An increased
threshold would include more cases with good outcome, hence a comparison was never made. The
negative time jumps were never dealt with for the cases with good outcome either, due to having a
much greater number of these than the cases with bad outcome.

5.2 Features

In this subsection, the features are discussed and evaluated. The features, who were derived with
the same reasoning, are discussed in the same subsection, since the approach to extract them will be
evaluated.

5.2.1 Gestational Age

To have a performance to improve, the gestational age, i.e., the length of the pregnancy in days,
was picked as the first feature, due to it being a known factor. The differences in figure 9, showing
the histograms, yielded the decision to stratify the data given this feature. Doing so is of utmost
importance, since the preterm births have a pathological CTG for other reasons than asphyxia.
However, having this as a feature does not add any new information for the medical professionals
when evaluating the CTG.

41



5.2.2 Bradycardia and Tachycardia

To summarize the features bradycardia and tachycardia, none gave the classifiers notable improve-
ment comparing to the naive case. Considering both of these features were based on an estimation
of the FHR baseline, with the results at hand, this estimation may not have been good enough. The
classification of having bradycardia or tachycardia were checked manually for some CTG. Changing
the thresholds could possibly improve the information in these features. For example, increasing the
threshold for tachycardia to over 160 bpm instead. Another aspect is that these features are binary,
and considering the results, it did not provide enough information to the models, hence it could have
been a better idea only using the estimated baseline.

5.2.3 Number of Accelerations and Decelerations

These features were derived in the same manner using the baseline thresholds estimation. Yet again,
there might be an underlying problem with the derived baseline thresholds. There is a possibility that
the estimated number is far away from the actual number of accelerations or decelerations, though
it was investigated if these features would contribute with any further information to the classifiers,
which none of them did.

An attempt to find a more accurate number of accelerations was initially tested. It was made
by looking for maximas in the FHR signal. This approach was to arbitrarily since there was no
consensus on how close the accelerations could be to one another.

The intention was first to isolate the decelerations in the FHR, and use the derivative to estimate
what shape the decelerations had. This would have been applied to the accelerations as well since it
might have contributed to more information for the classifiers. However, this extraction was never
successful. Instead, using the estimated number of accelerations and decelerations were investigated
due to observation that for some CTG with different outcomes, the cases with bad outcome varied
less, i.e., had less accelerations and decelerations.

5.2.4 Slope of Fitted Line

In the FHR signal, deriving the moving average and fitting a line to it using linear regression, aimed
to capture if the FHR baseline was increasing or decreasing. This feature did not increase the results
much for either classifier. Perhaps it should have been an additional feature when having derived
stronger ones.

5.2.5 Short Term Variability and Interval Index

These features were tested due to having a different approach capturing the variability in the FHR
signal. Though, the results show that both of them did not contribute to new information. There
could be issues taking the mean absolute deviation of the answer to reduce the dimensions. No other
technique was tested. It was neither tested to use all 30 values of STV or II. One could also test to
take values more or less frequently, compared to taking a value every 10 seconds, to see if this would
have made improvement.
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5.2.6 Mean Absolute Deviation

Multiple time domain features from the FHR were derived, e.g., RMS, power, kurtosis, and skewness.
These are not presented in the report, due to the histograms of P(x|bad outcome) and P(x|good
outcome) did not show any particular differences. The mean absolute deviation had somewhat
more ”interesting” histograms. The hope was to see a difference in the variability for the different
outcomes, but this did not contribute to valuable information to the classifiers. The intention was
to also investigate the frequency domain, and use a combination of features from time and frequency
domain.

5.2.7 Combination of Features

All Features
Firstly, all mentioned features were used when training the models. For both cases this did not
improve the results, implying that some features are contributing with the same, or contradicting
information and could possibly only confuse the classifiers.

All but One Feature
This test was made to see how much the information the gestational age carries. Excluding this
as a feature showed a big decrease in the results for case 1, i.e., the gestational age carries vital
information. Though, it should be questioned using this as a feature for the preterm labours. The
clinicians are already aware of the low gestational age and that it is a high risks labour. The CTG
might then be abnormal due to other reasons than hypoxia.

For case 2, however, the results improved for the SVM, KNN, and DT classifiers. This case is
interesting, since an abnormal CTG would not be connected to the gestational age, but probably the
fetus experiencing hypoxia. This concludes that the gestational age should not have been selected
as first feature in this case, but only yielding a stratification of the data. Having this as a feature
skewed the results, and therefore the found features did not seem to improve anything when testing
these alongside the gestational age, while together they were better without the gestational age. Not
including the gestational age in the classifiers would also show if the CTG features did yield any
information or if some of them have correlating information.

5.2.8 Feature Extraction

This thesis mainly targeted the FHR signal for feature extraction. The features were created using
the information on how clinicians interpret CTG, while others were extracted due to differences in
the signals for some samples with different outcomes. For example, the number of accelerations
and decelerations, came from the visual that some cases with good outcome had a variability in the
CTG, i.e., more accelerations and decelerations as they were defined in this project. Though even if
many different CTG signals were reviewed, these features were not able to distinguish the different
outcomes. However, there was no check point to see if these features were somewhat correct, i.e.,
no comparison to clinical evaluations, something most studies rely on. This raises the question if
the features were somewhat similar to what clinicians interpret when looking at the CTG, and if
patterns who were considered normal by the models might be considered pathological by clinicians.
To increase the certainty of the feature extraction, there could be a comparison made to statements
from medical professionals on how they evaluate the CTG.
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To only use the FHR signal for feature extraction had the reasoning that sometimes the sensor,
that measures the contraction, was removed, perhaps due to being uncomfortable for the mother.
The contraction signal was sometimes not present, while there were FHR signal. However, it was
never checked if adding a requirement of having the TOCO present excluded a much higher number
of samples.

The idea with the features were to test if a machine learning method could extract more infor-
mation than the human eye can, though the results were disappointing. There are many other ways
to extract further features (to be mentioned in the next section), but a main issue is to find those
who do not contribute with correlated information.

Another aspect to discuss is that when adding a new feature, mostly it contributed to an increase in
sensitivity while lowering the specificity, or the other way around. With the main target to find the
true positives, i.e., the cases with bad outcome, should one then allow an increase in the false posi-
tives? The introduction of the CTG as a monitoring method already led to an increase of cesarean
sections, something that preferably should not be increased when using new technique to extract
further information [3].

5.3 Different Models

Testing different techniques had the aim to capture the topology of the distribution in the data, and
not rely on one technique.

The SVM classifier ended up being the chosen technique for each case. It was tested due to its
robustness and it handled the extracted features best. The KNN and DT classifiers were tested to
see if the outcomes were separable, which deeming the overall results, they were not. The ANN was
selected to be able to tune the network parameters, though this proved to be unsuccessful. It needed
a higher number of features to make better generalization, and therefore predict better.

In order to reach good classification results, select the right model, with parameters that are correctly
tuned, and appropriately extracted features, where the last mentioned was the main issue with this
thesis. The features did not distinguish the different outcomes enough.
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6 Conclusions

6.1 Conclusions

The objective of this master thesis, was to find features that would distinguish cases with good
versus bad outcome from one another, and to investigate if said features would increase the correct
predictions when compared to a naive model. The found features did not improve the results. Most
of the derived features gave a decreasing sensitivity, while for some, simultaneously, increasing the
specificity. There was also almost no improvement in the F1-score, hence the derived features were
deemed to not be carrying any valuable information that distinguishes the outcomes.

This project used known clinical fact to create a ground truth to have a reference point. This
approach should be changed such that the gestational age could be used as a feature in naive models,
but not use this in addition to features derived from the CTG. This would have created a benchmark
on how good predictions could be made from known information, and then trying to find features
that would beat this benchmark on their own or in combination of each other. This should especially
be done for case 2, where the exclusion of the gestational age showed an improvement in the F1-score.

It was investigated if the best performing machine learning algorithm could be found. From this
thesis, it was found to be SVM, though, this could probably change when using better and possibly
more features.

To conclude, there needs to be better features that distinguishes the outcomes from one another,
and finding such features is difficult.

6.2 Future Outlook

This thesis touches the surface of feature extraction from the cardiotocography, and there are nu-
merous things to investigate further. A natural step forward could be the continuation of feature
extraction from the FHR. The extraction of the FHR signal could be altered, meaning that chosen
thresholds could be changed. The tested features were only examined along with the gestational age
and in combination of each other, though it was not examined if any features contribute with corre-
lated information to the classifiers. The frequency domain could also be investigated to see if there
is any variance in how the FHR lies within each given frequency band. One could also try apply-
ing time series analysis on the FHR signal, to check if the parameters of a model would be interesting.

The features based on background information could be re-made with clinical statements to have
some sort of correctness in the feature extraction, and increase the understanding of deviating pat-
terns in the CTG.

The approach in this project focused much on trying to find information in the FHR signal, there-
fore it would be of interest to focus more on the contraction signal, TOCO. Features using only the
TOCO signal could be time domain features or frequency domain. Another aspect to investigate
could be how the FHR and TOCO signals relate to each other, since it is an important how the fetus
manages a contraction, specifically how decelerations appear in the FHR connected to the TOCO.
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An approach might be to isolate the contractions, and see if there is a corresponding deceleration.

Furthermore, the use of neural network could be expanded. This thesis derived the best result-
ing ANN by trial and error, and changing the internal parameters can be tested more. Another idea
is to use of convolutional neural network on the time series data to find fitting features, or use long
short-term memory to have feedback connections, and capture important traits of the CTG signals.
Regarding the different techniques, it could be interesting combining them, i.e., doing ensemble learn-
ing, and making the prediction from the ensemble aggregation.

These steps could prove to distinguish the respective outcomes from one another, and therefore
improve the results of the classifiers.
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A Confusion Matrices

Here the confusion matrices for each case and each classifier a confusion matrix are presented. The
values are the sum of predictions for each validation set. The appendix is split into the cases and
each feature. Lastly the confusion matrices of the final models are shown.

A.1 Case 1

A.1.1 Naive models
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Figure 23: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of each figure. The classifiers were trained using the gestational age as a feature. The x-axis shows
the predicted class, and the y-axis shows the true class.
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A.1.2 Bradycardia
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Figure 24: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age and bradycardia as features. The
x-axis shows the predicted class, and the y-axis shows the true class.
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A.1.3 Tachycardia
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Figure 25: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age and tachycardia as features. The
x-axis shows the predicted class, and the y-axis shows the true class.
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A.1.4 Number of Accelerations
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Figure 26: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age and number of accelerations as
feature. The x-axis shows the predicted class, and the y-axis shows the true class.
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A.1.5 Number of Decelerations
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Figure 27: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age and the number of decelerations
as feature. The x-axis shows the predicted class, and the y-axis shows the true class.
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A.1.6 Slope of Fitted Line
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Figure 28: Confusion matrices of predictions using different classifiers. The classifier is specified in the
sub caption of the figures. The classifiers were trained using the gestational age and slope of fitted line as
features. The x-axis shows the predicted class, and the y-axis shows the true class.
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A.1.7 Short Term Variability
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Figure 29: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age and MAD of the short term
variability as features. The x-axis shows the predicted class, and the y-axis shows the true class.
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A.1.8 Interval Index
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Figure 30: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age and MAD of the interval index
as features. The x-axis shows the predicted class, and the y-axis shows the true class.
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A.1.9 Mean Absolute Deviation
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Figure 31: Confusion matrices of predictions using different classifiers. The classifier is specified in the
sub caption of the figures. The classifiers were trained using the gestational age and MAD of the FHR as
features. The x-axis shows the predicted class, and the y-axis shows the true class.
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A.1.10 All Features
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Figure 32: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using all derived features. The x-axis shows the predicted
class, and the y-axis shows the true class.
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A.1.11 All but One Feature
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Figure 33: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using all derived features, but the gestational age. The
x-axis shows the predicted class, and the y-axis shows the true class.
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A.2 Case 2

A.2.1 Naive models
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Figure 34: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age as a feature. The x-axis shows
the predicted class, and the y-axis shows the true class.
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A.2.2 Bradycardia
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Figure 35: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age and bradycardia as feature. The
x-axis shows the predicted class, and the y-axis shows the true class.
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A.2.3 Tachycardia
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Figure 36: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age and tachycardia as features. The
x-axis shows the predicted class, and the y-axis shows the true class.
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A.2.4 Number of Accelerations
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Figure 37: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age and the number of accelerations
as features. The x-axis shows the predicted class, and the y-axis shows the true class.
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A.2.5 Number of Decelerations
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Figure 38: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age and the number of decelerations
as features. The x-axis shows the predicted class, and the y-axis shows the true class.
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A.2.6 Slope of Fitted Line
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Figure 39: Confusion matrices of predictions using different classifiers. The classifier is specified in the
sub caption of the figures. The classifiers were trained using the gestational age and slope of fitted line as
features. The x-axis shows the predicted class, and the y-axis shows the true class.
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A.2.7 Short Term Variability

Bad Outcome Good Outcome

Predicted Class

Bad Outcome

Good Outcome

T
ru

e
 C

la
s
s

Confusion matrix of predictions using SVM 

121

7378

458

47488

(a) SVM

Bad Outcome Good Outcome

Predicted Class

Bad Outcome

Good Outcome

T
ru

e
 C

la
s
s

Confusion matrix of predictions using KNN 

263

20990

316

33876

(b) KNN

Bad Outcome Good Outcome

Predicted Class

Bad Outcome

Good Outcome

T
ru

e
 C

la
s
s

Confusion matrix of predictions using DT

172

13472

407

41394

(c) DT

Bad Outcome Good Outcome

Predicted Class

Bad Outcome

Good Outcome

T
ru

e
 C

la
s
s

Confusion matrix of predictions using ANN

343 236

2195832908

(d) ANN

Figure 40: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age and MAD of the short term
variability as features. The x-axis shows the predicted class, and the y-axis shows the true class.
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A.2.8 Interval Index

(a) SVM (b) KNN

(c) DT (d) ANN

Figure 41: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using the gestational age and MAD of the interval index
as features. The x-axis shows the predicted class, and the y-axis shows the true class.
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A.2.9 Mean Absolute Deviation
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Figure 42: Confusion matrices of predictions using different classifiers, specified in title and sub captions.
The classifiers were trained using the gestational age and MAD of the FHR as features. The x-axis shows
the predicted class, and the y-axis shows the true class.

68



A.2.10 All Features
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Figure 43: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using all derived features. The x-axis shows the predicted
class, and the y-axis shows the true class.
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A.2.11 All but One Feature
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Figure 44: Confusion matrices of predictions using different classifiers. The classifier is specified in the sub
caption of the figures. The classifiers were trained using all derived features, not including the gestational
age. The x-axis shows the predicted class, and the y-axis shows the true class.
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A.3 Final Models

A.3.1 Case 1

Figure 45: Caption

A.3.2 Case 2

Figure 46: Caption
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