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Abstract

An introduction to the thin-shell formalism and distributional approach to General Rela-
tivity is provided. The formalism is utilized to investigate possible distributions of matter
that can act as a source to the Kerr metric. As a precursor to a collapsing surface, we recall
how two counter-rotating streams of matter can be constructed to act as a source which we
examine in two cases: one for a frame where the surface energy-momentum tensor is diag-
onal and one where the streams follow geodesics. No fully time-dependent and analytical
solutions have previously been found that act as a collapsing source of the Kerr metric.
We show that, for an adiabatic collapse up to first order, the surface energy-momentum
tensor is incompatible with geodesic streams of matter and that diagonalizing it results in
complex parameters for gravitational collapse.



Populärvetenskaplig beskrivning

Sedan den Allmänna relativitetsteorin publicerades år 1916 har det bedrivits mängder av
forskning inom detta forskningsomr̊ade. De matematiska redskap som togs fram gjorde
det möjligt att först̊a den inre strukturen hos universum: fr̊an Big Bang, krökning av rum
och tid till svarta h̊al och maskh̊al, s̊a har allmänn relativitetsteori ökat v̊ar först̊aelse av
Universum avsevärt.

Kanske den viktigaste tillämpningen av allmän relativitetsteori gäller solens inre struktur,
men även dess p̊averkan p̊a planeternas rörelse. Genom att förklara stjärnors p̊averkan p̊a
rumtiden utvecklades matematiska redskap som möjliggjorde, för första g̊angen n̊agonsin,
en först̊aelse av kanske de mest bisarra objekten i universum: svarta h̊al.

Karl Schwarzschild publicerade den första kompletta bilden av hur rumtiden böjs kring
massiva objekt, bara n̊agra månader efter Einsteins approximation av samma fenomen.
Schwarzschild konstruerade en metrik ; ett matematiskt redskap för att “mäta” krökningen
kring massiva kroppar. Man ins̊ag bara n̊agot år senare att metriken faktiskt beskrev ett
svart h̊al; materia komprimerad till en oändligt liten punkt med oändligt hög densitet.
Ytterligare sju år passerade innan George Birkhoff konstaterade, med ett matematiskt
teorem, att objekt som solen - till en viss grad - gav upphov till en krökt rumtid som
kunde beskrivas med hjälp av Schwarzschilds metrik.

Denna framg̊ang medförde dock en oro: ingenting i Universum är stillast̊aende, och man
förstod tidigt att Schwarzschilds metrik bara var en ungefärlig beskrivning av verkligheten.
Det kliade i teoretikers fingrar i ungefär fyrtio år innan Roy Kerr publicerade sin metrik,
som beskriver hur rumtiden böjs kring roterande svarta h̊al. Dessvärre finns inget teorem
som säkerställer att vilken roterande massiv kropp som helst ger upphov till den. Därför
p̊ag̊ar det en stor mängd forskning för att ta fram s̊a kallade ”källor” till Kerrs metrik, för
att se vilka typer av massiva kroppar som kan ge upphov till den - är solen en av dem?

I denna uppsats är målet att undersöka stabila källor till Kerrs metrik, men även de fall
där de kollapsar likt en roterande stjärna som exploderar i en supernova. Vi antar att
källorna best̊ar av tv̊a roterande strömmar av materia och undersöker de egenskaper som
uppkommer som en konsekvens av Einsteins fältekvationer.

Att undersöka en källas kollaps visade sig vara väldigt sv̊art och i denna uppsats begränsar
vi oss till den ursprungliga utvecklingen i början av en kollaps – och visar att det inte finns
n̊agon lösning som tyder p̊a en l̊angsam och gradvis ursprunglig kollaps.
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1 Introduction

Not long after the publication of the landmark theory General Relativity (GR) in 1916
[1], a solution for static, non-rotating black holes was found by Karl Schwarzschild [2].
For the first time, all of the significant celestial movements could be explained, including
the precession of Mercury’s orbit. This solution of Einstein’s field equations, called the
Schwarzschild metric, describes the curvature of spacetime around massive objects. An
interior solution was later found in 1939, providing the first general relativistic framework
of the collapse of stars [3].

The Schwarzschild metric proved to be very useful, but it was missing a key component:
rotation. Everything we see in the universe moves somehow, and a rotation around the axis
is more of a fact than circumstance as a consequence of the conservation of angular momen-
tum. A metric incorporating a rotation about the axis for gravitationally collapsed objects
was introduced in 1963 by Roy Kerr and is a beloved mathematical object by physicists
[4]. It describes the curvature of spacetime (and hence the movement of particles) around
a rotating black hole. It predicted several exciting phenomena: a complete description of
frame-dragging (previously only known in limiting cases [5]), ring-singularities, and gave
rise to questions such as naked singularities and hyper-efficient energy resources [6]. The
hope for an interior solution that can act as a source of the Kerr metric built up, but no
analytical solutions have been found. An interior solution is of interest because one of the
most extreme objects in the universe, neutron stars, rotates. It is unknown how much
extreme rotations affect the interior of such objects.

Various approaches in the hunt for an interior solution have come to light [7, 8, 9], but
this thesis will utilize the thin-shell formalism of general relativity, specifically restricting
ourselves to a part of a given spacetime. Loosely speaking, we cut out a part of it, and
say that the resulting spacetime - a “surface” - has a new so-called induced metric with
a discontinuous normal derivative defined on it when crossing the surface. We cut out
this surface through the gluing of two spacetime metrics, and by subsequently using a
distributional approach of the Einstein field equations explained below, we find the physical
properties of it [10].

We introduce, in section 2, the coordinates used along with specific observers and the con-
cept of ergoregions. Following that, an introduction to the thin-shell formalism and Israel
Junction conditions will be provided in section 3, and important energy conditions used
together with this formalism are presented in section 4. Derivation of physical properties
of gravitating surfaces, or, “disks”, such as densities and pressure for different physical
configurations of matter, will be made in sections 5-7. This will be done by utilizing a dis-
crete distribution of the metric tensor - where the intermediate part (at the cut-out region)
will be interpreted as the surface mentioned - and subsequently, collect all of the singular
parts that arise in the Ricci tensor and its corresponding scalar. Inserting these results
into Einstein’s field equations will lead to a discrete distribution of the energy-momentum
tensor, requiring an additional part – the energy-density and pressure of the surface. We
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will reproduce results of [8] by deriving two counter-rotating vectors that decompose the
resulting energy-momentum tensor and show their densities and pressures. We will see that
this can be done in two cases: one where the vectors diagonalize the energy-momentum
tensor of the surface, and one case where they are assumed to follow geodesics [9]. In
section 7, however, we expand upon the results of [9] to include gravitational collapse to
see if one can find vectors that are co-moving with the collapsing surface that satisfies
the geodesic equation. This is done by imposing a time dependence on the surface of the
cut-out region and taking a first-order approximation. Finally, section 8 summarizes the
results and concludes that no first-order perturbations of the disk to simulate gravitational
collapse exist.

2 Coordinates and observers with zero angular mo-

mentum

The choice of coordinate systems in General Relativity is an arbitrary matter; they are
mainly chosen for specific reasons, such as getting rid of coordinate singularities or rewriting
metrics for symmetries to become apparent (such as spherical symmetries.)

A vector basis is often defined to use as a tool for describing physical quantities such as
four-velocities and the energy-momentum tensor (EMT) in different frames of reference,
such as stationary ones. The reason for doing this is because tensorial quantities can be
better understood if viewed through the eyes of specific observers, such as those with zero
angular momentum (but a non-zero angular velocity) abbreviated ZAMO, or those who
observe a diagonal form of the EMT, here called FIOs, or, ϕ−isotropic frames [11, 12].

In this section, we define the coordinates used for an axially symmetric metric (specifically
the Kerr metric) throughout this thesis, and how they relate to the familiar Boyer-Lindqvist
(BL) coordinates [13]. We will also demonstrate the value of finding ZAMOs by deriving
an expression for the angular velocity of rotating streams of matter as observed by the
ZAMO.

The Kerr metric is expressed in BL-coordinates (t, r, θ, ϕ), using natural units (c = G = 1),
through

ds2 = gttdt
2 + grrdr

2 + 2gtϕdtdϕ+ gϕϕdϕ
2 + gθθdθ

2, (1)

where

gµν =


−
(
1− 2Mr

Σ

)
0 0 −2Mra sin2(θ)

Σ

0 Σ
∆

0 0

0 0 Σ 0

−2Mra sin2(θ)
Σ

0 0
(
r2 + a2 + 2Mra2

Σ
sin2(θ)

)
sin2(θ)

 . (2)

The parameter a = J/M signifies the angular momentum J per unit mass M , and Σ and
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∆ are expressed as
Σ = r2 + a2 cos(θ)2 ∆ = r2 − 2Mr + a2. (3)

2.1 Weyl-Papapetrou coordinates

The Weyl-Papapetrou (WP)-coordinates (t, ϕ, ρ, z) are used to put the Kerr metric into a
general axially symmetric form [14, 15, 16]. The Kerr metric is then expressed as

ds2 =
h

f

(
dρ2 + dz2

)
+

ρ2

f
dϕ2 − f (dt+ Adϕ)2 , (4)

in which h, f and A are functions of ρ and z. Here, the coordinates ρ and z are related to
the BL-coordinates as

ρ =
δ sin(θ)

Mp

√
r2 − 2Mr − a2,

z =
δ(r −M) cos(θ)

Mp
,

(5)

where M is the mass of the source. The parameters δ and p are related to the angular
rotation parameter a in the case of a Kerr black hole as

δ = Mp, p2 =
1− a2/M2

κ
. (6)

Note that δ is defined here (even though it cancels in Eq.(5) in the case for a Kerr black
hole) due to its importance later on. κ signifies the shape of our coordinate system; κ = 1
is the prolate kind and κ = −1 the oblate kind. A prolate set of coordinates (for a sphere)
means that it is squeezed in the direction of the polar coordinate, in contrast to the oblate
case, where it is stretched. In this thesis, we will only concern ourselves with the prolate
case, as we restrict ourselves to be outside the source’s horizon. Further on, for brevity,
we will introduce a new parameter q = a/M , which will be chosen to be 0.8 to reproduce
results of [9]. For π/2 ≤ θ ≤ π and M = 1, the relation between r and z along with r and
ρ can be seen in figure 1.
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(a) Coordinate ρ as a function of the radius r. (b) Coordinate z as a function of the radius r.

Figure 1: The WP-coordinates in relation to the BL-coordinates for π/2 ≤ θ ≤ π and
q = 0.8. The lines close to zero for all r corresponds to θ = π/2.

This thesis will consider only part of the spacetime defined by the metric to construct a
disk explained more in detail later. In other words, we will cut out part of the spacetime
as illustrated in figure 2.

b

−b

z

−z

ρ

Σ+

Σ−

Figure 2: The cut-out region. An infinitely thin shell bounded by b and −b is infinitely
wide in ρ.

The part we cut out and use for our calculations depend heavily on the value of b. We can
visualize the case for constant values of z = b intuitively in figure 3, where they are shown
to hover above the source’s center.
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Figure 3: The lines are (from bottom up) regions at constant
b = [0.001, 0.1, 0.6013, 0.613, 1], shown in the BL-coordinates r and θ.

The metric functions are quite cumbersome in the WP-coordinates directly, so we introduce
a new set of (spheroidal) coordinates (x, y) related to (ρ, z) by

ρ = δ
√
(x2 − κ)(1− y2), z = δxy, (7)

where x, y are related to the BL-coordinates by x = (r/M − 1)/p and y = cos(θ). These
coordinates can be used to express the metric functions:

f =
p2x2 + q2y2 − 1

(px+ 1)2 + q2y2
,

h =
p2x2 + q2y2 − 1

p2 (−κ y2 + x2)
,

A =
2Mq (−y2 + 1) (px+ 1)

p2x2 + q2y2 − 1
.

(8)

In this thesis, most quantities will be plotted against the so-called proper circumferential
radius, defined as R =

√
gϕϕ. In Minkowski spacetime, we have R = r sin(θ), which is the

projection of the radius onto the x, y-plane (in cartesian coordinates). When integrated
over the angle 0 ≤ ϕ ≤ 2π, it results in the circumference of radius R. However, in the
Kerr metric, R = 0 does not imply the center of a given source but rather its horizon. The
relation between the BL-coordinate r and the circumferential radius R is shown in figure
4.
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Figure 4: The proper circumferential radius in proportion to the BL-coordinate r evaluated
at constant values of z = b = [0.001, 0.1, 0.6013, 0.613, 1].

Note that this is for constant values of z, which does not imply constant values of θ. In
fact, θ changes according to

θ = arccos

(
b

δ

pM

r −M

)
, (9)

which is shown in figure 5.

Figure 5: How the angle θ changes (from left to right) with constant z = b =
[0.001, 0.1, 0.6013, 0.613, 1] as we move away from the center.

2.2 Ergoregion-producing disks

As we shall see later, we will plot physical quantities for some constant value of z = b. Some
of these disks will produce an ergoregion - a region in the Kerr metric where no stationary
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frames exist - and others will not, since, as seen in figure 3, a larger value of b moves away
from the source such that the cut-out region does not overlap with the ergoregion. The
upper bound bmax will be derived here, and the lower bound will be determined later by a
physical argument related to the requirement that the source has a positive energy density.
We can find these constraints by noting that the ergoregion only exists a small distance
from the center of the source rErgo in accordance with Eq.(10).

For M = 1, we know that the ergoregion exists at a radial distance from the center
according to

rErgo = 1 +
√

1− q2y2. (10)

For a constant value of z = bmax, we also have

rErgo = p
bmax

δy
+ 1. (11)

Since y = cos(θ) we know that −1 ≤ y ≤ 1, and so we can put Eq.(10) and Eq.(11)
together and solve for b

bmax ≤ δy

p

√
1− q2y2. (12)

Using q = 0.8, we plot the relation between bmax and y in figure 6.

Figure 6: The values of b that can produce an ergoregion. It shows that the maximal value
of b is bmax ≈ 0.625.

Hence we can conclude that, for q = 0.8, a maximum value of b = bmax ≈ 0.625. We will
plot quantities for larger values than this, but they will not produce any ergoregion for
q = 0.8.
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2.3 ZAMO and LNRF

The ZAMO is an observer in the presence of a defined metric (the Kerr metric). Since
frame-dragging is present as seen through the coupling of dt and dϕ in Eq.(1), we expect
the ZAMO to have some non-zero angular velocity even if it has zero angular momentum.
The immediate goal here is to derive this frame and relate physical quantities to it - the
frame is valuable for a very good reason. Normally, it is desired to observe quantities from
a stationary frame. However, the ergoregion prevents stationary frames from occurring as
previously mentioned, as it would require an observer very far away to move with a speed
faster than light to observe them as such. Therefore, the ZAMO is a frame which can be
compared to a stationary frame as it has no angular momentum.

To start, we observe the constants of motion Cα. The metric is invariant under ϕ− and t
translations. We therefore obtain two equations of motion for the constants Ct and Cϕ

dt

dτ
=

f 2A2 − ρ2

ρ2f
Ct −

Af

ρ2
Cϕ,

dϕ

dτ
=

f

ρ2
(Cϕ − CtA) ,

(13)

in which Ct ∝ E (energy) and Cϕ ∝ L (angular momentum) of the ZAMO. If we take the
quotient of the second and first equation in (13), we get the angular velocity of a particle
moving around the source. If the angular momentum is set to zero, we obtain

dϕ

dt
= ω =

f 2A

ρ2 − f 2A2
= − gtϕ

gϕϕ
. (14)

This is the angular velocity of the ZAMO.

It is beneficial to describe the angular velocity relative to a locally non-rotating frame
(LNRF): a reference frame that observes the metric as flat and static. Then, the difference
between any angular velocity Ω and the ZAMO, as seen from the LNRF, takes the form

ULNRF =
Af

ρ

(
1− Ω

ω

)
. (15)

This result will be used later to investigate hypothetical streams of matter with angular
velocity Ω.

3 The thin-shell formalism of General Relativity

The framework employed here is the thin-shell formalism, where the “shell” is what we
refer to here as a surface. The formalism in itself is an exact approach to GR [17], but it
makes assumptions and approximations easier.
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A collection of two space-time manifolds M+ and M− with their corresponding metrics,
hypersurfaces Σ± and independent coordinate-systems can be glued to form a single hy-
persurface Σ by assuming that the metric is isometric [10], that is

g+µν = g−µν , (16)

for all points in spacetime. The separating thin surface is characterized above- and below
it by z and −z respectively. This glued surface is illustrated in figure 7.

nµ

Σ+

Σ−

Σ
Sab

T+
µν

T−
µν

Figure 7: The surface Σ separates Σ± as a consequence of the glueing.

The surface in figure 7 is the cut-out region of the spacetime; we remove part of the
spacetime defined by the metric and constrain the energy present to the surface defined
as Sab and assume that there is a vacuum everywhere else. We will refer to this as a
gravitating disk - the surface will be composed of matter traveling alongside the surface.
As the matter on the surface moves, the appearance of the surface will change. Still, the
metric is time-independent, so the physical properties will not change unless the basis
vectors (discussed below) are time-dependent.

Since Σ± is a submanifold to M±, we need to find the induced metric γab defined on the
hypersurface. We can rewrite a metric dependent on the coordinates xµ, into another
metric dependent on the coordinates in the hypersurface ya by defining the vector basis
∂xµ

∂ya
= e µ

a

ds2 = gµν

(
∂xµ

∂ya
dya
)(

∂xν

∂yb
dyb
)

↔ γab = e µ
a e ν

b gµν (17)

such that
γ±
ab = e µ

a e ν
b g±µν , (18)

where the Latin indices define the hypersurface’s coordinates and where the greek indices
describe the spacetime coordinates. The induced metric γab is a two-tensor in three dimen-
sions with a total of nine components and is used to raise and contract coordinates on the
hypersurface ya [17]. The vectors e µ

a forms a vector-basis tangent to the surface, which
defines the normal vector of the hypersurface nµ

nµe
µ
a |± = 0, (19)
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and where nµn
µ|+ = nµn

µ|− = ε = ±1. With these definitions, we can define the neces-
sary components to calculate the energy-momentum tensor (SEMT) Sab embedded in the
surface. The expressions for its components will be derived in section 6-7.

The constant ε defines the spacelike (or timelike) nature of the hypersurface Σ:

nµn
µ = ε =

{
+1 Hypersurface is timelike

−1 Hypersurface is spacelike

Since the spacetime metric is isometric, it naturally follows that

γ+
ab = γ−

ab. (20)

Although the metric is continuous, its derivatives are not [10]. Therefore, for hypersurfaces
evaluated above and below, we have

∂αg
µν+ ̸= ∂αg

µν−. (21)

The conditions specified by Eq.(20-21) give rise to a non-vanishing extrinsic curvature
Kab: an important part of the thin-shell formalism, as it describes the three-dimensional
curvature as seen in four-dimensional spacetime. In the following section, we shall derive
it in full, along with the intrinsic covariant derivative, which describes how vector fields
are differentiated along the surface.

3.1 Curvature on the surface

Before discussing the extrinsic curvature, it is a good idea first to discuss the intrinsic
covariant derivative. As shall be seen later, the tensor-fields discussed in this thesis will be
tangent to the surface i.e,

nµA
µν = nµe

µ
a e ν

b Aab = 0, (22)

where we have used that any vector tangent to Σ can be decomposed using the basis vectors
in the surface [17]

Aµ = e µ
a Aa

Aµ = eaµAa = γabgµσe
σ
b Aa

AP1P2...Pi = e P1
a1

e P2
a2

...e Pi
ai

Aa1a2...ai .

(23)

It is important to know how vectors fields are differentiated on the surface. Even though
vectors are initially on the surface, they are not guaranteed to stay there as we transport
them along a geodesic: the Christoffel symbols might contain terms orthogonal to the
surface.
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The surface is described by the induced metric γab and is therefore equipped with a connec-
tion, defined through ∇aγbc = 0, different from that of the general spacetime coordinates,
where the connection is defined through ∇µgαβ = 0.

We define the intrinsic curvature as the projection of the covariant derivative in the space-
time connection onto the surface. This projection will be, in the following, denoted by a
vertical line

Aµ;νe
µ
a e ν

b = Aa|b. (24)

Expanding the expression in Eq.(24) is helpful because it allows us to see if a new set of
Christoffel symbols can be easily defined. Using the product rule

Aµ;νe
µ
a e ν

b = (Aµe
µ
a );ν e

ν
b − Aµe

µ
a ;νe

ν
b . (25)

Eq.(25) can be simplified drastically. The first term boils down to the following result

(Aµe
µ
a );ν = Aµ;νe

µ
a + Aµe

µ
a ;ν

= e µ
a Aµ,ν − e µ

a Γλ
νµAλ + Aµe

µ
a ,ν + AµΓ

µ
νλe

λ
a

= (Aµe
µ
a ),ν = Aa,ν .

(26)

We can manipulate the second term in Eq.(25) to contain the contravariant form of Aa

to relate the intrinsic covariant derivative to the spacetime equivalent properly. In other
words, it would be desirable to read off the connection (Christoffel symbols) on the surface.
This can be done by noting that,

Aαeaα;β = gαµAµ (gανe
ν
a );β

= gαµAµ

{
gαν;βe

ν
a + gανe

ν
a ;β

}
= δµνAµe

ν
a ;β = Aαe

α
a ;β.

(27)

Using the results in Eq.(26-27) into Eq.(25), the intrinsic covariant derivative can be written
in the form

Aa|b = Aa,b − ΓcabA
c, (28)

where the Christoffel symbols are defined by

Γcab = e γ
c eaγ;βe

β
b . (29)

The intrinsic curvature derived here, is purely tangent to the surface, and is furthermore the
tangential part of Aα

;βe
β
b . The remaining question is whether or not a normal component

to Aα
;βe

β
b exists. We start by decomposing the inverse metric gµν in terms of the normal-

and basis vectors and the induced metric

gµν = εnµnν + γabe µ
a e ν

b , (30)

which satisfies
ecµe

d
νg

µν = γcd = γabe µ
a e ν

b ecµe
d
ν = γabδ c

a δ d
b = γcd. (31)
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This is a useful decomposition, because Aα
;βe

β
b can now be rewritten in terms of the mixed

metric gµν = δµν
gµνA

ν
;βe

β
b = λnµA

µ
;βe

β
b nα + γamAµ;βe

µ
m e β

b e α
a . (32)

Eq.(32) contains important information. It implies that Aα
;βe

β
b nα ̸= 0, given by the first

term in Eq.(32). Following the result derived in Eq.(28), we obtain

Aα
;βe

β
b = Aa

|be
α
a − εAanαnµ;βe

µ
a e β

b . (33)

We define the extrinsic curvature from the second term in Eq.(33), which is orthogonal to
the surface

Kab = nα;βe
α
a e β

b . (34)

A good way to understand the physical property of extrinsic curvature is to imagine a
cylindrical shape formed by a rolled-up piece of paper. The paper, in two dimensions, is
flat (its intrinsic curvature is zero), but its cylindrical shape in three dimensions contains
a non-vanishing curvature. This curvature is what we refer to as extrinsic curvature and
is a way of measuring the curvature of lower-dimensional objects, as perceived in a higher
dimension.

3.2 Nonvanishing extrinsic curvature

The extrinsic curvature evaluated in Σ+ and Σ− need not be equal, and their difference is
nonvanishing. The reason is that the covariant derivative contains first-order derivatives
of the metric in the Christoffel-symbols

Γν
µλ =

1

2
gνβ
(
∂gβµ
∂xλ

+
∂gβλ
∂xµ

− ∂gµλ
∂xβ

)
, (35)

in which the derivatives are taken with respect to the spacetime coordinates. The discon-
tinuities in the derivatives lead to a jump in extrinsic curvature, formulated as

K−
ab −K+

ab ̸= 0. (36)

All differences between the two submanifolds, such as Eq.(36), are formulated compactly
as [f ] = f− − f+. Since physical quantities have to be evaluated above- and below the
surface, we will use a distributional approach that signifies these differences; the matter-
energy density is restricted onto a thin shell on the cut-out region between Σ+ and Σ−.

3.3 Surface energy-momentum tensor

The ingredients presented so far are required to formulate a theory of general relativity
in 3 dimensions; in this case, they are time and two spatial coordinates. The extrinsic
curvature allows us to find the SEMT Sµν of a given surface bounded by Σ±, as seen in
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figure 7. First, let us formulate essential quantities used in Einsteins’s field equations in a
distributional way. Two hypersurfaces are present, as implied in the previous section. The
parameter z signifies the distance along the normal direction from the surface, such that
z > b is above- and z < −b is below the surface. Let us then define the metric tensor as

gµν = Θ(z − b)g+µν +Θ(−z − b)g−µν , (37)

where Θ(±z − b) is a modified Heaviside theta function (with an intermediate step where
Θ(0) = 0), indicating that only one part of the metric is present at any given point z in
spacetime. Recall that we assume that the metric is isometric, i.e. it is continuous across
the two hypersurfaces. However, its derivatives are not and are expressed explicitly as

gµν,β = Θ(z − b)g+µν,β +Θ(−z − b)g−µν,β + λδ(z − b)[gµν ]nβ. (38)

The last term comes from the chain-rule and that δ(x) = δ(−x). This seems like a problem
since δ(0) is undefined, but the bracketed quantity vanishes since the metric is isometric.
Some problems appear to arise from the identification of Eq.(38) since δ(z−b) terms would
appear in the Christoffel symbols. The presence of delta functions would imply infinities
in the curvature, which is nonphysical. To see this, we express the Christoffel symbols like
the metric in Eq.(37)

Γα
βγ = Θ(z − b)Γα+

βγ +Θ(−z − b)Γα−
βγ. (39)

The derivative will contain a non-vanishing δ(z− b) term because of the nature of Eq.(38)

Γα
βγ,µ = Θ(z − b)Γα+

βγ,µ +Θ(−z − b)Γα−
βγ,µ + λδ(z − b)[Γα

βγ]nµ. (40)

The Riemann tensor is expressed solely in terms of the Christoffel symbols (and thus the
metric) as

Rρ
σµν = Γρ

νσ,µ − Γρ
µσ,ν + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ. (41)

Using the results of Eqs.(39-40) and substituting into Eq.(41), we find

Rα
βγδ = Θ(z − b)Rα+

βγδ +Θ(−z − b)Rα−
βγδ + δ(z − b)λ

([
Γα

βδ

]
nγ −

[
Γα
βγ

]
nδ

)
. (42)

Once again, we find singularities at z = b, which we interpret as the surface where we glue
the two hypersurfaces together. The task at hand is to find physical quantities on this
surface, all embedded in the surface energy-momentum tensor Sab. We start by looking at
the δ(z − b) parts of the Christoffel symbols, Riemann tensor, and subsequently the Ricci
scalar and using the conservation of energy to construct a surface equivalent of Einstein
field equations. This is done by inserting the results of Eqs.(40-42) into the Einstein field
equations and collecting all of the δ(z− b) terms. We can then find part of the full energy-
momentum tensor Tµν at the glued surface Σ.

The “surface” quantity in the Riemann tensor in Eq.(42) is dependent on the bracketed
Christoffel symbols, and an explicit expression for it may be found with the identification
that the discontinuity in gµν,β lies in the direction of the normal vector of the surface nµ.
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However, at first glance, it may seem that the quantity in the brackets of the surface term
in Eq.(42) is not a tensor since there are Christoffel symbols, which, by themselves, do not
transform like a tensor, as shown here for the transformation x → x′:

Γ
′λ
µν =

∂x′β

∂xµ

∂x′δ

∂xν

∂xλ

∂x′γΓ
γ
βδ +

∂xλ

∂x′σ
∂2x′σ

∂xµ∂xν
. (43)

However, the difference [Γµ
αβ] transforms like a tensor, which is shown in the Appendix.

Since the variation of the Christoffel symbols is a tensor, one can conclude that the brack-
eted term in Eq.(42) is a tensor, called Aα

βδγ

Aα
βδγ =

[
Γα

βδ

]
nγ −

[
Γα

βγ

]
nδ. (44)

Since the discontinuity exists along the normal vector nγ as mentioned earlier, the discon-
tinuity in the derivative of the metric tensor can be expressed in terms of a new tensor.
By multiplying the jump with εnγn

γ,

ε[gµν,γ]nγn
γ, (45)

a new tensor can be defined by κµν = ε[gµν,γ]n
γ. Hence we can express the discontinuity

in terms of the new tensor
[gµν,γ] = κµνnγ. (46)

With the definition in Eq.(46), we can find the expression for the surface-parts of the jump
in Christoffel symbol, Riemann tensor Aα

βγδ, Ricci tensor Aµ
αµβ = Aαβ and Ricci scalar

Aµ
µ. They are given by (by noting that κ = κµ

µ)[
Γα

βγ

]
=

1

2

(
κα

βnγ + κα
γnβ − κβγn

α
)

Aα
βγδ =

ε

2

(
κα

δnβnγ − κα
γnβnδ − κβδn

αnγ + κβγn
αnδ

)
Aαβ =

ε

2
(κµαn

µnβ + κµβn
µnα − κnαnβ − εκαβ)

A = ε (κµνn
µnν − εκ) .

(47)

Now all of the relevant surface terms have been defined to successfully express the surface
energy-momentum tensor Sµν . Finally, substituting in the expressions for the Ricci tensor
and its corresponding scalar and collecting the δ(z− b) terms, one can make the identifica-
tion for the full energy-momentum tensor that it is composed of three parts: one in either
hypersurface and one on the surface itself

Tµν = Θ(z − b)T+
µν +Θ(−z − b)T−

µν + δ(z − b)Sµν . (48)

Using the expressions found in Eq.(47), Sµν can be readily defined

Sµν = Aµν −
1

2
Agµν

=
1

16πε
{κµαn

µnβ + κµβn
µnα − κnαnβ − εκαβ − (κµνn

µnν − εκ) gαβ} .
(49)
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One can change the coordinate basis of Sµν to the surface coordinates a and b by a normal
coordinate transformation

Sab = Sµν
∂xµ

∂xa

∂xν

∂xb
= Sµνe

µ
a e ν

b , (50)

where e µ
a compose the vector basis discussed earlier. Note that many terms in Eq.(49) are

normal to the surface, so

16πSab = −κµνe
µ
a e ν

b − ε (κµνn
µnν − εκ) γab

= −καβe
α
a e β

b + γabγ
cd
(
καβe

α
c e β

d

)
.

(51)

The question now is what the three-tensor καβe
α
a e β

b actually is. We know that z is
continuous as we cross the surface, and so [nα] = 0. Secondly, the coordinates are the same
above- and below the surface, yielding [e α

a ] = 0. We can therefore take a look at the jump
in the covariant derivative of the normal vector in the surface

[nα;β] =
[
eaβ∂anα − Γλ

αβnλ

]
= −

[
Γλ

αβ

]
nµ, (52)

where the first term vanish, since nα is normal to the surface. Substituting the result for
the jump in the Christoffel symbols in Eq.(47) we obtain

[nα;β] =
1

2
(εκαβ − κγαnβn

γ − κγβnαn
γ) , (53)

yielding

[Kab] =
ε

2
καβe

α
a e β

b . (54)

This allows us to rewrite Eq.(51) in terms of the jump in extrinsic curvature

Sab = − ε

8π
([Kab]− γab[K

c
c]) . (55)

Eq.(55) describes the physical properties confined to the defined surface. It serves as a vari-
ant to Einstein’s field equations and helps in physical configurations concerning boundary
problems in General Relativity, such as matching interior and exterior solutions of two
different spacetimes. A famous example is that of Oppenheimer and Snyder, where they
discussed gravitational collapse for stationary, spherical massive bodies by matching the
Schwarzschild- and FLRW metric at the surface [3], which can now be done easily by
matching the extrinsic curvature instead.

In essence, the thin-shell formalism is helpful because it effectively removes dimensions
(depending on your surface basis-vectors) by restricting the part of spacetime we consider
in our calculations. The simplicity that comes with Eq.(55) lies in that it reduces the size
of the stress-energy tensor, making eigenvalue-problems easier compared to the original
size of T µν that is 4 × 4. We see that the discontinuity of the metric tensor causes the
curvature to be discontinuous. This discontinuity causes a nonzero difference between its
value above- and below the surface, and it is this jump that causes the surface to gravitate.
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4 Energy conditions

A useful technique to examine the matter-energy content present in any system is to
decompose it into a set of vectors, for example

T µν = σV µV ν + P1W
µ
1 W

ν
1 + P2W

µ
2 W

ν
2 + P3W

µ
3 W

ν
3 , (56)

where V and W are vectors that contain the information about how the matter that
makes up T µν moves. A successful vector decomposition can unfold the trajectories of
matter that build T µν if the matter distribution is physically possible, i.e., not violating
any energy conditions. As an example, in section 6, it will be shown that one possible
matter-distribution is that of two counter-rotating streams of matter confined to a disk.
It will be used to construct a static, rotating source to the Kerr metric. The numerical
values of σ and Pi denote the density and pressures present in the system. To ensure that
the vectors obtained through the decomposition (along with the density and pressures) are
physical, they collectively need to satisfy certain energy conditions.

Much like we discard the negative energies of particles in classical and quantum mechanical
theories, general relativistic criteria have been developed to ensure the physicality of the
vectors that decompose the stress-energy tensor. As a specific example, the vectors should
not have negative energy densities. In total, there are four energy conditions: weak, null,
strong, and dominant. In this thesis, we will consider matter only, and since the null energy
condition concerns massless particles, we will not consider it here.

To investigate the energy conditions in more detail, we will consider an arbitrary time-like
vector Uµ, which will be assumed to be normalized accordingly

UµUµ = −1. (57)

4.1 Weak energy condition (WEC)

The weak energy condition states that, for any time-like vector Uµ = d(1, a, b, c), with
d = (1− a2 − b2 − c2)1/2 we have

T µνUµUν ≥ 0. (58)

Eq.(58) can be expanded to give

σ + a2P1 + b2P2 + c2P3 ≥ 0, (59)

where the normalization condition determines the coefficients. The density cannot be
negative, but the pressure can be positive or negative (representing tension.) Therefore
the weak energy condition requires that the density is larger than or equal to zero: σ ≥ 0.
Since the pressures can be negative, another equality is required: the coefficients in Eq.(59)
are arbitrary since the WEC should hold for any basis; if b = c = 0, together with the
normalization condition that a < 1, then σ + Pi > 0. Put in words, WEC states that,
for any observer defined on an arbitrary basis, the matter-energy content must be non-
negative.
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4.2 The strong energy condition (SEC)

The strong energy condition is a statement of the curvature of the spacetime itself. The
statement, using the same basis as in the previous section, reads(

Tµν −
1

2
Tgµν

)
UµUν = 8πRµνU

µUν ≥ 0, (60)

where Rµν is the Ricci tensor. It says that, for any observer, the tidal tensor is always
positive. The surface equivalent of the strong energy condition refers to the extrinsic
curvature, as can be seen through their connection in Eq.(55).

The statement should, as for the WEC, hold for any normalized, future-directed timelike
vector. Hence

d2(σ + a2P1 + b2P2 + c2P3) ≥
1

2
(σ −

∑
i

Pi), (61)

for arbitrary values of a, b, c and d specified through the choice of basis and normalization.
This statement does not explicitly say anything about the system’s density but rather the
combination of the density and pressures. This time, the sum of the pressures and density
is greater than or equal to zero

σ +
∑
i

Pi ≥ 0. (62)

We also find that the sum of any pressure component and the density may be zero

σ + Pi ≥ 0. (63)

4.3 Dominant energy condition (DEC)

The final energy condition considered in this thesis is the dominant energy condition
(DEC). The DEC states that for an arbitrary vector field Uµ that is both timelike and
future-directed, then

− T µ
νU

ν (64)

is also a timelike/null, future-directed vector field. Once again, by expanding

σ2 − a2P 2
1 − b2P 2

2 − c2P 2
3 ≥ 0. (65)

Since this condition should hold for any configuration of a, b and c, and requiring that the
vector be timelike and future-directed, the statement requires the following inequalities:

σ ≥ 0, σ ≥ |Pi|. (66)

This is a statement about the cosmic speed limit; matter, nor energy, can flow faster than
the speed of light for any observer. No matter what vector basis is chosen, the matter-
energy content will always follow a time-like vector.
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5 Properties of gravitating disks

As briefly mentioned in the introduction, a gravitating disk is a surface composed of matter
which flows around in it. Here, we construct such a disk by defining a set of surface basis-
vectors and projecting the Kerr metric onto that surface. To discuss the properties of
gravitating disks in the general case, one has to start with defining the mentioned vector
basis. Such a basis can be chosen intuitively for specific purposes. In this thesis, we choose
a time-dependent vector basis to investigate how the surface collapses with time, which is
an extension of [8] and [9]. We have three basis-vectors inside the surface, together with a
normal vector orthogonal to them such that

e µ
a nµ = 0. (67)

For a collapsing surface with coordinates ya = (t, ϕ, s), embedded in a spacetime with
coordinates xµ = (t, ϕ, ρ, z), we impose the dependence ρ → ρ(t, s) and z → z(t, s). We
then obtain

e µ
a =

∂xµ

∂ya
=

1 0 ρ̇ ż
0 1 0 0
0 0 ρ′ z′

 . (68)

Where ḟ denotes the time-derivative of f and f ′ denotes the s-derivative respectively. The
form of the basis-vectors expresses that they change with time, such that the ρ- and z-
components no longer remain constant, as desired. Moreover, here we assume that the
surface shape is not completely “flat” in relation to ρ, meaning that the distance from
the center in the surface s changes with the spacetime distance ρ up to some function.
Furthermore, the absence of a basis-vector in the z-direction implies that all further tensors
given in the surface coordinates will be 3× 3 in nature. Let us now define a normal vector
of the form:

nµ = (a, b, c, d), (69)

and try to find its components. Eq.(67) then provides the following system of equations:

0 = a+ ρ̇c+ żd

0 = b

0 = ρ′c+ z′d.

(70)

The normal vector then becomes

nµ = λ (ρ′ż − ρ̇z′, 0,−z′, ρ′) , (71)

where λ is a function of s and t. The next step is to find the explicit form of λ to make
it unit-normal, and for that, a metric is required. The spacetime of interest is that of a
rotating, axially symmetric metric, from Eq.(4). This sets the requirement on λ

λ2 = ±
{
A2f 2 − ρ2

ρ2f
[ρ̇z′ − ρ′ż] +

f

h
[z′2 + ρ′2]

}
, (72)
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where the ± denotes if the vector is time-like or space-like, respectively.

With the normal vector in hand, we can calculate the extrinsic curvature of the surface
defined in Eq.(34). This yields the following results (with indices in brackets indicating
surface coordinates):

K(t)(t)

λα
=

ρ̈z′ − ρ′z̈

α
− 2h(ρ̇z′ − ρ′ż)(ρ̇Rρ + żRz)

− ρ2
[
(ρ̇2 − ż2)(z′Hρ − ρ′Hz)− 2ρ̇ż(ρ′Hρ − z′Hz)

]
− ρ2f 2

(
ρ′
∂f

∂z
− z′

∂f

∂ρ

)
K(t)(ϕ)

λ
= −1

2

[
(ρ̇z′ − ρ′ż)

fρ2
(ρ̇Kρ + żKz − 2fAρ) +

f

h
(ρ′Lz − z′Lρ)

]
K(t)(s)

λα
=

z′(ρ̇)′ − ρ′(ż)′

α
− (ρ̇z′ − ρ′ż)(ρ′Rρ + z′Rz)− ρ2

[
Hz(z

′2ρ̇+ ρ′2ż)−Hρ(z
′2ż + ρ′2ż)

]
K(ϕ)(ϕ)

λα
= −ρ2 [z′(Eρ − 2ρf) + ρ′Ez]

K(ϕ)(s)

λα
= −h(ρ̇z′ − ρ′ż)(z′Kz + ρ′ [Kρ − 2fAρ])

K(s)(s)

λα
= ρ2

[
z′ρ′′ − ρ′z′′

α
− (z′2 + ρ′2)(ρ′Hz − z′Hρ)

]
,

where the functions Hx, Rx, Kx, Lx, Ex, Fx and α are given by:

Hx = h
∂f

∂x
− f

∂h

∂x

Rx = f 3A
∂A

∂x
+ ρ2

∂f

∂x

Kx = f 3A3∂A

∂x
+ fρ2

∂A

∂x
+ 2Aρ2

∂f

∂x

Lx = A
∂f

∂x
+ f

∂A

∂x

Ex = 2f 3A
∂A

∂x
+ A2f 2∂f

∂x
+ ρ2

∂A

∂x

Fx =

(
∂z

∂x

)2

+

(
∂ρ

∂x

)2

α = 2fρ2h.

An important observation is that all of the components in the extrinsic curvature are odd
in z, meaning that the jump takes on the form

[Kab] = −2K+
ab. (73)

In this thesis, we choose a timelike normalization of the normal vector such that ε = 1
(see section 3). Using Eq.(73), the SEMT can be described entirely through the extrinsic
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curvature evaluated above the surface

Sab =
1

4π

(
γabK

+ −K+
ab

)
, (74)

where the induced metric is given by

γab =
1

f

−f 2 + hρ̇2 + hż2 −f 2A h (żz′ + ρ̇ρ′)
−f 2A −f 2A2 + ρ2 0

h (ρ̇ρ′ + żz′) 0 h ((z′)2 + (ρ′)2) .

 (75)

The resulting expressions are very long, and so only limiting cases will be presented in this
thesis.

6 Limiting cases

For demonstration purposes, we will consider the case for a static, infinitely wide disk due
to the removed part of the spacetime, i.e., our glued surface. We will follow the results of
[8, 9] in sections 6-6.2 to show that a possible source of the Kerr metric can be obtained
through diagonalization of the SEMT and that geodesic streams give rise to negative
energy densities. In this case, the basis vectors are invariant under time translations, and
so ρ̇ = ż = 0. Furthermore, since the disk is infinitely long with a constant z, we find that
z′ = 0, such that the width of the disk remains unchanged with changing distance from
the center inside the surface. Finally, we make the additional assumption that ρ changes
linearly with the distance inside the surface, s, and so ρ′ = 1. This yields the following
basis vectors and the corresponding normal vector

e µ
a =

1 0 0 0
0 1 0 0
0 0 1 0

 , nµ = λ (0, 0, 0, 1) , (76)

where λ acquires the form from Eq.(72)

λ = ±
(
h

f

)1/2

. (77)

The non-zero components of the extrinsic curvature are given by:

K(t)(t) = − λ

2h

∂f

∂z
f K(t)(ϕ) = − λ

2h
fLz (78)

K(ϕ)(ϕ) = − λ

2fh
Ez K(s)(s) = − λ

2fh
Hz. (79)
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By using the basis-vectors in Eq.(76) together with Eq.(18), we find the induced metric
γab and its inverse

γab = e µ
a e ν

b gµν =

 −f −fA 0

−fA ρ2−f2A2

f
0

0 0 h
f

 γab =

f2A2−ρ2

ρ2f
−Af

ρ2
0

−Af
ρ2

f
ρ2

0

0 0 f
h

 , (80)

yielding the trace of the extrinsic curvature

K = Ka
a = γabKab = − λ

2h2
Hz. (81)

If K is negative, a family of geodesics converges with proper time, contrary to when it
is positive, where the congruence is diverging [18]. Moreover, the trace of the extrinsic
curvature is odd in z, implying that a family of geodesics intersecting the disk’s surface
will converge towards the center when approaching from above and diverge from it when
approaching from below the disk. Consequently, when evaluated on the surface, the ex-
trinsic curvature is on average equal to zero. We show the trace of the extrinsic curvature
in figure 8, in terms of the circumferential radius R =

√
gϕϕ and for constant values of b

such that the central density of the disks is positive, i.e.,
√
M2 − a2 < b < M2/2a, which

will be explained in section 6.1.

Figure 8: The trace of the extrinsic curvature is negative for R/M ≥ 0,
suggesting that geodesics converges towards the center at constant b/M =
[0.6013, 0.613, 0.87, 1.11, 1.34, 1.56, 1.78, 2.00, 2.21, 2.42, 2.63, 2.84]

Since all terms are odd in z, we may use the result derived in Eq.(74). The non-zero
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elements of the SEMT then become

S(t)(t) = − fλ

8πh2

[
f
∂h

∂z
− 2h

∂f

∂z

]
,

S(t)(ϕ) =
λf

8πh2

[
h

(
f
∂A

∂z
+ 2A

∂f

∂z

)
− Af

∂h

∂z

]
,

S(ϕ)(ϕ) =
λ

8πh2

[
2Af 2h

∂A

∂z
+ 2A2fh

∂f

∂z
+

∂h

∂z

(
ρ2 − A2f 2

)]
.

(82)

The SEMT can be decomposed as a sum of outer products between vectors

Sab = σVaVb + PWaWb, (83)

where the vectors V,W express the structure of the matter (an ideal gas with surface
density σ and surface pressure P ) that builds up the SEMT through diagonalization with
the conditions that V 2 = −1, W 2 = 1 and V.W = 0. We will refer to them as being
ϕ−isotropic, because they are independent on ϕ.

Another simple model concerns that of two counter-rotating streams of matter that follow
geodesics, where we choose the vectors to have the form

Uµ
± = N± [1,Ω±, 0, 0] , (84)

where Ω± are the angular velocities of the rotating streams.

We will refer to such streams in Eq.(83) and (84) as configurations of matter. The com-
ponents can be derived in various cases, and in this section, the ϕ−isotropic case and the
geodesic case will be discussed.

6.1 ϕ-isotropic observer of the stationary SEMT

In the so-called ϕ−isotropic frame, the SEMT in Eq.(82) obtains a diagonal form

VµVνS
µν = σ,

WµWνS
µν = P,

VµWµS
µν = 0,

(85)

where the vectors, along with the SEMT, are expressed in terms of the spacetime coordi-
nates. The system given in Eq.(83) posits that V,W are eigenvectors of the SEMT and
σ, P are the eigenvalues respectively. This enforces the criteria that V µWµ = 0, and the
vectors are chosen such that V µVµ = −1 together with W µWµ = 1. If the vectors have the
form

V µ = N(1,Ω, 0, 0)

W ν = J(β, 1, 0, 0),
(86)
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then we obtain the following solutions to Eq.(85):

N =

[
f

f 2 − Ω2ρ2 − Ωf 2A(ΩA+ 2)

]1/2
,

J =
f(AΩ + 1)

ρ
N,

β =
Ωρ2 − f 2A(AΩ + 1)

f 2(AΩ + 1)
,

Ω =
Sϕϕ − Stt −

√
(Sϕϕ − Stt)2 + 4StϕStϕ

2Stϕ
.

(87)

The diagonalization of the SEMT in Eq.(85) also determines the eigenvalues

σ =
Stt − β2Sϕϕ

N2(1− β2Ω2)
, P =

Stt − Ω2Stt

J2(1− β2Ω2)
. (88)

As demonstrated, the parameters have been obtained solely through orthogonality, nor-
malization, and diagonalization, not by using the geodesic equations demonstrated in the
next section. This implies that the results in Eqs.(87-88) may not follow geodesics, and
might just be a non-physical distribution of matter that acts as a source to the Kerr metric.

Some interesting physical properties can nevertheless be deduced. For example, the horizon
density (σ evaluated at R/M = 0) obtains the form

σ(R/M = 0) =
1

2π

M ((M2 + b2)2 − a2)

((M2 + b2)2 − a2)3/2
√
a2 + b2 −M2

. (89)

The positivity of the central density sets a lower bound on b concerning the mass of the
source and its angular momentum, b >

√
M2 − a2. By using the results found in section

2, an upper- and lower bound is found for generating ergoregions, confining b accordingly√
1− a2

M2
<

b

M
<

M

2a
. (90)

In the following, the physical properties of the disks will concern a value of angular
momentum-to-mass quotient as a/M = 0.8. Hence 0.6 < b/M < 0.625 to construct
disks with ergoregions. For very relativistic disks (with low values of b), the central density
follows up to first-order near the lower bound of b ≈

√
M2 − a2 at a = 0.8M

σ(0) ≈ 4.9 · 10−2

√
bM − 0.6M2

. (91)

Following the discussion in section 2, the velocity V (the ϕ−isotropic frame) can be ob-
served through the LNRF frame. Thus, we can express the velocity as

V = −f

ρ

(
Ω− A

ρ2

f2 − A2

)
, (92)
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in which Ω is given by Eq.(87). Furthermore, two rotating streams of matter around a
point coinciding with the origin can rotate with the same velocity relative to the new
ϕ−isotropic frame of reference. The velocity, denoted herein by U , is related directly to
the eigenvalues of the SEMT

U =

√
P

σ
. (93)

The analytical expressions for the velocities are long and so only a graphical representation
will be provided. They are shown in figure 9, in terms of a circumferential radius R =

√
gϕϕ.

Figure 9: The dashed lines are the velocities of the streams U , as seen by the
ϕ−isotropic basis. The solid lines are the velocities of the ϕ−isotropic basis rel-
ative to the LNRF frame. A total of twelve curves are presented, each cor-
responding to (from top to bottom in each case) a different value of b/M =
[0.6013, 0.613, 0.87, 1.11, 1.34, 1.56, 1.78, 2.00, 2.21, 2.42, 2.63, 2.84].

The two upper velocities of the disks, measured in the ϕ−isotropic basis, approach the
speed of light near R/M ≈ 1 but decrease to zero at R/M = 0. There are no singularities
at play, neither for the stream’s velocities nor the ϕ−isotropic basis observed by the LNRF.
Furthermore, only the top two curves produce an ergoregion in accordance with the lower-
and upper bound of b to produce such regions. It shows that the disks become increasingly
relativistic for smaller values of b, which, concerning the nature of the central density, is
sensible; a smaller b comes with a higher density.

As observed from the LNRF frame, the ϕ−isotropic frame rotates the fastest at R/M ≈
2.6 and is relatively slow near the center, including the ergoregion-producing disks. The
densities of these disks are all finite at R = 0, except those that produce the ergoregions,
as shown in figure 10.
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Figure 10: The density σ of the ergoregion-producing disks has an undefined limit at a zero
circumferential radius. On the other hand, the disks that do not produce an ergoregion
have a finite mass density at the R/M = 0. Further, the density of the disks falls rapidly
and starts to converge at R/M ≈ 3.

From figure 10 we see that the most relativistic disk densities (disks that produce the
highest angular velocities) decrease faster than in the nonrelativistic case, suggesting that
the disk’s mass gets increasingly confined to the center.

The density in figure 10 reveals that it is positive everywhere for all configurations. There-
fore only the secondary inequalities presented in section 4 will be shown in figure 11 a) and
b).
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(a) The sum of the density and pressure of the
configuration.

(b) The difference between the density and ab-
solute value of the pressure.

Figure 11: a): As required for the weak energy condition (WEC), the sum of the eigenvalues
(or densities and pressures) should be larger than or equal to zero. The WEC is satisfied
for all configurations and has an undefined limit for the ergoregion-producing disks (the
two upper curves). In b), it is shown that the dominant energy condition is satisfied for
all configurations.

Both the WEC and DEC are satisfied for the twelve physical configurations considered.
Interestingly, figure 11 (b) can be interpreted as the proper rest mass as observed from the
ϕ−isotropic frame [8], revealing that the mass attains its minimum when the ϕ−isotropic
frame approaches the speed of light U ≈ 1 in the ergoregion-producing disks.

6.2 Counter-rotating geodesic streams (CRGS)

As discussed in section 6, a two-by-two SEMT can be built up with two vectors U+ and
U− according to Eq.(56) with the form in Eq.(84). Contrary to the previous section, the
parameters will have to satisfy the geodesic equation in the hope of finding a model that
is better physically. From the basis-vectors in Eq.(76), the spacetime form of any surface
vector takes the form

Uµ = e µ
a Ua = δ µ

a Ua. (94)

Now an important observation has to be made. If the spacetime is viewed as a cross-section
in the (z, x)-plane, then a cut-out region is present between −b < z < b, as illustrated in
figure 2, but will be shown here again for visibility in figure 12.
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Figure 12: The region in −b < z < b is a cutoff in the spacetime. A particle on the surface
has to obey the geodesic equation both at b and −b simultaneously.

All four of the geodesic equations are expressed as

UαUµ
,α + Γµ

αβU
αUβ = 0. (95)

Some of the geodesic equations are automatically satisfied. To see this, symmetry argu-
ments has to be made. When the surface is viewed from the spacetime coordinates, and
we want to evaluate a function f(x) on the surface Σ, we will use the concept of arithmetic
mean, introduced by [10]

f̃ = f+Θ(z − b) + f−Θ(−z − b). (96)

Where the Θ functions are step functions with an additional intermediate step

Θ(X) =


1, X > 0
1
2
, X = 0

0, X > 0

. (97)

The intermediate step functions allow for evaluation of functions at the surface, such that
it is the average of the function below- and above it, respectively [10]. The metric is the
same above- and below the surface so we find g̃µν = gµν . However, the metric’s derivatives
are not, so the Christoffel symbols need to be averaged when evaluated over the surface.
Therefore, all of the terms in the geodesic equations that are odd in z will cancel at the
surface. The fourth geodesic equation is entirely odd and is therefore not considered when
calculating the trajectories of particles initially at the surface, as the average amounts to
zero.

Consequently, it is found that the only surviving equation needed to be solved is the
ρ-component of the geodesic equation (with the t, ϕ and z equations being solved auto-
matically by 0 = 0)

eaµU
αUµ

;α =
∂f

∂ρ

[
(AΩ± + 1)2f 2 + ρ2Ω2

±
]
− 2fΩ±

[
ρΩ± − f 2∂A

∂ρ
(AΩ± + 1)

]
= 0. (98)
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The derivation of this equation is shown in the appendix. There are two solutions to this
equation, representing opposite directional motion. They are:

Ω± = −
f
(
A,ρf

2 + Aff,ρ ±
√

f 4A2
,ρ − ρ2f 2

,ρ + 2fρf,ρ
)

2f 3AA,ρ + A2f 2f,ρ + ρ2f,ρ − 2ρf
. (99)

The normalization condition

N2
± =

−1

gϕϕΩ2
± + 2gtϕΩ± + gtt

, (100)

fully determines the components in the tensor fields and ensures that they are normalized
to −1. Now the vector decomposition of the SEMT can be used to find the density and
pressure of the configuration

µ± = ±
(
gϕϕΩ

2
± + 2gtϕΩ± + gtt

) Ω∓S
tt
SC − Sϕt

SC

Ω+ − Ω−
. (101)

It is important to note that the components of the SEMT here are given in the spacetime
coordinates (SC) i.e,

Sµν
SC = e µ

a e ν
b γacγbdScd, (102)

where Scd is given by Eq.(82). Explicitly, we have

Stt
SC =

A2f 4(A2Stt − 2AStϕ + Sϕϕ)− 2ρ2Af 2(SttA− Stϕ) + ρ4Stt

ρ4f 2
,

Stϕ
SC =

Aρ2Stt + 2A2f 2Stϕ − A3f 2Stt − Af 2Sϕϕ − ρ2Stϕ

ρ4
,

Sϕϕ
SC =

f 2(A2Stt − 2AStϕ + Sϕϕ)

ρ4
.

(103)

The angular velocities of the geodesic streams are shown in figure 13.
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Figure 13: The angular velocity Ω±of the matter-streams. They correspond to the disks
for constant b = [0.613, 0.87, 1.11, 1.34, 1.56, 1.78, 2.00, 2.21, 2.42, 2.63, 2.84]. Only one
ergoregion-producing disk is shown.
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With an increasing proper circumferential radius, the prograde (Ω+) stream decreases
slightly for all disks. The retrograde (Ω−) stream exhibit a decrease in angular velocity up
to R/M ≈ 1.5 after which it increases with a peak at R/M ≈ 2.4, and subsequently starts
to drop again, converging with the prograde stream. The prograde stream never obtains a
zero angular velocity, and both of the streams converge at Ω+ ≈ Ω− ≈ 0.1.

The densities of the streams in this configuration are shown in figure 14, and the sum of
their densities in figure 15.

Figure 14: The densities µ± for b = [0.613, 0.87, 1.11, 1.34, 1.56, 1.78, 2.00, 2.21, 2.42, 2.63, 2.84].

Figure 15: The sum of the stream’s densities are positive everywhere.

In figure 15, we find that the WEC is satisfied for the SEMT, but as seen in figure 14,
the retrograde stream itself does not, suggesting that the CRGS model is a non-physical
consideration. The ergoregion-producing disk b = 0.613 has a defined density at R/M = 0,
but is not shown in figure 15 for visibility.
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7 Gravitational collapse

Apart from examining the properties of static disks, one of the main goals of this thesis is
to consider a surface that is changing with time. Such a disk would collapse in on itself in
the ρ- and z direction until all of the matter in the source is confined to a point. Since ρ
and z depends on time t and s, we find that, during the surface evolution, the basis vectors
have the same form as given in Eq.(68). The case can be readily visualized in figure 16.

t

Σt0

Σt1

ρ

z

t0

t1

Figure 16: An illustration of the disk undergoing collapse in time. The illustration exhibits
the surface at an initial time t0 and a later time t1.

A collapse may imply that the symmetries previously discussed for the static case are
non-existent. In addition, the geodesics traveling alongside the surface may not stay there
throughout the evolution of the disk but may leave it.

The SEMT constructed by the time-dependent basis vectors implies a 3×3 matrix, requir-
ing three-component vectors to construct it. Even though the most realistic case concerns
a decrease of proper circumferential radius and thickness in z, the expressions are too long
to write out in this thesis. Therefore, another simplification will be made to draw some
conclusions about gravitational collapse.

7.1 Constant surface s

Concerning gravitational collapse, only a collapse in the thickness of the disk, which is
parameterized by z, will be considered. Furthermore, the thickness will not change with
the radius from the center inside the surface. Therefore, we will impose upon the basis
vectors: z′ = ρ̇ = 0 and ρ′ = 1. Hence

e µ
a =

1 0 0 ż
0 1 0 0
0 0 1 0

 , nµ = (−λż, 0, 0, λ), λ2 =
fh ρ2

hA2f 2ż2 − hż2ρ2 + ρ2f 2
. (104)
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These requirements imply the following extrinsic curvature

K(t)(t) =
λ (2hAf 3 (Az) ż

2 + 3h (fz) ż
2ρ2 − f (hz) ż

2ρ2 − 2z̈fh ρ2 − f 2 (fz) ρ
2)

2fh ρ2
,

K(t)(ϕ) =
λ
(
f (h (f 2A2 + ρ2) ż2 − ρ2f 2) (Az) + 2ρ2A (fz)

(
hż2 − f2

2

))
2f ρ2h

,

K(t)(s) =
λ (−f (hρ) ρ

2 + h (f 3A (Aρ) + 2ρ2 (fρ))) ż

2f ρ2h
,

K(ϕ)(ϕ) = −λ ((f 2A2 + ρ2) (fz) + 2f 3A (Az))

2fh
,

K(ϕ)(s) =
ż ((A2f 3 + ρ2f) (Aρ) + 2Aρ ((fρ) ρ− f))λ

2f ρ2
,

K(s)(s) = −λ (h (fz)− (hz) f)

2fh
.

(105)

The trace of the extrinsic curvature will be time-dependent, suggesting that a family of
geodesics intersecting the surface will change with time as well. However, the trace (along
with the SEMT) are still too long to explicitly state.

However, it would be interesting to see how the collapse looks initially when the surface
evolution is very slow. Of course, this only applies to a minimal time interval during
the “start” of the collapse. To properly investigate the adiabatic behavior of the initial
collapse, we will make an ansatz

z(t) = b−Qt, (106)

where 0 < Q ≪ 1, so that we can neglect higher-order terms and second derivatives of
L(t). Furthermore, these assumptions will keep the induced metric unchanged from the
CRGS case. This simplifies the extrinsic curvature and its trace significantly, relating to
the static case, denoted by K0

ab up to first order

Kab = K0
ab +K1

ab, (107)

in which K1
ab is a symmetric correction matrix with the form

K1
(t)(s) = −λ (hAf 3 (Aρ) + 2h (fρ) ρ

2 − f (hρ) ρ
2)

2fh ρ2
Q,

K1
(ϕ)(s) = −λ (A2f 3 (Aρ) + 2A (fρ) ρ

2 + f (Aρ) ρ
2 − 2Afρ)

2f ρ2
Q,

(108)

with all other components being zero. The trace will only contain second-order correction
terms, so

Ka
a = K0a

a. (109)

As can be seen in the extrinsic curvature, this adiabatic evolution suggests time indepen-
dence. The SEMT can be similarly described with a correction matrix while still being
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static - only perturbed to allow initial evolution

Sab = S0
ab + S1

ab. (110)

The time independence suggests that the vectors in the surface are also time-independent.
Therefore the vectors that admit a vector-decomposition are only dependent on ρ. However,
now the SEMT has a slightly more complicated form with nonzero components in the
s−direction

Sab = S0
ab + S1

ab =

Stt Stϕ Sts

Stϕ Sϕϕ Sϕs

Sts Sϕs 0

 . (111)

Like the static case, one can either diagonalize Sab or use the geodesic equations to find the
density, pressure, and vector components. In the following, we will first utilize the geodesic
equations.

7.2 Geodesic streams around a perturbed disk

Since the SEMT in Eq.(111) contains a small correction in the s-components, we assume
that all that is required are the vectors found in the previous cases (which builds up the
Stt, Stϕ and Sϕϕ parts) plus a correction vector Zµ = (v1, v2, v3, 0), where v1, v2 and v3 are
small correction functions (in Q) dependent on ρ. They are here assumed to be time-
independent since their time-dependent part is proportional to Q2. Therefore the new
vector of interest has the form

Uµ = (N± +Qv1, N±Ω± +Qv2, Qv3,−żN±), (112)

In which the last component is nonzero as a consequence of the new perturbed vector basis.
Note that we require v3 ̸= 0 to be able to decompose Sab in a way that is consistent with
a small correction vector; i.e. UαZρ ̸= 0.

Even though the unperturbed Ua itself satisfies the geodesic equations, this new perturbed
vector might not. This is because the geodesic equations are highly non-linear. Using
the same symmetry arguments as before, we notice that the z−component of the geodesic
equations is odd in z, so the averaged Christoffel symbols cancel in Γz

αβU
αUβ = 0, where

Uµ → Uµ
0 +Zµ. This observation means that we only need to solve the first three geodesic

equations, which are:

α1v3 = 0

α2v3 = 0

α3v1 + α4v2 + α5 = 0,

(113)

in which αi are functions of ρ and are too long to write out. The system tells us that v3 is
determined by the first and second equation only. If v3 ̸= 0 then both α1 and α2 have to
be zero. First, we note that

∂N±

∂ρ
= N3

±PΩ,ρ, (114)
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where P = gϕϕΩ+gtϕ. The derivation of this expression is given in the appendix. For both
α1 and α2 to be zero, then the following must also be fulfilled

χ = β1
∂A

∂ρ
+ β2

∂f

∂ρ
− β3 = 0, (115)

in which

β1 = f
(
(Ω±A+ 1) ((Ω±P + 1)A+ P ) f 2 + Ω± ρ2 (Ω±P + 1)

)
,

β2 = 2ρ2
(
P Ω2

± + Ω±
)
A+ Ω±P +

1

2
,

β3 = 2ρΩ±f (PΩ±A+ P + A) .

(116)

The value of χ is shown in figure 17.

Figure 17: The value of χ as plotted for the eleven disks for visibility. It has a zero-value
at specific points unique to each disk. There are two points at which a nonzero correction
value v3 can be obtained.

Figure 17 is just a statement of the difference between Ω,ρ, given by α1−α2 = 0. Therefore,
Eq.(115) might be satisfied even though α1 and α2 are nonzero if α1 = α2. There exist one
more condition to look at: if α1 = 0, then we have

Ω,ρ = −f 3A2Ω (Aρ) + f 3A (Aρ) + Ω (Aρ) ρ
2f + 2AΩ (fρ) ρ

2 − 2AΩρf + ρ2 (fρ)

fP ρ2
. (117)

From figure 13, we find that the derivative of the angular velocity of the prograde stream
must decrease as we move further away from the center. Therefore we require

Λ :=
f 3A2Ω+ (Aρ) + f 3A (Aρ) + Ω+ (Aρ) ρ

2f + 2AΩ+ (fρ) ρ
2 − 2AΩ+ρf + ρ2 (fρ)

fP ρ2
≥ 0

(118)
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In fact, as seen in figure 18, the inequalities are satisfied.

Figure 18: The derivative of the angular velocity is negative for all values of proper circum-
ferential radius. It goes to zero for large R/M , in agreement with the converging velocity
for the geodesics. A singularity is present at R/M = 0, in disagreement with the finite
velocity in figure 13.

We can see that the derivative is undefined for R/M = 0, which disagrees with the results
plotted in figure 13, where the curves are well-defined for all values of proper circumferential
radius.

The derivative of angular velocity and v3 ̸= 0 only hold for specific values of R/M , im-
plying that geodesic streams as a source of the perturbed disk do not represent a physical
configuration. If v3 is taken to be zero, it follows that v1 = v2 = 0 as well, which fails
to represent the SEMT. If higher-order terms are included, the geodesic equations admit
solutions, but then the SEMT cannot be represented by our ansatz to first order.

However, as in the static case, a diagonalization may be performed to get angular velocities
that do not satisfy the geodesic equations. In this case, we choose the correction vector to
have the form Zµ = (0, 0, v3, 0) such that

Uµ
± = (N±, N±Ω±, 0,−v3N±),

Uµ = Uµ
± + Zµ = (N±, N±Ω±, v3,−v3N±).

(119)

Hence we need to find N±, Ω± and Q such that the following equation is satisfied

Sµν = µ+

[
Uµ
+U

ν
+ +

1

2

(
Uµ
+Z

ν + Uν
+Z

µ
)]

+ µ−

[
Uµ
−U

ν
− +

1

2

(
Uµ
−Z

ν + Uν
−Z

µ
)]

. (120)

Since we require the normalization condition, we find (and perform an approximation of
Q = 0 up to first order)

N2
± = − 1

gϕϕΩ2
± + 2gtϕΩ± + gtt

, (121)

which is the same condition as before. However, diagonalization of the SEMT leads to
complex values of v3, implying that this is not a physical consideration.
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8 Conclusion and discussion

We used a formalism to adequately explain physical quantities confined to a subset of a
spacetime corresponding to a surface. This was done to see what kind of sources there
exists that produces the Kerr metric. We find that the thin-shell formalism can be applied
to track particles (and hence the behavior of the surface as a whole) through time to see
how natural sources would behave when observed from an LNRF- or ϕ−isotropic frame.

We utilized a perfect fluid approach in section 6.1 by diagonalizing the energy-momentum
tensor. This was done to see how matter would behave as a source to the Kerr metric.
The velocities were finite along with a positive density and pressure, effectively satisfying
all energy conditions. The trajectories of the streams were not assumed to follow geodesics
and may therefore not represent a natural source, so values of the thickness b had to be
chosen carefully such that the pressure and density remain positive for all distances away
from the center. We presented twelve cases for different values of b, of which two could
produce ergoregions. No angular velocity was found to approach the speed of light.

The CRGS model was investigated in section 6.2, where the source was found to be formed
by counter-rotating streams of matter that obey the geodesic equations. Since the streams
follow geodesics, their densities must be positive. Now, however, the angular velocities
differ in sign, so the two streams contain different densities. It was found that the retrograde
stream in the ergoregion-producing disk had a negative energy density at R/M ≈ 0.5,
violating the WEC and DEC. Together, however, they satisfied the WEC and DEC, as
expected from Einstein’s field equations. The angular velocity was well-defined for all
values of circumferential radius. The prograde stream attained its maximum close at the
horizon, while the retrograde stream peaked at R/M ≈ 2.4.

An adiabatic gravitational collapse was investigated in section 7, for which we concluded
that no geodesic motion was possible up to first order. A vector basis constructed from
a decreasing z will cause a z-motion onto the trajectories. The geodesic equations for
small perturbations to the surface energy-momentum tensor implied contradicting results,
forcing the correction vector to be the null vector. Hence a small perturbation in the first
order was concluded to be impossible.

Like the static case, a diagonalization can be performed to construct collapsing streams of
matter that do not satisfy the geodesic equations. The correction term v3 was found to be
complex due to the normalization condition for the vectors. In the case where N+ = N−,
the constant is entirely real, but then the densities are infinite everywhere. So we conclude
that neither geodesic treatment of a perturbation to the disks nor diagonalization is a
viable approach up to first order.

However, a less restrictive ansatz z → z(ρ) could be made, in which case more degrees of
freedom would be available in the geodesic equations. This would not restrict v3 as tightly,
possibly allowing solutions to the geodesic equations where v3 ̸= 0.
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Appendix

Variation of the Christoffel symbols

To show that the variation of the Christoffel symbols transforms like a tensor, we can
examine the covariant derivative of the variation of the metric

∇λ(δgµν) = δ(∇λgµν) + gρνδΓ
ρ
µλ + gµρδΓ

ρ
λν . (A1)

However, the connection (defined by the Christoffel symbols) comes from the choice that
the covariant derivative of the metric tensor is zero. Hence we obtain

∇λ(δgµν) = gρνδΓ
ρ
µλ + gµρδΓ

ρ
λν . (A2)

The task at hand is to show that the variation of the Christoffel symbol is a tensorial
quantity, so it has to be isolated and expressed in terms of the covariant derivatives. There
exists a helpful trick, where we can permute the indices threefold such that we obtain a
system of three equations [19]

∇λ(δgµν) = gρνδΓ
ρ
µλ + gµρδΓ

ρ
λν

∇ν(δgλµ) = gρλδΓ
ρ
νµ + gνρδΓ

ρ
µλ

∇µ(δgνλ) = gρµδΓ
ρ
λν + gλρδΓ

ρ
νµ.

(A3)

Adding the third and second equations and subtracting the first yields

∇µ(δgνλ) +∇ν(δgλµ)−∇λ(δgµν) = 2gρλδΓ
ρ
νµ. (A4)

Using the relation gµνgνρ = δµρ, Eq.(A4) gives

δΓρ
νµ =

1

2
gρλ (∇µ(δgνλ) +∇ν(δgλµ)−∇λ(δgµν)) , (A5)

which is a tensorial quantity since each term contains covariant derivatives of the variation
of the metric tensor.

Geodesic equation for non-collapsing geodesic streams

We want to evaluate the geodesic equation

Uα
±U

µ
±;α = 0. (A6)

Since the particle stays on the surface when transported along a geodesic, we can decompose
the geodesic equation in Eq.(A6)

eaµU
α
±U

µ
±;α = 0. (A7)
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The only equation that is not automatically solved is the ρ-component

eaρU
α
±∂αU

ρ
± − eaµΓ

µ
αβU

α
±U

β
± = 0. (A8)

Since Uµ
± = (N±, N±Ω±, 0, 0), we find that the first term vanishes so

Γt
αβU

α
±U

β
± + Γϕ

αβU
α
±U

β
± + Γρ

αβU
α
±U

β
± = 0. (A9)

The Christoffel symbols Γt
µν and Γϕ

µν are only nonzero for components with either µ or ν
being equal to ρ or z, for which the vector elements are zero. The only surviving term is
therefore Γρ

µν with the nonzero components

Γρ
tt =

f

2h

∂f

∂ρ
,

Γρ
tϕ =

f

2h

(
A
∂f

∂ρ
+ f

∂A

∂ρ

)
,

Γρ
ϕϕ =

1

2fh

(
∂f

∂ρ

(
A2f 2 + ρ2

)
+ 2f 3A

∂A

∂ρ
− 2ρf

)
.

(A10)

Substituting the results in Eq.(A10) into Eq.(A9) we obtain

∂f

∂ρ

[
(AΩ± + 1)2f 2 + ρ2Ω2

±
]
− 2fΩ±

[
ρΩ± − f 2∂A

∂ρ
(AΩ± + 1)

]
= 0. (A11)

The derivative of the normalization constant

If we restric ourselves to the N+ case such that N+ → N,Ω+ → Ω, then the normalization
constant squared N2 is expressed as

N2 = − 1

gϕϕΩ2 + 2gtϕΩ + gtt
. (A12)

Taking the derivative with respect to ρ gives

dN2

dρ
= 2N

dN

dρ
= N4

(
gϕϕ,ρΩ

2 + 2gtϕ,ρΩ + gtt,ρ + 2gϕϕΩΩ,ρ + 2gtϕΩ,ρ

)
. (A13)

However, the first three terms in the brackets are equal to zero through the geodesic
equations. Hence

dN

dρ
= N3(gϕϕ + gtϕ)Ω,ρ = N3PΩ,ρ. (A14)
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