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Abstract

Starcraft 2 is a PC game that has been addressed more and more within the
research field of artificial intelligence (AI ) and reinforcement learning. One
research field of interest is the concept of Intrinsic Curiosity Exploration, a re-
ward generated by an Intrinsic Curiosity Model that incentivizes exploration
called Intrinsic Curiosity. This model defines the agent error in predicting the
outcome of its action based on some feature space learned by an inverse dynam-
ics model. Starcraft 2 presents an interesting problem since the action space is
ample, and many actions have a similar outcome. For this thesis, we implement
an Intrinsic Curiosity Module with a custom loss function to work with a well-
established reinforcement learning agent, the Deep Q-network. Our research
aims to allow an agent to learn and improve while playing Starcraft 2.
Agent playing video:
https://www.youtube.com/watch?v=07FUgVS9jQkfeature=youtu.be

Github:
www.github.com/dat14dka/ThesisProject

Keywords: Reinforcement Learning, Curiosity Driven Exploration, Intrinsic Curiosity
Module, Starcraft 2

https://www.youtube.com/watch?v=07FUgVS9jQk&feature=youtu.be
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Chapter 1

Introduction

In recent years reinforcement learning has made great progress, from beating the highest-
ranked GO player in the world [1], to playing at a consistently professional level in Starcraft
2 [2]. Using reinforcement learning algorithms, an agent can learn and improve upon its
performance autonomously, given a chance to act in specific environments [3]. One such
algorithm is the Deep Q-network (DQN). This network iteratively improves its ability by
evaluating actions, then incorporating the best-perceived action to reach a higher ability [4],
and shows great results using this approach[4]. However, one problem with this system is
that in environments with sparse rewards (low reward environment), the DQN learns slowly
[12], without any explicit reward, the DQN chooses its actions more or less randomly, making
this an ine�cient way of learning.

An Intrinsic Curiosity Module (ICM) [5] is a component that adds additional rewards based
on Intrinsic Curiosity and improves the learning speed for the DQN in sparse environments.
Intrinsic Curiosity defines the agent error in predicting the outcome of the action based on
some feature space learned by an inverse dynamics model. The purpose of this additional re-
ward is to guide the activities of the reinforcement learning agent when no extrinsic reward
is provided [5]. This approach may therefore improve performance for the reinforcement
learning agent in sparse reward environments [5].

The algorithms mentioned above solve complex problems, and one such problem is playing
the strategy PC game Starcraft 2 (Figure 1.1). The game can be accessed and played through
the API PYSC2, an API that can use a reward structure that gives no extrinsic reward for
long periods of time[11]. In the game, the player controls friendly soldiers, while the oppo-
nent controls the opposing soldiers. All players can distribute di�erent commands to the
soldiers, for instance, "attack".

There also exist subtasks within Starcraft 2, which are called minigames [11] and they present
a lesser challenge than the entire Starcraft 2 game. The player receives a total score in each
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1. Introduction

minigame based on how well the player performs. Using this score, one can examine if adding
Intrinsic Curiosity to the DQN can improve its ability to learn in these minigames. This
thesis aimed to determine how the process of learning to play the Starcraft 2 minigame "De-
featRoaches" di�ers for the DQN, with and without Intrinsic Curiosity.

1.1 Questions Evaluated by the Thesis
• How will the Deep-Q Network (DQN) perform with and without Intrinsic Curiosity

in large action space, such as Starcraft 2?

• How will the two algorithms, DQN with and without Intrinsic Curiosity perform with
sparse rewards?

• Will the DQN with Intrinsic Curiosity outperform the DQN?

1.2 Exploring the Research Questions
There already exist a developed DQN agent who can play and improve performance in Star-
craft 2 [19], which is used with modifications (hyperparameters were rebalanced for the sparse
environment) to save time and resources. However, to explore our research question, the ICM
model must be implemented and integrated with the DQN. Furthermore, to analyze how the
di�erent models perform during di�erent reward environments, we also plan to implement
other reward structures in Starcraft 2.

Figure 1.1: A game of Starcraft 2

1.3 Contribution Statement
While exploring these research questions, the thesis illustrates how the ICM and DQN could
be used to achieve very promising results within the field of Starcraft 2. The game presented a
very di�cult and unique, previously unexplored kind of challenge for the ICM, since the ac-
tion space is very large and many actions have the same outcome [16]. Previously the ICM has
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1.4 Motivational Statement

been used to play simpler arcade games, such as Mario [5]. Finally, an alternative activation
function for the Inverse Network is proposed (Mean Square Error activation function) and
showed better results than the traditionally used Softmax activation function in this specific
context.

1.4 Motivational Statement
The challenge of a complex game with a large action space is interesting because it can be
related to a number of real world problems, even though the game of Starcraft 2 itself is not
very realistic. One example would be automated driving. Similar to a player in Starcraft 2, a
driver has a large number of possible actions available at all times, with only a relatively small
number of "right" choices. Another similarity is that many actions, e.g reducing or increasing
the speed slightly, often have very little e�ect, while other actions might have a drastic e�ect,
suddenly turning or decreasing the speed abruptly for example. A second potential real world
application could be the automated exploration and information gathering from huge maps,
where an AI could be used to find certain types of information, while discarding non-relevant
information. The similarity with Starcraft 2 here would be that the map initially contains
lots of unknown information, with only a relatively small part being relevant while playing
the game.

1.5 Methodology and Outline
The work developing the agent was a mix of experimental and analytic work. Once the ini-
tial programming phase was completed and the software worked as intended, the main focus
was to choose the optimal value for the di�erent hyperparameters. While background the-
ory and related studies provided some guidance on how to choose these values, initially this
was done experimentally. In other words, one or more parameters where changed and the
results observed. Over time, this changed more in to an analytic approach, where parameters
where changed with the intent to change or amplify a certain behaviour of the agent, rather
than just observing the result of these changes. During the evaluation phase, only very small
changes where made to certain parameters, as some e�ects only became clear when running
longer training sessions. Once the configurations of the Agent was finalized, a purely analytic
approach was used to compare the performance of the Agent in the di�erent environments.

In the next Chapter, relevant information about Starcraft 2 and the PYSC2 API will be pre-
sented, followed by theory regarding Deep Q-Networks (DQN) and the Intrinsic Curiosity
Module (ICM). In the third Chapter, a number of related and relevant studies are presented.
This is followed by a discussion about the Systems used and developed in Chapter 4. In Chap-
ter 5, the Results of our work is presented. In Chapter 6, the results and systems are discussed
and evaluated. This chapter also contains sections discussing possible improvements, as well
as suggestions for future work. Lastly, Chapter 7 contains the main conclusions from this
thesis.
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Chapter 2

Background Information

This report assumes that the reader is familiar with the concepts of Markov Chains, the
fundamentals of Reinforcement Learning, and Neural Networks.

2.1 Starcraft 2
Starcraft 2 is a real-time strategy video game where players issue commands to units with
di�erent skill sets. The player can select one of three races, which then determines what type
of units the player can control. The players use the units to build structures, farm resources,
and attack enemy units to achieve the game’s goal of defeating the enemy by destroying their
base. [11].

2.1.1 Rules of Starcraft 2
The player needs to decide which actions their units should take to destroy the enemy base.
Each unit can use a variety of actions and di�erent skills, with the ability "attack" being a
common skill for most units [11]. However, the damage an attack leads to is di�erent for
di�erent units, which unit determines the degree of damage caused. Also, note there is no
randomness or miss-chance involved in the di�erent attacks.

The player determines their units’ actions in order to defeat their opponent. To achieve
this goal, the player needs to complete sub-goals, such as collecting resources, building units,
and killing enemy units [11]. Within the game of Starcraft 2, there are minigames included
that include specific sub goals [16], which allows the player to practice and become more pro-
ficient at achieving the particular subgoals. For this report, we only focus on the minigame
"DefeatRoaches".
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2.1 Starcraft 2

DefeatRoaches
In the "DefeatRoaches" minigame, the human player opposes a computer-controlled oppo-
nent. The initial state in this minigame includes 9 marines (controlled by the human player)
placed in a vertical line, randomly placed either on the left or the right side of the map, and
4 roaches (controlled by the computer) placed in a vertical line on the opposite side of the
map (Figure 2.1). In the game, the marines try to kill all roaches, if they succeed, the game
spawns 5 new marines and 4 new roaches with full health, and the surviving marines from the
just played episode remain alive without having their health restored. When a new episode
starts, all units move back to opposing positions of the map, and a new episode starts [16].
The computer-controlled roaches will act deterministically. That is, they will stay in place,
and if marines attack them, the roaches will fight back until they are dead.

The human player has a complete overview of the total area covered in the game in the
minigame and a complete overview of the actions of each roach and each marine, which
means no information is hidden. The player and the computer can not move units to the
edge of the gamespace (Figure 2.1). The added score for killing a roach is 10 points, while
every defeated marine results in a lost point (-1 point). The game ends when the roaches
defeat all marines or 120 seconds have elapsed [16]. The final score of an episode is the sum
of all earned points, where the goal of each game is to receive as many points as possible.

Figure 2.1: Screenshot of the minigameDefeatRoaches. The blue units
on the right are the user controlled Marines, the Roaches (enemy
units) are on the left.

2.1.2 Game Tactics
To achieve as high a score as possible, human players use specific tactics, two of these, "Focus
fire" and "Kiting", will be briefly described below to give some understanding of how to play
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2. Background Information

the game optimally. Unfortunately, no complete list of these tactics exists. However, one can
observe professional players play to get an idea of the optimal way of playing 1.

"Focus fire" can best be described as focusing fire on a single enemy unit, which is the fastest
way to eliminate an enemy unit since the more friendly units that attack an enemy unit, the
more damage is done to the enemy unit. The faster the number of enemy units is reduced,
the less damage they can do to the Marines, which results in the player receiving a higher
scoring. The "Focus fire" strategy is easy to understand and perform. However, when playing
the minigame optimally, the player should combine multiple strategies.

One of the tactics commonly combined with "Focus fire" is "Kiting". It can be described
as constantly moving the units controlled by the player, with the goal being to avoid taking
damage from the enemy units and still being able to deal damage to them. While the con-
cept of "Kiting" is not very complicated to understand, it is more di�cult to do e�ectively,
especially in combination with "Focus fire".

2.2 PYSC2
PYSC2 is an open-source environment written in Python that provides an API for reinforce-
ment learning agents to interact with Starcraft 2 while optimizing the interaction between
the Starcraft 2 environment and the reinforcement learning agent [16]. The PYSC2 environ-
ment links Starcraft 2 and the machine learning agent written in Python and exposes the
Starcraft 2 Machine Learning API to the python code. PYSC2 makes it possible to start and
select minigames as well as train a reinforcement learning agent [16].

2.2.1 Game Sequence

Figure 2.2: Model of the PYSC game sequence

1To see a display of advance tactics, see the following link, where the high ranking Starcraft 2 player Kevin
Johansson plays "DefeatRoaches":

Semi-Professional playing DefeatRoaches: youtube.com/watch?v=fNJks7uMInY
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2.2 PYSC2

For an overview of the sequence that occurs when using PYSC2 to play a Starcraft 2 minigame,
see Figure 2.2. Firstly the Game Initialization phase occurs. Any custom code by the devel-
oper runs, the game is booted, and all necessary modules for running the game initializes.
Then the game loop starts and runs until the developer terminates it. The game loop begins
with the Episode Initialization phase [28]. Any custom code by the developer runs, and all
the variables related to each episodic run reset (such as game score). The API then receptively
executes Step Initialization until the episode is terminated (for DeafeatRoaches, this is a loss
or the time running out). A step is equivalent to letting one time-step occur in the game sim-
ulation. When a step occurs, the API reads a state and a reward from the game. After which,
the agent decides some action and issues it to its units. Lastly, the agent’s and other players’
actions occur, and the game simulates which a�ect the actions had on the environment. This
cycle is then continuously repeated, as stated beforehand, to improve agent performance.

2.2.2 States and Rewards
PYSC2 provides a state input consisting of several feature representations representing dif-
ferent aspects of the game (see Section 8.2 for complete list). For instance, one such feature
representation is "player_relative", which determines whether units are friendly or hostile. A
matrix with the exact dimensions as the game window expresses each feature representation
[28], for instance, in a 4x4 pixel game window, each feature representation will consist of a
4x4 matrix. In the player_relative matrix, a friendly unit at pixel-coordinate (0,0) will cause
the feature matrix to be equal to 1 at index (0,0), while all other values in the matrix will
equal 0. Figure 2.3 shows an example of this player_relative matrix and the corresponding
game window. In conjunction with receiving a state, the agent also gets a reward.

Figure 2.3: A approximately 21x21 game window and a simplifica-
tion of the corresponding player_relative matrix, in reality the ma-
trix would be in a higher resolution.

A reward is an integer given at each game step, where the reward provides feedback to
the performance of the agent [28], for instance, the default reward structure for the "De-
featRoaches" gives 10 points (+10) when killing an enemy and a loss of 1 point (-1) when
losing a friendly unit [16]. The developer can use the predetermined reward structure or cre-
ate a custom-designed reward structure.
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2. Background Information

2.2.3 Actions
After the state and the reward are registered, an action is issued [28]. The developer needs
to specify the type of action and the arguments required for that type of action2 to issue the
action, one such category of actions is screen actions [28]. Screen actions are commands issued
in conjunction with coordinates, for instance, the command “move” ("move to coordinate
x,y") [11]. The developer must specify x- and y-coordinates and the action type "move" to
issue the move command. When the command is issued, the units start to move toward the
defined (x,y) coordinates. To determine which action to take, the developer can use a DQN.

2.3 Deep-Q Networks (DQN)
Deep-Q Network is a value estimation reinforcement learning algorithm that enables an
agent, acting in some space, to improve at a task with experience [4] and builds upon the
concept of Q-learning and expands on it using Neural Networks.

2.3.1 Q-learning
Q-learning supposes a world model based on Markov Decision Processes. However, it adds
the concept of an action-value function, modeled by Q, which answers the question: "How
profitable is the action a when I am in the di�erent states?". Q-value for some state st and
action at is calculated iteratively like so:

Qnew(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·

temporal di�erence︷ ︸︸ ︷(
rt︸︷︷︸

reward

+ γ︸︷︷︸
discount factor

· max
a

Q(st+1, a)︸ ︷︷ ︸
estimate of optimal future value︸ ︷︷ ︸

new value (temporal di�erence target)

−Q(st, at)︸ ︷︷ ︸
old value

)

(2.1)
In this algorithm, γ and α are constants referred to as "the discount value" and "the learning
rate" [4]. The agent uses a learning rate to avoid overfitting, which reduces how quickly the Q-
values are updated. At the same time, a discount factor helps to account for the uncertainty
of relying on future rewards. Commonly, a Q-table keeps track of each Q-value, where the
Q-table updates as the amount of experience grow (or equivalently as t grows over time).
Experience is the set of actions, states, and rewards for each time step the agent observes.
Using a football game as an example, the agent can shoot, run, or stand still, and the possible
states in which the agent can exist are "possessing the ball" and "not possessing the ball". In
our example, the agent starts with "possessing the ball" and each Q- value initializes at 0.
Furthermore, γ is set at 0.95 and α to 0.1. Figure 2.4. presents the Q-table from the above
example.

2For a complete list of actions and action types o�ered by PYSC2 see https://github.com/deepmind/pysc2

14

https://github.com/deepmind/pysc2


2.3 Deep-Q Networks (DQN)

shoot run stand still
poss 0 0 0

not_poss 0 0 0

Figure 2.4: An example of a Q-table for an agent playing soccer at
initialization

The match carries on, and the agent runs and then shoots the ball, scoring and receiving
a reward of 10. In turn, this results in the following rewards, calculations and corresponding
Q-table.

1. Qnew(poss, shoot)← 1 = 0 + 0.1 · (10 + 0.95 · 0 − 0)

2. Qnew(poss, run)← 0.095 = 0 + 0.1 · (0 + 0.95 · 1 − 0)

shoot run stand still
poss 1 0.095 0

not_poss 0 0 0

Figure 2.5: An example of a Q-table for an agent playing soccer after
update

2.3.2 Q-learning using Neural Networks
In many real-life problems, the state and the action space are too large for modeling all q-
values in a table [4]. As an alternative, it is possible to create a model of the Q-function by
using a Convolutional Neural Network.

Input to the network consists of the current state (st), the network itself can consist of any
layer best fit for the task, and the network outputs a predicted Q-value for the input state
(st) and each possible action (at). Below are the calculations for calculating the target used
for predicting the Q-values:

Qtarget(st, at)← rt︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

·maxat+1[Q̂(st+1, at+1)︸ ︷︷ ︸
predicted Q-values

] (2.2)

Then as the loss function L(Qtarget, Q̂) converges, the network correctly estimates the actual
Q-values, and the agent chooses the action with the largest Q-values, which converges to a
policy where the reward of the agent is maximized [4]. However, with this approach, there
are several problems.

The first problem includes convergence and is caused by the target value depending on the
output of the network, as seen in Equation 2.2. Since the network continuously weights and
changes the output, so do the target values [4]. One solution is to use two networks: one
network predicting current Q values (here called the Q-network) and one network predict-
ing the next state Q-values (target-network). The target network will then have its weights
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2. Background Information

frozen and only periodically copy the weights from the Q-network [4].

The second problem includes overfitting to the most recent set of data points by the DQN.
Since the DQN continuously receives and trains on inputs, the network runs the risk of over-
fitting to the last encountered experiences if there exists significant covariance between the
experiences which are closely related in time [4]. However, adding "Experience replay mem-
ory" reduces this problem by having a memory that saves experiences, and then the agent
chooses a new random set of experiences for each training iteration. Algorithm 1 presents
the final algorithm.

Algorithm 1: DQN Obtained from Mnih et al. (Human-level control through deep
reinforcement learning)
Input: States and reward
Output: Q action value function (from which the policy is obtained and the action

is selected).
Initialize experience replay memory D; Initialize action-value function Q with

random weight θ;
Initialize target action-value function Q̂ with weights θ− = θ;
for episode = I to M do

Preprocessed state φ1 = φ(s1);
for t = I to T do

Select at = maxat Q(φ(st), a; θ);
Execute action at and observe reward rt and state representation st+1;
Store transition (st, at, rt, st+1) in D;
Sample random minibatch of transition (s j , a j , r j , s j+1) from D;

Set y j =

r j if episode terminates at step j + 1
r j + γ · max′aQ̂(φ j+1, a′; θ−) otherwise

Perform a gradiant descent step on (y j − Q(φ j , a j ; θ))2 with respect to the
network parameters θ;

Every C steps reset Q̂ = Q;
end

end

The presented algorithm does not account for another common reinforcement learning
problem: exploration versus exploitation.

2.4 Exploration versus Exploitation
The agent must choose which action to select when interacting with the environment, and
it uses a specific policy to do so [3]. The most apparent strategy is to choose the action that
provides the highest expected reward, or as in the case of the DQN, always select the action
that provides the largest Q-value. However, if the environment changes or the agent has
incomplete information, the agent may act based on false information. For instance, an agent
with the task to buy apples for the lowest price in an environment with multiple stores that
have apples with di�erent prices will receive a point (+1) reward if finding an apple costing 2$
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and +2 if finding an apple costing 1$ . The agent starts its search and discovers a fruit store that
the agent has not seen before, with apples priced at 2 $. The agent would then not search for
other stores since it would only act on its previous knowledge of available stores and prices,
which would not include knowledge of the store selling apples for 1$. One problem is thus
how to balance each choice and decide when an agent should choose exploitation (greedy) or
exploration. If an agent wants to estimate the state, reward, and action space more accurately,
it should select an exploratory action to learn more, not a greedy one. However, if the agent
keeps choosing exploratory actions all the time, the policy would never converge, and if the
agent acts too greedily, it might never discover the optimal policy [13]. One way of solving
this for the DQN is to add ε -greedy Select (for further description of ε -greedy Select, see
below).

2.5 DQN with ε-greedy Select
As mentioned in section 2.3, there exists in reinforcement learning an exploitation versus ex-
ploration dilemma [13]. One way to incorporate exploration is using the algorithm ε -greedy
Select, which means to select with the probability of ε an action at random and with the
probability 1-ε , the action with the highest expected reward or for the DQN the highest Q-
value [4]. ε -greedy pairs with multiple di�erent reinforcement learning algorithms.

A typical implementation of ε -greedy uses “exponential decay”. “Exponential decay” refers
to ε starting at some εmax and then decays exponentially over the number of episodes [33].
The idea behind this approach is that, given infinite time and the agent exploring the entire
action space, it will find an optimal solution. Algorithm 2 presents the DQN with ε -greedy
Select.
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Algorithm 2: DQN Obtained from Mnih et al. (Human-level control through deep
reinforcement learning)
Input: States and reward
Output: Q action value function (from which the policy is obtained and the action

is selected).
Initialize experience replay memory D;
Initialize action-value function Q with random weight θ;
Initialize target action-value function Q̂ with weights θ− = θ;
for episode = I to M do

Preprocessed state φ1 = φ(s1);
for t = I to T do

With the probability of (1 − ε ) select at = maxat Q(φ(st), a; θ) else select a
random action ;

Execute action at and observe reward rt and state representation st+1;
Store transition (st, at, rt, st+1) in D;
Sample random minibatch of transition (s j , a j , r j , s j+1) from D;

Set y j =

r j if episode terminates at step j + 1
r j + γ · max′aQ̂(φ j+1, a′; θ−) otherwise

Perform a gradiant descent step on (y j − Q(φ j , a j ; θ))2 with respect to the
network parameters θ;

Every C steps reset Q̂ = Q;
end

end

ε -greedy Select alleviates the problem of exploration versus exploitation. However, when
looking at something called sparse problems, this strategy of exploring can be insu�cient.

2.6 Sparse Rewards
Some environments rarely provide rewards, and when an environment provides rewards that
are mostly 0, the rewards are said to be sparse [5]. Such an example is a soccer game where the
game rewards the agent +1 when winning, -1 when losing, and in all other cases 0 (example for
ending the game in a draw, receiving yellow or red cars, or scoring goals) [5]. Most rewards
would, in this case, be 0. In Figure 2.6 there is one example of a sparse and one example of a
none-sparse reward structure when playing a soccer game. In the DQN, this reward system
becomes problematic since the rewards vanish when repetitively multiplying them with the
discount factor, then using the DQN results in most states having similar Q-values. Further-
more, this essentially makes the acting policy closer to random selection, further reducing
the e�ciency of the DQN.

It is, however, possible to alleviate the problem by adding an intrinsic reward, where the
agent generates the intrinsic reward by itself [5]. The agent uses the intrinsic reward to guide
behavior when an extrinsic reward is absent. One algorithm that implements such an idea is
the Intrinsic Curiosity Module.
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Figure 2.6: Example of Sparse and Not Sparse Rewards for an agent
playing soccer

2.7 DQN with ε-greedy Select and Intrinsic
Curiosity Module (ICM)

The Intrinsic Curiosity Module (ICM) aims to provide Curiosity as an intrinsic reward
(“Intrinsic Curiosity”) for the reinforcement learning agent to perform exploratory actions
[5]. The module adds an extra incentive to explore on top of the native algorithm explo-
ration incentive (ex: ε -greedy), called Intrinsic Curiosity, which is defined as the error when
the agent predicts the outcome for its action in a space defined by its inverse model [5]. The
system lets a Forward Model predict the next state, and the prediction error becomes the
intrinsic reward, then adds the intrinsic reward to the extrinsic reward. The Forward Model
bases its prediction on the state space defined by the Inverse Model [5].

Figure 2.7: Overview of an agent and the ICM

Multiple neural networks called the Inverse Network models what is called The Inverse
model [5]. These network include as input the current state (st) and the next state (st+1), fed
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into a neural network which encodes both st and st+1 into two separate embedded vectors
(φ(st) and φ(st+1)) [5]. These vectors are concatenated and then fed into an additional neural
network which outputs the probabilities that each action at was taken in order for state st to
transition into state st+1.

The purpose of the Inverse Network is to produce state representations (φ(st) and φ(st+1)) to
feed into the Forward Network [5], and these embedded networks then feed into the Forward
Network that predicts actions based on the provided vectors from the Inverse Network. The
embedding network will embed state information to only contain relevant data for predicting
actions based on states φ(st) and φ(st+1))). This filtering happens through embedding state
information regarding things that the agent can a�ect and things the agent cannot a�ect, but
that a�ect the agent state [5]. One does not wish to embed information about things that do
not a�ect the agent and that the agent cannot a�ect, and The Inverse Network uses a soft-
max activation function and the previously mentioned network structure to achieve this goal.

A neural network models the Forward model and is called the Forward Network that takes
as input the action at time t (at) and the embedding vector of the current state (φ(st)), pro-
vided by the Inverse Model [5] and its output tries to predict the embedding vector of the
next state, φ̂(st+1). The Forward Network traditionally uses a Mean square error activation
function and the previously mentioned network structure to achieve this goal.

Lastly the agent calculates the intrinsic reward for each time-step t :

ri
t = |φ̂(st+1) − φ(st+1)|.

The agent calculates total reward as:

rt = ri
t + ri

t , where re
t the extrinsic reward provided by the environment at time t.

The ICM can be observed in Figure 2.7.

The question then arises – what does this system achieve? In the beginning, the networks
will perform poorly, the Curiosity will be high, and so will the incentive to take actions that
result in a higher intrinsic reward. However, as time progresses, the Forward and Inverse
networks converge and provide a smaller and smaller intrinsic reward [5], the agent will then
gradually act more and more on the extrinsic reward. Although with this approach, there
exists a problem referred to as "The White Noise Problem".

2.8 The White Noise Problem
Deephak and colleagues [5] addressed "The White Noise Problem" when proving that if the
ICM encounters an environment that is hard to predict, as if the agent watches a TV playing
only white noise, the ICM will not be able to learn to predict the outcome of the tv accurately.
Following this, the ICM continuously receives a high intrinsic reward that overshadows any
extrinsic reward [5]. The intrinsic reward will motivate the DQN to learn to predict the
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white noise behavior, which it never will be able to do entirely, and with no success in this
matter, the ICM does not choose to try any other action (Figure 2.8).

Figure 2.8: The agent is at risk of getting stuck watching white noise.

2.9 Further improvements
Apart from the previous improvements mentioned in this thesis, additional ones can be made.
This section covers strategies to improve performance for reinforcement learning algorithms,
which are not exclusive to the DQN or the ICM, but used in a wider capacity within the field
of machine learning.

2.9.1 One-hot Encoding
When working with categorical information, such as colors, there is a need for the data to be
converted into numerical values, so it can be fed into a neural network since the input of the
neural network needs to be in a numerical format. One approach would be to assign each
color a number, for instance, 1 could be red and 2 could be blue. However since 1 is smaller
than 2, this would imply a relationship between the colors which do not exist, that blue is
somehow "larger" than red. One way of avoiding this problem is using one-hot encoding. The
strategy of one-hot encoding entails creating a vector with the same length as the number of
categories and then having each element be 1 if the input is of the corresponding category,
and else 0 [30]. For instance in the case of the red and blue colors, red might be (1, 0) and
blue might be (0, 1). Now no false relationship is implied between the categories since each
category inhabits its dimension on the vector.

2.9.2 Log Normalization
When using di�erent inputs with a di�erence in magnitudes neural networks may have a
problem with converging to the optimal solution. The problem occurs since the inputs are
multiplied with the weights and then the result is used as output for the network, then the
larger input may end up having a bigger impact when determining the output of the network
[31]. The large output could then hinder the network when it tries to converge to the optimal
solution since the input of a large magnitude might not always be the most important factor
when determining a correct output [31]. How can one solve this?

One solution to this problem is to normalize all inputs, so that all inputs are between 0
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and 1, e�ectively giving all inputs a similar magnitude. One way to normalize the inputs
is to log normalize them [32], this is especially e�ective when the distribution is skewed
since log normalizing gives a larger spread of values. When log normalizing each input
value is preprocessed before being fed to the network, according to the following formula:
log_norm(x) = log(1 + x). If each element of a matrix is log normalized in this way, it is
called matrix log-normalization ??.
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Chapter 3

Related Works

Below are the most critical findings in the vast published knowledge base we reviewed before
initiating our research.

3.1 Grandmaster level in Starcraft 2 using
multi-agent Reinforcement Learning

AlphaStar is a multi-agent reinforcement learning agent that has achieved good results when
used on the entire game of Starcraft 2 and was rated above 99.8% of all o�cially ranked hu-
man players and at Grandmaster level for all three races [2]. When playing Starcraft 2, the
agent uses a combination of neural network architectures, imitation learning, reinforcement
learning, and multi-agent learning. Using imitation learning, the agent learns by watching
professional Starcraft 2 players when they play minigames [2].

The scope of the research behind AlphaStar and the complexity of the architecture is larger
than the scope of this study. However, it is still relevant to review parts of this work for
several reasons. AlphaStar achieves good results when playing Starcraft 2 with reinforce-
ment learning. Those results provide a high benchmark to compare the results from smaller
projects like ours while keeping in mind that the resources used in our study and the AlphaS-
tar development are not comparable. The existence of massive projects, like AlphaStar, in
combination with a significant number of smaller projects that use StarCraft 2, reiterate the
relevance of using the game in the context of evaluating reinforcement learning approaches.
Furthermore, used combinations of learning algorithms give hints about possible improve-
ments to the agent created in this work [2].

One exciting aspect when reviewing the research behind AlphaStar is how the challenge of
discovering novel strategies was addressed. Rather than using an "algorithm related" approach

23



3. Related Works

to this, e.g. using randomness or curiosity, they utilized data from human players, also called
imitation learning.

3.2 Solving Starcraft 2 minigames using Deep
Reinforcement Learning

In the report Solving Starcraft 2 minigames using Deep Reinforcement Learning, Kevin Johansson
and Patrik Persson present their results from training an agent for Starcraft 2 minigames.
Their results came close to the results in Deepmind’s, despite using much fewer resources [19].
Our project uses their project as a starting point. Rather than implementing a DQN-agent
from scratch, we used an existing agent that we knew works with the PYSC2-environment,
whereafter we added the ICM to the PYSC2-environment. The DQN-agent was also used as
a comparison point to verify that the implemented ICM improved performance. The only
change that we made to the DQN-agent was to set the reward setting to sparse (Section 2.6)
to compare the two agents in both reward settings.

3.3 Curiosity Driven Exploration
The most relevant report to our research, more or less serving as the starting point of our
study, is Curiosity-driven Exploration by Self-supervised Prediction, by Deepak Pathak, Pulkit
Agrawal, Alexei A. Efros, and Trevor Darrell.

In their report, Pathak et al. introduce the idea of using curiosity as an intrinsic reward
in situations where extrinsic rewards are sparse or non-existent. The researchers defined in
their report curiosity as "the error in an agent’s ability to predict the consequence of its actions in
a visual feature space learned by a self-supervised inverse dynamics mode", when they evaluate the
intrinsic curiosity model by letting the agent play the games Super Mario Bros and Doom [5].

Introducing the aspect of curiosity in a reinforcement-learning context adds a way of re-
warding exploration in the agent’s behavior. While traditional reinforcement-learning agents
have the risk of finding a strategy that solves the given task "pretty well" and sticking with
it, the introduction of an intrinsic reward, i.e. curiosity, incentivizes the exploration of other
strategies. When working well, this stops the agent from exploiting a known strategy that
works rather than trying to find the optimal strategy.

Since Pathaket al.’s evaluation shows that the addition of curiosity can improve performance,
there are essentially two major benefits that come with a curiosity module. The first is, as
mentioned above, an increased incentive to explore the environment, which results in in-
creased performance. The second, maybe even more important than the increased perfor-
mance is that the curiosity module solves the problem of having to engineer an artificial
extrinsic reward structure for real-world scenarios that do not provide naturally suitable or
only relatively sparse extrinsic rewards. The elimination of the need to develop a problem-
specific extrinsic reward structure makes the solution much more scalable.
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Learning

3.4 Large-Scale Study of Curiosity-Driven
Learning

In the paper Large-Scale Study of Curiosity-Driven Learning by Burda et al. the researchers
performed the first large-scale study on curiosity-driven learning, with no extrinsic reward
structure to complement the intrinsic rewards provided by the curiosity module. The curios-
ity model used in this study is the one presented by Pathak et al. [17], a model used to play
di�erent arcade games, i.e. from the Atari game suite. Our study uses this model.

The motivation for exploring the possibilities of using curiosity as an intrinsic reward in
the context of RL is primarily the same as discussed in Section 3.3. Using dense, problem-
specific, hand-designed extrinsic reward structures is not scalable, whereas intrinsic rewards
would be.

The most severe limitation of the purely curiosity-driven, prediction-based approach in stochas-
tic setups is the "noisy-TV problem", or in more general terms, just "white noise". This phe-
nomenon includes the occurrence of random changes to the environment that drastically
limits the performance of the purely curiosity-driven algorithm [17].

3.5 Attention-Based Curiosity-Driven Exploration
in Deep Reinforcement Learning

In the report Attention-Based Curiosity-Driven Exploration in Deep Reinforcement Learning, P.
Reizinger and M. Szemenyei explore the possibilities of adding the concept of attention to
curiosity learning models. They compared the results of di�erent models and the attention-
based curiosity model while playing di�erent arcade games. The results in their paper are
promising, as they show consistently improved scores compared to when using baseline mod-
els [18]. While the study does not occur within the context of Starcraft 2, the results presented
in the cited paper lead us to believe that a combination of attention and ICM, or even at-
tention, A2C and ICM, could produce better performance than what the DQN and ICM
achieve. Although the "white noise" problem did not occur in our project, the results regard-
ing the handling of the problem are, in our opinion, very promising.

The noise problem (see 2.8, 3.4 and [17]), or "noisy TV problem", is a situation where more
or less random things, that the agent cannot fully control, occur in the environment. They
can be triggered by actions taken by the agent or happen randomly. The solution presented
by Reizinger and Szemenyei is to use an attention network on the forward loss function of
the ICM module while ignoring the inverse loss [18]. The goal of this is to separate situations
where curiosity is beneficial from situations where it is not, creating what they call rational
curiosity [18].
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Chapter 4

Systems

To decide upon a policy, two systems were developed using Python v.2.7 and Tensorflow
v.2.7.8, a Deep Q-network using ε -greedy select and a Deep Q-network using e-greedy and
an Intrinsic Curiosity Module. The game was played through the framework PYSC2 using a
windows machine and an Anaconda environment.

4.1 PYSC2
Version v.2.1.0 of PYSC2 was used during development and testing. For this version, the game
sequence occurs like described in Section 2.2.1.

4.1.1 Game Sequence
For the "Game init" phase, the resolution of the game window initializes as 84x84 pixels, and
all network weights initialize with a Xavier uniform initializer [29]. The initializer sets each
layer’s weights so that the variance is the same for each network layer, which helps avoid
exploding or vanishing gradients when optimizing the loss function, which would keep the
network from converging [29]. No relevant custom code is run for the "Episode init" phase,
so the state and the reward are read. In the "Decide Action" phase, each system runs its code,
including saving transitions, updating weights, and generating values needed for training.
Finally, the game step advances typically by one step each time but using a hyperparameter
called "step_mul" the game step sets to advance 20 game steps instead of one, where the reward
of all 20 steps gets added and given for t + 1 [28]. Section 2.2.1 presents an overview of the
process.
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4.1.2 States and rewards
As mentioned above, the game window initializes as 84x84 pixels, meaning that each state
matrix is also 84x84, and all feature screen matrixes are used as input, resulting in 27 matri-
ces in the dimensions 84x84x27 for an individual state input. Section 8.2 displays what each
matrix conveys, as well as if the information is categorical or numerical. For exact details of
how each matrix is encoded, please see below1.

In conjunction with a state, PYSC2 also supplies rewards. For this study, two separate re-
ward structures were developed. One was identical to the "DefeatRoaches" scoring, as being
described in Section 2.1.1 and the second reward structure accumulated all scores and re-
turned them to the agent at the last step of the episode. These two reward functions were
called none-sparse respectively sparse, were the driving factors behind states, and rewards
were the actions chosen by each policy.

4.1.3 Actions
The system only allowed for one action type, the "attack" action. As "attack" can take place at
each pixel and as there are 84x84 pixels or 7056 total pixels, there are 7056 possible actions.
The “attack” action order may induce di�erent behavior based on an internal set of rules,
where the top rules take precedence over the rules below.

1. If enemy units are at the location of the selected pixel, all friendly units will attack the
enemy unit.

2. If your friendly units are fighting then nothing will occur, regardless of the pixel se-
lected.

3. If your units are out of combat, all units move towards the selected pixel, if it encoun-
ters any enemy units on the way, all friendly units will attack the closest enemy unit.

4.2 DQN using ε-greedy Select
The DQN using ε -greedy Select forms the base for both algorithms and starts by checking if
there are enough entries to fetch from the Replay memory. If not, it skips to choosing an ac-
tion, but if there’s enough, it starts by retrieving transitions from its replay memory. The size
of the replay memory is set to 10 000 transitions(replay memory size) [28], and the number
of transitions fetched for each step must be 16(batch size) [28]. Before training, additional
preprocessing and generating target values occurs.

States and actions are preprocessed before being given to the network as input by having
actions, and categorical input state matrices one hot-encoded, and numerical input state
matrices log normalized. State matrix one hot-encoding ensures that actions are given a nu-
merical value, so it can be processed by the networks, and that no false relation between

1https://github.com/deepmind/pysc2/blob/master/pysc2/lib/features.py
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actions occurs (e.i action 1 should not be smaller than action 2) [30]. Log normalization en-
sures that input values are close to 0, since all matrix values are positive, this in turn ensures
that all input values are scaled equally(irrelevant of unit of input), not causing any input to
be unjustifiably emphasized [31]. The categorical and numerical input state matrices are then
fed through an embedding network. All preprocessed state matrices are then concatenated.
An overview of the process can be observed in Figure 4.1. After preprocessing the target net-
work then generates Q-values for st+1 and target values are calculated using the preprocessed
actions for each entry(see Equation 2.2).

After this, it uses an RMSprop-optimizer, with a learning rate of 10−5, updates the Q-
networks weights based on the generated target values and the Q-networks predicted Q-
values. The RMSprop-optimizer outperforms any other optimizer available from Tensor-
flows framework given our system and given the task of learning to play "Defeat Roaches".
The loss function in use is Mean-Square-Error or Lossdqn = MSE(Q̂,Qtarget) (see Section
2.3.2 for motivation). The Q-network and the target network are identical but with an indi-
vidual set of weights. Both network structures can be observed in Figure 4.2). After training,
the target network updates its weights, and this occurs every 5000th step (target update)
[4][19] for the none sparse environment and 500th step for the sparse environment.

Figure 4.1: The process of preprocessing state inputs

After the network update, it picks an action. If its the first step of the episode, ε is up-
dated according to

ε ( σ︸︷︷︸
current episode

) = e−0.001∗σ

Where with the probability of ε the agent picks an action according to a uniform distri-
bution, and with the probability of (1-ε ), it chooses the action with the highest predicted
Q-value.
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Figure 4.2: The structure of the Q and target network.

4.3 DQN using ε-greedy Select and ICM
The DQN using ε -greedy Select and ICM are identical to the DQN using ε -greedy Select
with two exceptions, it adds an intrinsic reward, and it uses two additional neural net-
works(Inverse and Forward Network) to model Intrinsic Curiosity. Before the target values
are calculated for the DQN, the intrinsic reward is calculated for each entry in the batch, then
added on top of the extrinsic reward: rt = (η/2) ∗ ri

t + re
t , and the target values are calculated

with the newly calculated rt , with η = 0.1. The next deviation occurs when training. Instead
of minimizing the loss of only the DQN network, the loss of the Forward and Inverse Network
is also minimized. The total loss is given as losstotal = λ∗lossdqn+β∗loss f or+(1−β)∗lossinv,
where λ = 0.001 for the none sparse environment and λ = 0.1 for the sparse environment.
For both environments β = 0.7.

The Inverse Network takes as input pre(st) and pre(st+1) and outputs state vectors φ(st)
and φ(st+1), with the length of 288 respectively. The vectors are then both fed into a set
of fully connected dense layers which outputs a prediction of the x and y coordinate where
the "attack" action occurred. The network structure can be observed in Figure 4.3 and the
loss function is Mean Square Error or equally lossinv = MSE(

√
x2 + y2,

√
x̂2 + ŷ2). This is

a custom loss function that di�ers from the original implementation, which used a softmax
function for all given actions [5]. When using the original softmax loss function, the Inverse
Network would not converge; however, it did using our custom loss function.

The Forward Network takes as input the current state vector φ(st), produced by the Inverse
Network, and the current preprocessed action pre(at). It outputs the predicted next state
vector φ(st+1).The network structure can be observed in Figure 4.4 and the loss function used
is Mean Square Error or loss f or = MSE(φ(st+1), φ̂(st+1)).

In summary this results in DQN using ε -greedy Select having 256 dense nodes, 462422016
dense weights and 1378 convolutional filter weights, while DQN using ε -greedy Select and
ICM has 48772097 dense nodes, 12566061313 dense weights and 5026 convolutional filter
weights.
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Figure 4.3: The structure of the Inverse Network

Figure 4.4: The structure of the Forward Network
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Chapter 5

Experiments

In this chapter, the experiments used to evaluate the agent, as well as the results from those
experiments, will be presented. After that, a section regarding the loss of the inverse network
of the ICM follows. In the last section, the observed behavior and playing strategies of the
agent will be addressed.

The first experiments consist of the agent playing the minigame DefeatRoaches (see 2.1.1),
with two di�erent reward settings (sparse rewards and standard reward, see 2.6). To show
the di�erence in performance, the achieved game scores are compared to scores achieved by
the baseline DQN agent. This is followed by an analysis of the ICM’s inverse network’s loss
in Section 5.2. Lastly, in Section 5.3 the observed behavior and strategies of the agent are
presented.

Implementing the networks above results in a big di�erence of complexity for the networks,
where the agent using DQN and ICM is vastly more complex, meaning the agent using DQN
and ICM has a much larger amount of nodes and weights. The exact di�erence in complexity
is shown in Section 4.3, but did the added complexity achieve any di�erence in performance?

5.1 DefeatRoaches
Below the results from experiments on the minigame DefeatRoaches (see section 2.1.1) with
two di�erent reward settings (see section 2.6) are presented.
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5.1.1 Standard Reward
As discussed in sections 2.6 and 4.1.3, two di�erent reward settings are used when evaluating
the models. Standard Reward means that the agent receives rewards after each taken action.

Figure 5.1 shows the achieved mean score of the agent using DQN and ICM (blue), com-
pared with the baseline DQN agent (red). A clear improvement in terms of game score can
be seen. In the first 2000, some episodes the agent is improving faster and is also reaching a
higher level with a narrower standard deviation, compared to the baseline DQN agent.

Figure 5.2 shows the five individual runs. Between about 2000 and 6000 episodes, there
is a quite large spread in the scores. After about 6000 episodes the spread is getting smaller.
While the average score is not improving significantly after this, the smaller di�erence means
the agent is performing more consistently at this point, with less frequent spikes and dips.
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Figure 5.1: The mean scores of 5 runs (10000 episodes) for each
model, on the minigame DefeatRoaches with the standard reward set-
ting. The lines show the rolling average with a window size of 50
episodes, with one standard deviation (Std Dev) confidence interval
(shaded areas). Note that score and reward are distinct from each
other, except when only the extrinsic reward is used.

Figure 5.2: The rolling average score for an agent-driven by external
and internal reward (DQN+ICM), with a window size of 50 episodes,
of 5 runs (10000 episodes), as well as the mean of these 5 runs (red
line), with standard deviation (Std Dev). The experiment is run on
the minigame DefeatRoaches with the standard reward setting. Note
that the scale of the y-axis (Score) has changed compared to previous
figures. The score is not equivalent to the reward here.
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5.1.2 Sparse Reward
The results below show how the DQN+ICM agent performed compared to the baseline DQN
agent when playing the minigame DefeatRoaches (see Section 2.1.1) with sparse rewards (see
Sections 2.6 and 4.1.2.

In figure 5.3 the graphs show that while neither of the models is improving over time, the
agent combining DQN and ICM is at least not regressing over time and performs at a more
consistent level. The individual runs of the agent are shown in Figure 5.4.
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Figure 5.3: The mean scores of 5 runs (10000 episodes) for each
model. The lines show the rolling average with a window size of 50
episodes, with one standard deviation (Std Dev) confidence interval
(shaded areas). Note the changed scale of the y-axis (Score) com-
pared to previous figures. The experiment is run on the minigame
DefeatRoaches with the sparse reward setting. Score and reward are
distinct from each other, except when only the extrinsic reward is
used.

Figure 5.4: The rolling average score for an agent-driven by external
and internal reward (DQN+ICM), with a window size of 50 episodes,
of 5 runs (10000 episodes), as well as the mean of these 5 runs (red
line), with standard deviation (Std Dev). The experiment is run on
the minigame DefeatRoaches with the sparse reward setting. Note
that the scale of the y-axis (Score) has changed compared to previous
figures. The score is not equivalent to the reward here.
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5.2 Network Loss for DQN with ICM
In this section, graphs of the loss of the ICM’s inverse network are shown. Figures 5.5 and 5.6
show the loss when using standard and sparse rewards (see sections 2.6 and 4.1.2) respectively.
The figures show that the loss of the inverse network is not converging in the same way and
has a far larger spread when the sparse reward setting is used. This explains why the agent
does not learn as well and does not achieve scores on the same level as when the standard
reward setting is used (See the figures in sections 5.1.1 and 5.1.2).

Figure 5.5: Loss of the inverse model of the DQN+ICM (Average
and individual runs, 10000 episodes) with the standard reward set-
ting. The agent used here is the same as in Section 5.1.1, playing
DefeatRoaches.

Figure 5.6: Loss of the inverse model of the DQN+ICM (Average
and individual runs, 10000 episodes) with the standard reward set-
ting. The agent used here is the same as in Section 5.1.2, playing
DefeatRoaches.
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5.3 The Agents’ Strategies
Examples showing how the agents trained during this work play can be observed here:

https://www.youtube.com/watch?v=07FUgVS9jQkfeature=youtu.be
https://www.youtube.com/watch?v=cP7mxN2A0Cgfeature=youtu.be

Of the strategies discussed in Section 2.1.2, our agents only learned the "Focus fire" behavior.
Some attempts at "Kiting" can be observed occasionally, but not consistently, and not with
any success at particularly high levels. While the agent did not learn to kite, improvements
regarding the chosen position to attack from can be observed as training progresses. It is
possible that the agent could learn kiting with longer training. Due to time and resource
limitations, it was not feasible for us to do significantly longer training to verify this.

Two other behaviors that can be observed are the "standing still and do nothing" and the
"run around in circles" behaviors. These are, of course, not behaviors we want the agent to
learn. Both of them are connected to the white noise problem (see section 2.8). Further dis-
cussions about how this problem was dealt with and how it could be further improved can
be found in the following section.
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Chapter 6

Discussion

Now some final reflections regarding the experiment will be discussed. We reflect on what
went well, also possible improvements to the ICM in general and for this specific task, follow
up on the discussion of possible improvements, and we suggest some further possible research.

6.1 Evaluating the ICM
From the result we reached, one can conclude that the ICM improved performance for the
DQN agent, both in a sparse and none-sparse environment. By using the ICM, the agent
learned faster and received a higher-end score. However, the improvement came at a cost
since the neural networks used are larger and more complex when including the ICM.

When needing to minimize loss for the target and Q-network and needing to do the same
for the inverse and forward network caused an increase in both training time and a more
significant need for storage capacity.

Another issue caused by having a larger and more complex set of neural networks is that bal-
ancing all hyperparameters becomes vastly more complex since these networks do not only
need to balance all hyperparameters for the Q and target network but also the Inverse Net-
work and Forward Network. Furthermore, the developer also needed to balance the amount
of intrinsic reward the agent should receive for each step, using the η parameter.

If one accepts the cost associated with increased performance, one also needs to be conscious
of the fact that the ICM has limitations. As mentioned in Section 2.8, if the agent encounters
“white noise”, the ICM becomes a detriment to the agent performance. Another limitation
that occurred when running DefeatRoaches, is that given a su�ciently larger and complex
action space, the Inverse-network could not converge using the soft-max loss function (as
used by Deephak and colleagues) [5] since the action space is complex, in the sense that many
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6.2 Evaluating the Implementation

actions have the same outcome (see Section 4.1.3). The question then arises - how did our
implementation perform?

6.2 Evaluating the Implementation
Firstly, the white noise problem (see Section 2.8) did not occur in any part of our implemen-
tation, most likely because the mini-game "Defeat Roaches" only has randomness when the
game is placing the new roaches and marines. This behavior only occurs for a brief moment,
and therefore the agent cannot wait to watch any white-noise behavior continuously.

When evaluating the loss for the DQN when an ICM is added while using a none sparse
reward structure, one can observe that the DQN network only somewhat converges. Since it
did not fully converge, there is a possibility that another policy would be found if the agent
ran for more episodes. The DQN network loss did fully converge when not adding an ICM.

When evaluating the inverse network, it did not converge when using the soft-max function
as the loss function. However, it did converge when using our custom loss function described
in Section 4.3. It was too di�cult for the Inverse Network to fit the underlying distribution
for the large and complex action-state space. We hypothesized that this depends on the size
of the action space and the fact that many actions have the same outcome (see Section 4.1.3),
making it hard to predict for the Inverse Network what action causes the transition from st
to st+1. However, further research is required before any conclusion can be drawn.

The Forward Network converge even if the Inverse Network converged or not, which is in
line with what Deephak and colleagues stated in their report, that is, an Inverse Network
that encode all information will also encode data inconsequential to the agent [5]. The in-
consequential data e�ectively acted as noise for the Forward Network since encoding data
out of the agent’s control and which do not a�ect the agent is insignificant when the For-
ward Network tries to produce an output. However, the noise is easy to account for since
"DefeatRoaches" is a deterministic environment, resulting in the noise not having any vari-
ance. The Forward Network was therefore able to produce a steady stream of intrinsic reward.

Since there is an increase in scoring when using the ICM, one can assume that the addi-
tion of the intrinsic reward supplied a signal beneficial for performance. Furthermore, since
the Forward and Inverse Network converged, one can assume that the signal provided is one
of Intrinsic Curiosity. The question then arose - is it possible to improve the agent further?

6.3 Possible Improvements
The main phenomenon in our attempt was that the DQN network did not completely con-
verge in the none sparse environment. Running more episodes could have solved this prob-
lem, as the network would have had more time to converge. This hypothesis is supported by
comparing our 10 000 runs with the team at Deepmind, who ran about 1 000 000 runs and
saw development throughout.
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6. Discussion

There could also be an issue of over or underfitting. The original DQN was designed to
reach scores close to 40, while our agent reached top scores of more than 300. This could be
amended by changing the hyperparameters λ, learning rate, and/or the network structure of
the DQN networks. Implementing these changes would be interesting for further research.

6.4 Suggestion for Further Research
As is mentioned in the previous section, it would be of interest to evaluate if the DQN not
fully converging is inherent when adding the ICM. This could be done by running more
episodes or by experimenting more thoroughly with hyperparameters.

Another issue raised by this thesis is the fact that the Inverse Network did not converge when
using the traditional softmax function. Comparing the performance of our loss function to
the traditional softmax loss function would be of interest. The new loss function used in this
thesis exploits the relationship between actions. For instance, if the action attack occurred at
(0,0), then predicting (1,0) would be better than predicting (81,81). Possible research would
be to run the original Deephak and colleagues implementation [6] and use the idea of a loss
function that exploits the relationship between di�erent actions and compare performance.
For instance, when playing Mario, if the action "move left" occurred, then predicting "jump"
is probably more correct than predicting "move right". The specifics of the formulation of
any loss function are left to the researchers.

6.5 Pitfalls of the ICM
In future research, it should be noted that there exist pitfalls when working with the ICM.
One of these pitfalls is trying to balance all networks at the same time when working with the
DQN and ICM. One should set hyper-parameters for each network separately, then once both
converge, try to integrate both networks with each other. There still might be a big change
in hyperparameters after integration, but this approach serves as a good starting point for
setting hyperparameters. Finally, there exist some pitfalls specific to this implementation.

6.6 Pitfalls of the Implementation
Running our implementation takes significant computing power. In these experiments, an
Nvidia RTX 2080 was used to run the software, and the program was barely able to run. If
one wishes to continue this research, make sure to have significant hardware resources.
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Chapter 7

Conclusion

For this thesis, an Intrinsic Curiosity Module was developed to play the game of Starcraft 2,
a game with a very high amount of actions (for this thesis, 7056 possible actions). Then two
di�erent Deep-Q Network agents, one with an Intrinsic Curiosity Module and one without,
were trained to play the minigame "Defeat Roaches" within the game of Starcraft 2. Finally,
two di�erent reward environments were developed, one sparse, giving a low amount of re-
wards, and one none sparse, providing a higher amount of rewards.

The results showed that the Intrinsic Curiosity Module learned faster, had its score plateau
faster, and reached a higher end-score in both the sparse and also none sparse reward envi-
ronment. However, the Deep-Q Network agent with the Intrinsic Curiosity Module never
fully converged for some of the runs. This implies that there could be further change in that
agent’s strategy, meaning that the end score might di�er if the agent is allowed to run for
more episodes.

These findings point to the Intrinsic Curiosity Module improving training speed; however,
it is unclear if the module improved end score since there could be a change in the Deep-Q
Network agent’s behavior if allowed to run for more episodes. Although all the networks
related to the Intrinsic Curiosity Module managed to converge, proving that the Intrinsic
Curiosity Module provided its intended purpose.

The hardest part of the thesis was balancing and running the agents since each run took
a lot of computing power and time. It became hard to optimize the network since there was
a lack of time after writing and balancing the ICM.

The thesis answered almost all of the research questions, however, to fully answer the re-
search questions, the agents would have to run for more episodes, so that the DQN networks
would fully converge for all runs.
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Chapter 8

Appendix

8.1 PYSC2 Leaderboards

Below are screenshots of theDefeatRoaches andDefeatZerglingAndBanelings global leaderboards
from the date 15/10-2020. The leaderboard only contains reinforcement learning agents (no
human players). The current leaderboards can be found, at the time of this report, at the
following link: http://starcraftgym.com/

Figure 8.1: Global DefeatRoaches leaderbord
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8.2 PYSC2 State Representations

8.2 PYSC2 State Representations
Below is a table which choose all Screen-feature representations used as state input for each
experiment. In the table units and buildings are referred to as entities. All game-mechanics
relevant for this table are discussed at www.Starcraft2.com.

Screen-Feature representations
Feature-name Feature-type What information it conveys
height_map NUMERICAL A height map of the game area.
visibility_map CATEGORICAL A map showing what is visable to the player
creep CATEGORICAL The location of creep.
power CATEGORICAL The power of each entities
player_id CATEGORICAL Which player owns what entities
player_relative CATEGORICAL Location of each friendly and enemy entity.
unit_type CATEGORICAL Unit type of each unit.
selected CATEGORICAL Which units are selected and which are not
unit_hit_points NUMERICAL The absolute amount of health-points for each

entity
unit_hit_points_ratio NUMERICAL The ratio of health-points left for each entity
unit_energy NUMERICAL The absolute amount of energy for each unit
unit_energy_ratio NUMERICAL The ratio of energy left for each unit
unit_shields NUMERICAL The absolute amount of shields for each unit
unit_shields_ratio NUMERICAL The ratio of shield left for each unit
unit_density NUMERICAL The amount of units in each pixel
unit_density_aa NUMERICAL The amount of units in each pixel
e�ects CATEGORICAL Every e�ect a�ecting every entity
hallucinations CATEGORICAL If friendly units are hallucinations or not.
cloaked CATEGORICAL If friendly units are invisible or not.
blip CATEGORICAL Location of every blip
bu�s CATEGORICAL Every bu�(power-ups) a�ecting every entity
bu�_duration NUMERICAL The duration of each bu�s for every friendly en-

tity
active CATEGORICAL If friendly land-mines are active or not
build_progress NUMERICAL The time left before a building is complete
pathable CATEGORICAL A map of where units can move
buildable CATEGORICAL A map of where any units can build
placeholder CATEGORICAL Just a placeholder

8.3 Work Load Distribution
Daniel Karlsson (LTH) developed the addition of the ICM, balanced its hyperparameters,
and integrated it to work with the DQN agent. Jascha Thiel (LTH) ported the existing DQN
base agent from Tensorflow version 1 to version 2, explored and compared di�erent environ-
ments to run the agent (Windows, Ubuntu, WSL and Docker), developed the code to extract
and display the data seen in the graphs (using the Tensorflow framework) and gave minor
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assistance with balancing the hyperparameters for the ICM.

Regarding this thesis, Daniel Karlsson wrote the main part of the Theory, Systems, Introduc-
tion, Appendix and Discussion, while Jascha Thiel wrote the main part of the the Related
Works and Result sections. Both Jascha and Daniel did language checking and minor changes
to every section of the report.

8.4 Technical assistance
The PYSC2 installation guide is somewhat outdated(see https://github.com/deepmind/pysc2).
Most notably, a step in the installation demands the user to put the mini-game files in the
"maps" folder. Note, however, that the maps folder is no longer in the Starcraft 2 directory,
so the user has to make a "maps" folder and then put the mini-game files there.

If the user wants to create custom sparse reward structures, the documentation states that
the last step should produce +1(win), -1(loss), and 0(tie), however this does not occur if the
developer sets the hyper-parameter step_mul to anything but 1. Since for each step PYSC2
sums the score for all the steps skipped, if any of the last steps have some score reward, it will
be added to the last step’s reward (for further explanation see Section 4.1.1)
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Intrinsic Curiosity Module förbättrar en
artificiell intelligens

POPULÄRVETENSKAPLIG SAMMANFATTNING Daniel Karlsson, Jascha Thiel

Intrinsic Curiosity Module är en ny spännande artificiell intelligens algoritm, som tidi-
gare har fått lära sig spela arkadspel (ex: Mario) med lovande resultat. I detta arbetet
testar vi dess förmåga att hantera mer avancerade problem.

En artificiell intelligens (ai) kan idag lära sig att
utföra olika aktiviteter, såsom att spela dator-
spel. Att låta en ai lära sig spela datorspel är
ett billigt sätt att undersöka dess prestanda. En
väl presterande ai kan sedan exempelvis användas
för att utveckla självkörande bilar. Ett team från
Berkley, USA utvecklade en ai vid namn Intrin-
sic Curiosity Module (ICM), som de kombinerade
med en annan ai-algoritm för att bilda en algoritm
som kunde spela tv-spelet Mario. Deras resultat
visade att ICM:en kan användas för att förbättra
inlärningsförmågan, genom att motivera ai:n till
att testa olika handlingar så den utforskar spelets
möjligheter mer, och hittar de bästa alternativen.
Mario är ett simpelt spel i förhållande till moderna
spel såsom Starcraft 2, exempelvis har Mario fyra
möjliga handlingar medans Starcraft 2 har flera
tusen. Starcraft 2 kan användas för att undersöka
om ICM:en fortfarande kan förbättra inlärnings-
förmågan för spel med många handlingar, eller om
dessa spel är för komplexa för att ICM:en ska lära
sig och resulterar i att agenten spenderar all sin tid
med att utforska spelet, utan att välja en optimal
strategi. För att undersöka detta använde vi en
existerande ai algoritm, Deep Q Network (DQN),
och testade dess förmåga att lära sig spela Star-
craft 2 med och utan ICM. Nivån i Starcraft 2 vi
valde hade som mål att eliminera fiendesoldater,

En ai spelar Starcraft 2

och ju fler fiender man eliminerade, ju mer poäng
fick man. Utöver detta fick agenten först mer di-
rekt och sen mindre direkt feedback över hur den
presterade. Ju mer direkt feedback agenten fick,
ju enklare var det för den att avgöra vilka han-
dlingar som gav högst poäng. Resulatet visar att
tillförandet av en ICM förbättrar inlärningsförmå-
gan, både dess inlärningshastighet och slutpoäng,
oavsett vilken feedback agenten fick. Att Starcraft
2 var avsevärt mer komplext än Mario är inte ett
hinder för ICM:en, vilket tyder på att ICM:en kan
tillämpas på mer avancerade problem.
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