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Abstract

Image captioning is the process of automatically generating a textual description
of an image. It has a wide range of applications, such as e�ective image search,
auto archiving and even helping visually impaired people to see. English image
captioning has seen a lot of development lately, while Arabic image captioning
is lagging behind.

In this thesis, we developed and evaluated several Arabic image captioning
models with well-established metrics on a public image captioning benchmark.
We initialized all models with transformers pre-trained on di�erent Arabic cor-
pora. After initialization, we fine-tuned them with image-caption pairs using a
learning method called OSCAR, which uses object tags detected in images as an-
chor points to significantly ease the learning of image-text semantic alignments.

In particular, we used AraBERT and GigaBERT as pre-trained models and
performed training on two public datasets: One human verified and one machine
translated. In relation to the image captioning benchmark, our best performing
model scored 0.39, 0.25, 0.15 and 0.092 with BLEU-1,2,3,4 respectively, an im-
provement over previously published scores of 0.33, 0.19, 0.11 and 0.057. Beside
additional evaluation metrics, we complemented our scores with a human eval-
uation on a sample of our output. Our experiments showed that training image
captioning models with Arabic captions and English object tag labels is a work-
ing approach, but we conclude that a pure Arabic dataset, with Arabic labels,
would be preferable.

Keywords: Arabic Image Captioning, Image Captioning, Transformers, Bert, Oscar,
Pre-training, Vision and Language, Object Semantics
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Chapter 1

Introduction

Vision-language tasks form a subfield of deep learning that unifies computer vision and nat-
ural language processing. Examples of vision-language tasks are visual question answering,
image-text retrieval, and the most important for this study, image captioning.

Image captioning is the process of automatically generating a textual description of an
image. It has a wide range of applications, such as e�ective image search, auto archiving
and even helping visually impaired people to see. To illustrate, Figure 1.1 shows a machine
generated caption on a picture of the University of Sharjah campus.

Figure 1.1: a large building with a park in front of it (machine-
generated caption of a picture of the University of Sharjah).

State-of-the-art image captioning networks are today trained on English corpora and
then translated to other languages, like Arabic. Arabic di�ers from the English language
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1. Introduction

with a unique sentence structure, di�erent spacing, and a very complex morphology. Because
of these unique traits, machine translated captions become a source of error, and a step that
should be eliminated for better results. A more attractive approach would be to train a model
on an Arabic corpus from scratch, then fine tune it to fit appropriate evaluation metrics.

1.1 Background
The Machine Learning and Arabic Language Processing Research Group is a part of Univer-
sity of Sharjah, United Arab Emirates. Its aim is to develop local expertise and promoting
awareness of the importance of Arabic language processing in the community at large.

The group’s previous work on image captioning presents a hybrid solution to Arabic im-
age captioning, which combines object detection and attention-based captioning techniques
(Afyouni et al., 2021). All of their captioning models follow an encoder-decoder architecture.
It consists first of a CNN image model to extract image features, then a language model, in
their case a recurrent neural network (LSTM), to generate candidate captions. Their paper
received the “Best paper award” from the International Conference on Artificial Intelligence
in Computational Linguistics (ACLing 2021).

The research group has also released a paper survey on the current state of Arabic image
captioning systems (Attai and Elnagar, 2020). In this survey, they conclude that the research
conducted for Arabic image captioning is very scarce and that it can mainly be attributed
to the lack of publicly available datasets. They also stress that few Arabic image captioning
research projects utilized attention mechanisms, which is used to focus on the important
parts of the image. Such attention mechanisms shall contribute to the caption generation
process and give better results.

In their survey, Attai and Elnagar did not mention the transformer architecture as pro-
posed by Vaswani et al. (2017), which is solely based on attention mechanisms. Moreover,
transformers in natural language models are gaining more popularity as these models create
new state-of-the-art results on di�erent benchmarks, including Microsoft’s English image
captioning model OSCAR by Li et al. (2020).

1.2 Approach and goals
When we started this project, no transformer-based model for Arabic image captioning had
been put to the test. The approach of this Master’s thesis is to switch the language model of
OSCAR with pre-trained Arabic and multilingual ones, then train them on Arabic bench-
mark datasets.

The comparison will be made by metrics used for evaluating automatic machine-translation
software, like BLEU, ROUGE, and METEOR, but also image caption specific metrics, like
CIDEr and SPICE. For comparisons of semantic meaning, we utilize the transformer-based
Multilingual Universal Sentence Encoder (MUSE) and cosine similarity. Also qualitative as-
sessments of the generated captions will be made.

As a summary, our goal is to evaluate transformer-based Arabic image captioning, by
comparing our results to previous ones made by other researchers and create a roadmap for
further research on this subject.
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Chapter 2

Background

2.1 Related works
In this section, we will summarize the many recent developments in English image caption-
ing. We will also comment on the current state of Arabic image captioning, and additional
challenges that comes with Arabic language processing.

2.1.1 English Image Captioning
Attention is a technique in neural networks that mimics cognitive attention, and has shown
great success in image captioning models ever since Xu et al. (2015) introduced an attention-
based model that automatically learns to describe the contents of images. You et al. (2016)
developed an algorithm that learns to selectively attend to semantic concept candidates and
combine them with hidden states and outputs of recurrent neural networks. Huang et al.
(2019) take the attention concept one step further in their work, where they propose an “At-
tention on Attention” (AoA) module, which extends the conventional attention mechanisms
to determine the relevance between attention results and queries.

State-of-the-art image captioning today is based on transformers, an architecture that
builds solely on attention mechanisms. Zhou et al. (2019) presented a unified vision-language
pre-training (VLP) model which can be fine-tuned for both image captioning and visual
question answering (VQA) tasks. Li et al. (2020) presented a new learning method OS-
CAR (Object-Semantics Aligned Pre-training), and showed that learning of cross-modal
representations can be significantly improved by introducing object tags detected in images.
These object tags are used as “anchor points” during training to ease the learning of semantic
alignments between images and texts. Zhang et al. (2021) studied improved visual represen-
tations, dubbed VinVL, and utilized an upgraded approach, dubbed OSCAR+, to pre-train
transformer-based VL fusion models. They then fine-tuned the models on various VL bench-
marks and created new state-of-the-art results on seven public benchmarks, including image
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2. Background

captioning on the COCO Caption benchmark (see Section 2.2.1). In this Master’s thesis, we
utilized OSCAR with VinVL on Arabic image captioning.

2.1.2 Arabic Language Processing and Arabic Image
Captioning

Arabic image captioning (AIC) introduces additional challenges compared to English cap-
tioning. In a paper survey on the state of AIC, Attai and Elnagar (2020) conclude that the
research conducted for Arabic image captioning is very scarce and that it can mainly be at-
tributed to the lack of publicly available datasets. The Arabic language is also known for its
morphological complexity, and a variety of dialects, which makes it harder to process.

Arabic Language Processing. The Arabic language is extremely complex and
therefore quite di�cult to work with. The language has many di�erent dialects and is mainly
driven by the use of diacritics, a set of orthographic symbols that carry the intended pronun-
ciation of words. For example, harakat ( �

HA
�
¿�Q

�
k) diacritics are used in the Qur’an but not

in most written Arabic texts, to indicate short vowels, long consonants, and some other
vocalizations.

Arabic also has a complex morphology. Morphology in linguistics deals with the structure
of words and how they are formed. Sometimes words consist of solid stems (such as the
Arabic noun Y K
 (yad) “hand” or the English word “book”), but more often (especially in
Arabic) words are composed of more than one morpheme. Examples of such are the English
words books, bookshelf, booked; or the Arabic word I.

�
JºÓ (maktab) “o�ce” consisting of the

lexical root morpheme H.
�

H ¼ (K-T-B) “write” and the grammatical pattern morpheme

specifying “place” (ma __a _). Some other words that can be formed using the root K-T-B are

H. A
�
J »� (kitab) “book”, I.

�
K� A¿ (katib) “writer”, �

I.

��
J º

�
K
 (yaktubu) “he writes”, etc. A more

complicated example would be words that could represent an entire sentence in English such
as Aî

	
EðQå

	
�jJ
�ð (wasayahdurunaha) “and they will bring it”, which could be broken down into

its morphemes Aë+�
	
Kð+Qå

	
�k +ø



+�+ð (wa+sa+ya+hdr+runa+ha) “and+will+bring+they+it”.

Arabic language is also known for its lexical sparsity, which is due to the complex con-
catenative system of Arabic. For instance, the definite article È@ (Al) is always prefixed to

other words, although not an intrinsic part of the word. For example, H. A
�
J » (kitab) and

H. A
�
JºË@ (Alkitab) are both included in the vocabulary, which leads to redundancy.

Arabic Image Captioning. Jindal leveraged the heavy influence of root-words to
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2.2 Datasets

generate captions of an image directly in Arabic using root-word based recurrent neural net-
works (Jindal, 2017, 2018). They also reported the first BLEU score for direct Arabic caption
generation, from experimental results on datasets from various Middle Eastern newspaper
websites and the Flickr8k dataset (see Section 2.2.2).

Al-muzaini et al. (2018) developed a generative merge model for Arabic image captioning
based on a deep RNN-LSTM and a CNN model. They used crowd sourcing to translate
samples from two image captioning benchmarks: MS COCO and the Flickr8k dataset. They
used a relatively small training set (2400 images) from an unpublished dataset. To reduce
the risk of overfitting, ElJundi et al. (2020) developed an annotated dataset for Arabic image
captioning (Flickr8k), which, as of today, remains to be the only public benchmark for AIC.
They also developed a base model for AIC that relies on text translation from English image
captions and compared it to an end-to-end model that directly transcribes images into Arabic
text.

None of the works mentioned above utilized attention mechanisms in their proposed
models. Afyouni et al. (2021) developed a hybrid object-based, attention-driven image cap-
tioning model. They performed a comprehensive set of experiments using popular metrics
and multilingual semantic sentence similarity techniques to assess the lexical and semantic
accuracy of generated captions.

Out of all the works from above, only ElJundi et al. (2020) have made their dataset pub-
licly available, and is therefore the only work we can directly compare our models with.

When finishing this report, we discovered a Master’s thesis, contemporaneous to our
work by Sabri (2021). Though not a refereed publication, the author built neural network
architectures which include techniques not previously explored in the Arabic image caption-
ing literature, such as transformers. This approach yielded better results over the benchmark
published by ElJundi et al. (2020).

2.2 Datasets
For this Master’s thesis, we mainly used two public datasets for image captioning: Microsoft
COCO and Flickr8k. We describe them in detail in the sections below. We also comment on
other relevant datasets, such as WordNet and Visual Genome.

2.2.1 Microsoft COCO
Microsoft Common Objects in Context (COCO) (Lin et al., 2014) is a dataset consisting
of 123,287 images including object detection, segmentation, and five captions per image
(616,435 captions in total). As its name suggests, the COCO dataset contains complex ev-
eryday scenes with common objects in their natural context.

For comparison, we adopted the widely used Karpathy split of COCO (Karpathy and
Fei-Fei, 2015), i.e. 113,287 train images, 5,000 validation images and 5,000 test images. The
current best performing image captioning models on the Karpathy split can be found on the
COCO image captioning online leaderboard1.

We used 414,113 pre-translated captions over 82,783 training images with the Advanced
Google Translate API2, dubbed Arabic-COCO. Figure 2.1 shows an example of an image

1https://competitions.codalab.org/competitions/3221#results
2https://github.com/canesee-project/Arabic-COCO
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2. Background

from the train split with its five English captions and five Arabic captions. For the Arabic
speaking reader, note the error in the machine translated caption nr. 2, where the phrase “

h. @ñÓ


B@ H. ñ»P”, should be replaced with its present tense “h. ñÖÏ @ I. »QK
ð”.

# English captions Arabic captions

1. A young boy surfing in low waves. .
�
é

	
�

	
®

	
j

	
JÖÏ @ h. @ñÓ



B@ úÎ« l .

Ì' 	Q�
�K


Q�

	
ª� ú



æ
.
�

2. A young boy is standing on a sur�oard and riding a wave. . h. @ñÓ


B@ H. ñ»Pð h. @ñÓ



B@ H. ñ»P hñË úÎ«

	
­

�
®K


Q�

	
ª� ú



æ
.
�

3. A surfer rides his surf board on some very small waves. . @
�
Yg.

�
èQ�


	
ª�Ë@ h. @ñÓ



B@

	
�ªK. úÎ« h. @ñÓ



B@ hñË I. »QK
 h. @ñÓ



@ I. » @P

4. A young boy is standing on a sur�oard in the water. . Z AÖÏ @ ú



	
¯ ZAÖÏ @ úÎ« l .

Ì' 	Q
�
K hñË úÎ«

	
­

�
®K


Q�

	
ª� ú



æ
.
�

5. A young boy is standing on a sur�oard in the ocean. . ¡J
jÖÏ @ ú



	
¯ h. @ñÓ



B@ H. ñ»P hñË úÎ«

	
­

�
®K


Q�

	
ª� ú



æ
.
�

Figure 2.1: Caption annotations in English and Arabic for an image
sample from the COCO dataset.

2.2.2 Flickr8k
The Flickr8k dataset (Hodosh et al., 2013) consists of 8,092 images. Each image in this dataset
is associated with five di�erent captions that describe the entities and events depicted in the
image. They were collected via a crowdsourcing marketplace (Amazon Mechanical Turk)
with a total of 40,460 captions.

Human translations into Arabic of both the COCO and Flickr8k datasets have been done
before. For example, Al-muzaini et al. (2018) built an Arabic dataset based on these two
English benchmark datasets. Most of them are not public, therefore we used Arabic Flickr8k
by ElJundi et al. (2020). Arabic Flickr8k is split into 6,000 train images, 1,000 validation
images, and 1,000 test images, all with three Arabic captions each.

The translation to Arabic was performed by ElJundi et al. in two steps, first by using the
Google Translate API and then by validating captions with professional Arabic translators.
Finally, they chose the top three translated captions out of five for each image, which makes
24,000 captions in total. Figure 2.2 shows an example of an image from the train split with
its three original English captions and three verified Arabic captions. Note that even though
verified, the quality of these Arabic captions is questionable. For example caption 2 in Figure

12



2.2 Datasets

2.2 says “Xñ�


@ Ég. P”, which incorrectly translates to “black man”.

# English captions Arabic captions
1. A longhaired man surfing a large wave. �

èQ�
J.»
�
ék. ñÓ l .

Ì' 	Q�
�K
 Qª

�
�Ë@ ÉK
ñ£ Ég. P

2. A man in black on a sur�oard riding a wave. �
ék. ñÓ I. »QK
 h. @ñÓ



B@ H. ñ»P hñË úÎ« Xñ�



@ Ég. P

3. A man surfing in the ocean. ¡J
jÖÏ @ ú



	
¯ h. @ñÓ



B@ H. ñ»P

�
é

	
�AK
P �PAÖß
 Ég. P

Figure 2.2: Caption annotations in English and Arabic for an image
sample from the Flickr8k dataset.

The Flickr30k dataset (Young et al., 2014) consists, as the name implies, of over 30,000
(31,783 to be exact) photographs of everyday activities, events, and scenes with five captions
each, i.e. 158,915 captions in total. It contains and extends the work by Hodosh et al. (2013)
and follows the same annotation, guidelines and quality controls. It is widely used in im-
age captioning research, but was not used in this project, due to the lack of public Arabic
translated captions.

Table 2.1 shows the complete list of image caption datasets used in this report.

Datasets Train Validation Test
#Images #Captions #Images #Captions #Images #Captions

Arabic-COCO 82, 783 414, 113 - - - -
Flickr8k 6, 000 18, 000 1, 000 3, 000 1, 000 3, 000
TOTAL 88, 783 432, 113 1, 000 3, 000 1, 000 3, 000

Table 2.1: Statistics for the Arabic-COCO and Flickr8k translated
by ElJundi et al. (2020).

2.2.3 WordNet and Visual Genome
WordNet. WordNet was originally created as a lexical database for the English language
(Miller, 1995). The database contains 155,327 words organized in 175,979 synsets. Synonymy
is WordNet’s basic relation, and WordNet uses sets of synonyms (synsets) to represent word
senses. For example, man would get mapped to

man.n.03 (the generic use of the word to refer to any human being)
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2. Background

Similarly, person gets mapped to:

person.n.01 (a human being)

Afterwards, these two concepts can be connected since person.n.01 is a hypernym of
man.n.03. WordNet has since its creation been expanded to linked to over 200 languages,
including Arabic.

Visual Genome. Visual Genome is a dataset created to connect structured image con-
cepts to language (Krishna et al., 2017). The authors represent objects, attributes, relation-
ships, and noun phrases with region descriptions, and connect them with scene graphs, see
Figure 2.3. All of the objects, attributes, and relationships in each image in the Visual Genome
dataset are canonicalized, i.e. uniquely mapped, to their corresponding WordNet ID (synset
ID). This mapping connects all of the images in Visual Genome and provides an e�ective way
to consistently query the same concept in the dataset. In addition, their dataset also contains
image-related question-answer pairs.

We used label maps provided by Visual Genome to label detected objects from this project.
We used the same label map as Zhang et al. (2021), which includes 1,594 object labels.

14



2.2 Datasets

(a) Region descriptions

(b) Scene graph

Figure 2.3: A sample image from the Visual Genome dataset. (a)
shows examples of region descriptions (e.g. “girl feeding large ele-
phant” and “a man taking a picture behind girl”). (b) shows the ob-
jects (e.g. elephant), attributes (e.g. large) and relationships (e.g.
feeding) connected in a scene graph. After Krishna et al. (2017).
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Chapter 3

Theory

3.1 Encoder-decoder architectures for image
captioning

There are two general paradigms in existing image captioning approaches: top-down and
bottom-up. The top-down paradigm starts from a “gist” of an image and converts it into
words, while the bottom-up one first comes up with words describing various aspects of an
image and then combines them. Language models are employed in both paradigms to form
coherent sentences.

The state of the art today follows the top-down paradigm, and has an end-to-end formu-
lation from an image to a sentence, based on a encoder-decoder architecture:

1. Creating a gist from an image through a convolutional neural network (CNN) encoder,
a procedure known as image feature extraction.

2. Generating a sentence from the gist through a language model, for example through a
recurrent neural network (RNN) decoder.

The idea of this formulation is that all the parameters of the recurrent network can be
learned from training data. This formulation is in principle similar to the deep neural net-
work (DNN) architecture introduced by Sutskever et al. (2014) to solve the English-to-French
machine translation problem. Instead of English-to-French translation, we are looking for
an image-to-language translator, where, in our case, the language is Arabic.

Instead of using recurrent neural networks, we will use transformers with the OSCAR
learning method proposed by Li et al. (2020). As we will see in later sections, we can use a
transformer model for both encoding words and decoding the final image caption.
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3.2 Image feature extraction and object tag
detection

The first step of most image caption generators is to extract features from the image. This
enables us to later on train our model to map these image features and sentence features
into a common space, knows as alignment. Image-text alignment may be used for grounding
natural language symbols to the physical world and semantically understanding the content
of an image.

As an example model for feature extraction, Zhang et al. (2021) trained a large-scale object
and attribute detection model based on the ResNeXt-152 C4 architecture (Xie et al., 2016),
short as X152-C4. ResNeXt is named after and adopts the ResNet strategy, a residual learning
framework designed to ease the training of networks that are substantially deeper than those
used previously (He et al., 2016). For this Master’s thesis, we will utilize X152-C4 for feature
extraction, pre-trained on 2.49 million unique images, including the COCO and VG dataset.
Figure 3.1 shows an example of object detection with the X152-C4 model.

Figure 3.1: Object detection on an image from the COCO dataset
using the X152-C4 architecture. The set of detected object labels
are (Arm, Beach, Boy, Cord, Hair, Head, Leaf, Line,
Man, Ocean, Person, Sand, Seaweed, Sky, Suit,
Surfboard, Tie, Water, Wave, Wetsuit).

For each detected object, an image region vector v is generated. Each region feature v is
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denoted as (v̂, z), where v̂ is the 2048-dimensional vector input to the last linear classification
layer and z is a 6-dimensional position encoding of the region. More specifically

z =



x1
y1
x2
y2
∆x
∆y


,

where the points (x1, y1) and (x2, y2) define a region bounding box. Both the x and y axes are
scaled down with the image width and height respectively. The detected image region vectors
are finally vertically stacked and saved. q is the set of detected object labels outputted by the
object detector for each image.

3.3 Tokenizers
Before processing text to the models, the raw text needs to be tokenized, i.e. broken down
into small chunks. For example, the sentence “It is raining” can be tokenized in many ways.
Using white space tokenization, the sentence can be broken down into words “It”, “is” and
“raining”, while subword tokenization can break down the sentence even further, breaking
down the word “raining” into its components “rain” and “##ing”. Here the the ## indicates
that the followed token belongs to the previous one and that they are one word in the input
sentence. The main advantage of subword tokenization is that it interpolates between word-
based and character-based tokenization, which makes it very useful for specific applications
where the subwords make sense. In the following paragraph, we will shortly describe and
comment di�erent kinds of subword tokenization algorithms.

3.3.1 Byte-Pair Encoding
Sennrich et al. (2015) adapted the byte-pair encoding (BPE) (Gage, 1994) algorithm to to-
kenize raw text into words and subwords. Instead of merging frequent pairs of bytes, they
merge characters or character sequences. Firstly, they initialize a token vocabulary size. Sim-
plified, the following steps involved in BPE algorithm are given below:

1. Start with splitting the raw input text into single unicode characters. Each of the
characters corresponds to a symbol in the final vocabulary.

2. Find the most frequent occurring pair of symbols from the current vocabulary and add
this to the vocabulary.

3. Repeat step 2 till the defined token vocabulary size is reached, or the highest symbol
frequency is one.
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3.3.2 WordPiece
Schuster and Nakajima (2012) introduced the WordPiece algorithm when trying to solve the
Japanese and Korean voice problem. The algorithm is comparable to BPE, with a slight dif-
ference in the method of choosing the subwords. BPE greedily considers the token with most
frequent occurring pair of symbols to merge into the vocabulary, while WordPiece considers
the frequency of individual symbols before merging into the vocabulary. More specifically,
WordPiece merges the pair of symbols that maximizes the likelihood of the training data.
Maximizing the likelihood of the training data is equivalent to finding the symbol pair (x, y),
whose probability divided by the probabilities of its first symbol followed by its second sym-
bol is the greatest among all symbol pairs, i.e. choose symbols (x, y) s.t.

argmax
(x,y)

P(x, y)
P(x)P(y)

The WordPiece algorithm gained popularity through the famous state-of-the-art model
BERT, which we will discuss in later sections.

3.3.3 SentencePiece
The tokenization algorithms discussed above requires that the input text is separated by a
space between the words. In most languages this is often the case, apart from some languages
like Chinese and Japanese. Kudo and Richardson (2018) created the SentencePiece algorithm,
which does not use space as a separator. Instead, it takes the input as a string in its original
raw format, i.e. together with all the spaces, and then uses BPE or other tokenizers to create
the vocabulary.

3.4 Word Embeddings
In order to represent image features and words in the same vector space, we need to vectorize
each word in our corpus, i.e. map each word to a vector.

One possible vectorization technique is to use embeddings. Embeddings are dense vector
representations of words from 10 to a few hundreds dimensions. In addition, most embed-
ding techniques allow words with similar meanings to be close in the vector space (Mikolov
et al., 2013a). Moreover, some embeddings have compositional properties. For example,
Mikolov et al. (2013b) explain how the male/female relationship is automatically learned by
utilizing induced vector representations, and that the vector addition “King - Man + Woman”
results in a vector very close to “Queen”.

GloVe is a popular word embedding used today (Pennington et al., 2014), but one problem
with this model is that it does not take the word context into account. For example, consider
the sentence “I must go back to my ship and to my crew”. The word “ship” can be a verb or a
noun with di�erent meanings, but has only one GloVe embedding vector. As we will see in
the next section, transformer-based word embeddings solve this problem with self-attention,
which enables contextual word embeddings. In this Master’s thesis, all the word embeddings
were obtained from transformer-based models.
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3.5 The Transformer
The transformer architecture builds solely on attention mechanisms and was first proposed
by Vaswani et al. (2017). The transformer has shown great success in sequence-to-sequence
modeling, and the key to success lies in the possibility to train semantic relations on very
large corpora and memorize them in matrices.

In the paper Attention is all you need, Vaswani et al. (2017) used three kinds of vectors:
queries Q, keys K, and values V . The attention vector is then computed in the following
way:

Attention(Q,K,V) = softmax
(
QKT
√

dk

)
V ,

where dk is the dimension of the input and the softmax function is defined as

softmax(x1, x2, ..., xn) =

(
ex1∑n
i=1 exi

,
ex2∑n
i=1 exi

, ...,
exn∑n
i=1 exi

)
For in-depth explanations of the original transformer architecture, the reader is referred

to the original article by Vaswani et al. (2017).

3.5.1 BERT
Proposed by Devlin et al. (2019), BERT is short for Bidirectional Encoder Representations
from Transformers. When released, Devlin et al. (2019) showed that pre-trained representa-
tions reduce the need for many heavily-engineered task-specific architectures. In other words,
by pre-training general language representations, BERT was the first fine-tuning based repre-
sentation model that achieved state-of-the-art performance on a large group of sentence-level
tasks, outperforming many task-specific architectures.

For tokenization, they used WordPiece (Schuster and Nakajima, 2012) with a 30,000 to-
ken vocabulary in English. What makes BERT unique is its two training objectives, masked
language modeling (MLM) and next sentence prediction (NSP):

MLM: A technique that randomly masks a portion of the input tokens (words), then aims
to predict the masked tokens. In BERT’s case, 15% of all WordPiece tokens in each
sequence were masked and predicted during pre-training.

NSP: This technique allows the BERT model to understand the relationship between sen-
tences by simply training the model, when given two sentences A and B, to predict
(with a 50% chance) whether B is the sentence following A or not.

During pre-training, they fed the model two sentences at the time. They used three added
special tokens: [CLS] at the start of the first sentence as a special classification token, [SEP]
to separate both sentences and the token [MASK] to denote the words to predict.

With their paper, Devlin et al. (2019) released two pre-trained models BERTBASE and
BERTLARGE, with the latter containing more parameters and layers than the former. The
release of BERT preceded many other BERT-based language models trained on di�erent cor-
pora from di�erent languages, and will be the main base for our image captioning model. The
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following paragraphs describe the models used in this Master’s thesis. All of them were ini-
tialized on the BERTBASE-configuration. Table 3.1 shows the di�erent models configurations
for comparison.

mBERT. mBert, short for Multilingual BERT, was pre-trained with the multilingual
Wikipedia dataset that consists of the top 104 most common languages (Devlin et al., 2018),
including Arabic. In this comparison, we used the bert-base-multilingual-uncased
version of mBERT from HuggingFace. This is a version of BERT that does not di�erentiate
between capitalized and noncapitalized words. For instance, the words “Arabic” and “arabic”
are considered the same in this version of BERT. Note that there is no capital letters in the
Arabic written language, which makes the distinction useless.

AraBERT. AraBERT was released by Antoun et al. (2020) and was among other models
compared to mBert. AraBERT achieved state-of-the-art performance on most tested Arabic
NLP tasks. The models were trained on news articles manually scraped from Arabic news
websites and several publicly available large Arabic corpora. One of the corpora is named
OSCAR (Open Super-large Crawled Aggregated Corpus), not to be confused with the image
captioning model OSCAR (Object-Semantics Aligned Pre-training). In total, the dataset
consists of ∼77GB of text. There are several versions of AraBERT available. We used the
bert-base-arabertv02 configuration in this project.

ArabicBERT. ArabicBERT (Safaya et al., 2020) was the first pre-trained BERT model
for Arabic at the time. It was originally pre-trained as an approach to solve a sub-task of
the Multilingual O�ensive Language Identification shared task (O�ensEval 2020), which is
a part of the SemEval 2020, a series of international NLP research workshops. The training
dataset consists of a dump of Arabic Wikipedia and an Arabic version of OSCAR, summing
up to ∼95GB of text in total. We used the bert-base-arabic configuration in this project.

GigaBERT. GigaBERT (Lan et al., 2020) is a set of models pre-trained as a bilingual
BERT and designed specifically for Arabic NLP and English-to-Arabic zero-shot transfer
learning. Their best model significantly outperforms mBERT and AraBERT on some su-
pervised and zero-shot transfer settings. The training dataset consists of a dump of Arabic
Wikipedia, an Arabic version of OSCAR and the Gigaword corpus, which consists of over
13 million news articles. We used the GigaBERT-v4-Arabic-and-English configuration
in this project.

Models Training Data Vocabulary Configuration
source #tokens (all/ar) tokenization size (all/ar) cased size #parameters

mBERT Wiki 21.9B/153M WordPiece 110k/5k no base 172M
AraBERT Wiki, Oscar, News articles 2.5B/2.5B SentencePiece 64k/58k no base 136M

ArabicBERT Wiki, Oscar unknown WordPiece 32k/28k no base 111M
GigaBERTv4 Wiki, Oscar, Gigaword 10.4B/4.3B WordPiece 50k/26k no base 125M

Table 3.1: Configuration comparisons for mBert, AraBERT, Ara-
bicBERT, and GigaBERT.
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3.6 Vision-Language Pre-training
The vanilla BERTBASE cannot handle image region features as input. As a learning method, we
used OSCAR (Li et al., 2020), which achieves state-of-the-art results on six well-established
vision-language understanding and generation tasks, including image captioning. Previous
pre-training methods concatenate image region features and text features as input and then
use self-attention to learn image-text semantics in a brute force manner.

OSCAR uses object tags detected in images as anchor points to ease the alignment of
image region and word embeddings. The method is motivated by the observation that the
salient objects in an image can be accurately detected by modern object detectors and that
these objects are often mentioned in the caption. Except for a novel input representation,
we will also describe the pre-training objective used in the original OSCAR model, and the
fine-tuning objective used in this Master’s thesis.

3.6.1 Input Representation
OSCAR represents each input image-text pair as a Word-Tag-Image triple (w, q, v). Here
w represent the caption, while q and v represent the objected object tags and object region
features as described in Section 3.2. The idea is that the alignments between q and w, both
in text, are relatively easy to identify by using pre-trained BERT models, which are used as
initializations in Oscar (Li et al., 2020). The task then becomes to train the model to ground
the image objects in distinctive entities represented in the language space. See Figure 3.2 as
an example for visual and textual representations of a dog sitting on a couch.

(a) Image-text pair and
object tags (b) Input representation (c) Semantic spaces

Figure 3.2: (a) Word-Tag-Image triple with tags colored in red and
yellow. (b) Input vector design. Note how the caption is processed
through a pre-trained BERT model, while the image is processed
though an object detector and then concatenated with the word em-
bedding and the tags as anchor points. (b) The word semantic space
is more representative than image region features. In this example,
“dog” and “couch” are similar in the visual feature space due to the
overlap regions, but distinctive in the word embedding space. This is
often the case, due to visual regions often being over-sampled, noisy
and ambiguous. After Li et al. (2020).
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In the context of Arabic image captions, this leaves us with a couple of options. To feed
Arabic captions to the OSCAR model, one could either:

1. Use Arabic captions w and English labels qEng generated by the X152-C4 object detec-
tor. The OSCAR model is then trained on a multilingual BERT, for example mBert or
GigaBERT.

2. Use Arabic captions w and Arabic labels qArab, either obtained from

(a) qEng being mapped to qArab through WordNet or, as the case of this project,

(b) qEng being directly machine translated to qArab, for example through the Google
Translate API.

The OSCAR model is then trained on an Arabic BERT, for example ArabicBERT or
AraBERT.

3.6.2 Pre-training Objective
In the orginal OSCAR paper (Li et al., 2020), the model is pre-trained from two di�erent
perspectives, named the dictionary view and the modality view:

Dictionary view: Similar to the masked token loss (MTL) used by BERT, they define the
discrete token sequence as h = [w, q], and apply the MTL for pre-training. At each
iteration, they randomly mask each input token in h with probability 15%, and replace
the masked one hi with a special token [MASK]. The goal of training is to predict
these masked tokens based on their surrounding tokens h\i and all image features v by
minimizing the negative log-likelihood:

LMTL = −E(v,h)∼D log p(hi |h\i, v)

Modality view: Utilizes a contrastive loss. For each input triple, they group h′ = [q, v]. They
then sample a set of polluted image representations by replacing q with probability
50% with a di�erent tag sequence randomly sampled from the dataset D. Since the
encoder output on the special token [CLS] is the fused vision-language representation
of (h′,w), they apply a fully-connected (FC) layer on top of it as a binary classifier f (.)
to predict whether the pair contains the original image representation (y = 1) or any
polluted ones (y = 0). The contrastive loss is defined as

LC = −E(h′,w)∼D log p(y| f (h′,w))

The full pre-training objective of OSCAR is then simply the sum of these losses:

LPre-training = LMTL +LC

For more details about the training objective implementations and in-depth explana-
tions, please read the original paper (Li et al., 2020).

Zhang et al. (2021) introduced an improved pre-training objective of OSCAR, called OS-
CAR+, were they instead of the binary constrastive loss above apply a novel 3-way contrastive
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loss LCL3, with the purpose of e�ectively optimizing the training objectives used for vision
question answering (VQA) and text-image matching. Since we are only interested in image
captioning, we will not describe the details of this training objective.

3.6.3 Fine-tuning objective

The original OSCAR adapts the pre-trained models to seven downstream VL tasks, each one
posing di�erent challenges for adaption. Since we are only concerned with image captioning,
we will focus on the image captioning fine-tuning strategy.

According to the recipe described by Li et al. (2020), the input samples are processed
to Word-Tag-Image triples (w, q, v) in the same way as that during the pre-training. 15% of
the caption tokens are then randomly masked out, and the remaining context of the triple
is used to predict the masked tokens with a cross-entropy loss. Since the BERT-based model
is bidirectional, the self-attention mask during training is constrained such that a caption
token can only attend to the tokens before its position to simulate a unidirectional generation
process. Note that all of the caption tokens will have full attentions to image regions and
object tags but not the other way around.

Zhang et al. (2021) used the Karpathy split on a pre-trained OSCAR+BASE, then fine-tuned
with cross-entropy loss for 30 epochs, a batch size of 256 and an initial learning rate of 1e−5.
Finally, they used a so-called self critical sequence training (SCST) (Rennie et al., 2017) to
optimize the CIDEr evaluation metric (see Section 3.8) for 10 epochs, a batch size of 128 and
an initial learning rate of 2e−6. In this Master’s thesis, we did not use a pre-trained OSCAR.
Instead, our model was directly initialized from a BERTBASE configuration, and then trained
on our caption data with cross-entropy loss, no CIDEr optimization used.

3.7 Image Captioning Inference

We used the caption inference procedure described by Li et al. (2020). During inference,
they first encode the image regions, object tags, and a [CLS] token as input. They then
initialize the caption generation by feeding in a [MASK] token and sampling a token from
the vocabulary based on the likelihood of the output. Next, the [MASK] token in the previous
input sequence is replaced with the sampled token and a new [MASK] is appended for the next
word prediction. The generation process terminates when the model outputs the [STOP]
token.

In the greedy decoding of candidate captions, we consider a single token at every step.
With a beam search decoder, we could track multiple tokens at every step and use those to
generate multiple candidate sentences, then pick the candidate sentence that maximizes the
log likelihood. Beam search is an algorithm that uses breadth-first search to build a search
tree. Li et al. (2020) used beam search with a beam size of 5, i.e. they expanded the search
tree to the top 5 contenders after every token prediction.
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3.8 Evaluation metrics
There are many ways of evaluating image captions. Viewing image captioning as a image-to-
text machine translation, we could use classical machine translation metrics, such as BLEU,
ROUGE, and METEOR, to measure the quality of our generated captions. We could also
use other well-established caption evaluation metrics, such as CIDEr and SPICE. Since our
dataset contains several ground-truth captions per image, another approach would be to use
sentence embeddings, for example MUSE, and find the ground-truth caption closest to our
generated caption in the semantic space. Since most of the current evaluation metrics are
built for the English language, it is appropriate to complement the scores with a qualitative
assessment made by native Arabic speakers. In the following section, we will introduce the
evaluation metrics used in this project and comment on them.

3.8.1 BLEU
Papineni et al. (2002) proposed BLEU (short for Bilingual Evaluation Understudy) as a method
for the automatic evaluation of machine translation that is quick and language-independent.
Following previous works, we evaluated our captioning models on the BLEU-1,2,3,4, which
assesses a candidate sentence (generated caption) by measuring the fraction of n-grams that
appear in a set of references (ground-truth captions). More specifically, an individual BLEU
n-score is calculated as the modified precision of a candidate sentence. To compute precision,
they simply count the number of candidate translation words which occur in any reference
translation and then divide by the total number of words in the candidate translation. For
example, consider the following reference and candidate sentence pair:

• Reference: The cat is on the mat.

• Candidate: the the the the the the the.

The important words for computing modified precision are here underlined. The modi-
fied unigram precision is 2/7, since a reference word is considered exhausted after a matching
candidate is identified. The nature of the precision metric makes a perfectly translated BLEU
score 1 and a perfect mismatch 0. Note that even human translators do not achieve a perfect
score of 1.

In this project, we made use of all of the individual n-gram scores, which capture two
aspects of translation: adequacy and fluency. A translation using the same words (1-grams)
as in the references tends to satisfy adequacy. The longer n-gram matches (2-, 3- and even
4-grams) account for fluency (Papineni et al., 2002). It is also important to note that the more
reference translations per sentence there are, the higher the score is.

Trying to compare BLEU scores across di�erent corpora and languages is strongly dis-
couraged. One important observation is that Arabic candidate captions tend to score lower
on BLEU-scores compared to their English counter parts. To demonstrate this, consider the
following reference and candidate sentence pair in Arabic and English:
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• Reference: He walked on the beach at night – C
�
J
Ë
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• Candidate: She walked on the beach at night – C
�
J
Ë


ù£A
�

�Ë@ úÎ«
�

I
�

�Ö
�
ß

The di�ering words between the two sentences are underlined. The two sentences give
respective BLEU-1,2,3,4 scores 0.75, 0.71, 0.63, 0.00 in Arabic, but higher scores 0.86, 0.85,
0.83, 0.81 in English. This observation is caused by the morphological complexity of the
Arabic language, which leads to Arabic sentences being shorter and therefore making error
penalties much higher in n-gram based metrics like BLEU.

3.8.2 ROUGE
Lin (2004) introduced a package, ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion), for automatic evaluation of summaries and its evaluations. It includes several automatic
evaluation methods that measure the similarity between summaries, including ROUGE-L,
that was used in this project.

ROUGE-L is based on an F-measure. The traditional F-measure is calculated as the har-
monic mean of precision and recall. A more general F-score, Fβ, that uses a positive real factor
β, where β is chosen such that recall is considered β times as important as precision, is:

Fβ =
(1 + β2)PR
β2P + R

, (3.1)

where P and R are the calculated precision and recall, respectively.
ROUGE-L deals with the longest common sub-sequences (LCS) between two summaries

(captions) X and Y . Lin (2004) uses a LCS-based F-measure to estimate the similarity be-
tween two summaries X of length m and Y of length n, assuming X is a reference summary
sentence (ground-truth captions) and Y is a candidate summary sentence (candidate cap-
tion). The F-measure Flcs (ROUGE-L score) is calculated according to Equation 3.1, with
Plcs as our subsequence precision (see Equation 3.2) and Rlcs as our subsequence recall (see
Equation 3.3):

Plcs =
LCS(X,Y )

n
(3.2)

Rlcs =
LCS(X,Y )

m
(3.3)

LCS(X,Y ) is the length of a longest common subsequence of X and Y . Notice that
ROUGE-L is 1 when X = Y , while ROUGE-L is 0 when LCS(X,Y ) = 0, i.e. there is noth-
ing in common between X and Y ((Lin, 2004)). To illustrate how this measure di�ers from
previous ones, consider the following reference sentence and candidate sentences:
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• Reference: Police killed the gunman

• Candidate 1: Police kill the gunman

• Candidate 2: the gunman kill police

BLEU-2 would score both candidates the same, since they share the same bigram, i.e. “the
gunman”. However, Candidate 1 and Candidate 2 have very di�erent meanings. In the case
of ROUGE-L, Candidate 1 has a score of 3/4 = 0.75 and Candidate 2 has a score of 2/4 = 0.5,
with β = 1. One other obvious di�erence between ROUGE-L and BLEU-n is that since it
automatically includes longest in-sequence common n-grams, you don’t need a predefined
n-gram length.

3.8.3 METEOR
METEOR (Metric for Evaluation of Translation with Explicit Ordering) was proposed by
Banerjee and Lavie (2005) and was designed to explicitly address several observed weaknesses
in the BLEU metric. In their paper, the authors demonstrate that METEOR significantly
improves correlation with human judgments and show that recall plays a more important
role than precision in obtaining high-levels of correlation with human judgments. METEOR
is based on unigram-precision and recall (Banerjee and Lavie, 2005).

Similar to ROUGE-L, METEOR calculates an F-measure for each reference and candi-
date pair. The F-measure is computed as follows: First the unigram precision (P) is com-
puted as the ratio of the number of unigrams in the candidate sentence that are mapped (to
unigrams in the reference sentence) to the total number of unigrams in the candidate sen-
tence. Similarly, the unigram recall (R) is computed as the ratio of the number of unigrams in
the candidate sentence that are mapped (to unigrams in the reference sentence) to the total
number of unigrams in the reference sentence. Next, they compute Fmean by combining the
precision and recall via a harmonic mean, see Equation 3.1, that places three times as much
importance on recall than on precision (i.e. β = 3).

METEOR finally computes a penalty for a score, having the e�ect of reducing the Fmean
to a maximum of 50% if there are no bigram or longer matches. Notice that METEOR al-
ways scores in the interval [0, 1]. For more details about the mapping process and penalty
calculation, read the original paper (Banerjee and Lavie, 2005).

3.8.4 CIDEr
CIDEr (Consensus-based Image Description Evaluation) was developed by Vedantam et al.
(2014) specifically for image caption evaluation, and measures the similarity of a candidate
sentence to the majority, or consensus, of a set of ground truth sentences written by humans.

The CIDEr score calculation is more complicated than the previous F-measures, and we
will briefly describe it in this paragraph. All of the words in the sentences (both candidate
and references) are first mapped to their stem or root forms. That is, “fishes”, “fishing” and
“fished” all get reduced to “fish”, or as previously mentioned in Section 2.1.2, in Arabic H. A

�
J»�

(kitab) “book”, I.
�
K� A¿ (katib) “writer”, �

I.

��
Jº

�
K
 (yaktubu) “he writes” all get reduced to the root
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morpheme H.
�

H ¼ (K-T-B). The stemmed sentences are then represented using the set
of n-grams present in it. In their paper, they use n-grams containing one to four words. n-
grams that commonly occur across all of the images in the dataset should be given lower
weight, since they are likely to be less informative. This observation is encoded through term
frequency-inverse document frequency (tf-idf) weighting for each n-gram Vedantam et al. (2014).

The tf-idf is calculated as the product of the term-frequency (tf) and the inverse document
frequency (idf). The term frequency is defined as

tf(t, d) =
ft,d∑

t′∈d ft′,d
, (3.4)

where ft,d is the raw count of a term (word or token) t in a document d (candidate or reference
sentence). The inverse document frequency is defined as

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
, (3.5)

where N is the total number of documents in the corpus (N = |D|) and |{d ∈ D : t ∈ d}| is
number of documents where the term t appears. Finally, tf-idf is calculated as a multiplication
of Equation 3.4 and 3.5, see Equation 3.6:

tfidf(t, d,D) = tf(t, d) · idf(t,D). (3.6)

Intuitively, tf places higher weight on n-grams that frequently occur in the reference sen-
tence, while idf reduces the weight of n-grams that commonly occur across all of the images
in the dataset.

The CIDErn(ci, ri) score for n-grams of length n is computed using the average cosine
similarity between the tf-idf weighting of the candidate sentence ci and the reference sen-
tences ri . The definition of the cosine similarity Scos θ between two vectors v and u should be
familiar to the reader, see Equation 3.7:

Scos θ =
v · u
‖v‖ ‖u‖

. (3.7)

Generally, this similarity ranges to any value in the interval [−1, 1], but since the tf-idf
weighting is non-negative, our CIDErn scores will be in the interval [0, 1]. The CIDErn scores
for every n-gram are finally combined by averaging:

CIDEr(ci, ri) =
1
4

N∑
n=1

CIDErn(ci, ri).

The metric used in this report is a modified version of CIDEr called CIDEr-D (Vedantam
et al., 2014). In this new formula, the authors propose the removal of stemming. Since singular
and plural forms of nouns and di�erent tenses of verbs are being mapped to the same token,
the removal of stemming ensures the correct forms of words are used. To reduce gameability
of the metric, the authors also penalize scores based on the di�erence between candidate
and reference sentence lengths and repetition of confident words or phrases until the desired
sentence length is reached.

A factor of 10 is added to the calculation of the CIDEr-D scores numerically to make
them similar to other metrics. One consequence of this factor is that CIDEr-D values often
exceeds 1, and in fact have the maximum value of 10.
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3.8.5 SPICE
SPICE (Semantic Propositional Image Caption Evaluation) is a metric developed by Ander-
son et al. (2016), as the name suggest, for image captioning. SPICE di�ers from previous
scores in that it does not utilize n-gram overlaps, which the authors mean are neither neces-
sary, nor su�cient for two sentences to convey the same meaning. The authors mention two
examples sentences:

1. A young girl standing on top of a tennis court.

2. A giraffe standing on top of a green field.

The captions describe two very di�erent images. However, comparing these captions
using any of the previously mentioned n-gram metrics produces a high similarity score. To
overcome this problem, the authors estimate caption quality by transforming both candi-
date and reference captions into a graph-based semantic representation, i.e. a scene graph. To
complete this task, they adopt the Stanford Scene Graph Parser followed by post-processing
steps, including resolving pronouns and handling plural nouns (Anderson et al., 2016). Fi-
nally an F-score is calculated over logical tuples representing semantic propositions in the
generated scene graph.

To exemplify, we revisit example sentence 1. First, the sentence is parsed into a depen-
dency parse tree, see Figure 3.3. A dependency parse tree is a graph that represents the syn-
tactic structure of a sentence according to grammatical dependency relations.

DT JJ NN VBG IN NN IN DT NN NN
A young girl standing on top of a tennis court

det

amod nsubj prep pobj prep

pobj

det

nn

Figure 3.3: Example sentence parsed into a dependency parse tree.
After Anderson et al. (2016)

The dependency tree is then mapped into a scene graph, see Figure 3.4.
From the scene graph, Anderson et al. (2016) extract a set of tuples, each containing either

one, two or three elements, representing objects, attributes and relations, respectively. The
example in Figure 3.4 would be represented with the following tuples:

{ (girl), (court), (girl, young), (girl, standing), (court, tennis), (girl, on-top-of, court) }

Viewing the semantic propositions of a candidate sentence as a set of tuples, the same
tuples can be matched against a set of tuples obtained from the scene graph of a set of refer-
ence sentences. From this matching, a precision and recall score can be calculated and finally
combined into the SPICE F-score.

Being an F-score, SPICE is simple to understand, and naturally bounded to the interval
[0, 1]. Unlike CIDEr, SPICE does not use cross-dataset statistics, and is therefore equally
applicable to both small and large datasets.
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(a) Example image (b) Scene graph

Figure 3.4: (a) Image corresponding to the example sentence. (b) A
visualization of a semantic scene graph with encoded objects (e.g.
girl), attributes (e.g. young) and relations (e.g. on top of) present.
After Anderson et al. (2016).

A potential concern that the authors address is that the metric could be gamed by gen-
erating captions that represent only objects, attributes and relations, while ignoring other
important aspects of grammar and syntax. Because SPICE neglects fluency, it is implicitly
assuming that captions are well-formed (Anderson et al., 2016).

In the context of Arabic image caption evaluation, the SPICE metric described in An-
derson et al. (2016) can not be directly applied. For Arabic, as for other morphologically rich
languages, the role of morphology is often expected to be essential in syntactic modeling, and
the role of word order is less important than in morphologically poorer languages such as En-
glish. Notwithstanding the use of the Stanford Scene Graph Parser, their proposed SPICE
metric is not tied to this particular parsing pipeline, and could potentially be replaced with
an Arabic one.

3.8.6 MUSE
MUSE (Multilingual Universal Sentence Encoder) is a multilingual sentence embedding model
released by Yang et al. (2020). The model embeds text from 16 languages, see Table 3.2, into
a shared semantic space. The model achieved new state-of-the-art performance on several
NLP tasks, such as monolingual and cross-lingual semantic retrieval tasks.

In this report, although we used Arabic-specific BERT models for caption generation,
we used MUSE embeddings to compute similarity scores between generated captions, as sen-
tence embeddings proved to perform better on multilingual semantic textual similarity tasks.
This technique is similar to the one developed by Afyouni et al. (2021).

Although there is an initial intensive computational requirement for the sentence em-
beddings, the formula for the similarity score is simple. Firstly, the cosine similarity Scos θ
between two vectors v and u is calculated according to Equation 3.7. From the resulting
scalar, an angular distance Dθ is calculated, see Equation 3.8. Finally, the angular similarity Sθ
between two vector embeddings v and u (see Equation 3.9) is simply the complement of the
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Languages Family
Arabic Semitic
Chinese, Chinese (Taiwan) Sino-Tibetan
Dutch, English, German Germanic
French, Italian, Portuguese, Spanish Latin
Japanese Japonic
Korean Koreanic
Russian, Polish Slavic
Thai Kra-Dai
Turkish Turkic

Table 3.2: Multilingual universal sentence encoder’s supported lan-
guages. After Yang et al. (2020).

angular distance Dθ :

Dθ = arccos(Scos θ)/π =
θ

π
(3.8)

Sθ = 1 − Dθ = 1 −
θ

π
(3.9)

When similarity scores between candidate captions and all their respective reference sen-
tences have been calculated, score statistics and qualitative assessments can be made.

3.8.7 Human Evaluation
Since some evaluation metrics, like BLEU and SPICE discussed above, are not optimized
for Arabic captions, human evaluation has to be made to verify the quality of the candidate
captions. In this thesis, we chose to focus on the qualities of grammar, semantics, and context.
For this task, native Arab speaking experts evaluated a sample of the candidate captions
generated across the proposed models.

There are several ways of evaluating image captions manually. In this thesis, we followed
the guidelines of the Transparent Human Benchmark (THUMB), a human evaluation proto-
col proposed by Kasai et al. (2021). Like previously described automatic scores, the authors
base their evaluations on two main scores (precision and recall) and three types of penal-
ties (fluency, conciseness, and inclusive language). The overall score is computed by averaging
precision and recall and deducting penalty points.

Precision (P) measures how precise the caption is given the image, while Recall (R) mea-
sures how much of the salient information (e.g., objects, attributes, and relations) from the
image is covered by the caption. Both scores are assessed in the scale of 1–5.

Kasai et al. (2021) found most captions from modern neural network models were highly
fluent and concise. Since precision and recall covers the context of an image, our penalty will
be purely based on grammar and semantics.
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Evaluation

4.1 Experimental setup
We initialized the captioning model with various Arabic-specific BERT configurations. In or-
der to select the best models, we carried out two experiments considering the multi/bilingual
aspects and the learning curve of the fitting procedure:

1. Evaluation of two multilingual models both trained on

(a) Arabic captions and Arabic labels

(b) Arabic captions and English labels

We carried out this experiment mainly for comparing the object labels ability to a�ect
the final image-text alignment.

2. Evaluation of the learning curve for three di�erent models, respectively trained on 50%,
75% and 100% of a dataset. From the results we can tell if the validation loss decreases
with the amount of data or if some adjustment have to be made to the models, for
example with a hyper parameter grid search. Out of the trained models, we chose the
two most accurate ones as candidates for large scale training.

After we picked two candidate models, a third and final experiment was made:

3. Do large scale training on the candidate models on datasets of di�erent size. Evaluate
the models both with automatic and human metrics and compare the results with
previous models.

We carried out the first two experiments on Google Colab GPU:s (1 P100 GPU with 16
GB memory). We carried out the final large scale experiments on a workstation (1 GV100
GPU with 32 GB memory) and a high performance computer (HPC) system (8 K80 GPU:s
with 12 GB memory each), both provided by the University of Sharjah.
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4.1.1 Preprocessing
Before training the models, we ran all of the images through the X152-C4 object detector for
extraction of region features and object tags. Since all of the image features and object tag
labels are made available for the Karpathy split of the COCO dataset by Li et al. (2020), only
Flickr8k images had to be inferred. We then split the Flickr8k image features and object tags
into train, validation and test images following ElJundi et al. (2020).

To train models on Arabic captions and Arabic labels, we simply translated English labels
directly with the Google Translate API, as described in Section 3.6.1.

4.1.2 Training and evaluation
In the first experiment, we initialized our multilingual models with GigaBERT (GigaBERT-
v4-Arabic-and-English) and mBERT (bert-base-multilingual-uncased). We trained both mod-
els twice for 30 epochs with a learning rate of 1e−4 on the Flickr8k train-split and validated
on the Flickr8k val-split, with Arabic and English labels respectively. After training, we ap-
plied an image caption inference on the val-split for every saved model checkpoint. We finally
ran the BLEU-1, 2, 3, 4, ROUGE-L, METEOR, CIDEr and SPICE evaluation scripts on the
inferred candidate captions.

In the second experiment, we initialized our model with AraBERT (bert-base-arabertv02),
ArabicBERT (bert-base-arabic) and GigaBERT (GigaBERT-v4-Arabic-and-English). We trained
the three models for 30 epochs with Arabic labels, a learning rate of 1e−4 on 50%, 75% and
100% of the Flickr8k train-split captions. For the AraBERT and GigaBERT configurations
specifically, the learning rate η was grid searched in the interval [1e−5, 7e−5] with 100% of the
Flickr8k data to find the best configuration. We validated all of the models on the Flickr8k
val-split during training time. Post training, we made image caption inference on the val-
split for every saved model checkpoint. We chose to only run the MUSE evaluation script
on the inferred candidate captions, since we are most interested in how well the di�erent
models learned object semantics. Also, CIDEr is not equally applicable on both small and
large datasets (see Section 3.8). Since our models are trained on 50%, 75% and 100% of the
original dataset, CIDEr could not be used for model comparison.

In the third and last experiment, we picked two candidate models: AraBERT (bert-base-
arabertv02) and GigaBERT (GigaBERT-v4-Arabic-and-English). For each candidate model,
we trained 3 captioning models on 3 di�erent datasets: the Flickr8k train-split, Arabic-
COCO, and then a mix of Arabic-COCO and the Flickr8k train-split (88,783 images and
432,113 di�erent captions in total). We trained the models for 30 epochs when trained on
the Flickr8k train-split, and 50 epochs when trained on the Arabic-COCO and the mixed
dataset. All of the experiments were repeated with batch sizes 32 and 265 respectively. Post
training, we applied the image caption inference on the Flickr8k test-split for the last check-
point on every saved model. We finally ran the BLEU-1,2,3,4, ROUGE-L, METEOR, CIDEr,
SPICE and MUSE evaluation scripts on the inferred candidate captions.

For all of the experiments above, we saved training and validation loss values at every
epoch, while model checkpoints were saved every 5 epochs. All of the experiments used the
AdamW opptimizer and a linearly decaying learning rate according to the recipe described
in OSCAR (Li et al., 2020). Exact model hyper parameters for each experiment are shown in
the Appendix A section.
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4.2 Results
We inferred all of the candidate captions through beam search, with a width of 5 and a
max sentence length of 20. After inference, we calculated evaluation scores (BLEU-1,2,3,4,
ROUGE-L, METEOR, CIDEr and SPICE) using the COCO Caption evaluation API3. For
MUSE, we used universal-sentence-encoder-multilingual-large version 3, downloaded from
TensorFlow Hub4.

4.2.1 English vs Arabic labels
The first experiment shows nearly identical training and validation losses for both multilin-
gual models (see Figure 4.1a for GigaBERT and Figure 4.2a for mBert) with slightly better
evaluation scores for models trained on Arabic labels. mBert shows a significantly lower loss
compared to GigaBERT, but lower evaluation scores with COCO Caption evaluation (see
Figure 4.1b for GigaBERT and Figure 4.2b for mBert). This result suggests that the valida-
tion loss is more correlated to the model configuration, than to the evaluation scores. Table
4.1 shows the exact final evaluation scores for all models.

(a) Training and validation loss (b) Evaluation scores

Figure 4.1: (a) Training and validation losses for GigaBERT trained
on English vs Arabic labels. (b) Respective evaluation scores over all
epochs. Scores for models trained on English label is marked with a
solid line and Arabic labeled scores are marked with dashed lines.

4.2.2 Learning Curve
All of the models, except AraBERT, show a strictly decreasing training and validation loss
with increasing amounts of data (see Figures 4.3a, 4.4a and 4.5a for AraBERT, ArabicBERT
and GigaBERT respectively). Note that GigaBERT trained on 100% of Flickr8k is identical
to the model trained on Arabic labels in the previous experiment.

In the case of AraBERT, the 75% loss curves are way higher than the 100% and 50% curves,
but the 100% loss curves are still lower than the 50% ones. The unstable training results of

3https://github.com/tylin/coco-caption
4https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3

35

https://github.com/tylin/coco-caption
https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3


4. Evaluation

(a) Training and validation loss (b) Evaluation scores

Figure 4.2: (a) Training and validation losses for mBert trained on
English vs Arabic labels. (b) Respective evaluation scores over all
epochs. Scores for models trained on English label is marked with a
solid line and Arabic labeled scores are marked with dashed lines.

Model Labels BLEU-4 ROUGE-L METEOR CIDEr SPICE

GigaBERT
English 0.074 0.29 0.3 0.33 0.037
Arabic 0.062 0.29 0.31 0.31 0.037

mBert
English 0.058 0.28 0.30 0.29 0.031
Arabic 0.067 0.29 0.30 0.31 0.033

Table 4.1: Evaluation scores (evaluation on epoch 30) for the trained
models. The best scoring models are marked in bold for each evalu-
ation metric.

AraBERT suggest that the chosen learning rate is too large. The results from the learning rate
grid search is shown in Figure 4.6, for AraBERT and GigaBERT. An additional experiment
with AraBERT trained on 75% of the data with the smaller learning rate of 5e−5 shows a much
more stable learning curve than the one shown in Figure 4.3a.

In addition, all of the models from the learning curve experiment were evaluated with
MUSE to investigate the correlation between semantic scores and an increased amount of
data. The evaluation over training time is shown in Figures 4.3b, 4.4b and 4.5b for AraBERT,
ArabicBERT, and GigaBERT respectively. In general, more data increased evaluation scores.
One notable thing is that the final score of GigaBERT trained on 75% of data outperformed
100%, but Figure 4.5b shows that the 100% curve is generally higher than the 75% curve. This
finding suggests that the average MUSE score has a high variance. Table 4.2 shows the final
MUSE scores for each model.

4.2.3 Large Scale Training
Table 4.3 presents the final test scores of a selection of our models, and models previously
proposed by Al-muzaini et al. (2018), Afyouni et al. (2021) and ElJundi et al. (2020). Out of
the previous works, only the model by ElJundi et al. (2020) is tested on the same Flickr8k
test set as ours. All of our models are named after the scheme modelBatchSize-dataset, where
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(a) Training and validation loss (b) MUSE scores

Figure 4.3: (a) Training and validation losses for AraBERT trained
on 50%, 75% and 100% of Flickr8k. (b) MUSE evaluation scores over
all epochs.

(a) Training and validation loss (b) MUSE scores

Figure 4.4: (a) Training and validation losses for ArabicBert trained
on 50%, 75% and 100% of Flickr8k. (b) MUSE evaluation scores over
all epochs.

(a) Training and validation loss (b) MUSE scores

Figure 4.5: (a) Training and validation losses for GigaBERT trained
on 50%, 75% and 100% of Flickr8k. (b) MUSE evaluation scores over
all epochs.

model is our initialization model, BatchSize is the training batch size and dataset is the dataset
trained on. For example, one of our best performing models was initialized on AraBERT and
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(a) AraBERT validation loss (b) GigaBERT validation loss

Figure 4.6: Linear grid search optimization of learning rate η for
two models (a) AraBERT and (b) GigaBERT. For both models, the
optimum is found at η = 3e−5. The grid search was in the interval
η ∈ [1e−5, 7e−5], and aimed to minimize model validation loss when
trained on Flickr8k. All validation losses are from the 30:th and last
epoch, i.e. there was no remarkable overfitting during training.

Model
Percentage

50% 75% 100%

AraBERT 0.649 0.488 0.655
ArabicBERT 0.649 0.653 0.655
GigaBERT 0.648 0.657 0.656

Table 4.2: Final MUSE scores for each model, evaluated on epoch
30. The highest scores are marked in bold.

trained with a batch size of 32 on Flickr8k. Therefore, we named the model AraBERT32-
Flickr8k. AraBERT32-Flickr8k outperforms the model by ElJundi et al. (2020) on all BLEU
scores, and most remarkably on BLEU-4, where we see a 61.4% increase. We chose to drop
the SPICE scores from the table because of the evaluation scripts incompatibility with the
Arabic language, as later discussed in Section 5.4.

Model Test set B1 B2 B3 B4 ROUGE-L METEOR CIDER MUSE
Jindal (2018) Flickr8k 0.658 0.559 0.404 0.223 - 0.201 - -
Al-muzaini et al. (2018) COCO & Flickr8k 0.462 0.260 0.190 0.080 - - - -
Afyouni et al. (2021) COCO 0.649 0.413 0.241 0.136 0.470 0.408 - 0.78
ElJundi et al. (2020) Flickr8k 0.332 0.193 0.105 0.057 - - - -
AraBERT32-Flickr8k

Flickr8k

0.391 0.246 0.150 0.092 0.331 0.314 0.415 0.671
AraBERT32-COCO 0.365 0.221 0.129 0.0715 0.310 0.317 0.36 0.669
AraBERT256-Flickr8k 0.387 0.244 0.151 0.093 0.334 0.312 0.428 0.668
GigaBERT32-Flickr8k 0.386 0.241 0.144 0.0827 0.331 0.315 0.403 0.669
GigaBERT32-COCO 0.36 0.215 0.124 0.0708 0.308 0.311 0.344 0.668

∆ 0.059 ↑ 0.053 ↑ 0.046 ↑ 0.036 ↑

Table 4.3: Our model scores compared to previous models. The
highest scores on our test-split are marked in bold. Of all the pre-
vious ones, only the model by ElJundi et al. (2020) uses the same
test-split as us. Other test-splits are unknown.

To get an idea of how well our models capture object semantics, we plotted two his-
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tograms, each comparing the MUSE-distribution of two models. Figure 4.7a shows the fi-
nal distributions of the test split inferred on AraBERT32-Flickr8k and AraBERT32-COCO,
while Figure 4.7b shows the final distributions of the test split inferred on GigaBERT32-
Flickr8k and GigaBERT32-COCO. Note that the mean values of the distributions are higher
than the final score presented in Table 4.3, since we only counted the best performing cap-
tions for each image. Furthermore, note that the standard deviations of the models trained
on Flickr8k are smaller than the models trained on COCO.

(a) MUSE score distribution for AraBERT (b) MUSE score distribution for GigaBERT

Figure 4.7: (a) MUSE score distribution for the best perform-
ing captions of the test split inferred on AraBERT32-Flickr8k vs
AraBERT32-COCO. (b) MUSE score distribution for the best per-
forming captions of the test split inferred on GigaBERT32-Flickr8k
vs GigaBERT32-COCO. Every bar represents the probability for a
score being inside an interval of length 1%

We complement Table 4.3 with human evaluations according to the guidelines of THUMB
(Kasai et al., 2021) described in Section 3.8. Figure 4.4 shows the top 6 best MUSE scoring
captions of AraBERT32-COCO, with images and THUMB-scores. Figure 4.5 shows the bot-
tom 6 MUSE scoring captions of AraBERT32-COCO. All of the evaluations were made by
three experts in Arabic language.

In general, the human evaluations show accurate results. In the first row of Table 4.4, the
candidate caption:
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“Man riding a dirt bike on a rocky hill”

is nearly perfect. It is almost identical to the reference caption:
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“Man riding a dirt bike over some rocks”,
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and only di�ers in the last phrase. The candidate caption on the second row
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“A dog in the water with a ball in its mouth”

also shows a nearly identical match to the reference caption
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“Dog wading in water with a ball in its mouth”,

and was even preferred by the Arabic speaking experts.
Not all results were accurate. Looking at Table 4.5, the first row shows candidate caption
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“Group of people climbing on the back of a truck”,

while the closest reference caption ù



ëCÓ
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YÓ translates to “Amusement park”. Though

the candidate sentence is fluent and grammatically correct, it appears to be random in the
context of the image. This shows how the models in these examples fails to identify objects in
the image and correctly describe a scene. On a small note, the reference caption “Amusement
park” is also very brief, and does not capture the whole image, compared to one of the other
reference captions
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“People on a ride in a amusement park”.

For complementary training statistics and the complete table with scores for all trained
models, see Appendix B section.
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Image Caption P R Pen. Total
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Candidate caption: (MUSE 0.902)
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Table 4.4: Human evaluation of the top 6 MUSE scoring candidate
captions of AraBERT32-COCO. Each candidate captions has three
reference captions from the Flickr8k test-split. The reference cap-
tions with most similarity are marked first, and the other two are
greyed out. THUMB-scores are shown to the right.
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Image Caption P R Pen. Total

Candidate caption: (MUSE 0.490)
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Table 4.5: Human evaluation of the bottom 6 MUSE scoring candi-
date captions of AraBERT32-COCO. Each candidate captions has
three reference captions from the Flickr8k test-split. The reference
captions with most similarity are marked first, and the other two
are greyed out. THUMB-scores are shown to the right.
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Chapter 5

Discussion

In this chapter, we will discuss the results obtained and the methodology in the light of
insights gained during this project. Additionally, we will discuss further experiments which
could not be covered in detail in the given time frame of this project, and provide general
comments about the subject. Finally, we will draw a conclusion.

5.1 Result findings
During our experiments, we evaluated several image captioning models trained on three dif-
ferent datasets: Flickr8k, Arabic-COCO, and a dataset combining these two. We initialized
each model on an Arabic-specific BERT, before we trained them with the learning method
OSCAR.

We report results better than the previous work on the Flickr8k dataset by ElJundi et al.
(2020): 0.059, 0.053, 0.046 and 0.036 improvement on BLEU-1,2,3,4 respectively. Most sur-
prisingly, the models trained on the smaller dataset performed better on the test set than
the models trained on COCO, and even the combined dataset. All of the models trained on
batch size 32 outperformed corresponding models trained on batch size 256 on every metric,
with few exceptions.

5.1.1 English vs Arabic labels
Our first experiments show that both approaches, training on English and Arabic object
labels, work in principle. Already at this stage, GigaBERT trained on English labels out-
performed previous reported BLEU-1,2,3,4 scores with 0.0123, 0.0144, 0.0190, 0.0167 respec-
tively. However, note that these scores were obtained from the val-split, and not the final
test-split. We think that the reason to why GigaBERT with English labels outperforms Ara-
bic labels is that the quality of the original English labels, in combination with GigaBERT’s
English pre-training, is much better than its machine translated counterpart. mBert is only
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trained on Wikipedia (Devlin et al., 2018), while GigaBERT is trained on the Gigaword cor-
pus in addition to Wikipedia and web crawl data. This is how we explain GigaBERT’s better
performance. Moreover, the vocabulary of GigaBERT (21k English tokens vs 26k Arabic to-
kens) is richer and more balanced than the vocabulary of mBERT (53k English tokens vs 5k
Arabic tokens), see Table 3.1.

Compared to GigaBERT, mBert showed a lower validation loss but lower evaluation
scores, which suggests that validation loss is more correlated to the model configuration than
to the evaluation scores. We still conclude that validation loss is negatively correlated to all
of the evaluation scores, as expected, but that the correlation is not clear from the plots we
made. We think this is the case because most of the learning is made during the first 5 epochs
of training, while evaluation scripts are run every 5 epochs.

5.1.2 Learning Curve
Most importantly, this experiment proved that the model’s object semantics aligning im-
proved with the size of our dataset. But the experiment also gave us other insights, such as
the importance of the learning rate η in BERT-based models. In the original BERT paper,
Devlin et al. (2019) recommends learning rates of 5e−5, 3e−5 and 2e−5 for batch sizes of 16 and
32, when fine-tuning on NLP tasks. In a section of the OSCAR paper (Li et al., 2020), they
initialized image caption fine-tuning on a BERT model (bert-base-uncased) directly without
OSCAR pre-training, like we did in this project, to solve the nocaps task (nocaps: novel ob-
ject captioning at scale) (Agrawal et al., 2019). In their case, they trained with a batch size
of 256 and a learning rate of 3e−5. When we trained with a batch size 256 distributed on 8
GPU:s, we found the learning rate 9e−5 to decrease the final validation loss with 7% compared
to the validation loss obtained when training with a learning rate 3e−5. We conclude that all
the mentioned learning rates are valid, but we recommend a grid search optimization for
best performance.

5.1.3 Large Scale Training
All of the presented results in this section outperform the scores previously reported by
ElJundi et al. (2020). What is more interesting is that models trained on the smaller dataset
(Flickr8k) beat models trained on the mixed dataset (COCO+Flickr8k), which in its turn
beats models trained on the pure COCO dataset. This bias is probably caused by an object
class imbalance between the datasets, which is discussed more in detail in section 5.5.2. In
general, all of the models trained on batch size 32 outperformed the corresponding models
trained on batch size 256 on every metric, but took longer to train. This result agrees with the
observation that larger batches can cause a degradation in the quality of a model, as measured
by its ability to generalize. One counter example is AraBERT256-Flickr8k, which marginally
outperformed AraBERT32-Flickr8k on BLUE-3,4, ROUGE-L and CIDER.

All of our trained models showed similar scores in all categories. The AraBERT models
trained on Arabic labels in general give slightly better scores than GigaBERT models trained
on English labels. From this result, we conclude that a pure Arabic dataset (with Arabic la-
bels) is to prefer, but do not exclude the possibility of pursuing bilingual captioning models
in the future. As for the MUSE distributions shown in Figure 4.7, we see higher mean scores
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for models trained on Flickr8k, but also a slightly higher variance in comparison to mod-
els trained on COCO. We conclude that this observation is caused by the bias between the
Flickr8k train- and test-split, as discussed in Section 5.5.2.

From the human evaluations, we see that MUSE with a cut-o� is a good measure for how
well the model aligns object semantics given an image: An average THUMB score of 4.25 with
a MUSE cut-o� greater than 0.881, see Table 4.4, and an average THUMB score of 2.67 with a
MUSE cut-o� less than 0.502, see Table 4.5. It would be interesting to plot the MUSE score of
a candidate sentence against the recall of objects from that image, or the human evaluation.
This way we could define more precise heuristic rules for “good” and “bad” MUSE scores.

For the large-scale experiments, we chose to not train ArabicBERT or mBert. Specifi-
cally, we deemed mBert to not produce good enough evaluation scores during training time.
ArabicBERT showed similar MUSE scores to AraBERT and could probably produce similar
evaluation scores for the final experiment, but because of time limitations and AraBERT’s
greater popularity, we chose to not continue with this model.

5.2 Lack of qualitative Arabic Data
OSCAR takes a large-scale pre-training approach. This approach di�ers from previous LSTM
approaches, which can achieve significantly higher results than a BERT-based model for a
small dataset on NLP tasks (Ezen-Can, 2020). The lack of qualitative data was a problem
throughout the whole project, since there is not enough Arabic caption data publicly avail-
able relatively to the task.

To our knowledge, Arabic Flickr8k published by ElJundi et al. (2020) is the only human
verified and publicly available Arabic caption dataset. Even though the dataset is human
verified, captions on some images are questionable. For example, the image shown in Figure
2.2 contains an Arabic reference caption:

�
ék. ñÓ I. »QK
 h. @ñÓ



B@ H. ñ»P hñË úÎ« Xñ�



@ Ég. P

“Black man on a sur�oard riding a wave”,

which is very semantically di�erent to the original English reference caption

“A man in black on a sur�oard riding a wave”.

Furthermore, the publicly available Arabic-COCO used is purely machine translated and
has to be verified by humans before employed in testing. The justification to why we still use
machine-translated data is that we rely on the BERT-based language models to handle the
grammar and syntax, while we count on the machine-translation model to correctly trans-
late salient objects. The failure to do so leads to failing in learning image-text semantic align-
ments. For example, in our dataset, mistranslated object labels can be found. Some nouns
are mistranslated into their homophone counterparts: “light” (noun) to “ �

é
	
®J


	
®

	
k” (adjective,
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bright; well-lighted), “block” (noun) to “ ©
	
JÓ” (adjective, to obstruct, or prevent someone or

something) and so on. Li et al. (2020) shows that OSCAR learning curves for fine-tuning
with object tags converge significantly faster than the methods without tags. In other words,
high quality labels are crucial in image-text alignment for VL-pretrained models.

However, it is worth noting that to reach state-of-the-art English captioning results, it is
not enough to translate and verify all of COCO captions and Flickr30k (559k+145k captions
on 112k+29k images in total). The OSCAR+ model (Zhang et al., 2021) is trained on additional
VL-datasets, such as 2.5M question-answer pairs for VQA.

5.3 Minimal pre-processing of data
During this project, we applied no pre- or post-processing of the Arabic raw text. This could
have a negative e�ect on the performance of our models and the final results. In their Arabic
image captioning work, ElJundi et al. (2020) writes:

It is crucial to clean and pre-process our data before feeding it to any model
because ‘garbage in, garbage out’...

They followed Arabic pre-processing techniques recommended by Shoukry and Rafea
(2012):

1. Remove (harakat) diacritics.

2. Normalize the hamza ( Z) on characters (for example to distinguish between a glottal
stop and a mere vowel, hamza is usually added to letter Alif ( @ ) diacritically, either
above (



@) or below ( @



)).

3. Normalize some word ending characters, such as taa marbouta ( �
è) and ya’ maqsoura (

ø



).

4. Remove punctuation as well as non-Arabic letters.

It is hard to say how this text processing scheme applied on our work would a�ect the
final scores, but we think that a pre-processing scheme similar to the one above could give
our models better performance. From the context of pre-processing point 2., our candidate
caption output already seems to be hamza-normalized (i.e. all



@ or @



→ @), while reference

captions still contains extra hamzas on them. During evaluation, this of course a�ects the
mean MUSE scores negatively, since the similarity function between symbols



@, @



or @ produces

MUSE scores less than 1.
Another kind of Arabic text processing is sub-word units segmentation used in training

some of the AraBERT models released by Antoun et al. (2020). The authors reduce the model
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vocabulary by segmenting words into into stems, prefixes and su�xes. For instance, “ �
é

	
ªÊË @ -

Alloga” becomes “ �
è+ 	

©Ë+ È@ - Al+ log+ a”. Since we chose bert-base-arabertv02, which is trained
on non-segmented text, we did not use subword segmentation. Nonetheless, it would be
interesting to see how segmentation applied to the candidate and reference captions would
a�ect the evaluation scores.

5.4 Improved evaluation scripts
As stated before, we used the COCO Caption evaluation API for calculating most of the
scores (BLEU-1,2,3,4, ROUGE-L, METEOR, CIDEr and SPICE). Out of all these metrics,
SPICE does not seem to increase enough during training. On COCO with 5 reference cap-
tions, SPICE scores are generally in the range of 0.15-0.20, while our SPICE scores are in the
0.03-0.05 range.

We conclude that the out-of-the-box SPICE evaluation script is not compatible with the
Arabic input. A way to fix this problem is to replace the Stanford Scene Graph Parser with
an Arabic parsing pipeline, as mentioned in Section 3.8. The SPICE module uses Stanford
CoreNLP for dependency parsing, which to this day does not support Arabic dependency
parsing. However, a newer software created by the Stanford NLP Group, called Stanza,
does support Arabic dependency parsing and could potentially be used to calculate SPICE
scores. After these findings, we still chose to include SPICE in this report, since it is a well-
established measure for image captions. With invalid SPICE scores, MUSE is the only metric
that is purely semantics based.

The BLEU-1,2,3,4, ROUGE-L, METEOR and CIDEr scores are n-gram based and should
work fine with Arabic input, though still penalized by the morphological complexity of the
Arabic language, as discussed in Section 3.8.1. However, one question that remains is how
n-gram mapping between candidate and reference captions are a�ected by the concatenative
system of the Arabic language. It would be worth exploring how subword segmentation
pre-processing, as described in the previous section, could improve the correlation between
evaluation scores and human judgments.

We conclude that the state of caption evaluation tools today works fine with the Ara-
bic language, but that we need more Arabic-specific tools to improve correlation between
evaluation scores and human judgments.

5.5 Improved training
In the light of what has been discussed above, we propose further improvements we wish
to apply, but that are outside the time frame of this project. We begin with proposing some
direct improvements to our model, and then discuss the class imbalance between the datasets
and how to counter it. Finally, we propose another angle to the Arabic image captioning
problem worth exploring.
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5.5.1 Direct improvements
Some direct improvement could be to initialize our models on a larger model with more
parameters, for example bert-large-arabertv02. Another initialization worth trying out is
XLM-RoBERTa, a pre-trained multilingual language model that is shown to significantly
outperform multilingual BERT (mBERT) on a variety of cross-lingual benchmarks (Conneau
et al., 2019). We made a quick initialization with XLM-RoBERTa (xlm-roberta-base) and
showed that the model is not compatible with OSCAR out-of-the-box. It would be worth
exploring possibilities to make XLM-RoBERTa OSCAR-compatible in the future.

A more extensive experimentation of the hyperparameters could also be made. Instead
of only fine-tuning the initial learning rate η, we could in the future explore di�erent learn-
ing rate schedules, with warm-up steps and di�erent learning weight decays. We made grid
search optimization for the learning rate on batch sizes 32 and 256, but with more powerful
hardware, future experiments could try di�erent learning rates on even higher batch sizes.
Theory tells us that larger batch sizes allows computational speedups from the parallelism of
GPUs. However, it is well known that too large batch sizes will lead to poor generalization.
In our experiments, we obtained better scores for training on smaller batch sizes (32), with
few exceptions.

One part of the captioning fine-tuning described in the OSCAR paper Li et al. (2020)
that we did not explore was self critical sequence training (SCST) (Rennie et al., 2017). By
applying CIDEr optimization (see Section 3.6.3) to our trained captioning models, we could
increase evaluation scores even higher.

5.5.2 Dataset imbalance
Our experiments highlight another problem with our datasets: The data imbalance between
Arabic-COCO and Flickr8k. These datasets are unbalanced in terms of data size, object vo-
cabulary, and the number of annotations of each image. Arabic-COCO contains 89k images
and 432k captions, while Flickr8k contains 6k images and 18k captions. The consequence
of this size imbalance is that our model, when trained on both datasets, will have a bias to-
wards the bigger one. This imbalance can be combated by sampling the smaller dataset with
a sampling factor N > 1 to compensate.

The Arabic-COCO and Flickr8k vocabularies to label objects have quite di�erent sizes
and it shows in the final scores. By counting the unique object classes detected during image
feature extraction, we found 495 unique classes in Arabic-COCO, 1101 unique classes in the
train-split of Flickr8k, and an intersection of 242 classes between these two. In other words,
although significantly smaller than its COCO counter part, Flickr8k contains a much richer
and diverse set of objects. If we do not take this diversity into consideration, object align-
ments during training will not be su�cient for producing valid captions on the validation
and test sets. Since both the validation and test sets are sampled from the same Flickr8k dis-
tribution as the train set, we expect a model trained on the train set to outperform a model
trained on a poorer object vocabulary. We see this in the results, with models trained on
Flickr8k outperforming models trained on bigger datasets. Table 5.1 shows the intersection
between the sets of unique classes for all datasets used. Here we see that Flickr8k train-split
cover 97.5% of Flickr8k test-split objects, while Arabic-COCO only covers 22.5%.
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Object classes Flickr8k Validation (816) Flickr8k Test (788)
Flickr8k Train (1101) 792 (97.1%) 768 (97.5%)
Arabic-COCO (495) 179 (21.9%) 177 (22.5%)

Arabic-COCO ∪ Flickr8k Train (1354) 794 (97.3%) 773 (98.1%)

Table 5.1: Cardinality of intersections between di�erent training
datasets vs validation and test datasets. The table also shows the cov-
erage percentage for each validation and test set. Note that the last
row shows a slight improvement in coverage, but does not account
for the dataset size imbalance between Arabic-COCO and Flickr8k.
Also note that combining Arabic-COCO and Flickr8k only con-
tributes with two more classes compared to only using Flickr8k on
the validation set. In this case the two object classes were “Co�ee
table” and “Kettle”.

5.5.3 Pre-training Arabic OSCAR
Our experiments with GigaBERT show that training Arabic captions on English labels is a
working approach, which enables future language agnostic OSCAR models. Due to the lack
of qualitative Arabic data, we suggest to pre-train a bilingual model, for example GigaBERT,
on the same corpus as OSCAR+ (Zhang et al., 2021) (5.65M Images, 2.5M QAs, 4.68M cap-
tions and 1.67M pseudo-captions). The goal with this pre-trained model is to create a shared
semantic space for object features and English object labels. By fine-tuning this pre-trained
model on Arabic captioning data, we then bridge detected English labels into Arabic cap-
tions. Finally, the model should be fine-tuned using CIDEr optimization according to the
recipe of Li et al. (2020).

5.6 Future work
Aside from the further work described in the previous section, we hope to see many contri-
butions to the field of Arabic image captioning in the closest future.

As addressed in previous sections, machine translated Arabic labels should be verified
by humans before further training on the datasets. This task should not be too expensive
since it is 1,594 labels from the visual genome label map in total, but could greatly improve
training. Secondly, the lack of qualitative Arabic data should be solved by translation and
verification of all COCO captions, and then making the resulting dataset publicly available.
As a suggestion, one could follow a crowd sourcing procedure as described by Al-muzaini
et al. (2018), which includes some of the instructions that were used in the creation of COCO
captions, and additional instructions specific to the Arabic language. This would create a new
benchmark Arabic captioning dataset that we could train and test our models on.

Furthermore, we hope to see improved evaluation scripts. As discussed in Section 5.4,
we need more tools for measuring the semantic correlation between candidate and reference
captions. The first step would be to implement an Arabic dependency parser compatible with
SPICE, see Section 5.4. Also, it would be interesting to plot the MUSE score of a candidate
sentence against the recall of objects from that image or the human evaluation score. This
way, we can define heuristic rules for MUSE evaluation in future experiments.
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5.7 General comments
This section is dedicated to topics we think did not get enough space in this report, but still
deserves to be mentioned and is relevant to the subject.

5.7.1 Machine translation vs end-to-end captioning
One might argue that machine translation is good enough to be directly applied to English
state-of-the-art captioning, and that our end-to-end approach is redundant. The idea of
an end-to-end captioning model is to generate more natural, native, results and eliminate
the sources of error that might accumulate with machine translation. Machine translated
captions are not reliable because of the many contextual errors Google Translate performs.
For example, few machine translated captions contains a word that was translated literally
and out of context, which makes the entire Arabic sentence incoherent.

The results of Jindal (2017) show that generating Arabic captions directly in one stage,
produced superior results to a two stage English caption+Arabic translation process. To con-
firm that this is the case for our models, we should:

1. Fine-tune a OSCAR+ model on the English Flickr8k dataset.

2. Generate candidate test captions on our trained model.

3. Machine translate English candidate captions to Arabic.

4. Compare evaluation of translated captions with our directly generated Arabic cap-
tions.

ElJundi et al. (2020) did a similar experiment in their article, where they indeed con-
firmed that directly generated captions outperformed all BLEU scores of translated captions.
These results confirm that an end-to-end approach is superior to the current state of ma-
chine translation, and that further development of end-to-end Arabic captioning is worth
pursuing.

5.7.2 Language Agnosticism
Beside the Arabic datasets and the Arabic specific BERT used for initialization, all of the
techniques in this report can be used for any human language. Our experiments confirm that
OSCAR as described by Li et al. (2020) can be applied on other languages than English, and
that a cross-lingual approach shows a lot of potential for future pre-trained models.

5.8 Conclusion
This work focused on Arabic image captioning using pre-trained bidirectional transformers.
With this study, many conclusions can be drawn.

Firstly, we presented a method to adapt English state-of-the-art captioning models to
other languages through public dataset benchmarks. Furthermore, we achieved results better
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5.8 Conclusion

than the previous work on the Flickr8k dataset by ElJundi et al. (2020). We also proposed
working configurations and heuristics for hyper parameters in future experimentation on
our proposed models.

Throughout this project, we gained many problem-specific insights about Arabic image
captioning. The most prominent of them is that beside the lack of well-annotated datasets,
the ones that are publicly available are very imbalanced in terms of object vocabulary and
quality.

We conclude that the state of caption evaluation tools today works fine with the Ara-
bic language, but that we need more Arabic-specific tools to improve correlation between
evaluation scores and human judgments. This is especially true when it comes to semantics
correlation, where, as of today, we only have MUSE.

We showed that pre-processing is not necessary for good caption generation, but we hy-
pothesize that a pre-processing scheme similar to the one described in Section 5.3 could give
our models a better performance.

We hope that our work will be useful for future Arabic image captioning models, and
hope to see many contributions to the field in the closest future.
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Appendix A

Experiment Hyperparameters

English vs Arabic labels

All experiments were trained and validated with the Flickr8k train- respective val-split. Table
A.1 shows the exact hyperparameters for the experiments.

Model Train Object labels Learning rate Batch size #Epochs
GigaBERT Flickr8k eng/ar 1e-4 32 30

mBERT Flickr8k eng/ar 1e-4 32 30

Table A.1: Hyperparameters used for the English vs Arabic labels
experiments.

Learning curve

All experiments were validated with the Flickr8k val-split and trained on Arabic labels. Table
A.2 shows the exact hyperparameters for the experiments. Grid search optimization was
made on AraBERT and GigaBERT in the interval η ∈ [1e−5, 7e−5] and a step size of 1e−5.

Model Train % of dataset Learning rate Batch size #Epochs
AraBERT Flickr8k 50/75/100 1e-4 32 30

Arabic-BERT Flickr8k 50/75/100 1e-4 32 30
GigaBERT Flickr8k 50/75/100 1e-4 32 30

Table A.2: Hyperparameters and datasets used for the learning curve
experiments.

59



A. Experiment Hyperparameters

Large scale
All experiments were validated and tested with the Flickr8k test- respective val-split, and
trained on Arabic labels. Table A.3 shows the exact hyperparameters for the experiments.

Model Train Object labels Learning rate Batch size #Epochs

AraBERT

Flickr8k ar 3e-5 32 30
Arabic-COCO ar 5e-5 32 50
Arabic-COCO+Flickr8k ar 3e-5 32 50
Flickr8k ar 5e-5 256 30
Arabic-COCO ar 9e-5 256 50
Arabic-COCO+Flickr8k ar 9e-5 256 50

GigaBERT

Flickr8k eng 3e-5 32 30
Arabic-COCO eng 3e-5 32 50
Arabic-COCO+Flickr8k eng 3e-5 32 50
Flickr8k eng 9e-5 265 30
Arabic-COCO eng 9e-5 265 50
Arabic-COCO+Flickr8k eng 9e-5 256 50

Table A.3: Hyperparameters and datasets used for the large scale
experiments.
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Appendix B

Complementary Results

Table B.1 shows scores for all models trained during the last experiment.

Model Test set B1 B2 B3 B4 ROUGE-L METEOR CIDER MUSE
Jindal (2018) Flickr8k 0.658 0.559 0.404 0.223 - 0.201 - -
Al-muzaini et al. (2018) COCO & Flickr8k 0.462 0.260 0.190 0.080 - - - -
Afyouni et al. (2021) COCO 0.649 0.413 0.241 0.136 0.470 0.408 - 0.78
ElJundi et al. (2020) Flickr8k 0.332 0.193 0.105 0.057 - - - -
AraBERT32-Flickr8k

Flickr8k

0.391 0.246 0.150 0.092 0.331 0.314 0.415 0.671
AraBERT32-COCO 0.365 0.221 0.129 0.0715 0.31 0.317 0.36 0.669
AraBERT32-COCO+Flickr8k 0.358 0.216 0.127 0.0715 0.317 0.316 0.364 0.661
AraBERT256-Flickr8k 0.387 0.244 0.151 0.093 0.334 0.312 0.428 0.668
AraBERT256-COCO 0.355 0.211 0.122 0.069 0.303 0.313 0.335 0.665
AraBERT256-COCO+Flickr8k 0.339 0.204 0.12 0.0686 0.302 0.31 0.339 0.655
GigaBERT32-Flickr8k 0.386 0.241 0.144 0.0827 0.331 0.315 0.403 0.669
GigaBERT32-COCO 0.36 0.215 0.124 0.0708 0.308 0.311 0.344 0.668
GigaBERT32-COCO+Flickr8k 0.362 0.216 0.127 0.0675 0.312 0.308 0.359 0.661
GigaBERT265-Flickr8k 0.376 0.235 0.141 0.0803 0.322 0.313 0.385 0.664
GigaBERT265-COCO 0.339 0.198 0.113 0.062 0.287 0.306 0.312 0.662
GigaBERT265-COCO+Flickr8k 0.365 0.217 0.128 0.0705 0.315 0.309 0.373 0.662

Table B.1: Our model scores compared to previous models. The
highest scores on our test-split are marked in bold. Of all the pre-
vious ones, only the model by ElJundi et al. (2020) uses the same
test-split as us. Other test splits are unknown.

Figure B.1 shows training statistics for the models AraBERT32-Flickr8k, -COCO and -
COCO+Flickr8k. Figure B.2 shows training statistics for the models GigaBERT32-Flickr8k,
-COCO and -COCO+Flickr8k.
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B. Complementary Results

(a) Training and validation losses

(b) Evaluation scores

(c) MUSE scores

Figure B.1: (a) Training and validation losses for AraBERT32-
Flickr8k, -COCO and -COCO+Flickr8k (b) Respective evaluation
scores over all epochs. (c) Mean MUSE scores for all captions over
all epochs.
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(a) Training and validation losses

(b) Evaluation scores

(c) MUSE scores

Figure B.2: (a) Training and validation losses for GigaBERT32-
Flickr8k, -COCO and -COCO+Flickr8k (b) Respective evaluation
scores over all epochs. (c) Mean MUSE scores for all captions over
all epochs.
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Arabisk bildtextgenerering med hjälp av
förtränande transformer-modeller

POPULÄRVETENSKAPLIG SAMMANFATTNING Jonathan Emami

Automatisk bildtextgenerering är idag ett utmanande problem inom datorseende och
naturlig språkbehandling. Engelsk bildtextgenerering har sett stora framsteg de
senaste åren, medan forskning på arabisk bildtextgenerering har hamnat efter. I
detta examensarbete har vi utvecklat och utvärderat flera modeller för arabisk bild-
textgenerering, alla initierade på förtränade transformer-modeller.

Bildtextgenerering har många olika tillämpningar,
exempelvis effektiv bildsökning, auto-arkivering
och som stöd för synskadade. De bästa bild-
textgeneringsmodellerna idag följer en kodar-
avkodar arkitektur:

1. Extrahera den viktigaste informationen om
bildens olika regioner m.h.a. en objektdetek-
tor, t.ex. en CNN-kodare.

2. Generera en mening från den extraherade
vektorn m.h.a. en språkmodell, t.ex. en
RNN-avkodare.

I detta examensarbete använde vi förtränade
transformer-modeller för att initialisera våra mod-
eller för bildtextgenerering. Därefter finjusterade
vi modellerna genom att träna dem på bild-text
par med en inlärningsmetod som heter OSCAR.
Denna inlärningsmetod använder sig av objekttag-
gar, detekterade i bilden, som ankarpunkt för att
underlätta inlärningen av bild-text semantik.
Vårt examensarbete handlade om att utforska

prestandan hos fyra olika transformer-modeller på
ett bildtextdataset. De fyrade testade modellerna
var Multilingual BERT, AraBERT, ArabicBERT
och GigaBERT.
Våra resultat visar på bra inlärningsförmåga för

alla våra modeller, men att AraBERT fick bättre
evalueringspoäng. Figuren visar en bildtext gener-
erad från AraBERT tränad på datasetet.
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Dessutom visade vi att det är möjligt att få bra
resultat genom att träna flerspråkiga transformer-
modeller, som GigaBERT, på arabisk bildtext
med engelska objekttaggar. Däremot drar vi slut-
satsen att en modell tränad på ett rent arabiskt
dataset, med arabiska objekttaggar, presterar bät-
tre.
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