
Depth of field post-processing using
neural networks

A master’s thesis at the faculty of engineering

Otto Holmström
otto.holmstrom@hotmail.com

Lund University

Examiner
Andreas Langer

Supervisor
Carina Geldhauser

March 17, 2022

Abstract

It is possible to create images from a computer model closely resembling those taken with a
physical camera. To improve the photo-realism and perceived quality of a rendered image,
it is often desireable to add realistic effects that do not appear in computer graphics due
to the camera model. One of these effects is depth of field, where a physical camera with a
lens can only focus at one specific distance in a scene, making the rest of the scene appear
blurry. This is opposed to a rendered image, where the entire scene appears sharp.

In this thesis work, it is investigated if a neural network is able to replicate the depth
of field effect in computer rendered images, when given an image and the distance from
the camera of objects in the image. Three neural networks based on the same structure
are created and studied, and it is found that the simplest model fails to retain background
information in the images while the most complex model manages to replicate the depth of
field effect, with an average PSNR of 43.12 and average SSIM of 0.987.

1

Acknowledgments

The thesis work was carried out at ARM Sweden, over the period September 2021 to Febru-
ary 2022. I would like to thank my supervisor at ARM Alexander Hansson for his invaluable
support throughout the thesis process. A big thanks also goes out to Mats Ekström for var-
ious creative ideas and continuous support, and to the machine learning engineers at ARM
for their fruitful feedback in model design.

I would also like to thank my university supervisor Carina Geldhauser for her feedback
in the thesis writing process, and for keeping me somewhat on track with the academic
process.

2

Contents

1 Introduction 5
1.1 Problem formulation . 5

2 Theory 6
2.1 Camera optics and depth of field . 6

2.1.1 Camera parameters . 6
2.1.2 Circle of confusion . 8
2.1.3 Depth of field . 9
2.1.4 The pinhole camera . 10

2.2 Graphics rendering and post-processing . 11
2.2.1 Rendering . 11
2.2.2 Post Processing . 11
2.2.3 Depth of Field as a post processing effect 12

2.3 Artificial neural networks . 15
2.3.1 Fully connected network layers . 15
2.3.2 Convolutional layers . 16
2.3.3 Loss functions and backpropagation 17
2.3.4 Training of neural networks . 18
2.3.5 Skip connections and U-nets . 19

2.4 Image quality measures . 21
2.4.1 MSE - Mean squared error . 21
2.4.2 PSNR - Peak signal to noise ratio . 21
2.4.3 SSIM - Structural similarity index measure 22
2.4.4 Delta E* . 23

3 Method of work 25
3.1 Data generation . 25

3.1.1 Unity game engine . 25
3.1.2 Camera parameters . 26
3.1.3 Data capture . 28

3.2 Network design . 29
3.3 Model training . 35
3.4 Other analysis . 35
3.5 Delimitations . 36

4 Results 37
4.1 Model M1: one up/downsampling pair . 38
4.2 Model M2.1: two up/downsampling pairs, maximum 128 channels 40
4.3 Model M2.2: two up/downsampling pairs, maximum 96 channels 43
4.4 Studying a scene not used for training . 45

5 Discussion 47

6 Future work 49

3

Abbreviations

CoC - Circle of confusion

DoF - Depth of field

FLOPs - Floating point operations

GPU - Graphics processing unit

MSE - Mean squared error

NN - Neural network

PSNR - Peak signal to noise ratio

SSIM - Structural similarity

ReLU - Rectified linear unit

4

1 Introduction

Using computer graphics, it is possible to generate images from a software model that closely
resemble images with a physical camera. These software models contain many abstractions,
approximations and optimizations to render images in a reasonable time, and it is possible
to tune the complexity of the model to balance rendering time against image quality. After
generating an image, it is often desirable to improve the perceived quality of the content in
a process called post-processing, by sharpening, blurring or denoising parts of the image to
mention a few common post-processing effects.

Camera lenses can only focus at a defined distance at a time, and as such a photo taken
of a scene with objects at different depths will not be able to focus on all objects at once.
From this concept, the depth of field is the distance from the camera at which objects appear
in focus, and the depth of field effect is the dynamic blurring of objects in a scene depending
on the distance to the camera, also known as depth [1]. The physics behind depth of field
are touched more upon in section 2.

Post processing effects can be complicated to compute for an entire image and in sit-
uations where the total image generation time is critical, rendering and post processing
included, such as real time rendering in video games, post processing effects may be tuned
down or completely disabled to reduce the total rendering time. Existing commonly avail-
able solutions show that neural networks have the potential to assist image rendering by
sharpening or upscaling rendered images, improving the total rendering time, or improving
the final image quality [2].

This thesis aims to investigate using a neural network model to emulate the depth of
field effect in rendered images. For this, three neural networks of different complexities are
created and trained on a dataset of images with and without depth of field, along with 3D
scene information. It is found that the simplest model fails to preserve the background color
in test images, while the most complex model is able to replicate the depth of field effect
with very high fidelity, achieving an average PSNR score of 43.12 and average structural
similarity of 0.987 over the test data.

1.1 Problem formulation

The thesis work stems from the question: can a depth of field effect be replicated, or
approximated using neural networks?

To answer this question, there are three main points that are considered. Firstly, the
type of data to be used in these neural networks is analyzed and the generation of such data
is studied. Secondly, the type and structure of neural networks applicable to the problem
are investigated. Finally, a comparison between different image metrics that can be used to
evaluate the quality of the networks is made.

5

2 Theory

In this section, the physics behind depth of field are presented in the subsection Camera
optics and depth of field. Graphics rendering and post-processing will elaborate on image
rendering and the application of a post-processing effect on a rendered image. Artificial
neural networks will touch on the theory behind the machine learning used in this work.
Image quality measures will explain the mathematical models used to evaluate the quality
and fidelity of the results from the machine learning model.

2.1 Camera optics and depth of field

In a pure mathematical setting, a camera is a tool that projects points in a 3D scene to a
2D plane (the image plane). The camera consists of two main elements that affect the way
objects appear on the image plane: a lens that focuses light rays onto the image plane and
an aperture that limits the number of light rays reaching the image plane. In figure 1, the
basic structure of a camera is illustrated; light rays are emitted by the scene objects, pass
through the aperture, and are focused by the lens to be projected onto the image plane.

Image
planeAperture

LensScene
objects

Figure 1: The main elements of a camera

2.1.1 Camera parameters

Different lenses focus light more or less strongly onto the image plane; to classify lenses, the
focal length (a measure of distance) is used, where a lens with a shorter focal length bends
light rays more sharply. This effect is illustrated in figure 2, where the focal length of the
lens in figure 2a is longer than the lens in figure 2b.

6

Image
planeAperture

LensScene
objects

(a) A lens with a longer focal length

Image
planeAperture

LensScene
objects

(b) A lens with a shorter focal length

Figure 2: Comparing a light ray (in red) passing through two lenses with different focal
lengths

The aperture of the camera is characterized by the size of the opening, and as most
apertures are circular or near circular, the diameter of the circular opening is used to classify
the aperture. In photography, the aperture is often written as a ratio dependent on a lens’
focal length; for example, in a camera with a focal length f = 50mm and an aperture
diameter of D = 25mm, the aperture is denoted by the f-number : N = f/D. In this
example, we obtain N = 50mm/25mm = 2, and the aperture would be denoted as f /2.

The aperture of a camera system influences how blurry out of focus points in the scene
appear on the image plane. As light rays travel every possible path from a specific point
among the scene objects, through the camera and onto the image plane, a smaller aperture
leads to a smaller deviation in the path of different light rays, and therefore less blur. This is
shown in figure 3, where the wide aperture in figure 3a leads to the scene objects appearing
blurry as the light rays do not converge into one point on the image plane, while the scene
object in figure 3b will not appear blurry as the light rays do converge into a single point.

Image
planeAperture

LensScene
objects

(a) A scene captured with a wide aperture

Image
planeAperture

LensScene
objects

(b) A scene captured with a small aperture

Figure 3: Comparing light rays (in red) passing through different aperture sizes and the
resulting perceived blur

It is also possible to adjust the depth at which scene objects appear in focus; this is called
the focus depth, not to be confused with the focal length. By changing the distance between
the lens and the image plane, as illustrated in figure 4, the distance at which diverging light
rays are converged back into one point is changed. In figure 4a, this distance is short and as

7

Image
planeAperture

LensScene
objects

(a) Short distance between the image plane and
the lens.

Image
planeAperture

LensScene
objects

(b) Longer distance between the image plane and
the lens.

Figure 4: Adjusting the distance between the lens and the image plane changes the focus
distance.

such the focus distance is short, illustrated by the light rays in blue, while the scene points
appear blurry. In figure 4b, the lens is moved further away from the image plane and as such
the light rays from the scene objects converge into one point, meaning they are in focus.

2.1.2 Circle of confusion

In figure 3, it is shown how objects not in focus appear blurry on the image plane. To
measure how heavily blurred objects become, the circle of confusion is used: a point out of
focus will appear as a circle on the image plane, and the circle of confusion is then defined
as the diameter of this circle. Every point among the scene object thus has a corresponding
circle of confusion, becoming smaller the more in focus said point is. It is worth noting
that the circle of confusion does not correspond linearly with the distance from the point of
focus; instead, it can be calculated as a function of distance through the formula [3]:

ø(s) ≈ f2

N
· |df − s|
df · s

(1)

where ø is the circle of confusion, f is the focal length, N is the f-number, df is the focus
distance and s is the distance to the point in question.

8

0 1 2 3 4 5 6 7 8 9 10

Distance (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
ir
c
le

 o
f

c
o

n
fu

s
io

n
 (

m
)

10
-3 Circle of confusion as a function of distance to the camera

Figure 5: Circle of confusion as a function of distance

In figure 5, equation (1) is plotted with the parameters f = 40 mm, N = 2, and
df = 2.5 m. This shows an important characteristic: near-field blur, caused by scene
elements located before the focus depth is different from far-field blur, caused by scene
elements located after the focus distance. In fact, the circle of confusion of objects in the
near field tends to infinity, meaning that they become infinitely blurred as the distance to
the camera approaches zero, while the circle of confusion of points in the far field tends

towards the value f2

N ·df as the distance goes to infinity.

2.1.3 Depth of field

The concepts of focal range and aperture described in section 2.1.1, as well as circle of
confusion in section 2.1.2 affect the depth of field in an image. An approximation for
calculating the depth of field, meaning the distance between the nearest and furthest objects
considered to be in focus, can be calculated as follows [4, p. 58]:

DoF ≈ 2u2Nc

f2
(2)

where u is the distance to the scene objects in focus, N is the f-number, f is the focal
length and c is the minimum acceptable circle of confusion; c can be thought of as the
largest diameter of a circle on the image plane that can still be considered as a point by an
observer. The circle of confusion is therefore a subjective parameter that is not defined by
the camera, but rather by the observer of the image.

Analyzing equation (2), the depth of field is proportional to the f-number, meaning that
if the aperture is made wider, the depth of field is made more shallow. It is also observed
that the effect is inversely proportional to the square of the focal length.

9

An example of depth of field can be seen in figure 6, where the face of the cat that is
close to the camera appears in focus, while the tail of the cat or the background that is
further away from the camera appears out of focus.

Figure 6: Depth of Field effect causes the background in the image to appear blurry

2.1.4 The pinhole camera

The pinhole camera is a basic camera model consisting of an infinitely small aperture and no
lens. If an infinitely small aperture can be produced, only a single light ray per point among
the scene objects is able to reach the image plane, leading to points at any distance from
the camera being projected into single points on the image plane, meaning that all scene
objects appear in focus, albeit inverted; this is illustrated in figure 7. Therefore, a pinhole
camera does not exhibit a depth of field effect, which can also be seen through equation (2);
as the aperture is infinitely small, the f-number N is infinite, leading to an infinite depth of
field. In practice, a perfect pinhole camera is however impossible to build, partially since
an infinitely small aperture is not achievable, but also because a small aperture does not let
enough light pass through to create an image on a sensor. The pinhole camera is a useful
model in computer graphics however thanks to its simplicity due to there being no lens
needing to be modelled [5, p. 4-6].

10

Image
planeAperture

Scene
objects

Figure 7: The pinhole camera model with example light rays being shown in red

2.2 Graphics rendering and post-processing

In a computer, there is a long flow of data from an abstract 3D model through the different
computing elements to an image being presented, or rendered onto the screen. Depending
on the context, which could be browsing a web page or playing a computer game, this flow
differs; this section focuses on producing and outputting 3D content to a screen, such as in
a video game.

2.2.1 Rendering

To generate an image to be rendered on a screen, data that represents the 3D scene goes
through a rendering pipeline that processes the scene coordinates, projects them onto a 2D
plane, applies the desired colors and any desired special effects.

In the context of computer games, where it is desired to produce a minimum of 30 images,
often called frames, every second to create a smooth video experience, the rendering task is
offloaded to a graphics processing unit (GPU), a device specifically designed to efficiently
execute the mathematical operations involved in rendering scene objects. The result is the
GPU producing a 2D image of the scene that can be displayed on the screen.

To render images, the GPU produces extra information about the scene objects. This
is information like object depth or transparency, to make sure that objects behind a glass
window are shown properly for example. When a 2D image is completed, this extra infor-
mation is discarded as it is no longer needed, but it can be extracted if wanted, which is
shown in figure 8.

Finally, the camera model used when rendering usually boils down to using a projection
matrix to project 3D points onto a 2D plane [6]. This leads to the camera model behaving
in a similar way to the pinhole camera in section 2.1.4, and therefore rendered images do
not show any depth of field effect.

2.2.2 Post Processing

A rendered image lacks some effects seen in normal photographs, due to the simplified
camera model. To increase the perceived image quality and increase the photo realism,
these effects are reintroduced to a rendered image through mathematical approximations
and algorithms. Examples of post processing effects are [7] ambient occlusion where areas

11

GPU

3D scene
object

2D rendered
object

Extra
information

Object depth,

transparency, etc

Figure 8: The GPU processes 3D scene data to produce 2D rendered objects

not directly exposed to ambient light such as corners are darkened, bloom that gives the
appearance that light sources “glow”, depth of field, and motion blur where objects in
motion appear blurry.

When deciding on using post processing effects, it is necessary to determine the difficulty
of creating said effect; while it can significantly improve the visual quality of an image, it
also comes at the cost of computational power and excessive post processing can make a
game feel “choppy”.

2.2.3 Depth of Field as a post processing effect

As previously mentioned, depth of field is added to a rendered image as a post processing
effect. The intensity of the effect for each pixel in the image is dependent on the camera
parameters as well as the pixel depth, the latter of which can be obtained from the rendering
pipeline. The depth of field algorithm can then be described as [8]:

1. Computing the circle of confusions of all pixels

2. Sample and blur each pixel using a 2D filter

In all, these steps involve multiple sampling operations per pixel, implying an increase to
the overall rendering time of an image on the GPU. To achieve a photorealistic depth of
field effect, it is necessary to blur each pixel at a strength relative to its circle of confusion,
and there are no direct easy optimizations that can be made to the algorithm. Especially
problematic is the near-field blur; observing figure 5, the circle of confusion increases rapidly
the closer to the camera an object is, leading to a singular unblurred pixel affecting a big
part of the image which could take a long time to calculate (compared to the whole depth
of field algorithm). To prevent this a maximum circle of confusion limit can be applied,
preventing this extreme blurring, at the cost of some visual realism.

12

Computing the circle of confusion

Recall that the circle of confusion is the diameter of the circle that a point in the 3D scene
appears as on the 2D image plane. By using the depth information from the GPU, the circle
of confusion can be computed through a camera model using supplied camera parameters of
focal length and f-number, using equation 1. This results in an extra image channel where
pixels with depth closer to the focus distance have a smaller circle of confusion.

Sampling, blurring and reduction of artifacts

To emulate the blur of a camera, a 2D circular filter with evenly spaced sampling points
is used, as shown in figure 9. For each point in the 2D filter, the circle of confusion is
extracted. If the circle of confusion of the sample point is large enough to overlap the
current pixel, then an alpha value for the sample is computed as αs = 4

πc2 , where c is the
circle of confusion diameter, otherwise the sample point is not used as the object in this
sample should not be blurred into the current pixel. This is illustrated in figure 10 Here, it is
also necessary to check if the sample is in the foreground compared to the pixel; if an object
is partially occluded by another, the object in the background should not be able to blur
onto the other one where it is occluded. The computed alpha values are used to blend all
samples together: samples with higher circle of confusion, corresponding to larger blur, have
lower alpha values and less impact on the final color of the pixel. With the sampling step
complete, there might be artifacts in the resulting image such as noise or repeating circular
patterns instead of smooth blur. This arises from parts of the scene that are undersampled,
which can be mitigated by running a denoising path on the blurred image.

Figure 9: Example of a 2D filter with 49 sampling points that could be used for depth of
field.

13

Figure 10: Usage of a simple 2D filter for depth of field. The circle of confusion in the top
two sampling points cover the current pixel in yellow, and their color values are therefore
blended onto the current pixel.

14

2.3 Artificial neural networks

An artificial neural network is a mathematical model, loosely resembling the structure of
neurons in a brain. The model consists of many artificial neurons, organized into layers,
where data flows from one layer to the next. The first known such model was proposed by
Warren McCulloch and Walter Pitts in 1943 [9], and has since seen a lot of diverse research
and applications. Neural networks are a subclass of machine learning algorithms, meaning
that the model can compare a prediction it made on a certain input, and by comparing this
to an expected prediction make changes to the model based on some metric.

2.3.1 Fully connected network layers

In the simplest form, a neural network is simply a discrete function that from some input
xn of size n, produces an output ym of size m; it can be denoted f : xn → ym. Writing xn
and ym as column vectors, a simple fully connected neural network layer can be written in
matrix form as ym = W · xn + b, or

y1
y2
...
ym

 =

w11 w12 . . . w1n

w21
. . .

...
wm1 wmn

 ·

x1
x2
...
xn

+

b1
b2
...
bm

 (3)

The matrix W contains the weights of the layer, and the matrix b contains the biases of
the layer.

A simple full neural network can be created by chaining together a series of such matrix
multiplications, and the network can then be written as

y = Wn(Wn−1(Wn−2(...(W0 · x + b0)) + bn−2) + bn−1) + bn (4)

Figure 11 shows an example of a fully connected network with three layers, containing three,
four and two neurons each respectively.

Figure 11: A simple fully connected neural network

15

2.3.2 Convolutional layers

A convolutional layer is, as the name implies, a layer in the neural network that performs
a convolution operation on some input data. Convolutional neural networks (CNN), con-
taining convolutional layers, see a wide range of applications in image processing and image
classification. The convolutional operation can be applied to data of any input shape (1D,
2D, 3D), however with the use of images as input data, this section implies 2-dimensional
convolutional layers.

Many well-known established neural network models consist partially or fully of convo-
lutional layers, such as the “VGG” models for image recognition, or the “SRCNN” model
for image super resolution [10][11]. It has been shown that convolutional neural networks
are able to be trained to learn the different features of an image, for example edges, leading
to a vast range of computer vision applications [12][13].

The layer consists of a kernel K that convolve on the input I to create an output O:

O = (I ∗K) (5)

or in discrete form
O(i, j) =

∑
m

∑
n

I(m,n) ·K(i−m, j − n) (6)

In contrast from the fully connected layer, the number of parameters in a convolutional layer
is limited to those in the kernel as opposed to a full matrix. The kernel can be chosen to be
of any size and is reused over the whole input, which leads to lower memory consumption as
less parameters need to be stored. Figure 12 shows an example of a convolutional operation.

3

41

6

7 3

85

05

21

41

69

1

2 3

0
17

Figure 12: A 2x2 kernel applied on a 4x4 input to create a 3x3 output

Pooling

In the convolutional network, one wants to gradually reduce the size of the data flowing
through the network; for example, in a model designed to accept images of size 200 × 200
containing written digits, with 10 outputs corresponding to digits 0 through 9, the input
might be gradually reduced to a size of 100 × 100, then 50 × 50. To achieve this, pooling
operations are used, where the input is divided into small sections, and one value is extracted
from each section. This value could be calculated in any way, but most often a maximum
pooling is used, as shown in figure 13 where a 2×2 max-pooling operation is used to extract
the maximum value of each section and create an output of quarter the size of the input.

16

3

41

6

7 3

85

05

21

41

69

6

8 9

5

Figure 13: A maximum pooling 2x2 operation on a 4x4 input, generating a 2x2 output.

Activation functions

An activation function is a mathematical mapping altering the output of a neural network
layer. One use of activation functions is to rescale an output, for example by using the
function φ(x) = 1

1+e−x which maps the range [−∞,∞] to [0, 1].
A common activation function for convolutional neural network layers is the rectified

linear unit (ReLU). The function is computed as follows:

ReLU(x) = max(0, x) (7)

, in short returning the input if it is positive, otherwise 0. The function was proposed to
be used in neural networks by Glorot et al. in 2011, where it was shown to improve the
training performance of some networks.

As discussed in section 2.3.3, the derivative of all functions in a neural network is a key
parameter to the training process. This poses a problem for rectified linear units, as the
derivative does not exist when x = 0. This is addressed by explicitly defining the derivative
at x = 0 to be either 0 or 1.

2.3.3 Loss functions and backpropagation

The loss function of the neural network model is an abstraction for evaluating the perfor-
mance of the network, given an input, a predicted output and a corresponding expected
output. For use in neural networks, the loss function is any differentiable function C that
maps the predicted output y and expected output t to a single number.

Given a loss function, the neural network weights are updated using the derivative of the
loss function on the principle of gradient descent; the model is optimized to find a minima
in the loss function. In the simplest case of a fully connected network layer, the new weights
w′ij are obtained by subtracting the loss function derivative from the old weights wij .:

w′ij = wij − γ
∂C(y, t)

∂wij
(8)

Here, γ is a parameter called the learning rate, a small value that dictates the speed at
which the weights are adjusted. The loss function derivative in equation 8 is complicated to

17

calculate as is, but can be split up using the chain rule in a process called backpropagation:

w′ij = wij − γ
∂C(y, t)

∂y
· ∂y

∂wij
(9)

The derivative ∂C(y,t)
∂y is easy to compute as the loss function C is known in advance. The

derivative ∂y
∂wij

can be calculated once again using the chain rule: if the neural network is

described as in equation (4), it is split up as

∂y

∂wij
=

∂yn
∂yn−1

· ∂yn−1
∂wij

(10)

where yk is the output of layer k. Equation (10) is then repeated recursively through the en-
tire model, hence the term backpropagation. These concepts equally apply to convolutional
layers, where the only difference compared to fully connected layers is how the derivative
∂yn
∂yn−1

is computed.

2.3.4 Training of neural networks

Using repeated backpropagation, a neural network will approach a minima of the loss func-
tion. It is important to remember that the loss function is only evaluated on the training
data and that the quality of predictions on the training data does not have to be representa-
tive of the quality of prediction on other testing data. For example, a convolutional neural
network designed to identify pneumonia in x-ray pictures instead learned to identify which
physical machine in a hospital was used to take the x-ray, as patients with pneumonia are
often scanned on the same x-ray machine [14]. The model will always find the most optimal
way to minimize the loss function, and it is therefore imperative to consider all possible
correlations in the dataset.

Two other common issues in training neural networks are underfitting and overfitting
[15]. Underfitting occurs when the network cannot reach a low enough error on the training
dataset. This could be due to the network not being trained enough to properly learn the
characteristics of the data, or that the model does not have enough complexity and therefore
lacks the capacity to fully learn what is intended. Overfitting on the other hand implies
that the network has learned too much; it performs well on the training dataset but fails to
perform on a testing dataset. This usually occurs with a complex model that is trained for
a too long period of time, and thus learns all the desired characteristics of the dataset but
also extrapolates more characteristics in the training dataset that are not desirable.

Finding the right balance between model complexity and prediction error on the test
data while avoiding underfitting and overfitting is a long process, often including some trial
and error. To help prevent overfitting, it is possible to randomly alter the input images by
means of rotating, shifting, or zooming the input images, diversifying the training data. It
has also been shown that including so called “dropout” layers that with a set probability
remove some of the input data to the layer helps in reducing overfitting [16].

18

2.3.5 Skip connections and U-nets

Most commonly, neural networks are sequential, meaning that all data from one layer flows
into the next until the output, in sequence. There is however no restriction on how informa-
tion must flow through the model; for example, some network structures such as recurrent
neural networks use inputs from previous iterations to be able to analyze the context of a
word in a sentence, or to predict the next item in a sequence given a series of inputs [17].

In this thesis work, the idea of skip connections is central. The basic principle relies
on branching the path of network operations into two different branches, where different
operations are performed, to then combine these two paths together to form an output.
Figure 14 illustrates this principle. The input data is fed into two different operations; these

Input

Operation
1

Operation
2

Collection

Output

Figure 14: Branching logic in a neural network

can for example be different types of convolutional layers. The two paths are then merged
with some operation, this can be an addition or concatenation for instance. From this
collection, the output is obtained. A skip connection is obtained when one of the operations
in figure 14 is not implemented; on one branch the input is processed through a series of
neural network layers, and on the other branch the input “skips” over all the calculations
before being combined with the processed input. As presented in section 2.3.4, a more
complex model is harder to train and is more prone to overfitting, however the complexity
of the network might be needed for it to perform well on the dataset. Introducing skip
connections in a model has been proven to reduce the difficulty of training, and can lead to
better performance [18].

U-nets

The u-net is a neural network architecture proposed by Ronneberger et. al in 2015, intended
for image segmentation in the field of biomedicine [19]. It is constructed by a sequence
consisting of downsampling operations, followed by convolution layers, the two repeated
multiple times. The output from the convolutional layers is connected via skip connections
to an upsampling of the downsampled and then convolved data, where another convolutional

19

layer is applied. The result of the series of downsample/upsample operations is a structure
in the shape of an “U”, hence the name. In figure 15, the structure of a u-net with two
layers of depth is shown; it is however possible to design the network with any amount of
depth.

Input

Downsample

Convolution

Convolution

Downsample

Convolution

Upsample

Skip

Add
Convolution

Add

Upsample

Skip

Convolution
Output

Figure 15: An example of a u-net with two layers of depth, using addition to recombine the
skip connections

The downsampling operations remove information from the input data, and this is coun-
tered by using a large amount of feature channels, originally proposed to double for each
downsample. In contrary, the amount of feature channels is halved with the convolution
associated to each upsample. The result is a network architecture with high performance
for image segmentation that requires a relatively low amount of data to train on [19].

Backpropagation with skip connections

The method of backpropagation through a skip connection is dependent on the type of
collection used. In the case of addition, the operation can be written simply as

y = yskip + yupsample (11)

where yskip is the contribution from the skip connection and yupsample is the contribution
from the upsampling operation. Relating this to the general formula for backpropagation
presented in equation 10, one obtains

∂y

∂wij
=
∂yskip
∂wij

+
∂yupsample

∂wij
(12)

Backpropagation through skip connections is therefore extremely simple to compute.

20

2.4 Image quality measures

To evaluate the quality of a generated image compared to an expected image, image quality
measures need to be used. By taking two images, one generated by a neural network and the
other the predicted image, it is possible to quantify the difference between the two images
as a single number, which can then be used as a loss function for a neural network.

Different quality measures perform different calculations to estimate the total error in
the predicted image, and as such training a model with different image metrics will lead to
differing results. It has also been suggested that simpler metrics like PSNR do not correlate
well with subjective assessments of image quality, and that other algorithms are preferable
to use for evaluating image quality [20][21].

2.4.1 MSE - Mean squared error

The mean squared error between an expected image I and a predicted image P is defined
as

MSE =

m−1∑
i=0

(

n−1∑
j=0

[Iij − Pij]2) · 1

mn
(13)

If the two images are identical, the mean squared error is zero. It has the advantage of being
easy to compute, in terms of implementation and computational power.

2.4.2 PSNR - Peak signal to noise ratio

The PSNR of two images is closely linked to the mean squared error of two images, but also
incorporates the maximum possible value in the image. It is defined as

PSNR = 10 · log10

(
D2

MSE

)
(14)

where MSE is the mean squared error computed through equation (13) and D is the
maximal possible value of the image; usually 255 if the image is in RGB format. A lower
PSNR score corresponds to a lower image quality.

As the PSNR computes the logarithm of the inverted error, it is more representative of
smaller variations than the mean squared error. For example, with D = 1, consider the two
errors of MSE1 = 0.0001 and MSE2 = 0.0002. Computing the PSNR of these two errors,
one obtains:

PSNR1 = 10 · log10

(
1

0.0001

)
= 40 (15)

PSNR2 = 10 · log10

(
1

0.0002

)
≈ 37 (16)

A small difference in mean squared error is thus much more pronounced in PSNR.

21

2.4.3 SSIM - Structural similarity index measure

SSIM was proposed in 2004 by Wang et al. as a new image quality metric, based on the
assumption that subjective image quality is perceived not through the error of singular
pixels but instead through the similarity of different structures in the image [22].

Three different characteristics, luminance (l), contrast (c) and structure (s), are com-
puted over a small window of the image (typically 11×11) to get a local structural similarity.
By applying this window to every pixel on the image, it is possible to create an average
structural similarity of the entire image.

Given two windows x and y from two images, first the means (µx, µy), standard devia-
tions (σx, σy) as well as the covariance of both windows are computed:

µx =
1

N

N∑
i=1

xi, µy =
1

N

N∑
i=1

yi, (17)

σx =

(
1

N − 1

(
N∑
i=1

(xi − µx)

))1/2

, σy =

(
1

N − 1

(
N∑
i=1

(yi − µy)

))1/2

(18)

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy) (19)

From this, the three characteristics can be computed.
Luminance:

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1
(20)

Contrast:

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2
(21)

Structure:

s(x,y) =
σxy + C3

σxσy + C3
(22)

The structural similarity is finally computed as

SSIM = l(x,y)α · c(x,y)β · s(x,y)γ (23)

The constants C1, C2, C3 are given as

C1 = (k1L)2, C2 = (k2L)2, C3 = C2/2 (24)

where L is the maximum value of a pixel (usually 255), k1 = 0.01 and k2 = 0.03 usually,
and with α = β = γ = 1, the formula becomes

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(25)

22

When different types of noisy images are compared to a single noise-free image, the
structural similarity index measurement can grade these differently while the PSNR score
is identical, as proven by Wang et. al [22]. This implies that SSIM is more versatile at
identifying different kinds of image noise or artifacts, and that it is better suited as a loss
function for an image generating neural network.

2.4.4 Delta E*

Delta E is a metric for comparing the color accuracy between two images. It uses the
images represented in the three-channel L∗a∗b∗ (CIELAB) color space, and is defined as the
Euclidean distance between the points in the two images [23]:

∆E∗ =
√

(L∗2 − L∗1)2 + (a∗2 − a∗1)2 + (b∗2 − b∗1)2 (26)

The CIELAB color space has the advantage of being defined by three channels more closely
related to human color perception than RGB color: L∗ represents luminance while a∗ and
b∗ represent the opposite color pairs red-green and blue-yellow respectively.

Converting from RGB color to CIELAB color

To convert an image from RGB color space to L∗a∗b∗, first the image is transformed into a
third color space, CIEXYZ, by following the following steps [24]:

A gamma correction is applied to the (R,G,B) channels separately:

[R′, G′, B′] =

{
[R,G,B]/12.92 if [R,G,B] < 0.04045
[R,G,B]+0.055

1.055

2.4
else

(27)

and then the conversion is done through a matrix multiplicationXY
Z

 =

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

 ·
R′G′
B′

 (28)

From the XYZ values, the L∗a∗b∗ colors can be calculated as follows [23]:

First, divide the XYZ values by corresponding constants for RGB images:X ′Y ′
Z ′

 =

 X
95.047
Y
100
Z

108.883

 (29)

Then the L∗a∗b∗ colors are computed as

L∗ = 116f(Y ′)− 16 (30)

a∗ = 500[f(X ′)− f(Y ′)] (31)

b∗ = 200[f(Y ′)− f(Z ′)] (32)

23

where the function f is defined as

f(x) =

{
x1/3 if x > (24/116)3

841x
108 + 16

116 else
(33)

Due to the L∗a∗b∗ color channels being more closely related to human color perception
than RGB color, the Delta E is a good measure to evaluate the color accuracy of a generated
image, given a reference; a Delta E* of 2.3 or higher implies a noticeable color difference
[25]. Due to the complicated conversion from the RGB format, Delta E* is not suitable as
a loss function; it can however be useful as an evaluation metric.

24

3 Method of work

The method of work was split up in three main categories according to the problem de-
scription in section 1.1. The section data generation elaborates on the process of creating a
depth-of-field dataset, the section network creation explains the work and mindset behind
the creation of the neural network models, and the section model training describes the
work on loss functions as well as evaluating the model. Then, some alterations that were
made to the model structures or training process are enumerated in the section other anal-
ysis. Lastly, the main delimitations made during the thesis work are listed in the section
delimitations.

Three different models were created and to help differentiate between them, the code-
names M1, M2.1 and M2.2 are given to each model.

3.1 Data generation

The training data used was developed over the whole period of thesis work, to fulfill the
evolving requirements. At the beginning of the project, only a few images from a single
scene with a low amount of blur were needed as a feasibility check. This evolved over time
to a dataset with images from two different scenes, where the images contain both near field
and far field blur.

For an image to be used in the model, the following three data elements are required:

• The ground truth: The image with depth of field post processing applied. This image
has three channels for the red, green, and blue colors.

• The color : The image just before depth of field post processing is applied. This image
also has three channels for red, green, and blue colors.

• The depth map: For each pixel in the image, a value between 0 and 1 is assigned,
where pixels representing objects closer to the camera are assigned values closer to 1.
The depth map contains just a single channel.

All used images were generated at a resolution of 1920×1080. This has the disadvantage
of requiring more computational power than smaller images but allows to see more clearly
the effects of varying depth in one single image. The final dataset consists of 181 unique
generated images at the target resolution of 1920 × 1080 pixels with depth maps. From
these, 158 are used as training data and 23 are reserved as testing data for evaluation.

3.1.1 Unity game engine

Unity is a modern game engine, providing tools for a developer to create games more easily
for multiple platforms, such as computers and mobile phones [26]. It is highly customizable
and allows for quick implementations of post processing effects, including depth of field.
The Unity editor can be seen in figure 16.

Using scripts, it is possible to configure Unity to export image data before and after
depth of field post processing has taken place, as well as the corresponding depth map. The

25

datasets used in the thesis work were generated by loading different scenes into Unity and
exporting the needed data elements.

Figure 16: The Unity game engine editor window

3.1.2 Camera parameters

As shown in section 2.1.1, the aperture and the focal length of a camera are the main
parameters for the depth of field in an image. To illustrate the most general type of depth
of field, it was of interest to generate images that contain near-field blur close to the camera,
far-field blur at a long distance from the camera and an area in focus at a medium distance
from the camera. With some tuning, the internal camera was set to have a focal length of
f = 40, a f-number of f/1.4 and a focus distance of df = 2.5.

While the focal length and focus distance are measures of distance, Unity does not
provide a unit for these numbers. Figure 17 presents the same scene generated with differing
focus distance: figure 17a has camera parameters set as above and shows both near-field and
far-field blur, figure 17b shows only near-field blurring and 17c shows only far-field blurring.

In a more general setting, it could be possible to add the camera parameters as an input
to the model and thereby obtain a fully generalized model for depth of field. This was opted
against however, as this would probably have required a large amount of data with varying
camera parameters, that would be unfeasible to generate in the time frame of the thesis
work.

26

(a) Image with both near and far field blur

(b) Image with only near field blur

(c) Image with only far field blur

Figure 17: Different camera parameters give different depth of field

27

3.1.3 Data capture

Two different scenes were used for generating data, see figures 18 and 19 for examples of
images from each scene. These scenes contain a relatively small number of objects each and
using both scenes will help against the models overfitting on the elements on one scene. The
captured images are in the RGB color format, however these are transformed into another
color format, YUV, before use in the model. This color format consists of a luminance
channel, Y, and two color channels, U and V. The conversion between RGB and YUV
format can be simplified to a matrix multiplication [27]:YU

V

 =

 0.299 0.587 0.114
−0.14713 −0.28886 0.436

0.615 −0.51499 −0.10001

 ·
RG
B

 (34)

This 3 × 3 conversion matrix is invertible, so the operation of transforming YUV data into
RGB data is also a matrix multiplication, using the inverse of the 3 × 3 matrix above.

Example data

Figure 18 shows one image of the dataset from the first scene, a small village with two
houses and some rocks and figure 19 shows one image of the dataset from the second scene,
an indoor room with palm trees and some golden spheres.

(a) Depth data (b) Color data (c) Ground truth

Figure 18: Example data from the first scene

(a) Depth data (b) Color data (c) Ground truth

Figure 19: Example data from the second scene

28

3.2 Network design

Three different neural networks were implemented, all based on the principle of u-nets
described in section 2.3.5. One of these models had a depth of one, meaning one down-
sample/upsample pair, while the two others had a depth of two, implying two pairs of
downsample/upsample operations. At the core of all three models is a “double convolu-
tion”, consisting of a convolutional layer, followed by a rectified linear unit (ReLU; this
layer maps negative inputs to 0 and positive inputs to themselves), followed by another
convolutional layer and finally another ReLU.

Every model accepts an input of 4 channels, where the 3 first channels contain the image
data, and the final channel is the image depth map. The networks have 3 output channels
to produce a blurred output image.

Model M1: one upsampling/downsampling pair

The first model to be implemented in the thesis work was the simplest one in terms of
structure and parameters. The input, consisting of 4 channels, is convolved into 32 channels,
and then a maximum pooling downsampling operation is used to reduce the input resolution
by 1/4. A total of three convolutional operations are applied on the downsampled data,
increasing the total amount of channels to 64. This is then upsampled through bilinear
interpolation back to the input resolution, where these layers are concatenated with a skip
connection to the input. Finally, the data is reduced from 96 channels to 3 output channels,
through 3 different convolutional layers. A diagram of the model can be seen in figure 20,
and the model parameters can be seen in table 1.

Conv2D +

ReLU

4x
19

20
x1

08
0

MaxPool2D

32
x1

92
0x

10
80

32
x1

92
0x

10
80

32
x9

40
x5

60

64
x9

40
x5

60

64
x9

40
x5

60

Conv2D, 1x1

64
x9

40
x5

60

Bilinear

upsample

Skip

96
x1

92
0x

10
80

32
x1

92
0x

10
80

32
x1

92
0x

10
80

Conv2D, 1x1

3x
19

20
x1

08
0

Concat

Figure 20: Diagram of the model M.1.

29

Table 1: Model M1 with depth 1

===

Layer (type:depth-idx) Output Shape Param #

===

DoubleConv: 1-1 [1, 32, 1920, 1080] --

| Sequential: 2-1 [1, 32, 1920, 1080] --

| | Conv2d: 3-1 [1, 32, 1920, 1080] 1,184

| | ReLU: 3-2 [1, 32, 1920, 1080] --

| Sequential: 2-2 [1, 32, 1920, 1080] --

| | Conv2d: 3-3 [1, 32, 1920, 1080] 9,248

| | ReLU: 3-4 [1, 32, 1920, 1080] --

|-UnetDown: 1-2 [1, 64, 960, 540] --

| Sequential: 2-3 [1, 64, 960, 540] --

| | MaxPool2d: 3-5 [1, 32, 960, 540] --

| | DoubleConv: 3-6 [1, 64, 960, 540] 55,424

| Conv2d: 1-4 [1, 64, 960, 540] 4,160

+----UnetUp: 1-6. [1, 32, 1920, 1080] --

| Upsample: 2-7 [1, 64, 1920, 1080] --

DoubleConv: 2-8 [1, 32, 1920, 1080] --

| Sequential: 3-11 [1, 32, 1920, 1080] 27,680

| Sequential: 3-12 [1, 32, 1920, 1080] 9,248

UnetOut: 1-7 [1, 3, 1920, 1080] --

| Sequential: 2-9 [1, 3, 1920, 1080] --

| | Conv2d: 3-13 [1, 3, 1920, 1080] 99

===

Total params: 107,043

Trainable params: 107,043

Non-trainable params: 0

30

Model M2.1: two upsampling/downsampling pairs, maximum of 128 channels

The second model to be implemented builds on the first model, by having the same structure
for the first upsampling/downsampling pair. After the first downsampling operation, the
input is downsampled again to effectively 1/16 of the input resolution, however with a total
of 128 channels. This data is then upsampled and convolved twice, each time with a skip
connection from the corresponding input just before downsampling. There is once again a
series of 3 convolutional layers that reduce the upsampled output down to 3 output channels.
The model parameters can be seen in table 2, and a diagram of the model can be seen in
figure 21.

Comparing the model with depth 1 and this model with depth 2, the first model contains
107403 parameters while this one contains 488419 parameters; adding one layer of depth to
the network increased the complexity by almost a factor of 5.

Conv2D +

ReLU

4x
19

20
x1

08
0

MaxPool2D

32
x1

92
0x

10
80

32
x1

92
0x

10
80

32
x9

40
x5

60

64
x9

40
x5

60

64
x9

40
x5

60
64

x4
80

x2
70

12
8x

48
0x

27
0

12
8x

48
0x

27
0

Conv2D, 1x1

12
8x

48
0x

27
0

Bilinear

upsample

Concat

Skip

19
2x

94
0x

56
0

64
x9

40
x5

60

64
x9

40
x5

60

Skip

96
x1

92
0x

10
80

32
x1

92
0x

10
80

32
x1

92
0x

10
80

Conv2D, 1x1

3x
19

20
x1

08
0

Concat

Figure 21: Diagram of the model M2.1.

31

Table 2: Model M2.1 with depth 2, 128 channels maximum

===

Layer (type:depth-idx) Output Shape Param #

===

DoubleConv: 1-1 [1, 32, 1920, 1080] --

| Sequential: 2-1 [1, 32, 1920, 1080] --

| | Conv2d: 3-1 [1, 32, 1920, 1080] 1,184

| | ReLU: 3-2 [1, 32, 1920, 1080] --

| Sequential: 2-2 [1, 32, 1920, 1080] --

| | Conv2d: 3-3 [1, 32, 1920, 1080] 9,248

| | ReLU: 3-4 [1, 32, 1920, 1080] --

|-UnetDown: 1-2 [1, 64, 960, 540] --

| Sequential: 2-3 [1, 64, 960, 540] --

| | MaxPool2d: 3-5 [1, 32, 960, 540] --

| | DoubleConv: 3-6 [1, 64, 960, 540] 55,424

| |-UnetDown: 1-3 [1, 128, 480, 270] --

| | Sequential: 2-4 [1, 128, 480, 270] --

| | | MaxPool2d: 3-7 [1, 64, 480, 270] --

| | | DoubleConv: 3-8 [1, 128, 480, 270] 221,440

| | Conv2d: 1-4 [1, 128, 480, 270] 16,512

| +----UnetUp: 1-5 [1, 64, 960, 540] --

| | Upsample: 2-5 [1, 128, 960, 540] --

| DoubleConv: 2-6 [1, 64, 960, 540] --

| | Sequential: 3-9 [1, 64, 960, 540] 110,656

| | Sequential: 3-10 [1, 64, 960, 540] 36,928

+----UnetUp: 1-6. [1, 32, 1920, 1080] --

| Upsample: 2-7 [1, 64, 1920, 1080] --

DoubleConv: 2-8 [1, 32, 1920, 1080] --

| Sequential: 3-11 [1, 32, 1920, 1080] 27,680

| Sequential: 3-12 [1, 32, 1920, 1080] 9,248

UnetOut: 1-7 [1, 3, 1920, 1080] --

| Sequential: 2-9 [1, 3, 1920, 1080] --

| | Conv2d: 3-13 [1, 3, 1920, 1080] 99

===

Total params: 488,419

Trainable params: 488,419

Non-trainable params: 0

32

Model M2.2: upsampling/downsampling pairs, maximum of 96 channels

The third and final model to be implemented copies the structure of the second model, with
the only difference being that the amount of input and output channels to each convolutional
layer has been multiplied by a factor of 3/4, except for the input and output layer. This
reduces the total amount of parameters from 488419 to 275115; for instance, the maximum
number of channels in the network is reduced from 128 to 96, while the image resolution
and network structure is kept the same. A diagram of the model is shown in figure 22, and
all the model parameters can be seen in table 3.

Conv2D +

ReLU

4x
19

20
x1

08
0

MaxPool2D

24
x1

92
0x

10
80

24
x1

92
0x

10
80

24
x9

40
x5

60

48
x9

40
x5

60

48
x9

40
x5

60
48

x4
80

x2
70

96
x4

80
x2

70

96
x4

80
x2

70

Conv2D, 1x1

96
x4

80
x2

70

Bilinear

upsample

Concat

Skip

14
4x

94
0x

56
0

48
x9

40
x5

60

48
x9

40
x5

60

Skip

72
x1

92
0x

10
80

24
x1

92
0x

10
80

24
x1

92
0x

10
80

Conv2D, 1x1

3x
19

20
x1

08
0

Concat

Figure 22: Diagram of the model M2.2.

33

Table 3: Model M2.2 with depth 2, 96 channels maximum

===

Layer (type:depth-idx) Output Shape Param #

===

DoubleConv: 1-1 [1, 24, 1920, 1080] --

| Sequential: 2-1 [1, 24, 1920, 1080] --

| | Conv2d: 3-1 [1, 24, 1920, 1080] 888

| | ReLU: 3-2 [1, 24, 1920, 1080] --

| Sequential: 2-2 [1, 24, 1920, 1080] --

| | Conv2d: 3-3 [1, 24, 1920, 1080] 5,208

| | ReLU: 3-4 [1, 24, 1920, 1080] --

|-UnetDown: 1-2 [1, 48, 960, 540] --

| Sequential: 2-3 [1, 48, 960, 540] --

| | MaxPool2d: 3-5 [1, 24, 960, 540] --

| | DoubleConv: 3-6 [1, 48, 960, 540] 31,200

| |-UnetDown: 1-3 [1, 96, 480, 270] --

| | Sequential: 2-4 [1, 96, 480, 270] --

| | | MaxPool2d: 3-7 [1, 48, 480, 270] --

| | | DoubleConv: 3-8 [1, 96, 480, 270] 124,608

| | Conv2d: 1-4 [1, 96, 480, 270] 9,312

| +----UnetUp: 1-5 [1, 48, 960, 540] --

| | Upsample: 2-5 [1, 96, 960, 540] --

| DoubleConv: 2-6 [1, 48, 960, 540] --

| | Sequential: 3-9 [1, 48, 960, 540] 62,256

| | Sequential: 3-10 [1, 48, 960, 540] 20,784

+----UnetUp: 1-6. [1, 24, 1920, 1080] --

| Upsample: 2-7 [1, 48, 1920, 1080] --

DoubleConv: 2-8 [1, 24, 1920, 1080] --

| Sequential: 3-11 [1, 24, 1920, 1080] 15,576

| Sequential: 3-12 [1, 24, 1920, 1080] 5,208

UnetOut: 1-7 [1, 3, 1920, 1080] --

| Sequential: 2-9 [1, 3, 1920, 1080] --

| | Conv2d: 3-13 [1, 3, 1920, 1080] 75

===

Total params: 275,115

Trainable params: 275,115

Non-trainable params: 0

34

3.3 Model training

The neural networks as well as code for calculating the image metrics, training the models,
and importing images are implemented using PyTorch (version 1.7.1), a machine learning
framework [28]. Training was done on an AWS cloud computer [29], containing an NVIDIA
Tesla M60 GPU on which the neural network code was run.

Training passes

All images are stored as .exr files in a high dynamic range format, at a resolution of
1920×1080. In the scope of this work, the data is first clamped to standard dynamic range,
leading to input values in the range [0, 1]. Each input image consists of 4 channels, and with
one floating point number taking up 4 bytes of space, the total size of one image comes out
to be 4 · 1920 · 1080 · 4 = 33.18MB, however the total GPU memory usage during training is
much higher (in the order of 3 to 4 gigabytes), and in order to lower the possibility of being
limited by GPU memory, the batch size during training was set to 1. The weights of all
convolutional layers in the three different networks were initialized using PyTorch default
behavior: this is using a uniform distribution U(−1/

√
a, 1/
√
a), calculated as

a = Cin · kw · kh (35)

where Cin is the amount of input channels to the convolutional layer, kw and kh are the
width and height respectively of the kernels [30].

The loss function

As presented in section 2.4.3, using MSE or PSNR as a loss function is less favorable than
SSIM in image quality assessment, and the SSIM score can more accurately estimate the
perceptual quality of an image. This motivated the choice of only using SSIM as a loss
function, throughout the entire thesis work. Both MSE (and therefore indirectly PSNR)
and Delta E* as described in sections 2.4.1 and 2.4.4 were computed and used to assess the
training performance of the models but were never used as actual loss functions.

3.4 Other analysis

Outside of the model training pipeline described in section 3.3, a few changes to the training
process or to the structure of the neural networks were tested but opted against.

Batching

When training neural networks, it is common to collect multiple inputs together to be used
in the model at the same time in a so-called batch. In theory, as the GPU can compute the
multiple samples in the batch at the same time, this can reduce the training time for the
network. In this case, batching was not used due to the high resolution of the input images.
With a batch size larger than 1, the GPU memory usage becomes too high for the models
presented here.

35

Layer optimization

One optimization technique that was attempted was restricting the model to only taking the
luminance channel as an input and having a blurred luminance channel as output which is
then combined with the unaltered color channels. This approach did not yield any acceptable
results; when an object is blurred due to being out of focus, both the color of the light and
the intensity of the light coming from said object are affected, and thus depth of field cannot
be recreated only by affecting the luminance.

Altering the loss functions

Besides structural similarity, some other image quality metrics were investigated as possible
loss functions. Both PSNR and delta-E*, presented in sections 2.4.2 and 2.4.4 were briefly
used as loss functions: training against PSNR led to output images containing less accurate
depth of field blur than when training against SSIM, and training against delta-E* had
an issue with convergence where no progress was made during training, as well as the
transformation to L∗a∗b∗. color leading to much longer training times.

Another image metric studied was gradient magnitude similarity deviation (GMSD) [31].
This measure compares the difference between gradients in two images; as sharp gradients
like edges are the most affected by blur, GMSD should be able to be used as a loss function.
The result was however that while sharp edges in an image were blurred properly, parts of
the image with less sharp gradients did not reach as good quality as with SSIM, leading to
an overall lower image quality. On top of this, the algorithm for computing the GMSD is
more complex than SSIM, which led to much longer training times.

3.5 Delimitations

To limit the scope of the project to the time frame of the thesis work, a few delimitations
were made.

• Training data was chosen to be generated from two different scenes. Including multiple
scenes into the training dataset could have led to more generalized models, at the
expense of training time.

• While alterations were made between the three different models, the main structure
was limited to only that of u-nets described in section 2.3.5. This is motivated by the
fact that generative adversarial networks, a deep learning structure popular for creat-
ing new images similar to the training data, have been proven to perform well when
using a structure with skip connections [32][33]. These models are able to generate
realistic images, and therefore a similar network structure should be able to replicate
the depth of field effect.

36

4 Results

This section will cover the evaluation and results obtained from all three models. The
dataset consists of 23 test images for which SSIM, PSNR and Delta E* scores were calcu-
lated, and the maximum, minimum and average of these scores are shown. Moreover, all
models obtained their better and worse results on the same images, and as presenting the
entire testing data for each image is unfeasible, one better performing image and one worse
performing image is chosen and their results presented1. Finally, the model size, CUDA
time (i.e. GPU computation time) and number of floating point operations (FLOPs) are
displayed.

Figure 23 shows the input image as well as ground truth of an image that performed
well, and figure 24 shows the input and ground truth of an image that performed poorly.
For each image, the ground truth is presented again for side by side comparison.

(a) Input image (b) Ground truth image

Figure 23: Input image and ground truth for an image that performed relatively well across
all models

(a) Input image (b) Ground truth image

Figure 24: Input image and ground truth for an image that performed relatively poorly
across all models

1Note that not the best and worst performing images are chosen; instead images that more clearly show
the strengths and problems of the models are picked.

37

4.1 Model M1: one up/downsampling pair

Table 4: Maximum, minimum, and average image scores for the u-net with depth 1

===

Test data metrics:

SSIM: Max=0.9974, min=0.9455, avg=0.9821

PSNR: Max=42.4776, min=23.4046, avg=36.2280

Delta-E*: Max=8.9531, min=1.2966, avg=3.6004

===

In table 4, the image scores for the smaller model over the test data is presented. Ob-
serving the average scores, the structural similarity is close to 1, meaning that the structures
in the image produced by the network are very similar to those in the ground truth. The
Delta E* is however higher than the limit where a noticeable difference is seen, meaning that
there is a systematic difference in color between the expected and actual output. This can
be clearly seen in figure 26a, where the background that is supposed to be blue has turned
red. Observing figure 25a, this can also be seen in the top middle of the image, where the
background has turned a shade of purple instead of the expected blue color. This effect of
discoloration in the background persists through the entire testing dataset, which could be
a result of the model not being complex enough to retain background information for the
dataset.

Regarding the actual blur, in figure 25a the network manages to recreate the depth of
field effect as seen in figure 25b: there is near-field blur on the fern in the foreground, then
a section in focus that can be seen on the planks on the left side of the image, and finally
the background is blurred as can be seen on the hut.

(a) Model output image (b) Ground truth

Figure 25: Comparing model output and ground truth for the image that performed rela-
tively well in the u-net with depth 1.

38

(a) Model output image (b) Ground truth

Figure 26: Comparing model output and ground truth for the image that performed rela-
tively poorly in the u-net with depth 1.

Computational performance

Table 5 shows the total number of FLOPs, total model memory footprint and image gener-
ation time for the model. The CUDA time is obtained as an average of 100 model runs to
improve accuracy. It can be seen that because of the high number of channels in the model,
the total (video) memory requirement is over 3GB, even though the model input is 33MB.

Table 5: Floating point operations and model size for the model M1

Total FLOPs (G): 129.30

====================================

Input size (MB): 33.18

Forward/backward pass size (MB): 2969.40

Params size (MB): 0.43

Estimated Total Size (MB): 3003.00

====================================

CUDA time total: 160.52ms

39

4.2 Model M2.1: two up/downsampling pairs, maximum 128 chan-
nels

Table 6: Maximum, minimum, and average image scores for model M2.1

===

Test data metrics:

SSIM: Max=0.9969, min=0.9412, avg=0.9870

PSNR: Max=48.5071, min=33.1776, avg=43.1241

Delta-E*: Max=3.9815, min=0.7148, avg=1.5387

===

Table 6 show the image scores over the test dataset for the u-net with a higher amount of
feature channels and two upsampling/downsampling pairs. Here, the average SSIM is very
close to 1, implying that the network was able to produce a good depth of field effect on
average. The average PSNR value is also high, indicating that there is not a lot of noise in
the output images, and the average Delta E* shows that there is no big noticeable difference
in color between the actual model output and expected output. The maximum Delta E*
seen in the training set is almost 4, meaning that for a few images there is a noticeable
change in color between the expected and actual output.

In figure 28a, there is apparent near field blur on the palm leaves as desired, however
the leaves on the left-hand side exhibit an unwanted discoloration around the edges, see
figure 29; this is the most apparent error this model produces. Figure 27a shows a close to
identical recreation of the depth of field in figure 27b, with obvious near-field and far-field
blur.

(a) Model output image (b) Ground truth

Figure 27: Comparing model output and ground truth for the image that performed rela-
tively well.

40

(a) Model output image (b) Ground truth

Figure 28: Comparing model output and ground truth for the image that performed rela-
tively poorly.

Figure 29: Upper left part of the image in figure 28a, illustrating artifacts

Computational performance

In table 7, the computational requirement, memory requirement, and GPU computation
time for the M2.1 model are shown. The computation time is calculated as an average of
100 image inputs. Here, the total memory requirement is closer to 4GB with an input image
of resolution 1920×1080.

41

Table 7: Floating point operations and model size for the model M2.1

Total FLOPs (G): 234.49

====================================

Input size (MB): 33.18

Forward/backward pass size (MB): 3632.95

Params size (MB): 1.95

Estimated Total Size (MB): 3668.08

====================================

CUDA time total: 258.68ms

42

4.3 Model M2.2: two up/downsampling pairs, maximum 96 chan-
nels

Table 8: Maximum, minimum, and average image scores for model M2.2

===

Test data metrics:

SSIM: Max=0.9964, min=0.9363, avg=0.9853

PSNR: Max=50.4431, min=33.0318, avg=44.3002

Delta-E*: Max=4.2692, min=0.7800, avg=1.5085

===

In table 8, the image quality measures for the testing dataset are shown. The average
structural similarity is once again close to 1, complemented with a high average PSNR,
implying that on average the model can reproduce the expected depth of field with high
fidelity. The average delta E* also shows that there is for the most part no noticeable
difference in color between the expected and actual output; it reaches a maximum of over
4, implying that a few images in the dataset experience a noticeable color shift.

Figure 31a does show some color shift in the background compared to figure 31b with
it becoming slightly darker. There are also some artifacts around the edges of the leaves in
the top left part of the image, shown in more detail in figure 32, where the limit between
the leaves and the background turns dark blue. Figure 30 shows the network producing a
near identical depth of field effect, both in the near-field and in the far-field.

(a) Model output image (b) Ground truth

Figure 30: Comparing model output and ground truth for the image that performed rela-
tively well.

43

(a) Model output image (b) Ground truth

Figure 31: Comparing model output and ground truth for the image that performed rela-
tively poorly.

Figure 32: Upper left part of the image in figure 31a, illustrating some artifacts around the
edges

Computational performance

Table 9 shows the FLOPs, memory usage, and time taken for the model M2.2 to compute one
image; the CUDA time is obtained as an average over 100 image inputs. The total memory
usage is the lowest of the three studied models, under 3GB, however the computational
complexity is higher than the model M1.

44

Table 9: Floating point operations and model size for the model M2.2

Total FLOPs (G): 132.47

====================================

Input size (MB): 33.18

Forward/backward pass size (MB): 2737.15

Params size (MB): 1.10

Estimated Total Size (MB): 2771.43

====================================

CUDA time total: 173.89ms

4.4 Studying a scene not used for training

In this section, an image from a scene (called “Boat attack”) not used for generating training
data is applied to the model M2.2 [34]. This scene contains elements not seen by the model
during training, such as water, sand, and clouds. The input image as well as the ground
truth is shown in figure 33, and the outputs are shown in figure 34.

(a) Input image (b) Ground truth

Figure 33: Input and ground truth of the image from the boat attack scene

Observing figure 34a, it is seen that the model manages to create some near-field and far-
field blur, while keeping a section of the rock on the bottom left in focus. The image quality
is not very good however, with the scene in general appearing darker and artifacts appearing
on the edges of objects which is especially visible on the palm tree in the foreground; this
lower quality is also reflected in the image quality metrics presented in table 10.

Figure 34b uses the same input image shown in figure 33a, but the depth map has been
mirrored along the vertical axis. This shows that the model takes the information contained
in the depth map and blurs the input image accordingly.

45

(a) Model output image (b) Model output with the depth map mirrored

Figure 34: Model output of the image from the boat attack scene

Table 10: Image evaluation metrics for the model output in figure 34a.

===

Test data metrics:

PSNR: 29.6020

SSIM: 0.9292

Delta E: 4.8134

===

46

5 Discussion

The aim of the thesis work is to analyze the use of neural networks for replicating a depth
of field effect. The results from section 4 are compared against one another and discussed
to draw a conclusion from the problem formulation.

Results

The training process and data is kept the same for all three models, suggesting that the
model with one downsampling/upsampling pair does not have enough complexity to be able
to replicate the depth of field effect. This model also highlights the usefulness of measuring
the delta-E*: while the average PSNR and SSIM scores suggest that the image fidelity is
good, this is not the case when actually observing the images; there is a difference between
the perceived quality and measured quality of the outputs.

Both models with two downsampling/upsampling pairs produce outputs with good mea-
sured quality and relatively few image artifacts. Comparing tables 6 and 8, the smaller model
of the two produces ever so slightly better results than the other model, despite it being
less complex. While the expected result is that the more complex model outperforms the
other, a simple explanation could be the fact that the more complex model became slightly
overfitted on the training data while this did not happen to the same extent to the less
complex model.

Looking at figure 34b, it is seen how the model manages to extract which areas of the
image to blur from the depth map. This implies that the model can generalize the depth of
field effect to any image, and that it is not impossible to create a fully generalized model.

Computational performance

Comparing the computational performance of the three models, some interesting observa-
tions can be made. Firstly, comparing the models M2.1 and M2.2, these achieve near equal
results on the test data while the M2.1 model is slower in time by a factor of almost 1.5, re-
quires 900MB more memory and does 1.77 times more computations overall when compared
to the M2.2 model.

Secondly, comparing the M1 and M2.2 models where the former does not recreate the
depth of field effect accurately while the latter does, it is seen that these require close to the
same computational performance; the model M2.2 requires 230MB less memory and requires
only 2% more total operations with 8% more execution time. From this, it is possible to
see that having two downsampling/upsampling pairs with skip connections instead of one
helps in preserving the color accuracy which is the main struggle of the model M1.

Dataset

The dataset used in this thesis is limited, and as such it is not guaranteed that the models
can be generalized to any arbitrary scene with good results. The main limitation in the
dataset is not the number of images, but the fact that there are only two scenes with
relatively few elements each from which the data is generated; one of the major issues that

47

arose during the project was bad color accuracy which can be attributed to these two scenes
not being very diverse in terms of color. By increasing the number of scenes from which
data is collected and picking scenes with different color profiles, better generalized results
can be obtained. This is further reinforced by the result in figure 34a, where the general
blur effect is applied to the image, but the overall image quality is quite poor.

Conclusion

Referring to the problem formulation in section 1.1 and using the results presented in section
4, the conclusion can be drawn that the depth of field effect can be replicated with high
fidelity using neural networks. From the results, answers to the three smaller questions are
formulated as follows:

• To train the neural networks presented in the thesis, a relatively small amount of
data was needed. With 158 unblurred images and associated depth maps, the model
can produce images nearly indistinguishable from corresponding ground truth images,
given that the test data is taken from the same scene as the training data. These
datasets can also easily be generated using game engines that can export blurred and
unblurred images.

• The scope of the thesis was limited to only studying models with a u-net architecture,
and this structure is applicable for the use case of replicating the depth of field effect.

• Only structural similarity was used as an actual loss function for training the neural
networks in the thesis work, however the observed results show that SSIM is able to
properly evaluate the quality of the generated blur.

48

6 Future work

In this section, different ideas that arose during the thesis work that were not investigated
are listed.

Pre-processing using the circle of confusion

The circle of confusion is a direct measure of the strength of the depth of field effect for a
point in the 3D-scene. Using equation (1), a possible improvement is to compute the circle
of confusion from the depth map for every pixel in a pre-processing step. The circle of
confusion is then used as an input layer instead of the depth map. This has the advantage
of directly telling the network how heavily blurred each pixel should be; this information
must now be extrapolated from the depth map by the models.

Optimization

During the thesis work, most of the effort was put into building and testing the models
and very little time was left over for evaluation. Studying the values input to the final
convolution where the number of layers is reduced to 3, some of the input layers are filled
with values very close to 0, meaning they have little to no impact on the final output.
Studying the models to figure out where the number of channels can be reduced would be
a good first optimization step.

As discussed in section 5, having two skip connections instead of one made the difference
between the models M2.2 and M1 being able to preserve the background color in input
images and not being able to, so another interesting optimization could be to increase the
number of skip connections even more while reducing the maximum amount of channels in
the network.

Loss functions

In the thesis work, structural similarity was exclusively used as the loss function. It is
however possible to use a weighted average of different metrics to use as a loss function, for
example weighting together PSNR and SSIM to use in training:

e(x,y) =
α · PSNR(x,y) + β · SSIM(x,y)

α+ β
(36)

49

References

[1] Salvaggio N, Shagam J. Basic Photographic Materials and Processes; 2019.

[2] NVIDIA DLSS;. Accessed 22 november 2021. Available from: https://developer.

nvidia.com/dlss.

[3] Blahnik V, Schindelbeck O. Smartphone imaging technology and its applications. Ad-
vanced Optical Technologies. 2021;10(3):145–232.

[4] London B, Stone J, Upton J. Photography. Pearson; 2005.

[5] Forsyth DA, Ponce J. Computer Vision: A Modern Approach. 2nd ed. Prentice Hall;
2012.

[6] Viewing and Transformations in OpenGL;. Accessed 2022-01-20. Available from:
https://www.khronos.org/opengl/wiki/Viewing_and_Transformation.

[7] Post-processing effects in Unity;. Accessed 2022-01-20. Available from: https://docs.
unity3d.com/Manual/PostProcessingOverview.html.

[8] Next generation post processing in Call of Duty: Advanced War-
fare;. Accessed 2022-01-20. Available from: http://www.iryoku.com/

next-generation-post-processing-in-call-of-duty-advanced-warfare.

[9] McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics. 1943;5(4):115–133.

[10] Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image
Recognition; 2015.

[11] Dong C, Loy CC, He K, Tang X. Image Super-Resolution Using Deep Convolutional
Networks; 2015.

[12] Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S. CNN Features Off-the-Shelf:
An Astounding Baseline for Recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops; 2014. .

[13] Xie S, Tu Z. Holistically-Nested Edge Detection. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV); 2015. .

[14] Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable gen-
eralization performance of a deep learning model to detect pneumonia in chest radio-
graphs: A cross-sectional study. PLOS Medicine. 2018 11;15(11):1–17. Available from:
https://doi.org/10.1371/journal.pmed.1002683.

[15] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. http://www.

deeplearningbook.org.

50

https://developer.nvidia.com/dlss
https://developer.nvidia.com/dlss
https://www.khronos.org/opengl/wiki/Viewing_and_Transformation
https://docs.unity3d.com/Manual/PostProcessingOverview.html
https://docs.unity3d.com/Manual/PostProcessingOverview.html
http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
https://doi.org/10.1371/journal.pmed.1002683
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[16] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning
research. 2014;15(1):1929–1958.

[17] Rodriguez P, Wiles J, Elman JL. A recurrent neural network that learns to count.
Connection Science. 1999;11(1):5–40.

[18] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition; 2015.

[19] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical
Image Segmentation; 2015.

[20] Thung KH, Raveendran P. A survey of image quality measures. In: 2009 International
Conference for Technical Postgraduates (TECHPOS); 2009. p. 1–4.

[21] Wang Z, Bovik AC. A universal image quality index. IEEE Signal Processing Letters.
2002;9(3):81–84.

[22] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing.
2004;13(4):600–612.

[23] CIE Colorimetry 15. 3rd ed. CIE; 2004.

[24] Anderson M, Motta R, Chandrasekar S, Stokes M. Proposal for a standard default
color space for the internet—srgb. In: Color and imaging conference. vol. 1996. Society
for Imaging Science and Technology; 1996. p. 238–245.

[25] Sharma G. Digital Color Imaging Handbook. 1st ed. CRC Press; 2003.

[26] Unity;. Available from: https://unity.com/.

[27] BT.470: Conventional analogue television systems. ITU; 2005. Available from: https:
//www.itu.int/rec/R-REC-BT.470/en.

[28] PyTorch;. Available from: https://pytorch.org/.

[29] Amazon Elastic compute cloud;. Available from: https://aws.amazon.com/ec2/.

[30] PyTorch convolutional layer initialization source code;. Accessed 31 jan-
uary 2022. Available from: https://github.com/pytorch/pytorch/blob/

72c972e1e1b4ad838de604e35269e200a70db5f2/torch/nn/modules/conv.py.

[31] Xue W, Zhang L, Mou X, Bovik AC. Gradient Magnitude Similarity Deviation: A
Highly Efficient Perceptual Image Quality Index; 2013.

[32] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Gen-
erative adversarial nets. Advances in neural information processing systems. 2014;27.

[33] Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, et al.. Photo-
Realistic Single Image Super-Resolution Using a Generative Adversarial Network; 2017.

51

https://unity.com/
https://www.itu.int/rec/R-REC-BT.470/en
https://www.itu.int/rec/R-REC-BT.470/en
https://pytorch.org/
https://aws.amazon.com/ec2/
https://github.com/pytorch/pytorch/blob/72c972e1e1b4ad838de604e35269e200a70db5f2/torch/nn/modules/conv.py
https://github.com/pytorch/pytorch/blob/72c972e1e1b4ad838de604e35269e200a70db5f2/torch/nn/modules/conv.py

[34] Boat attack demo scene source;. Accessed 9 february 2022. Available from: https:

//github.com/Unity-Technologies/BoatAttack.

52

https://github.com/Unity-Technologies/BoatAttack
https://github.com/Unity-Technologies/BoatAttack

	Introduction
	Problem formulation

	Theory
	Camera optics and depth of field
	Camera parameters
	Circle of confusion
	Depth of field
	The pinhole camera

	Graphics rendering and post-processing
	Rendering
	Post Processing
	Depth of Field as a post processing effect

	Artificial neural networks
	Fully connected network layers
	Convolutional layers
	Loss functions and backpropagation
	Training of neural networks
	Skip connections and U-nets

	Image quality measures
	MSE - Mean squared error
	PSNR - Peak signal to noise ratio
	SSIM - Structural similarity index measure
	Delta E*

	Method of work
	Data generation
	Unity game engine
	Camera parameters
	Data capture

	Network design
	Model training
	Other analysis
	Delimitations

	Results
	Model M1: one up/downsampling pair
	Model M2.1: two up/downsampling pairs, maximum 128 channels
	Model M2.2: two up/downsampling pairs, maximum 96 channels
	Studying a scene not used for training

	Discussion
	Future work

