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Abstract

Searching for prior art in databases with millions of patent documents is a very
time-consuming process. Programs use natural language processing, NLP, as an
efficient way of finding similar documents to an input text to solve this. In
the latest years, algorithms based on neural networks have become the brightest
shining stars among these programs. Through NLP, they translate the words and
sentences into numerical vectors with which they, in some sense, can describe
the general meaning of a text.

In this Master’s thesis, we have investigated the use of Sentence-BERT, a neu-
ral network computing a vector representation of a sentence, together with user
input for gradual improvement. In several iterations, test persons have rated
and divided the top results into good and bad matches that the program uses for
re-ranking the search results. The final results are evaluated for patent quality,
ordering of the patents, and how the method can heighten the rating of some
good patents far down the list, at first dismissed as top candidates. Our results
show that it is possible, through simple mathematical operations, to implement
an interactive, iterative patent search that improves the initial search results of
the neural network.

Keywords: natural language processing, semantic similarity search, artificial intelligence,
patent, sentence embedding, iterative, interactive
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Chapter 1

Introduction

1.1 Problem
Today, large parts of the value of many companies lie in their intellectual properties and
patents are important to protect them. There are many steps involved in the patenting pro-
cess. Applying for a patent starts with a research stage. This step is crucial, because after the
application has been done, third parties can object to the application. It is therefore essential
for the companies to be able to defend their patents against objections. Likewise, a company
could also be interested in objecting to rival patent applications if they do not have novelty
or are not inventive solutions, for example if they are based on already existing techniques or
patents. In any case, both the defending and the objecting side must use well-founded argu-
ments, to which complete knowledge of prior arts is required. This is where doing similarity
searches in patent databases comes in.

There are many reasons why one would like to search for similarities between documents
in patent databases. When applying for a patent, the invention has to be a novel idea with
an inventive step. That means that prior art, i.e. earlier works with the same ideas must not
exist. If there is an interest in patenting an invention, it is therefore highly recommended
to first search for earlier works in the same field before conducting the costly and time-
consuming patent application process. If there is knowledge about some existing patents, a
similarity search for these may be carried out, thus decreasing the likelihood of not having
enough information about prior art.

Searching for similarities between documents can be done in many ways, but a corner-
stone for most search methods is the use of keywords and/or phrases with which one can
find documents with similar content. This may be problematic and give incomplete search
results since many similar inventions can be described with different words. Even if one in
some way could account for synonyms of words, there is no escaping the fact that something
can be described using completely different words.

A way of solving this is to search for words or sentences that in their context have the
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1. Introduction

same meaning. In theory, this is a simple task for a human, but more difficult for a computer
program. However, as we are working with databases with possibly millions of documents,
the latter is preferred. Through the use of neural networks, algorithms can be created that can
capture the general context of a text. However, while some of the results the programs find
similar to an original document are good outputs for the user, we often get some documents
that may be structured similarly and use similar words but do not really capture the context
we want. This Master’s thesis will explore ways of solving this problem, using feedback data
from the user iteratively to improve the original search.

1.2 Previous work
Previous works have been written on the subject of using neural networks for semantic sim-
ilarity searches among text documents. Among them, Reimers and Gurevych (2019) intro-
duced the Sentence-BERT (SBERT) network, which we use in this Master’s thesis, optimized
for finding similarities between two sentences.

Several papers prior to this work have explored the use of BERT-based networks when
working with patent document databases. Among other things, the papers differ in patent
document representation for embedding creation. One way is to represent them with each
patent’s claims. For example, Lee and Hsiang (2020) classified patents belonging to specific
CPC (Cooperative Patent Classification, a method of categorizing patents) subgroups with
a fine-tuned BERT network.

A work that is closely related to ours is the Master’s thesis by Navrozidis and Jansson
(2020), where the authors explored different methods in NLP, including SBERT, for finding
similar documents in a large patent database. In their work, as in ours, they use concatenated
texts from each patent’s title and abstract for document representation. However, while they
evaluate the effectiveness of the network, we are trying to improve the network’s output by
user evaluation of the output and re-ranking the results.

Re-ranking with the use of BERT-based networks has been done before, for example by
Khattab and Zaharia (2020). However, we believe our work to be novel in using user input
together with SBERT embeddings for re-ranking.

1.3 Goal of project
The goal of this project is to explore the concept of interactive iterative patent search and
try to find if it can improve the search results of an established NLP model such as SBERT.
The search is associated with a re-ranking process by altering the original SBERT ratings of
matches to input patents. This report describes our approach and evaluation process and
reflects upon our findings.
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Chapter 2

Theory

In this chapter, we will explain what needs to be known before proceeding to the experimen-
tal setup. Here we will talk about the general idea behind interactive iterative patent search.
We will give some examples on how to represent text documents as numerical vectors and
we will go through how neural networks can be used for semantic comparison.

With this knowledge, we will look closer at the models for interactive iterative patent
search that we have used in this Master’s thesis. Lastly, we will go through some statistical
concepts and evaluations methods for testing.

2.1 Interactive Iterative Patent Search
Let us assume that we are to search through a database of patent documents and that we
want to find similar matches to an input text. For this purpose, we use so-called word and
sentence embeddings for document representation and cosine similarity as a measurement,
which will be described more in detail in Sect. 2.5.

We can compare each of the documents in the database with our input to find the best
matches according to the network that created the embeddings. However, the results may
not all be satisfactory. The network could suggest matches that, while language-wise being
very similar, differ in the specific topic that we want to find matches for.

An example could be searching for similarities to a design for a spark plug, using a patent
for a spark plug in a lawnmower as input. Many of the results might be weighted in favor of
lawnmower patents in general, instead of spark plug patents as the example in Table 2.1.

If that is the case, we could use the user’s opinion on the better and worse results in the
top matches in a feedback loop to re-weight the original similarities. If one of the original
matches is similar to the better results, we should increase the score of that match. If it turns
out that it is similar to the worse results, we should lower the score. If all goes well, this will
result in better top matches. We can redo the weighting with new feedback from these top
matches in an iterative process until we are happy with the final results. The re-weighting
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2. Theory

Input: A new design for a spark plug in a lawn mower that optimizes fuel efficiency.
Ranking Patent description

1 A lawn mower with low fuel consumption.
2 A new fuel for lawn mowers.
3 An inventive design for rotor blades in a lawn mower.
4 An optimal method for path finding for autonomous lawn mowers.
5 A spark plug with iridium that improves performance over traditional spark plugs.

Table 2.1: An example of a search with many bad results and the best
result at 5th place.

can be done in many ways. In this Master’s thesis, we will suggest and evaluate models for
this purpose.

2.2 Document representation

2.2.1 Frequency-based methods
There are several methods to calculate a similarity between two text documents. One could,
for example, simply compare the number of words that occur in both of them as a measure-
ment. However, there are problems with this. For one thing, this method would not account
for the length of the documents, as large documents with many words generally will produce
a higher score and small documents the opposite. Neither does it account for the number of
times a certain word is used. Also, the most common words as “the”, “be”, “to”, “of”, etc. are
not the words we want to use for similarity checks when comparing the general subjects of
two documents.

Methods exist that aim to reduce or eliminate some of these problems. One such method
used is the bag-of-words model (BOW) that for all words in a list keeps track of the word
Term Frequency (TF), that is how many times a given word was present in the document. A
document can then be represented as in Table 2.2 with a numerical vector.

Text: Daniel is eating pesto. Daniel likes pesto.
word: daniel is eating pesto likes chess

frequency: 2 1 1 2 1 0

Table 2.2: An example of document representation by TF. Notice
that the words are not case-sensitive. The vectorized document rep-
resentation is [2, 1, 1, 2, 1, 0].

A similar and more refined method is term frequency-inverse document frequency (TF-
IDF), which uses term frequency (TF) and inverse document frequency (IDF). It accounts for
the length of a document and multiplicity of words by using TF. It also accounts for filtering
out the most common words with IDF by using a set of documents as a reference.
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2.2 Document representation

TF-IDF (term) =
multiplicity (term)
lenght of document

· log
count of documents in set
nr of documents with term

(2.1)

From Equation 2.1, we deduct that if documents where the word is used are common,
this word is given less weight to the general content of a document than a word that is not
common. A document can then, for example, be represented by a list of words and their
corresponding TF-IDF value similarly to what is done for BOW in Table 2.2

A problem that is not so easily solved when using these methods is that a certain word
can have a different meaning given a certain context. “Hit”, can for example be used both as a
verb, noun, and adjective. Also, a hit can be a synonym for a punch, but in a different context
it can mean a popular song. There are methods for solving this by using the surrounding
words to determine a word’s part of speech as well as in what synonymy context it is used.
However, even if they use very large corpora and good statistical models, they will still fail to
see a similarity between words that are not synonyms. One can argue that for example, the
words “driving” and “car” are not very similar in a grammatical sense, however to a human,
it is obvious that they can be used in a similar context.

2.2.2 Word Embeddings
Word embeddings are a way of representing words as real-valued numerical vectors in a fixed
vector space. They are dense and low dimensioned in the sense that they are created from
something very high dimensional and sparse (e.g. the space of one-hot encoded words from a
corpus, meaning each word will be represented with the value 1 in one dimension and 0 in
all others) to a dimension of some hundred or thousand values.

Ideally, each dimension of the vector will represent a certain syntactic or semantic feature
of a word (Turian et al., 2010). Two vector representations of different words can then be
said to be similar if they contain similar values in several of the dimensions, i.e. lie close to
each other in the vector space.

2.2.3 Sentence Embeddings
Sentence embeddings, much like word embeddings, are a way of representing texts with real-
valued numerical vectors. However, as the name suggests, we now want a representation for
the complete sentence rather than for only a single word. One could argue that the vector
representation of a text with BOW or TF-IDF is a sentence embedding, which would not be
wrong. However, it is a very simple one, as each word in the text is connected to a single
number. There exist much more complex embeddings, for example, the ones that are created
from certain neural networks.

2.2.4 Practical limitations of patent documents
What is the optimal length of texts with which you want to find their individual similarities?
For some neural networks, as we will go into detail later, it is not possible to use too long
texts as inputs. However, one solution to this would be to split the text into many parts and
use an average embedding for the parts as document representation. Therefore, it is easy to
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2. Theory

think that the documents ideally should be as long as possible, as there is more information
to extract.

However, one must realize that that is a problem. Too much information and too many
sentences will make the text loose its meaning in some sense. As sentences do not tend to be
repeated in the same text, we will get a great number of sentences carrying the meaning of
a great number of topics. This implicates that the “average” meaning of the text will be very
general and not very specific, making it harder to differentiate between different texts.

For this reason, it is desirable to keep the texts short while at the same time having enough
information to describe the topic. Here, we are working with patent documents that all con-
tain an abstract which in short describes the patent. To get as much information as possible,
we will also work with the title of the patent as we believe that it also provides a compact
description. Thus, we concatenate the title and abstract for each patent to use as represen-
tation. In the future sections, when we talk about patent texts, keep in mind that we most
likely refer to this title-abstract representation.

2.3 Neural Networks
2.3.1 General Neural Networks
A neural network (NN), sometimes also called artificial neural network (ANN) is essentially
a network of nodes that through mathematical transformations takes an input and provides
an output. The nodes are connected in the sense that each node is fed information from the
input or another node in the network, applies a mathematical function to it, and forwards
the outcome to other nodes or the output.

When we talk about the training of a network, we indirectly talk about adjusting the
transformations that are happening in the nodes. One can train a NN in many ways, but in
general, we feed training data to it. The NN uses its current transformations to get an output
and then uses a pre-determined loss function to see how successful (or unsuccessful) it is. The
transformations are then adjusted to (hopefully) provide a better output.

We often talk about the different layers of a NN. Typically there are three, that is an input
layer, a hidden layer, and an output layer. The hidden layer is where the transformations take
place, and it often consists of many sub-layers, sometimes constructed differently. We will
not go into detail here about all the different networks and layer designs that exist. Instead
we will focus on the ones that are used in this project.

2.3.2 Tokenizers
Before we dive deeper into the field of neural networks and embedding creation, we will
explain what a tokenizer is. A neural network that transforms words or sentences into em-
beddings often finds in what context a specific word is used by looking at the other words
around it. However, we can not just feed the sentence into the network immediately as we
need to tell the network where to find the different words, or more specifically, tokens.

It may be easy on first thought, the words are simply separated by empty spaces. However:

1. First of all, it should be noted that this is not the case for all languages.

12



2.3 Neural Networks

2. Secondly, some words are so-called n-grams, where several words represent one thing.
For example, “fire alarm” may be better if represented as a single word.

3. Thirdly, neural networks have no direct sense of what grammar is. It is obvious to
us that “run” and “running” are two forms of the same word. To get the network to
understand that, it is sometimes beneficial to create sub-words, in this case as “run-”
and “-ning”.

4. Lastly, we will say that there are many more advantages of using tokenizers. For exam-
ple, in a sentence, some words may exist only for grammar’s sake but do not make the
sentence more understandable. These should thus be removed and not used as tokens
that are fed into the network.

What finally will be input into the network is a list of tokens.

2.3.3 BERT
In 2018, Google released a paper about a new language representation model called BERT
(Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019). The BERT
network is a deep network based on the Transformer-network introduced in 2017 (Vaswani
et al., 2017). The Transformer, contrary to earlier recurrent neural networks (RNNs) in NLP
does not need the sequential data to be ordered. Therefore, Transformer allows for much
more efficient computations as they can be done for several words in parallel. In BERT-
networks, this architecture is used in two training tasks.

Task 1 The network is trained using a masked language model pre-training objective. Tok-
enized sentences are used as input where 15% of the words are replaced with a masked
token. The network is trained by trying to predict the correct word where the masked
token is using information from the context, i.e. the words around it Devlin et al.
(2019). Traditionally this is done by a specific sequence order, often reading the sur-
rounding words from left to right or from right to left. The BERT process can be said
to be bi-directional in the sense that it can be done from both directions. However,
this is not completely true as the surrounding words are used as input simultaneously
and not from a specific direction (Horev, 2018).

Task 2 The second part of training a BERT network is done using a next sentence prediction
task. Traditional language modeling is usually done for separate sentences. However,
sometimes we need to understand texts with several sentences. It is important to un-
derstand the relationship between subsequent sentences as context can carry over from
one sentence to the next. The BERT network is thus trained with pairs of sentences
from a corpus, where it is to decide whether the first one is followed by the second in
a corpus. Half of the time that is the case. In the other half, the second sentence is
chosen randomly from the corpus (Devlin et al., 2019).

The network is trained on the two tasks simultaneously, aiming to minimize the tasks’
combined loss functions.

BERT networks are useful for creating representations of words in texts that can consist
of more than one sentence. Thus, the input is not limited in this regard, but rather by how
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2. Theory

many tokens the tokenized input text consists of. Too long texts will speak of many different
things, which means that it is not possible to capture a general meaning. In BERT networks,
there is therefore a default max-length of the input text, limited to 512 input tokens. If there
are more than 512 tokens, only the first 512 are used as text representation. Each text is also
preceded by a special classification token CLS. It is an aggregated representation of all tokens
in the text (Devlin et al., 2019). The CLS token can be useful for representing the whole text
as an embedding.

2.3.4 BERT for Patents
The architecture of BERT networks allows for fine-tuning on specific tasks and datasets. We
could for example transform input data so that it can be used by the BERT network and feed
the output data into a new network. This is then fine-tuned for the specific task (Devlin
et al., 2019).

For example, a large dataset of patent documents could be used to train a BERT network
specifically for patents. This was done in 2019 by fine-tuning a pre-trained BERT network on
a patent database of over 2 million patents (Lee and Hsiang, 2019). In 2020, Google published
a white paper on a BERT network trained from scratch on a database with over 100 million
patent documents (Srebrovic and Yonamine, 2020) and also released the network on Github
(Srebrovic, 2020).

2.3.5 Sentence-BERT
Comparing two texts with a BERT network tends to be costly computationally-wise, as each
text can consist of a lot of words and each word has to be assigned a numerical vector rep-
resentation depending on its surroundings. It will be even more costly if you have a lot of
texts, and want to find the most similar matches among them.

In 2019, Reimers and Gurevych (2019) introduced Sentence-BERT (SBERT) which dra-
matically limited computation time for such procedures while keeping the accuracy of BERT.
Instead of a traditional BERT structure, it uses two Siamese pre-trained BERT networks with
tied weights as in Figure 2.1. It is then fine-tuned on pairs of sentences where the objective
can be, for example, to calculate the cosine similarity between the sentences.

Contrary to traditional BERT networks this means that it has naturally been trained on
semantic similarities between texts which is what we do in this Master’s thesis.
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2.4 Similarity between numerical vectors

Figure 2.1: An example of the structure of an SBERT network. The
two BERT networks are Siamese, i.e. they have shared weights. Here
the SBERT network is used for sentence comparison with cosine
similarity.

2.4 Similarity between numerical vectors
We have seen that texts can be represented by real-valued numerical vectors. However, we
would still like to have a measurement of similarity between documents. The simplest form
of calculating the similarity between two numerical vectors is to take the length of the line
segment between them. This is called the Euclidean distance. The lesser the distance, the
more similar the vectors are.

There are some drawbacks of using Euclidean distance for document comparison if we
only care about the general meaning of the text. While different texts can be of different
lengths, they may still have the same meaning. With Euclidean distance, this is not taken
into account as the difference will be large.

However, there are more ways to measure similarity. Cosine similarity is a measurement
of similarity between two non-zero vectors. Since we can express the dot product of two
vectors as:

a · b = ||a|| ||b|| cos θ, (2.2)

15



2. Theory

where θ is the angle between the two vectors, we can deduct that

cos θ =
a · b
||a|| ||b||

, (2.3)

which is the cosine similarity.
Note that this does work for vectors of any dimension, even if the measurement the case

for dimensions 2 and 3 are the easiest to understand intuitively as the angle between two
vectors is harder to visualize in more dimensions. Also notice that as we divide with the
length of vectors a and b, the length of the vectors does not matter for similarity measures.
The single feature that decides the similarity is the angle between them. In Figure 2.2, it is
clear that vector a is closer to b than to c, since the angle θ is smaller than α.

Figure 2.2: With cosine similarity, vector a is closer to b than c.

Reimers and Gurevych (2019) fine-tuned the Sentence-Bert network used in this work
with minimization of the mean squared error of cosine similarity between sentence pairs.
Thus, it is natural for us to use cosine similarity as the default measurement for similarity
between embeddings. However, as all the embeddings produced by the Sentence-Bert are of
the same size, Euclidean distance could also have been used. Previous experiments with this
do not seem to make a significant change to the results (Reimers and Gurevych, 2019).

2.5 Re-ranking models
2.5.1 General model
Our focus in this project is to find methods that use an iterative, interactive re-ranking pro-
cess to alter the original SBERT rating of matches for an input patent. This will be done by
increasing the score of patents that are similar to ones the user has marked as “good” and
lowering the score of patents that are similar to “bad” ones. This will be done in iterations.

In each iteration, the user will be able to choose the good and bad patents from top
suggestions, originally produced by SBERT and in later iterations produced by our models. If
all goes well, this will result in better top matches for each iteration. When the user is satisfied
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with the results, no progress is being made, or a limit of time or a number of iterations has
passed, the iterations stop.

The re-ranking can be done in many ways. In this Master’s thesis, we will suggest and
evaluate different models for this purpose. What our program does is described below in two
simple steps:

Step 1: We start by performing an embedding search for similarity scores between an input
text and patent texts in a database. We use an input text Tin, resulting in an ordered
list of patent similarity scores Sin. For the first iteration Snew = Sin. Out of the top X
results in Tin, the user will create two sets with what is believed to be good matches
and bad matches. For each of these, we will create average embeddings Egood and Ebad .

Step 2: 1. First, we filter out the worst patents from Snew and Sin and only keep the top Z
percent of patents.

2. We then perform similarity searches for Egood and Ebad on the database, resulting
in lists of similarities Sgood and Sbad .

3. Then, we re-weight the similarities in Sin according to the following formula for
each patent with index i:

Si
new = memoryTerm · Si

new + (1 −memoryTerm) · updateTerm (2.4)

where memoryTerm and updateTerm differ between different models.

We are now left with Snew, the re-weighted similarity scores, which we will order from
best to worst. Sin will be reordered accordingly, e.g. an element that was previously in
place i in Snew will have index k in both lists. From Snew the user will look at the top
X matches. If the matches are all good, or if a number of max iterations j has been
reached the iterations will stop here. Otherwise, we continue as follows:

1. The user creates two sets with good and bad matches from Snew, and as before
creates the average embeddings Egood and Ebad .

2. We update iteration number and similarity scores: j = j + 1, Sold = Snew.

3. We redo Step 2.

2.5.2 Specific models
For this Master’s thesis, we evaluated two models:

Model 1:

updateTerm = Si
in ·

Si
good

Si
bad

(2.5)

Model 2:
updateTerm = Si

in + weightTerm · (Si
good − Si

bad) (2.6)
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X
Z
weightTerm (only for model 2)
memoryTerm

Table 2.3: Parameters of the methods

Table 2.3 shows the parameters of the models that have to be decided before testing.
One should note that in model 1, we have a division in the update term. The original

assumption was that this would not affect the worst matches among all patents as both Si
good

and Si
bad were in the original top matches. Thus, they would be approximately equally “far

away” from the bad patents and the division term would be 1. However, in early tests, this
was not the case and very bad matches would sometimes surge to the top. Thus, while only
keeping the top Z percent of results in every iteration limits the amount of data we have to
search through, it is also necessary for good performance with model 1.

2.6 Evaluation concepts
Here we will introduce the concepts of a few methods of evaluation that we will later use for
testing. Each method will have its benefits and drawbacks.

2.6.1 Averaging on a rating scale
In this Master’s thesis, we will evaluate our results with several different methods. Our test
persons will be working with patents that they will be able to rate on a scale from 1 to 5, with
5 being “a very good match” and 1 being ”a very bad match” to an input patent. This simple
rating is a good way of examining the quality of a patent match. To evaluate the quality of
a set of patents, one can simply take the average of the patents in the set. The patents will
be presented in a suggested order, with the best candidate first (according to the program).
However, to evaluate if the ordering is good, we need something more than just the ratings
of the patents.

2.6.2 Inversion number
When measuring how well a list is ordered, a common way is to use the inversion number
of the list. The inversion number of a list X = [x1, x2, ..., xn] is defined as all possible per-
mutations between the values in X for which the following is true: i < j and xi > x j . This
is for a list that ideally is ordered from lowest to highest values of X . When working with a
list that ideally is ordered from highest to lowest values of X , the following condition should
hold instead for the permutations: i < j and xi < x j . The latter is what we will be working
within this Master’s thesis. In this case, the following list

X = [4, 3, 2, 5] (2.7)
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will have an inversion number of 3, since besides the last element the list is ordered, and 3
other elements ideally should be ordered after 5.

The downside of using inversion number for order evaluation is that in this case, as we
will see later, we will be working with patent sets that partially will change. The ordering
may worsen by adding a “better” new patent at the bottom of the set. However, it will be
an improvement for the average rating of the set. Thus, the two evaluation methods might
compete with each other.

2.6.3 Relevancy of patents and Average Precision
We would like to find a method of evaluation that can estimate the effectiveness of ordering
without suffering from replacing a bad patent with a good one at any place in the set (or gain
from replacing a good patent with a bad one).

In machine learning, there are many different ways to evaluate the findings. To map the
outcome of a result, one can use positives and negatives to represent successes and failures.
For example, if we want a network to predict if a patent belongs to a specific class of patents,
we say that the result was a true positive (TF) if it was predicted to belong to the class and
it does, while it is a true negative (TN) if it was predicted to belong to another class and it
does.

This is of course what we aim for since the network in both cases predicted correctly.
However, the network does not always do what we want, and the predictions can also be
false. An example is if the patent is predicted to belong to the class and it does not. Then it
is a false positive (FP).

Similarly, if the prediction was that the patent does not belong to the class, but it does,
then we have a false negative (FN). These four outcomes can be used to create metrics for
evaluation (Google Developers, 2020).

Accuracy is the simplest form of evaluation metric as one can think of in terms of how
often the outcome is predicted correctly:

Number of correctly predicted outcomes
Total number of outcomes

,

or in other words:

TP + TN
TP + TN + FP + FN

.

(2.8)

However, working with accuracy is not a good solution for our purposes. In this Master’s
thesis, we will be testing a program that presents the user with a few predictions of good
candidate patents from a large database. In this regard, these predictions can be viewed as
the positives TP + FP. The user will then rate these candidates, giving us the possibility to
identify and separate which ones that are relevant (TP) and irrelevant (TN). However, for
the rest of the patents that did not make the cut, the negatives TN + FN, we will not be able
to identify and separate them. There is simply no time for the user to go through and rate all
patents. Thus, accuracy becomes impossible to calculate, meaning that we must use another
evaluation metric.
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2. Theory

For our work, it is better to use what is called precision. Precision is defined as:

Precision =
TP

TP + FP
(2.9)

In other words, what we are doing is measuring what percentage of positively classified
results was positive. This is excellent, as we are only working with positives, and the user can
separate TP from TN by rating their relevancy. As precision is calculated over a complete
set, we could consider only the top k element in an ordered set. We then calculate something
called Precision at k (P(k)). We can use this to create what is called Average Precision at k
(AP@k): ∑k

i=1 P(i) · rel(i)
k

, (2.10)

where rel(k) equals 1 if the document at position k is relevant and 0 otherwise (Craswell and
Robertson, 2009).

Finally, we have arrived at something that combines overall rating and ordering into a
measurement. The rel(k) accounts for the former (only highly rated patents are relevant)
while AP@k will be higher if the relevant patents are ordered first. This becomes clear if we
view the two sets S1 and S2:

S1 = [relevant, relevant, irrelevant]

AP@k1 =

1
1 +

2
2 + 0
2

= 1
(2.11)

S2 = [irrelevant, relevant, relevant]

AP@k2 =
0 + 1

2 +
2
3

2
=

7
12

(2.12)

.
Thus, even though the two sets contain the same elements, the ordering matters.
Closely related to AP@k is Mean Average Precision (MAP). MAP is simply AP@k aver-

aged over a number of different queries or tests.
The threshold for what is relevant or not might be biased as some users are more likely

to, on average, find patents relevant. This can be accounted for, by choosing the threshold
individually for each user according to their average rating.

One should note that “relevant” in this case does not necessarily mean that the user thinks
the patent is relevant for some purpose. What patents one user thinks are relevant may be
a much smaller subset of all patents than what another user thinks. Relevant in our mea-
surements simply means that the user thinks more highly of the patent than they did of the
average patent in this test.

Finally, we will give a warning when comparing MAP, especially between different test
persons. First and foremost, some people will be more likely than others to find patents in
general relevant. This will make the MAP score different for different people, even if they
agree on which order the patents should be in.
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We can compensate by using the average of a scaling rating as a personal threshold for
relevancy. However, if we are using discrete values on this scale, as we are doing in this Mas-
ter’s thesis, the mean will be differently far away from an upper discrete value for some users
than for others. For example, two persons may have almost the same mean and threshold,
only one of them slightly over a discrete value and the other one just under. They might have
almost the same rating preferences but will still get different MAP scores.

This could be solved by using float numbers instead of integers as possible ratings. How-
ever, that would make for some other problems, as ordering between the results would be-
come more difficult to examine. If one result was a tiny bit better than another, their indi-
vidual rating should not matter too much. More advanced evaluation systems would have to
be constructed to prevent such ordering displacement not mattering too much. In the end,
integer rating was the simplest solution, both for us and for the test persons.

2.6.4 MRSC and ARSC
Suppose we have two lists with the same elements in them but in a different order. To see
how much one element has changed in rating order from one list to another is easy: If it was
placed 5th in order in the first list and is placed 8th in the second list, it has moved 3 steps.
This would also be true if it has moved in the reversed order from 5th to 2nd place.

In this project, we will be examining the maximum rating order change of any element
in two lists, as well as the average rating order change for all elements. Hereafter, these two
measurements will be referred to as Maximum Rating Step Change (MRSC) and Average
Rating Step Change (ARSC).
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Chapter 3

Experimental setup

In this chapter, we will describe the working process of our experiments. We will also try to
give the reader some insight into our thinking process and why we wanted to do things the
way we did.

3.1 Network testing
For similarity comparison, we wanted to use a network that scored high in similarity compar-
ison tests and the choice fell on the SBERT network bert-base-nli-stsb-mean-tokens due to its
high performance in STS benchmark tests as well as its high speed compared to traditional
BERT networks (Reimers and Gurevych, 2019). However, there was an interest in using a
network trained specifically on patent data, more specifically the BERT for Patents network
by Google (Srebrovic, 2020).

To compare the two networks three random sets of 600 US patents were created from
the Google Cloud patents-public-data (Srebrovic, 2021). Each set was chosen by letting each
document be represented by its top 10 terms (unigrams or bigrams) and at random choosing
600 of these that contained a specific search term. The search terms for this test were “car”,
“plastic” and “phone”. By comparing each patent in a set with all the other patents in all sets
through cosine similarity on their embedding representation, one could then calculate the
average similarity between each of the sets. The best performing network would be the one
that easiest could differ between the sets.

3.2 Database creation
Calculating the embeddings for millions of document texts takes great computational power
and time. It is highly impractical to do this every time a similarity search is performed. Thus,
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this should be done beforehand, with the embeddings saved in a database where each patent’s
corresponding embedding can be referenced with the use of a unique index.

For this work, we are using a database from Mindified consisting of 66 352 156 patents,
and a corresponding embedding database. The patents in the first database were filtered
out from a larger set of patents from the European Patent Office World- wide Bibliographic
database, with the constraint that they should be in English and each have a non-empty
abstract and title. The embeddings database was then created from preprocessed and con-
catenated patent titles and abstracts.

The preprocessing was carried out by the elimination of noise in the texts, such as fig-
ure references and HTML tags that do not provide any information to the network. The
concatenation then simply created a text for embedding creation by having the title as a sep-
arate sentence in front of the abstract. The embeddings were finally created using the SBERT
network base-bert-nli-stsb-mean-tokens on these texts.

A database of 66 million patents will take a lot of time to search through, even with very
efficient algorithms. With the resources available to us, this is simply too many patents, and
with limited time for evaluations not possible. A solution here is to use clustering to organize
and then to search through only a small, but relevant, part of the database, as was done by
Navrozidis and Jansson (2020).

However, as we are interested in improving an assumed non-optimal output from the
network, and keeping in mind that the network output is also used for organizing the clus-
tered database in the first place, this may create some problems. Instead, we are working with
a small subset of the database with patents that are classified in section E, class 06 (CPC),
which are patents revolving doors, windows, shutters or roller blinds in general and ladders.
This means that the final amount of patents to search through is thus 310,024.

3.3 Parameter settings
Tables 3.1 and 3.2 show the parameters we chose for the tests. Note that their values are set
according to what seemed to produce reasonable results in early tests when working with the
database we used for this Master’s thesis. Also, some practical details had to be taken into
consideration when choosing parameters, such as making the tests take a reasonably long
time to run.

X = 5
Z = 10
memoryTerm = 0.85

Table 3.1: Parameters of model 1

3.4 Test input patents
For testing, we used randomly selected input patents from our database to perform similarity
searches on. The only constraint for the input patents was that identical copies, or nearly
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X = 5
Z = 10
weightTerm = 0.5
memoryTerm = 0.85

Table 3.2: Parameters of model 2

identical copies, could not exist in the database. This had been the case for a few patents in
some early tests. In these cases, the outcome of the tests was scientifically irrelevant as we
had “perfect” matches from the start.

The input patents themselves were not included as matches in the search results. The
number of input patents was chosen to 5, as our resources were limited and our test persons
had to finish their test within a reasonable amount of time.

The input patent texts that were used are listed in Appendix B.

3.5 Program for testing the methods
The program that is described in this section was written in Python.

The methods in Section 2.5 were implemented together with the database. For each con-
figuration of user, input patent, and model, the performance of the model was tested over
several iterations.

At the beginning of the program, the user was presented with an input patent which they
had to read through, as seen in Figure 3.1. In each iteration, the user was given a set of top 5
candidate matches to the input patent, suggested by the specific method in use. 3.2 shows an
example of this.

Figure 3.1: The interface the users worked with, here presenting the
input patent for this test.

In each iteration, the user was given 2 tasks:

1. Give all of the candidates a rating on a scale from 1-51, with 5 being a “very good match”
and 1 being “a very bad match”.

2. Divide the candidates into a good set, and a bad set.

1In the first iteration, it was only possible to rate the patents 2, 3, or 4. This was to guarantee the possibility
of seeing improvement/deterioration over the iterations should they happen.
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Figure 3.2: The suggested patent candidate matches to the input
patent in figure 3.1 given by the program.

One should note that the rating of the patents given by the user is only used for evalu-
ation of the tests in this report. The program itself does only change its candidate ordering
according to what the user chooses as the good and bad set, as described in Section 2.5.

For the sake of consistency, the user was not able to give a different rating for the same
patent if it returned among the top 5 candidates in different iterations. If the users were able
to change the rating of a patent, it would be hard to interpret improvement or deterioration
over the iterations.

What the user can change, however, is their opinion about what should be in the good
set and the bad set. For example, a patent that is the best candidate in one iteration should
belong to the good set. But if the method has presented new, much better candidates for the
next iteration, the patent might be the worst in the group. Thus, it should now belong to
the bad set. This makes it possible, given better and better candidates by the program, for
the user to return better and better information to the program about how the ideal match
should look like. If all goes well, we have a loop with improving candidates for each iteration
until progress can be made no more.

The users were given some limitations to what patents the user can choose to be in the
good and bad sets:

• All the patents had to be chosen in some group, and only in one. This is not strictly
necessary for the model as one could technically work with “indifferent” patents that
are neither good nor bad. It was implemented this way to make it simpler for the user.

• At least one patent must be assigned to each group. Otherwise, the methods in Section
2.5 would be impossible to use.

• The previously given ratings were used to make sure that no patent in the good set
could be lower rated than any patent in the bad set (and vice versa).
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3.6 Evaluation methods
As the procedure of evaluating the similarity between text documents is highly subjective,
we decided that the best way to obtain an objective metric for evaluation would be to test
the different methods using results from several different test persons and averaging them.
We wanted to test the different methods in five areas:

1. How similar the top output candidates are to the input patent.

2. How the quality of the output candidates changes over the iterations.

3. How good the raw output candidates of the network are compared with the re-ranked
ones.

4. How well the final output candidates are ordered.

5. How good the methods were at suggesting candidates that were not originally highly
rated but still decent.

How well a method performs in suggesting patents that originally were rated quite low
is perhaps what we desire most when searching through large databases (in combination
with producing output patents of good quality). There are many methods out there that are
designed to find similarities between patents. If our methods can find good patents that
other methods do not rate highly, then there is indeed some value to it.

Equivalently, if our method does not promote low-rated patents, why should we bother
and not instead just read through the default top suggestions manually? We will hereafter
refer to this ability to promote low-rated patents as “effectiveness” and the patents themselves
as “bubblers”.

The different evaluation methods, together with their scope, a description, and corre-
sponding area of purpose are listed below in Table 3.3.

Evaluation Method Scope Description area of purpose
Rating (on a scale from 1-5) Top 52 Patent quality 1, 2 & 3
Inversion number (IN) Top 5 Ordering 4
Mean Average Precision (MAP) Top 5 Ordering 23 & 4
Max Rating Step Change (MRSC) Top 50 Effectiveness 5
Average Rating Step Change (ARSC) Top 50 Effectiveness 5

Table 3.3: List of evaluation methods

When working with MAP, the threshold for a patent being relevant (TP) or not (FP) was
set to the average rating for all patents in all tests for each user separately.

The evaluation methods including Rating, IN and MAP were carried out on the top 5
candidate suggestions of the methods. However, when examining the effectiveness of the

2For the most parts, the results are presented as an average over the top 5 candidates. However, for iteration
0, we will present all ratings for comparison between the test persons.

3MAP is imprecise for comparison with rating results between different users because of several reasons.
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methods through MRSC and ARSC, a wider scope of 50 was used. To see if large changes
in similarity score order are happening, there is no need to have read through and rated the
patents, thereby not limiting us to only study the top 5. Top 50 was chosen as it is a wider
range that gives more data points.

It is important to also consider the rating as well when examining the effectiveness. Pro-
moting low-rated patents is easy if we are not suggesting good candidates. High effectiveness
is only useful if the ratings are improving.

3.7 Testing process
The evaluation tests were performed by employees from the intellectual property rights com-
panies AWA in Malmö and Zacco in Copenhagen as well as an employee from Lund Univer-
sity. In total, a test was run for each of 5 different input patents. With two different methods,
this resulted in 10 tests in total. All in all, 10 tests took approximately 2 hours to complete
for each test person.
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Chapter 4

Results

In this chapter, we will present the results of our work. We will first present the comparison
between SBERT and the BERT for Patents network.

In the second part, we will study the results for the different interactive iterative patent
search models when used together with SBERT. More specifically, we will go through results
regarding user ratings, rating changes, and original network similarity score.

4.1 Network testing
In this experiment, we used three different sets, wherein each set, each patent had to contain
one of the terms car (set 0), phone (set 1) or plastic (set 2) among its top terms. We then
averaged the similarity scores from all possible combinations of two patents from two sets.
This was done between all sets. Table 4.1 shows the results we obtained for our two networks.

SBERT BERT for Patents
0 1 2 0 1 3

0 0.573 0.437 0.456 0.535 0.491 0.471
1 – 0.628 0.403 – 0.574 0.466
2 – – 0.580 – – 0.494

Table 4.1: Average similarity scores between all patents in the 3 sets.

Both SBERT and the BERT for Patents network manage to find higher similarities between a
set and itself than the set and other ones. However, the difference in similarity is much larger
for SBERT, which suggests that this is a better network for semantic similarity comparison
between patents.
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4.2 Method evaluation
4.2.1 User ratings
During the tests, the test persons rated the output of the two models on a scale from 1 to 5,
with 5 being the best and 1 the worst. This was done over several iterations, with iteration 0
being the default output of the SBERT network.

Average ratings for top 5 candidates
Model 1 2
Iteration 0 1 2 3 0 1 2 3
Input patent 1 3.25 3.35 3.40 3.35 3.25 3.35 3.40 3.35
Input patent 2 2.80 2.85 3.05 3.00 2.80 2.95 3.10 3.00
Input patent 3 2.45 3.05 3.20 3.35 2.45 3.05 3.20 3.35
Input patent 4 2.95 2.90 3.10 3.20 2.95 2.95 2.95 3.35
Input patent 5 2.35 2.70 2.70 2.95 2.35 2.55 2.65 2.9
Average 2.76 2.97 3.09 3.17 2.76 2.97 3.06 3.19

Table 4.2: The ratings (averaged over top 5 candidate patents for all
test persons) of the top 5 results in a search, for different models,
iterations, and input patents.

As we can see in the ratings in Table 4.2, there is an increasing score from the default
output of the SBERT network when compared to working with our models in the other
iterations. It is not strictly increasing for all patents and iterations, but on average the trend
is clear. As we can see in Figures 4.1 and 4.2, this trend is especially visible from iteration 0
to iteration 1, when the difference in ratings is especially large. The trend does not seem to
stop after 3 iterations.

The ratings are very similar for model 1 and model 2. Model 2 has a slightly larger increase
in ratings on average after 3 iterations, but it is very small.

Noticeable is that different patents have different rates of improvement. For example,
patent 1 being the originally highest rated patent, has only gained 0.10 in average rating from
iteration 0 to iteration 3. Meanwhile, patent 5, while being the originally worst-rated patent,
has increased 0.55 on average.

When studying the scores for the individual test persons, as shown in Table 4.3, there
is also a difference in the way the different test persons rated the patents. In particular, test
person 2 had a much lower improvement rate of the ratings than the others. Test person 2 also
gave lower scores than the other ones. Noticeable is that test persons 3 and 4 had the highest
original ratings and also the highest final ratings in iteration 3. However, as test person 1
started with a lower original rating but still made an improvement similar to numbers 3 and
4, all of these 3 test persons can be said to have successfully improved their results when
working with the models.

In Table 4.4, we see the ratings given by the test persons on iteration 0 for the top 5
candidates to each input patent. Notice that they all always have access to the same candidates
in this iteration. Also, notice that the ratings in iteration 0 always will be the same for the
models.

30



4.2 Method evaluation

Average ratings for top 5 candidates
Model 1 2
Iteration 0 1 2 3 0 1 2 3
Test person 1 2.68 2.88 2.92 3.08 2.68 2.92 2.96 3.16
Test person 2 2.56 2.76 2.72 2.76 2.56 2.68 2.72 2.72
Test person 3 2.92 3.12 3.32 3.44 2.92 3.16 3.24 3.44
Test person 4 2.88 3.12 3.40 3.40 2.88 3.12 3.32 3.44

Table 4.3: The ratings (averaged over the top 5 candidate patents for
all input patents) for each model, iteration, and test person.

Figure 4.1: Average for all test persons and patents: the user rating
for the top 5 results over iterations for model 1. A clear improvement
can be seen.

The results clearly suggest that most often, the test persons agreed on the best and worst
candidates.

4.2.2 Rating order changes
Here, we present the results regarding change in the order of the results. When talking about
changes in order, we mean absolute change in order placement.

In Table 4.5, we can see changes in IN, MAP, MRSC, and ARSC averaged over all test
persons. The overall averaged result can be seen for all of these, and we can see a consistent
decrease for IN and an increase for MAP, MRSC, and ARSC for all iterations.

Studying the results for different patents, what we can see is that the same decrease/increase
is present most of the time, but with some exceptions for IN and MAP.

The best-ordered patent in terms of IN and MAP in iteration 0 (patent 5) was still the
best-ordered patent at iteration 3 considering MAP, but not IN. This was true for both mod-
els.
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Figure 4.2: Average for all test persons and patents: the user rating
for the top 5 results over iterations for model 2. The results are quite
similar to those for model 1.

The least ordered patent in iteration 0 was not the same for IN (patent 4) and MAP
(patent 1). Also for iteration 3, they were not the same (IN: patent: 1, MAP: patent 3). This
was true for both models.

In Table 4.6, we can see IN, MAP, MRSC, and ARST averaged over all patents. Also here,
there are a few exceptions from the overall trend. This time, apart from IN and MAP, one
exception is also present in MRSC. The two models seem to perform similarly with a few
exceptions (test person 1: MRSC and ARSC, test person 4: IN)

When studying the different test persons in terms of IN and MAP, we can that they differ
a lot (particularly interesting is iteration 0, where they had access to the same patents). All of
the test persons experienced an overall improvement over the iterations, with one exception
being test person 4 with IN for model 1.

The test persons had very different scores in terms of MRSC and ARSC. Test person 1
and 4 had relatively similar scores here in terms of MRSC and ARSC for model 2, although
they surprisingly differed quite a lot for model 1 (where test person 4 had similar results for
models 1 and 2).

4.2.3 Original network similarity score
In Figure 4.3, we list the similarity score for the top 50 candidates for all input patents.

As expected, there are some differences between the candidates.

• To begin with, for input patent 1, we have a few patents that have a high similarity
score compared with the other input patents. However, the score drops quickly and
after the first 5 patents, we almost have a linear decay in similarity score for a while.
Around index 30-50 the candidates almost have the same similarity score.

• For input patents 2 and 3, the few best candidates are not that much higher rated
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Original ratings of candidates in iteration 0 for different test persons and input patents.
Input p. TP 1 TP 2 TP 3 TP 4 #B #W
1 3 4 4 2 2 4 3 4 4 2 4 4 3 3 3 2 4 2 4 4 3 3
2 3 2 2 3 2 3 2 3 3 2 3 3 4 2 4 4 4 3 2 2 3 3
3 3 2 2 2 3 3 2 2 2 2 3 2 2 2 3 4 4 2 2 2 4 4
4 3 2 4 3 3 3 2 3 3 2 4 2 4 3 4 3 2 4 3 2 4 4
5 4 2 2 2 3 2 2 2 2 2 3 2 2 2 2 4 2 3 2 2 4 4

Table 4.4: Candidate patent ratings in iteration 0 for the differ-
ent test persons. #B and #W stand for the highest number of test
persons that agreed on a candidate as the best/worst match. Com-
monly agreed upon best/worst matches are marked with an under-
line/overline for the test persons that agreed.

than the other ones. Thus, for the first 30 patents, we have an approximately linearly
decreasing curve. After that, the candidates almost have the same similarity score.
Compared with the ones in input patent 1, these candidates lie in a closer range.

• Input patent 4 is very linear in its appearance. Also, it has the closest range of all input
patents.

• Input patent 5 is similar to input patent 2 and 3, perhaps a little more closely approx-
imated to a linear curve.
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Ordering results for top 5 ratings
Patent 1

Model 1 2
Iteration 0 1 2 3 0 1 2 3
IN 2.25 2.5 1.25 1.5 2.25 2.5 1.25 1.25
MAP 0.53 0.58 0.67 0.62 0.53 0.58 0.67 0.67
MRSC 0 15.25 26.00 50.50 0 16.50 34.50 48.50
ARSC 0 3.74 6.38 9.40 0 4.07 6.49 8.89

Patent 2
Model 1 2
Iteration 0 1 2 3 0 1 2 3
IN 2.25 1.00 1.00 0.00 2.25 0.75 0.75 0.00
MAP 0.33 0.39 0.56 0.65 0.33 0.51 0.66 0.65
MRSC 0 65.25 106.00 180.00 0 54.75 98.25 148.75
ARSC 0 10.65 21.06 31.49 0 9.81 22.01 30.2

Patent 3
Model 1 2
Iteration 0 1 2 3 0 1 2 3
IN 1.50 3.00 1.50 0.75 1.50 1.00 1.25 0.00
MAP 0.22 0.44 0.60 0.73 0.22 0.46 0.60 0.74
MRSC 0 58.25 235.25 253.00 0 84.25 106.50 114.25
ARSC 0 11.75 19.62 22.59 0 10.01 16.47 20.62

Patent 4
Model 1 2
Iteration 0 1 2 3 0 1 2 3
IN 3.25 1.00 1.25 0.00 3.25 1.00 0.25 0.75
MAP 0.41 0.51 0.61 0.70 0.41 0.51 0.54 0.72
MRSC 0 84.25 106.50 114.25 0 102.50 111.75 150.25
ARSC 0 10.01 16.47 20.62 0 13.45 20.34 27.74

Patent 5
Model 1 2
Iteration 0 1 2 3 0 1 2 3
IN 1.00 2.25 1.00 0.75 1.00 1.00 0.50 1.00
MAP 0.12 0.22 0.21 0.30 0.12 0.16 0.21 0.33
MRSC 0 39.00 55.25 116.00 0 43.00 57.25 114.25
ARSC 0 7.95 12.72 19.09 0 8.50 13.33 19.32

Average
Model 1 2
Iteration 0 1 2 3 0 1 2 3
IN 2.05 2.1 1.2 0.65 2.05 1.65 0.85 0.75
MAP 0.32 0.43 0.53 0.60 0.32 0.44 0.54 0.62
MRSC 0 49.50 105.50 143.90 0 55.00 107.40 142.95
ARSC 0 8.73 15.14 20.96 0 9.52 16.35 21.87

Table 4.5: IN, MAP, MRSC and ARST, averaged over all test per-
sons.
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Ordering results for top 5 ratings
Test person 1

Model 1 2
Iteration 0 1 2 3 0 1 2 3
IN 2.80 2.00 1.40 1.40 2.80 1.80 1.60 1.20
MAP 0.42 0.57 0.74 0.76 0.42 0.58 0.73 0.8
MRSC 0.00 43.40 83.80 73.40 0.00 57.40 95.80 100.40
ARSC 0.00 8.12 12.96 13.92 0.00 10.67 16.67 19.50

Test person 2
Model 1 2
Iteration 0 1 2 3 0 1 2 3
IN 1.20 2.40 0.60 0.40 1.20 1.40 0.60 0.40
MAP 0.39 0.51 0.53 0.60 0.39 0.51 0.57 0.60
MRSC 0.00 54.60 177.80 213.00 0.00 61.20 170.80 209.60
ARSC 0.00 10.21 17.44 20.71 0.00 9.48 16.46 21.80

Test person 3
Model 1 2
Iteration 0 1 2 3 0 1 2 3
IN 2.40 2.00 1.00 0.40 2.40 1.60 0.40 0.40
MAP 0.20 0.25 0.35 0.50 0.2 0.30 0.41 0.50
MRSC 0.00 52.00 92.20 184.40 0.00 52.60 93.20 154.00
ARSC 0.00 8.88 17.14 30.19 0.00 9.92 18.98 28.01

Test person 4
Model 1 2
Iteration 0 1 2 3 0 1 2 3
IN 1.80 2.00 1.80 0.40 1.80 1.80 0.80 1.00
MAP 0.28 0.38 0.49 0.54 0.28 0.38 0.44 0.59
MRSC 0.00 48.00 68.20 104.80 0.00 48.80 69.80 107.80
ARSC 0.00 7.72 13.01 19.02 0.00 7.99 13.31 18.17

Table 4.6: Inversion number (IN), Mean Average Precision (MAP),
Max rating step change (MRSC) and Average rating step change
(ARSC), averaged over all patents.
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Figure 4.3: The similarity score for the original top 50 candidates
for all input patents.
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Chapter 5

Discussion

In this chapter, we will first shortly discuss our findings from the comparison between SBERT
and the BERT for Patents network. In the second part, we will discuss the results for the
different interactive iterative patent search models when used together with SBERT. Lastly,
in the third part, we will try to pinpoint possible improvements in our work and suggest
areas of interest for future experiments.

5.1 Network testing

This part of the project was a much smaller part than the rest of it. We did it out of curiosity to
see how a network that was trained on a large database of patents would perform when com-
pared to a more conventional network such as SBERT. The patent embeddings used in this is
a BERT network that is optimized for word prediction and detection of pairs of subsequent
sentences, while SBERT specifically has been trained to find the cosine similarity between
pairs of sentences. Thus, it was no surprise that the individual differences between each of
the classes were much larger for SBERT than for BERT for Patents. However, it strengthened
our beliefs that SBERT was a good choice as a network for semantic comparison with cosine
similarity.

It would have been interesting to see how an SBERT network trained or fine-tuned specif-
ically on patent texts would perform in comparison with the conventional one. However, it
is a much harder task to put together a large training database with only patent texts than
general texts. Thus, the results of such a test would greatly depend on the training database.
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5.2 Evaluation
5.2.1 Overall results
From our results, it is clear that the quality of the top patents does indeed improve on average
when working with an interactive iterative feedback loop as we have done in this Master’s
thesis. The final result of iteration 3 has a top 5 average similarity of 3.17 and 3.19 for models
1 and 2 when compared to the original input patents, as seen in Table 4.2.

Since the scale from 1-5 is very subjective in the way of how one would describe two
patents’ similarity in words (one person could say that a 4 is very similar, while another would
have 4 as a threshold for being relatively similar), it is not so easy to say what the ratings mean
in reality. However, what can be said is that they are improving over the iterations.

Studying Figures 4.1 and 4.2 makes it clear that the two methods we have tried are not
only both valid, they are also very similar in the quality of the results they produce.

In Table 4.6, we see that the average IN and MAP does go down, which is an indication
that the top 5 results are better ordered than from the original SBERT output. It is clear that
the change in MRSC also for the most part matches the change in ARSC.

Regarding MRSC and ARSC it is clear from Table 4.6 that they increase on average over
the iterations. This is very good for the usefulness of our models, at least when keeping in
mind that the ratings also does improve.

In the next following sections, we will draw more in-depth conclusions from the results.

5.2.2 Differences in results for test persons
As seen in Table 4.3, test person 2 had the worst results in rating with only a small increase.
However order-wise, as seen in Table 4.6, IP and MAP were still decent. Even if this test
person gave noticeably smaller ratings for the same starting candidates in iteration 0 as the
other test persons, this does not affect the program in the next iteration. What it does affect,
however, is the way the person chose the good and bad set. From studying the test logs, it is
clear that this test person more often than the others chose 1 candidate as either the good or
bad set, and put 4 in the other. For test person 1 this was done 2 times. For test person 2 this
was done 15 times. For test person 3 this was done 7 times. For test person 4 this was done 5
times.

Since we are working with averaging the embedding of the good and bad sets, the more
candidates there is in one group will make the “meaning” of that embedding more blurred.
In turn, the re-ranking will probably become more random. Rankings will be updated dif-
ferently if their corresponding patents are more similar to the good or the bad set. With
blurred embeddings, the result of the comparison is more arbitrary. Thus, this will lead to
more randomly updated similarity scores, with worse results following.

What is interesting is that while this user did not have so much improvement, an im-
provement was still clearly present from iteration 0 to 1. It is hard to say what this is caused
by as the before mentioned unbalanced set splitting occurred also here. As we have it, there
is a limited amount of data to read from. Perhaps, if more extensive tests were done, it would
become more clear.

Test person 2 also had a relatively large average MRSC and ARSC. Possibly, this is also
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caused by more random updates in similarity scores. It is easy to get larger changes at the top
if we make arbitrary changes across all candidates. However, it is also possible that this test
person simply made “good choices” for finding “bubblers” far down in the candidate list. It
is hard to say which it is.

The changes in IN and MAP were still decent for test person 2. This probably goes hand
in hand with what we mentioned in Section 2.6.2 that IN should naturally increase if the new
candidates at the bottom of the top suggestions are bad. Also, bad new entries replacing bad
old ones at the bottom of the list do not affect MAP negatively. With the unbalanced set
splitting of 4:1 or 1:4, the one patent should at least move up or down in ratings, making for
better ordering.

Rating-wise the other 3 test persons all had similar improvements. As we have stated
earlier, we should be very careful with comparing ordering. What we will compare is MRSC
and ARSC. Far highest improvement here was achieved by test person 3. This, together with
having one of the best improvements in rating makes test person 3 the one that had the most
success overall. Appendix C contains some examples of the “bubblers” of test person 3.

5.2.3 Effect of choosing parameters
If we recall, the set of parameters for our models was:

X
Z
weightTerm (only for model 2)
memoryTerm

Table 5.1: Parameters of the methods

.
While the influence of the weight-term and memory-term can be discussed (how large

adjustments we should make to our default similarity scores and how much we should keep
from the last iteration), these are mostly parameters that were set through trial and error.
With more testing, one would surely come up with better values for these. However, we
should add that the best parameters probably are chosen by looking at the distribution of
original candidates for the specific input patent, as we did in Sect. 4.2.3.

Since it seems like we sometimes have a larger spacing in similarity scores between can-
didates, we should perhaps change the parameters so that the updates of the scores are larger
(or not, sometimes it can be good to not have the scores change too easily). Another way of
doing this would be to apply some sort of transform to the distribution, although this would
take a lot of computing power for the vast amount of data.

More easily discussed are the X and Z values, i.e. how many top candidates are shown to
the viewer for rating and set splitting and how many percent of the top candidates we should
keep in the next iteration.

X should not be too small, since the user is more likely to miss out on some of the best
candidates that might be just below the top candidates. Also, if it is too small we will not be
able to gradually tweak our results in a specific direction as easily since the “correct” direction
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might be “between” some candidates. For example, if we want a search profile that matches
some distinct parts of several different candidates.

The downside of X being too large, however, apart from it taking much longer to do the
test because of the increased text body, is that the average embedding of the good and bad
sets will be blurred. We have discussed this before, and blurred embeddings lead to more
random updates in similarity scores.

Our value of X = 5 seemed like a good choice. One thing that we have not researched is
if it is better to have an equal splitting, i.e. X being even. This could make for better results,
although our best performing test person, number 3, had a few unbalanced splittings of 1:4
or 4:1.

The method of creating averaged embeddings was something we tried very early in this
project and have not been reflected on after choosing parameters. However, one should be
able to implement our methods without this. One could, instead of computing the similar-
ity between the input patent and the averaged embeddings, compute the similarity between
the input patent and all of the candidates, then take the average of the similarity. It is very
possible that this also would produce good results. For one thing, it makes for the possi-
bility of using larger values of X , although averaging many different similarities could still
theoretically blur out the meaning.

Having a Z-value effectively makes the code run a lot faster after a few iterations, elim-
inating the worst results each time. We have not really tried to optimize this since what we
mainly wanted to do was to eliminate the worst candidate matches. This is because, as dis-
cussed in Section 3.6, they caused problems for method 1. However, for method 2 Z should
not be necessary, although also not harmful.

5.2.4 Differences in results for input patents & dis-
tribution in original similarities

For the most part, the ratings improved for all patents over the iterations. The biggest ab-
normality was for patents 1 and 2 where iteration 2 had slightly better ratings than iteration
3 for model 1. No improvement between these iterations was seen for model 2. The same
pattern was present when looking at the ordering results for MAP where small deterioration
with model 2. However, the IN improved quite a lot here.

By studying the results in Appendix A, it is likely that relatively few new patents were
replaced in the top candidates for most users in the first iterations for patents 1 and 2. How-
ever, their individual ordering still changed for the better. Some replacements came in in
iteration 3, and they were on average bad. This of course affects MAP negatively but may
very well improve the IN score, as discussed in Sect. 2.6.2. This is clearly visible for model
2. Why model 1 still improved its MAP score regardless of the rating dropping probably had
to do with a better ordering while the lowering of rating was not enough to go below the
threshold.

The reason for not finding any good replacement candidates, and eventually finding some
bad ones, can be understood if looking at the original distributions in Section 4.2.3. What we
see for patent 1 is a much steeper curve, with large rating differences between the candidates,
especially for the first 5. Of course, this will make it harder for introducing new patents, but
as we discussed in Section 5.2.3, this may also be good. The results, in this case, showed that
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by replacing the worst of the top candidates, the ratings got worse. Sometimes, the original
candidates might simply be the best!

5.2.5 The subjective measurement of similarity
We ask ourselves the same question that we did in Section 3.6:

How similar are the top output candidates to the input patent?

The answer to that question may be simple. For the most part, the best patents are rated 4
on a scale from 1 to 5 where 5 is the best. However, what does that mean in reality? Is 4 good
enough for it to be used in a real-life situation when looking for prior art? The answer to
that is probably that it depends. As many test persons commented about in Appendix D, it
would have been easier to understand the finer details of the patent when using images as
a complement to the patent text. Then one would be able to see if these finer details as for
example “the latch mechanism” in input patent 1, Appendix B.1, were similar and the patents
thus being relevant to each other. This is something that we did not have the resources to
achieve, but it should be perfectly possible to do in an application.

When giving the instructions for the tests, we stated that “5 was a very good match” and
“1 was a very bad match”. We had two instances of 5s come up in the tests, and for these two
matches we can say that they are very similar to the input patents. A few 1s were also found
that we can say were very bad. Would we have done these test again, the instructions would
have stated in words, how similar a patent would be for each rating.

What we also would have made different is to be able to give a ranking of 5 or 1 on
iteration 0. We did not do this to guarantee a possibility of seeing deterioration/improvement
but at the same time it makes it hard to say if for example some of the patents rated 4 was “a
very good match”. It makes sense that the default network simply finds the best patents on
some occasions, but now we cannot see that.

As the similarity between text documents is so subjective, we cannot say exactly how
similar the output candidates are to each input patent. But what we can say is that for each
iteration we have improvements. To answer the question, we will have to say that our methods
were able to bring forth many 4s, i.e. many new patents that were close to being “very good
matches”.

5.2.6 IN vs. MAP
We have concluded that the results for IN and MAP in Table 4.6 go down on average, indi-
cating better orders. This is a good result, especially for the IN considering that the ratings
for the candidates are improving on average at the same time.

As discussed in Section 2.6.2, there is a risk of getting worse scores for IN when new good
patents emerge at the bottom of the top candidates. Although we see a worsening score on
some occasions, we still see an average improvement in order. This is confirmed by the MAP
which is a more reliable tool for evaluation in some sense. This is because, as discussed in
Section 2.6.3 it will never worsen its rating when better patents emerge.

However, in some sense MAP is also a worse tool for evaluation as it, in this case, thresh-
olds a rating on a scale into a binary rating of relevant or not. With such a subjective task as
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comparing similarities between longer texts, it is not so easy to place a text in one of just two
categories, and a rating scale from 1-5 should give us more information.

The two methods thus complement each other, and when discussing the order results,
both of them should be included.

5.3 Possible improvements and future work
The largest improvements that can be made to our models are quite possibly adjustments
to the parameters, which we discussed in Section 5.2.3. Extensive testing and fine-tuning
here should make the models better. That being said, these models are very simple in purely
mathematical terms. There exists an infinite pool of variants for these models, each one
more complicated than the other. Realistically, the optimal model should be much more
complicated than what we have done. However, what we set out to do was not to achieve
perfection, but simply to see if it was possible to improve the results in an interactive iterative
process, and it was!

There are a few things that should have been changed in this project but were not. For
example, the ratings on a scale should not have been further limited on iteration 0. What also
would be an improvement is the way the test persons did the splitting of good and bad sets.
If presented with the same candidates in the same iteration, but for two different models, the
splitting should have been identical. This was very uncommon in our tests and did likely not
affect our results, but for consistency’s sake and test comparison, it would have been nice.

One thing that should be noted about this work is the limitations in resources for test-
ing. What should be done in the future are tests with more test persons, input patents, and
iterations. The last one is especially interesting since we, on average, saw improvements on
all of the iterations. At some point, it is reasonable to believe that improvement should stop
or deterioration of the ratings should take place. At what point in time that one could per-
haps change the parameters, of course depending on if perfect results already have not been
achieved.

One thing that could be examined in the future is for example the splitting of the candi-
dates into good and bad sets. Further testing should say if it would have been better to have
a predetermined size of the splittings into more even sets.

As said before, extensive testing and fine-tuning of the parameters would be good to do
in the future. For a functioning application in the patent industry, one would have to include
images and possible links to the full-text patent for each title-abstract pair.

It would be interesting to explore the use of other neural networks as we have done with
SBERT. At the time of writing this, SMART-RoBERTa Large is a network with very high
benchmark scores on semantic similarity tests (paperswithcode.com, 2021).

Perhaps one of the most promising aspects of interactive iterative re-ranking is the po-
tential for the methods to find bubblers. As seen in Appendix C, they seem promising, even
when quite far down in the list and never seen by the test persons. As that is, future works
could test methods where the user can read and choose among the patents with the best
improvement ranking-wise, not only the highest ranking.

One thing that is very important for the practical use of the models is to get them to
run on a larger database. This will pose problems in terms of execution time. This could be
solved with clustering and only picking the candidates from the top clusters. However, in
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some sense, this is counter-productive as the clustering would be made with some similarity
score from the beginning. Then the candidates would only be pulled from what already is
considered to be the most similar ones, thus preventing “bubblers” from far down in the
scores to later rise. That being said, clustering might still be the way to go given enough
clusters and a large number of candidates from each of them. Another option would be
to create many smaller databases and, as we have done, search the appropriate database or
databases for matches to the input patent. However, the drawback of this would be that
similarities between patents in different databases would impossible.

43



5. Discussion

44



Chapter 6

Conclusions

When we began this project, we set out to explore ways of using neural networks for semantic
similarity searches in patent databases in an iterative, interactive process. We had two simple
mathematical models for re-ranking the results that we wanted to test in five different areas:

How similar the top output candidates are to the input patents? Although there is some prob-
lem translating our rating scale into words, we can say for that the most part, the best
patents were close to, or very similar to the input patent. For some worse candidates,
we can say that they were not very similar to the input patents.

How the quality of the output candidates change over the iterations? While a few iterations
showed signs of no change or small deterioration, on average a clear improvement could
be seen. Overall, the quality of the candidates changed for the better.

How good the raw output candidates of the network are compared to the re-ranked ones?
As we saw a steady improvement in each of the iterations, one can only state that the
final output is of higher quality than what we started with.

How well the output candidates are ordered? This was the most difficult part of the tests
to evaluate since new results were introduced to the top candidates for most of the
iterations. In the end, the IN and MAP scores together point to the ordering on average
becoming better over the iterations. Depending on which one is used, some minor
deterioration could be seen in specific tests.

How good the methods were at suggesting candidates that were not originally highly rated
but still decent?

This might be the most promising result of our work. Our methods frequently pro-
duce “bubblers” that are not originally ranked very highly, but in the end, rise to the
top candidates. If the user experiences better patents at the same rate that we intro-
duce bubblers to them, it means that we can find patents that otherwise would have
remained hidden!
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After all of this, we can state that we have explored new territory in the field of textual
semantic similarity search. Hopefully, our testing and our conclusions will make it easier for
future researchers to employ similar methods to ours. That is for finding prior art in patent
databases and for more general semantic similarity searches alike.
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Appendix A

Test results

Table A.1 shows all the ratings given by all test persons for all input patents, methods and
iterations.

Table A.1: All ratings.

Test person 1, model 1
Input p. Iteration 0 Iteration 1 Iteration 2 Iteration 3
1 3 4 4 2 2 3 4 4 4 2 4 3 4 4 3 4 3 4 4 2
2 3 2 2 3 2 3 3 2 2 2 3 3 2 3 1 3 3 3 2 1
3 3 2 2 2 3 3 3 2 4 4 3 4 3 4 2 4 3 3 4 2
4 3 2 4 3 3 4 3 2 3 2 4 3 3 3 1 4 3 3 3 2
5 4 2 2 2 3 4 3 2 2 2 4 3 2 3 1 4 3 3 5 2

Test person 1, model 2
Input p. Iteration 0 Iteration 1 Iteration 2 Iteration 3
1 3 4 4 2 2 3 4 4 4 2 4 3 4 4 3 4 4 3 4 3
2 3 2 2 3 2 3 3 2 2 2 3 3 2 3 1 3 3 3 2 1
3 3 2 2 2 3 3 3 4 2 4 3 4 3 4 2 4 3 3 4 2
4 3 2 4 3 3 4 4 2 3 2 4 4 3 1 3 4 4 3 3 2
5 4 2 2 2 3 4 3 2 2 2 4 3 2 3 1 4 3 3 5 2

Test person 2, model 1
Input p. Iteration 0 Iteration 1 Iteration 2 Iteration 3
1 4 3 4 4 2 4 4 3 4 2 4 4 3 4 2 4 3 4 4 2
2 3 2 3 3 2 3 3 2 3 2 3 3 3 2 2 3 3 3 2 2
3 3 2 2 2 2 3 2 2 3 2 3 3 2 3 2 3 3 3 2 2
4 3 2 3 3 2 3 3 3 2 2 3 3 3 2 2 3 3 3 3 2
5 2 2 2 2 2 2 2 3 4 3 2 4 2 2 2 4 2 2 2 2

Test person 2, model 2
Input p. Iteration 0 Iteration 1 Iteration 2 Iteration 3
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1 4 3 4 4 2 4 3 4 4 2 4 4 3 4 2 4 3 4 4 2
2 3 2 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 2 2
3 3 2 2 2 2 3 2 3 2 2 3 3 2 3 2 3 3 3 2 2
4 3 2 3 3 2 3 3 3 2 2 3 3 3 2 2 3 3 3 3 2
5 2 2 2 2 2 2 2 2 2 3 2 3 2 2 2 3 2 2 2 2

Test person 3, model 1
Input p. Iteration 0 Iteration 1 Iteration 2 Iteration 3
1 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3
2 3 3 4 2 4 3 4 3 4 3 4 4 3 3 4 4 4 4 4 3
3 3 2 2 2 3 3 3 2 3 4 3 4 4 3 3 4 4 3 4 4
4 4 2 4 3 4 4 4 4 2 3 4 4 4 2 3 4 4 4 3 2
5 3 2 2 2 2 3 2 3 2 2 3 3 3 3 2 3 3 3 3 2

Test person 3, model 2
Input p. Iteration 0 Iteration 1 Iteration 2 Iteration 3
1 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 2
2 3 3 4 2 4 4 3 4 3 4 4 4 4 4 2 4 4 4 4 3
3 3 2 2 2 3 3 3 3 2 4 3 4 4 3 3 4 4 3 4 3
4 4 2 4 3 4 4 4 4 2 3 4 4 4 2 1 4 4 4 3 4
5 3 2 2 2 2 3 3 2 2 2 3 3 3 3 2 3 3 3 3 2

Test person 4, model 1
Input p. Iteration 0 Iteration 1 Iteration 2 Iteration 3
1 2 4 2 4 4 2 4 2 4 4 4 2 4 4 2 4 2 4 4 2
2 4 4 3 2 2 4 4 3 2 2 4 4 3 4 3 4 4 4 2 2
3 4 4 2 2 2 4 4 4 4 2 4 4 4 4 2 4 4 4 4 3
4 3 2 4 3 2 4 3 2 2 3 4 3 3 4 4 4 4 4 3 3
5 4 2 3 2 2 4 3 3 2 3 4 3 2 3 3 4 3 3 3 3

Test person 4, model 2
Input p. Iteration 0 Iteration 1 Iteration 2 Iteration 3
1 2 4 2 4 4 2 4 2 4 4 4 2 4 4 2 4 2 4 4 2
2 4 4 3 2 2 4 4 3 2 2 4 4 3 3 4 4 4 4 2 2
3 4 4 2 2 2 4 4 2 4 4 4 4 4 4 2 4 4 4 4 4
4 3 2 4 3 2 4 3 2 2 3 4 3 3 3 3 4 4 3 3 4
5 4 2 3 2 2 4 3 3 3 2 4 3 3 3 2 4 3 4 3 2

52



Appendix B

Input patents

Table B.1 shows all the input patents used in this Master’s thesis. Please note that the input
patents were "cleaned" before being transformed to embeddings. This meant for example that
the text was converted to lower case and figure references and tags were removed. References
and tags are removed here as well for readability.

Table B.1: Input patents in their original form before cleaning.

1 AUTOMATIC CLOSING DEVICE FOR FIRE DOOR

PROBLEM TO BE SOLVED: To provide an automatic closing device for a fire door
capable of bringing a latch mechanism into a release state manually and easily without
using a fire door. SOLUTION: When a fire breaks out, an automatic closing device
1 for a fire door can automatically close a fire door by bringing a latch mechanism
part 3 into a release state by a start part starting, and by releasing engagement of a
latch 3a and an engaging member H of the fire door, and it can also manually close
the fire door by bringing the latch mechanism part 3 into a release state by pulling
the fire door in a closing direction and by releasing engagement of the latch 3a and
the engaging member H of the fire door. In a housing 2, an opening 10 for release
operation is provided, and an operation of bringing the latch mechanism part 3 into
a release state can be performed from the outside through the opening 10 for release
operation. SELECTED DRAWING: Figure 4

2 Outdoor pavilion
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B. Input patents

The utility model relates to an outdoor pavilion. The kiosk comprises a base, sup-
porting columns and a kiosk roof. The supporting column is fixed to the base. The
pavilion roof is fixed to the end, away from the base, of the supporting column. A
roller shutter is arranged between every two adjacent supporting columns. The roller
shutter comprises an installation base, a reel used for winding the curtain, a pull disc
and the curtain. Wherein the mounting base is fixedly connected with the support-
ing column, the scroll is rotatably connected with the mounting base, the top of the
curtain is fixedly connected with the scroll, the balance weight lever is fixed to the
bottom of the curtain, the pull disc is fixed to the end of the scroll, a pull bead rope
used for driving the pull disc is arranged on the pull disc, and a fixing piece used for
fixing the balance weight lever is arranged on the supporting column. The curtain
is hung on the pavilion by pulling the bead pulling rope, the situation that sunlight
obliquely irradiates into the pavilion or rainwater floats into the pavilion can be ef-
fectively reduced, and the curtain is high in practicability and good in comfort.

3 Lock matched with louver curtain stag cord

The utility model relates to a lock set matching with a stretching wire of the window
blind curtain, which comprises of a cubic casing and a box without a cover and a
bottom, a gear rack of ladder shaped in the cubic chamber as well as a toothed wheel of
copper alloy, a fixed-point rotary wheel, i.e. sliding wheel, the copper gear is the stripe
gear hole that parallels with the echelonment gear rack, the outer of the chamber
entrance wall on the other end of the cubic chamber that facing with the ladder shaped
gear rack is provided with a corresponding sliding track. The utility model is simple
in structure, easy to process and equip and grand in outline and can be arranged on
either the right side or the left side, which gives the customer more choices. Because
the utility model has to burden bigger pressure, the casing toothed wheel and firmly
locked wheel are all cast and preceded by non-ferrous alloy, the utility model is rigid
and wearable, and has a long service life. In addition, the utility model is provided
with installed sliding track, and can be integrated with other window blind hardware
components when equipping, which will take good use of the space.

4 VENTILATION DEVICE

ventilation devices for doors and windows. SUBSTANCE: device is movable between
frame of door and separate frame. Frame are provided with sealing strips which may
be pushed in and out by means of actuating mechanism, thus opening air gaps between
beams of frames. Each actuating mechanism of each sealing cover plate or strip is
connected with all actuating mechanisms by means of drive and gates may be placed
in at least three positions. EFFECT: facilitated control of device and its mounting. 8
cl, 17 dwg

5 Intelligent monitoring entrance guard control safety protection device convenient for
heat dissipation
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The utility model relates to the technical field of intelligent monitoring entrance
guard control safety protection. The utility model relates to a security protection
device, in particular to an intelligent monitoring entrance guard control security pro-
tection device facilitating heat dissipation. Door frame, a door plate is hinged to the
inner side of the door frame; a positioning hole is formed in the front end surface of
the door plate on the left side; the inner side of the door plate is fixedly connected
with an electric lock; a baffle is arranged on the front end surface of the door plate
on the left side; the baffle penetrates through the door plate on the left side; the baf-
fle plate is slidably connected with the door plate; a handle is fixedly connected to
the front end face of the baffle. The top end face of the baffle is fixedly connected
with a second spring. According to the utility model, through the arrangement of the
baffle, the baffle is matched with the elastic force of the second spring to the baffle,
the elastic force of the first spring to the clamping block and the sliding connection
between the baffle and the door plate located on the left side, the card reader can be
shielded when the device is not used, and therefore the phenomenon that the card
reader is damaged due to external collision and other factors is avoided, and the cost
investment is reduced.
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B. Input patents
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Appendix C

Bubblers

Test person 3 clearly had the highest values in MRSC and ARSC while also being one of the
test persons that had the most improvements in rating. Thus, some of their “bubblers” will be
shown here as an example. Some of these have not been seen or rated by the user but would
rate higher for this author than some candidates that got rated 4 in the tests.

Table C.1: Some examples of “bubblers” from test person 3. IP is
corresponding input patent number, RC is Rating Change (absolute
number of steps in rating order), FR is Final Rating (order), R? is
either - or a rating if the user has rated the patent.

IP Patent RC FR R?

1 OPENING PROMOTION LOCK 55 42 -
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C. Bubblers

PROBLEM TO BE SOLVED: To provide an opening promo-
tion lock capable of eliminating differential pressure (differ-
ence in atmospheric pressure) between the inside and the out-
side of a room without providing a window hole and an open-
ing and closing plate and opening a door being difficult to
open due to difference in atmospheric pressure easily without
reducing beauty of appearance, airtightness, crime prevention
property, and safety. SOLUTION: This opening promotion
lock is provided with a latch bolt advancing and retracting
from a door opening and closing end 19 on the opposite side
to a hoisting origin, an operation shaft making the latch bolt
advance and retract, and a strike plate 33 which is provided
in a door frame 11 and in which the latch bolt advances to
assist opening movement of the door 13 from a condition in
which the door 13 is in a closed condition and the latch bolt
escapes from the strike plate 33. This lock is provided with
a reaction force member 39 provided in the door frame 11,
a forcibly opening latch 83 provided to advance and retract
from the door opening and closing end 19 and is abutted on
the reaction force member 39 by advance movement to pry
the door 13 in the direction of opening, and a prizing cam
fixed to the operation shaft and makes the forcibly opening
latch 83 advance and move by rotation operation of the op-
eration shaft after retracting the latch bolt. COPYRIGHT:
(C)2005,JPO&NCIPI

2 Energy-saving curtain 310 41 -

An energy-saving curtain belongs to a curtain and comprises
two supporting rods, that is, an upper supporting rod and a
lower supporting rod which are parallel; a plurality of cur-
tain leaf blades are vertically connected between the upper
supporting rod and the lower supporting rod; the upper sup-
porting rod is connected with a rotating shaft of an electric
motor; the upper supporting rod is connected with each cur-
tain leaf blade through a bevel gear pair; a supporting groove
for splicing rotating shafts of the curtain leaf blades is formed
on the lower supporting rod; and a mirror surface is arranged
on the same side of the curtain leaf blades. When in use, the
power supply is connected so as to start the electric motor to
drive the curtain leaf blades to rotate, and the positions of
the curtain leaf blades are adjusted according to the require-
ments, so as to achieve the required intensity of reflected light,
thereby achieving the effects of uniform indoor illumination
and energy conservation by adjusting the required illumina-
tion intensity through the curtain no matter how the high the
illumination intensity is.
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4 Curtain lock 50 2 4

The utility model discloses a curtain lock, which comprises a
lock shell with an inner cavity. A free gear and a rotating part
are arranged in the lock shell; the central axis direction of the
free gear is substantially parallel to the rotation axis direction
of the rotating part; the inner surface of a side wall of the
lock shell is provided with a toothed surface on which the free
gear can roll up and down; the teeth of the toothed surface are
arranged to be matched with the teeth of the free gear; when
the free gear is in a clamped state, the free gear is clamped
between the rotating part and the toothed surface; and when
the free gear is in a loose state, the free gear is separated from
the rotating part or the toothed surface; and the two ends of
the rotating part are connected to the lock shell by bearings.
The rotating part resists a small rolling friction force during
the rotation, so a stay can be operated easily with a small force;
the heat generated by friction is so little as not to influence
the normal service life of the lock shell; and the rotating noise
is low because of the small friction force during the rotation
of the rotating part, so the influence on the surroundings is
avoided.
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Appendix D

Questions for test persons and answers

D.1 Questions
The following questions were asked to the test persons after taking the tests:

1. Was the program easy to work with? Were there any parts that were harder to under-
stand?

2. How difficult was it to understand the patents? Were there any parts that were harder
to understand?

3. Did you notice an improvement over the iterations?

4. Did you notice any difference in final results due to how similar the top candidates
were from the beginning for each input patent?

5. Did you notice any significant difference between the models?

6. Was there something about the program that did not work so well?

7. Is this method something that you would be open to work with in the future?

8. Any other thought?
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D. Questions for test persons and answers

D.2 Answers
The answers to the questions were often similar between the users:

1. Most answers were that was easy, and that it was good to have the possibility to redo
your actions if you did something wrong.

2. Some answers were that it was difficult, others thought the difficulty to vary between
patents. Especially difficult were the patents that were mechanical to their nature,
where images would be handy.

3. The common answer was yes, or generally yes.

4. Two test persons answered no. One test person answered that good starting patents
implicated fewer new good patents later. One test person answered that the best im-
provements happened when the original candidates were neither good or bad, while
also being easy to separate into one bad and one good set.

5. Two test persons answered no. One person thought that the second model was slightly
better. One test person expressed worries that you did less work for model 2 since you
already had rated most of the patents since working with model 1 and that this could
effect your judgement.

6. The answers included being able to see images in patents if available, and a better user
interface.

7. The answers were either yes, or yes as a complement to existing methods.

8. One test person expressed concern about patents where a very small part was very
relevant. Does the method still work? One user expressed an interest in being able to
rate the patents on two different criteria: one for being in the right technical field and
one for being relevant as prior art.

62



Appendix E

Populärvetenskaplig Sammanfattning
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Interaktiv Iterativ Patentsökning

POPULÄRVETENSKAPLIG SAMMANFATTNING Daniel Jogstad

Vid sökning efter matchande dokument i stora patentdatabaser används metoder för
att effektivisera sökningen. Detta arbete har undersökt möjligheten att förbättra resul-
tat från en sökning med hjälp av Sentence embeddings i en för användaren interaktiv,
iterativ process.

De senaste åren har användandet av neurala
nätverk blivit allt vanligare för att hitta seman-
tiska likheter mellan texter. Dessa nätverk blir
tränade på en stor mängd data för att skapa nu-
meriska vektorrepresentationer, så kallade embed-
dings, av ord och meningar. Vektorer kan enkelt
jämföras matematiskt för att se hur lika varandra
de är. Därmed reducerar man den, för en maskin,
komplicerade processen att säga hur lika två texter
är varandra, till ett enklare matematiskt problem.
Eftersom det inte alltid finns ett exakt svar på

hur lika olika texter är varandra, är resultatet av
en jämförelse väldigt subjektiv. Detta avspeglar
sig i att det uppstår skillnader i vad ett program
tycker är den mest lika träffen till en text och vad
användaren tycker.
I detta examensarbete har jag använt mig av

en databas med titlar och abstrakt från 310
024 patent. Varje patent har representerats
av en sammanslagen titel och abstrakt över-
satt till embedding-format av ett SBERT-nätverk.
Sökningar kan då ske, där man jämför en em-
bedding från ett input-patent med alla andra em-
beddings i databasen. Resultatet från en sökning
är en sorterad lista med de, för input-patentet,
matematiskt mest lika träffarna.
Examensarbetet har haft som syfte att testa

om det går att ranka om resultaten från en så-

dan sökning efter vad användaren tycker om de
högst rankade patenten. Genom att interaktivt
markera för programmet vilka träffar som var bra
och dåliga, får man ett underlag för en ny sökning.
Sökningen kan därmed göras om från början, men
med skillnaden att man nu har en större mängd
patent som man vill att de nya träffarna skall bli
lika, och även en mängd patent som man vill att
de inte skall bli lika. Genom att göra detta i flera
steg blir processen iterativ.

Jag har testat 2 enkla matematiska metoder för
att ranka om träffar. En testgrupp har sedan tes-
tat och utvärderat resultat från metoderna i 3 iter-
ationer för 5 olika input-patent. Resultaten visar
att testgruppens betyg för de bästa träffarna växer
med stigande antal iterationer och att modellerna
därmed fungerar.
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