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1 Abstract

Human cortical bone tissue is a complex and strong composite material, with
the ability to resist damage via slowing, stopping or redirecting propagating
cracks. However, the ability is impaired with age. At the microscale, changes
are seen both in terms of increased porosity and as changes in local mate-
rial parameters. The microstructure is based on circular concentric layers
of bone tissue, called osteons, which surround the Haversian canals. The
osteons are embedded in an interstitial matrix, and are separated by weak in-
terfaces called cement lines. Both local material parameters and the effect of
local toughening mechanisms are difficult to evaluate experimentally. Thus,
computational models can be used as a complement.

The aim of this thesis was to investigate crack propagation in the microstruc-
ture in cortical bone using a phase field fracture approach. The phase field
method is a continuous damage model in which the crack is allowed to ad-
vance if the energy release rate exceeds a critical limit. The crack is described
by a crack density function which is dependent on a diffuse damage field. In
this thesis, a phase field framework based on open source codes was imple-
mented as a user-defined element subroutine in Abaqus. The framework was
evaluated using typical benchmarks tests commonly used in the literature.

Realistic cortical bone models in 2D were created from microscopy images.
The crack propagation was investigated for different material parameters,
geometries and levels of porosity. The critical energy release rate of the
cement lines and the osteons affected the crack propagation. With a lower
value for the cement lines and a higher value for the osteons compared to the
interstitial matrix protected the osteons from damage and redirected the crack
into the cement lines. The ability to deflect advancing cracks decreased with
increasing porosity, which is in line with both numerical and experimental
studies in literature.

The phase field framework implemented in this work is a great tool for
studying crack propagation in cortical bone. It could be used to further
analyze the local mechanical properties and give additional insights in how
the bone tissue is designed to resist fracture.
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3 Introduction

Bone is a very complex and strong structure. Together with the soft tissues
muscles, tendons and ligaments, they make up the musculoskeletal system of
the human body. Within the field of Biomedical Engineering and specifically
biomechanics, this system is studied. Among other things, we want to know
how and why our bones break, and also why they fracture more easily with
age and certain degenerative diseases. As our population lives longer and
longer, the human body cannot keep up. With a better understanding of crack
development in bone tissue, both the suffering of individuals and the high
costs for the healthcare system could be reduced.

Bone tissue can be divided into two groups on the mesoscale: cortical and
trabecular bone. The cortical bone, which is the focus of this thesis, is harder
and makes up the outer layers in for example the shaft of the long bones [8].
The trabecular bone can be found in the vertebrae and in the ends of the long
bones. The microstructure of the cortical bone is based on the structural unit,
osteons, which are circular concentric layers of bone tissue and can be seen
in Fig. 1. The layers surround the Haversian canals which contain blood
vessels and nerves. The osteons are embedded in an interstitial matrix, and
are separated by the cement lines, which are the outer shells of the osteons
[13, 8].

Figure 1: Structure of cortical bone with the structural unit, the osteons, with the surrounding
cement lines. The osteons surrounds the Haversian canals. Figure from [13].

To study damage mechanisms in cortical bone experimentally is very chal-
lenging. The mechanical properties and the effect of the microstructure are
also difficult to determine when using experimental methods. Thus, nu-
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merical models are being developed as a compliment. Previously, crack
propagation in cortical bone have been numerically modelled using cohe-
sive elements and the extended finite element method (XFEM). The Phase
Field (PF) method, used in this thesis, is the most recent fracture mechanics
approach, and until today it has only been applied in few studies in com-
putational biomechanics. The advantage of the phase field method is the
ability to model crack propagation without a predefined crack path, and it has
also shown the ability to model behaviours like crack initiation, branching,
deflection and crack coalescence [2, 28]. This kind of complex behaviours
have previously been difficult to model using other numerical methods [2].

The PF method have not yet been implemented in any commercial computa-
tional software. However, in the work by for example Molnár and Gravouil
[28], Martínez-Pañeda et al. [25] and Kristensen and Martínez-Pañeda [20],
the software Abaqus is used together with a user-defined element (UEL)
subroutine. The codes for the UEL subroutine have been published as open
source codes [20, 25, 28].

3.1 Objectives

The main objective of this thesis is to investigate the feasibility of using a
phase field model for simulating crack propagation in the microstructure of
cortical bone, for the purpose of a better understanding of crack development
and propagation in cortical bone and the effect of ageing.

To achieve the objective, a PF framework is implemented using the open
source codes provided by Martínez-Pañeda et al. [25] and Kristensen and
Martínez-Pañeda [20]. The framework contains different alternatives for
the PF model, for example different solution schemes and functions which
describes the diffuse crack. To test and evaluate the implemented PF frame-
work, three benchmark tests are performed. Then, PF models of microscopy
images of cortical bone are created and the results are compared and validated
to numerical (e.g. Gustafsson et al. [15]) and experimental results (e.g Chan
et al. [7]) from the literature.

In this project, the hypothesis is that the phase field fracture approach can
model crack behaviors such as deflection and initiation. Furthermore, the
cement lines are crucial for the ability to resist damage at the microscale and
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material parameters can influence crack behaviour. It is also hypothesized
that age-related factors, such as increased porosity, weaken the structure of
cortical bone, increasing the risk of damage.
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4 Biomechanics and Cortical Bone

Within the field of Biomedical Engineering, the human body can be studied as
amechanical system. The human body consists of different parts contributing
to its capability to move as a system, some examples are bones, muscles,
ligaments and tendons. It is the application of classical mechanics to these
biological systems, like the muscoskeletal system, that is the foundation of
biomechanics [33]. Biomechanics is a field which combines the engineering
theories and concepts with biology, physiology and anatomy. When focusing
on bone tissue, the study is often referred to as bone mechanics.

4.1 Structure of Cortical Bone

Bone tissue is a heterogeneous complex composite material, which is de-
signed to carry load. Bone is a mineralized tissue, which means that the
structure is made up of minerals integrated into a softer collagen matrix [8].
Bone can be divided into two types, cortical bone and trabecular bone. We
can find both types in the skeletal bones of the human body. The hard outer
layer of all bones consists of cortical bone, while the trabecular bone is found
in the internal porous structure [13]. In long bones, in for example the thigh
bone (called femur in latin), the cortical bone makes up the shaft and the
trabecular bone is mainly present at the ends. Cortical bone is more compact
and dense than trabecular bone, that is why cortical bone also is referred to
as compact bone [8].

The structure of cortical bone is well-defined with a unique hierarchy. The
structure can be divided into different levels, see Fig. 2, where themineralized
collagen fibres can be found at the nanoscale. At microlevel, the fibres are
packed together to form lamellae, which can be described as layered sheets
[33]. These sheets forms the so called osteons, which are the main functional
unit in this type of bone. The osteons are cylindrical bone pillars that runs
parallel to each other along the shaft of the long bone [13]. The osteons are
integrated in an interstitial matrix. They are approximately 0.2-0.3 mm in
diameter and a few millimeters long [1]. At the centre of each osteon is the
Haversian canal. The Haversian canal is a hollow cavity and the channel for
the blood vessels through the compact bone tissue [8].
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Figure 2: Structure of cortical bone displaying the hierarchy of the structure at length scales
ranging from macroscale to the nanoscale. Figure from [13].

The osteons are separated from the matrix by a thin layer called the cement
line. The cement lines are highly mineralized, which make them more brittle
[13, 35]. The formation of osteons and cement lines are a result of the
fact that the bone tissue consistently renew itself. Approximately 10-15%
of the human skeleton is renewed every year [8]. The capability to replace
old with new bone tissue comes from the different specialized bone cells.
They are called osteocytes, osteoclasts and osteoblasts. The osteoblasts are
responsible for creating new bone tissue, and osteoclasts are responsible for
dissolving old bone tissue. The osteocytes are the mature bone cells that
remains in the bone tissue [8]. When the osteoclasts are dissolving old bone
tissue, a resorption cavity is created [13]. The outer line of this cavity is the
hyper-mineralized cement lines. From this outer layer, the osteoblasts start to
form new bone tissue, lamellae. Bone remodelling is a constant process [8].
With age, the interstitial matrix will contain more remains of old osteons,
and therefore become more mineralized [13, 34].

4.2 Mechanical Properties of Cortical Bone

The mechanical properties of cortical bone are related to the composition
and structure at the different length scales, as seen in Fig. 2. Due to the
combination of the mineral phase integrated into a soft collagen matrix, the
bone tissue is both strong and stiff, while also being light [33, 36]. One
way to study the mechanical properties of bone (experimentally) is through
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loading the bone tissue, and studying a stress-strain curve, or similarly a
force-displacement curve [33].

Due to the longitudinal structure of the osteons, cortical bone has anisotropic
properties [33]. It means that the cortical bone has different mechanical
properties when loaded in different directions (Fig. 3). The stiffness in
the longitudinal direction is greater than in the transverse. The area under
curve, which is the amount of energy stored in the material before fracture,
is also greater when loaded in the longitudinal direction. The plastic region
of transverse load is smaller, and shows more brittle behaviour than the
longitudinal. This means that the tissue can deform less before failure when
loaded in the transverse direction. The maximum force, also called ultimate
strength, is also less for the transversal load. Note that the curves in Fig. 3 are
tensile loads. Cortical bone is more resistant in compression than tension,
which is not that surprising since we load our legs with our body weight
in that direction everyday. The bone tissue is always adapting to the load
applied [33].

Figure 3: Stress-strain curve for cortical bone under tensile load in two different directions:
Longitudinal in yellow and Transverse in blue. The directions are illustrated with a hollow
cylinder representing the shaft of a long bone. Drawn based on figure in [33].

The structure of cortical bone includes several mechanisms that enable the
tissue to resist damage. One could say that the bone protects itself from
failure and fracture. It can resist fracture at multiple length scales. At the
microscale, it resists fracture by redirecting, decelerating and also stopping
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cracks from advancing in the tissue [22, 33]. At smaller length scales,
the bone structure instead prevents crack initiation. The process of bone
remodelling also contributes to the fracture resistance, by replacing broken
bone tissue with new in regions of damage and microcracks.

Cortical bone has a high fracture toughness, and this is due to the composition
and structure of the bone tissue together with its ability to heal itself. When
comparing the collagen and minerals separately, the fracture toughness of
the bone tissue exceeds the other two [13, 36]. It is also clear that the
cement lines of the osteons play a role in the ability to resist fracture [8].
The cement lines protect the osteons by providing another weaker path and
thereby directing the cracks to advance along the line or within the more
mineralized interstitial matrix [13]. However, it is difficult to determine the
mechanical properties for the matrix, osteons and cement lines individually.
The conventional methods used to determine fracture toughness is done at a
tissue level, and therefore it is difficult to distinguish between matrix, osteons
and cement lines [13].

4.3 The Effect of Ageing

As we age, so do our bones. The effect of ageing on cortical bone is firstly
observed as the loss of bone mass, i.e. lower bone density. The quantity
of bone tissue decreases, but so does the quality. The microdamage and
microcracks accumulate when the osteoblasts cannot keep up, as their ability
to form new bone tissue is impaired with age [33]. The cement lines also
become less effective in deflecting and redirecting cracks [8]. The reason
is unknown, but when comparing crack paths in young and old bone tissue,
cracks that have penetrated the osteons are observed more often in the older
bone tissue [7] as can be seen in Fig. 4.

The decrease of bone mass, as an effect of ageing of the cortical bone tissue,
is due to increased porosity. This can be in the form of increased number
of pores as well as increased size of the pores [32]. This leads to decreased
fracture toughness of the tissue.
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Figure 4: Sketch of crack path (in red) in young bone tissue in a) and old bone tissue in b).
The crack is deflected and follow the cement lines to a greater extent in the young bone tissue
in a) compared to the old bone tissue in b). The crack path is more straight and penetrates
the osteons for the old bone tissue. Drawn based on figure in Chan et al. [7].

4.4 Computational Models of Cortical Bone

Togain further knowledge about the properties and behaviour of cortical bone,
numerical methods can be used to complement the experiments. Several
studies using numerical methods based on the finite element method have
been used to model bone mechanics.

The study by Mischinski and Ural [27] investigated crack propagation in
cortical bone at a microscale, and the effect of the cement lines. They used
a method called cohesive elements, which models the crack as discontinuity.
The cohesive elements are interface elements that are placed in between
solid elements, and are therefore based on a predefined crack path. The
study introduced two predefined cracks, one penetrating the osteon and one
deflected into the cement line, see Fig. 5. The study gave an insight in how
crack paths in cortical bone are affected by changes in the microstructure.
For example, the crack trajectory was affected when altering the fracture
properties of the osteons and also when altering the properties of the cement
lines [27].
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Figure 5: The predefined cracks introduced in the study by Mischinski and Ural [27] which
used the cohesive elements method. The predefined cracks are one penetrating the osteon
and one deflected into the cement line. The figure is from [27] and reprinted with permission
from Elsevier.

As mentioned earlier, the mechanical properties of the cement line are not
easily determined experimentally. One of these properties is the critical
energy release rate G2, which is the limit of the energy required for a crack
to advance in the material [12]. In the study by Giner et al. [10], the
critical energy release rate G2 is estimated using both experimental and
numerical methods. Giner et al. [10] calibrated the numerical FE model to
the experimental results found in the study. The calibrated FE model was
then used to estimate G2, by approximating the variation of the strain energy
of the system when the crack propagated though the cement line together
with the definition of the energy release rate (Eq. 2 in Section 5.1.1). The
numerical FE method used is called element deletion method, as seen in Fig.
6, which is based on that elements are considered failed or "killed" once
the failure strain is reached. The results of the study showed that the crack
advanced mostly in the cement lines or the interstitial matrix, rather in the
osteonal tissue.
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Figure 6: The element deletion method used in the study by Giner et al. [10]. The blue
elements are intact and the yellow elements are the "killed" elements for which the failure
strain has been reached. The crack is therefore represented by the yellow elements. The
figure is reprinted with permission from Elsevier.

Another commonly used method is the extended finite element method
(XFEM) which is also a method based on a discrete crack. It is also a
cohesive fracture model, as the method of cohesive elements, however it
does not require a predefined crack. It allows the crack to advance by replac-
ing one element with two when the material fractures. By using additional
degrees of freedom, the new elements are created using original nodes and
the additional so called phantom nodes. This method is implemented in
Abaqus. In the study by Gustafsson et al. [15], XFEM was used to model
crack propagation in cortical bone at the microscale. Realistic geometries of
the microstructure were used in the study, and they were based onmicroscopy
images [15]. The procedure for creating the models is captured in Fig. 7.
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Figure 7: Pipeline of the development of the cortical bone model in the study by Gustafsson
et al. [15]. a) A scanning acoustic microscopy (SAM) image of a tibial shaft (the shinbone).
b) Sub-region of the size 1x1 mm2. c) Osteons and Haversian canals manually segmented.
d) Ellipses fitted to the manually segmented osteons and Haversian canals. e) Resulting
model with boundary conditions for a tensile test. A frame around the image was added
and extended the model to the size 1.2x1.2 mm2, so that the osteons were not cut by the
boundaries. The figure is from [15] and is reprinted with permission from Elsevier.

In the study by Gustafsson et al. [15], the crack propagation was investigated,
and the effect of age in terms of porosity and fracture energy was analyzed.
The results showed that the cement lines effectively deflected the propagating
crack. With increasing porosity the crack path advanced and penetrated the
osteons [15], which is captured in Fig. 8. The same results were found for
a lower fracture energy. The crack path in different geometries were also
analyzed, where the the number of osteons in the model varied, and the
results can be seen in Fig. 9. One disadvantage of the XFEM implemented
in Abaqus is that there can only be one active crack, and an element can only
be split into two once. This means that new cracks cannot form. This is
the reason Gustafsson et al. [15] models the Haversian canals with XFEM
elements with a very small stiffness and critical energy release rate. If they
were instead modelled as holes in the geometry, a new crack could not be
initiated if the crack advanced to penetrate the osteon and reaching the canal.
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Figure 8: The resulting crack paths from using XFEM in the study by Gustafsson et al.
[15]. XFEM-models with (A) 0 %, (B) 2 % (C) 7 %, (D) 9 % and (E) 15 % porosity were
evaluated.The figure is reprinted with permission from Elsevier.

Figure 9: The resulting crack paths from using XFEM in the study by Gustafsson et al. [15].
XFEM-models with different geometry which included (A) 4 osteons (B) 8 osteons and (C)
15 osteons were evaluated. The porosity of the models was 7%. The figure is reprinted with
permission from Elsevier.

The phase field (PF) method is actively used within the field of fracture
mechanics, but is however new in the area of biomechanics. During the
last year, Maghami et al. [23] published an article using the PF method
to evaluate fracture behaviour in cortical bone. Similarly to the study by
Gustafsson et al. [15], they used realistic geometries based on microscopy
images, as can be seen in Fig. 10 [23]. They formulated the PF method using
the UEL subroutine in Abaqus based on open source code from the study by
Molnár and Gravouil [28] which used the work byMiehe et al. [26] as a base.
The results presented by Maghami et al. [23] showed that the cement lines
do affect the crack trajectory, and that the extent in which the propagating
cracks are deflected decreases with age.
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Figure 10: a) The human cortical bone models used in the study by Maghami et al. [23],
which are based on microscopy images. b) The resulting phase field of the cortical bone
model where the crack have deflected into the cement lines marked with yellow arrows. The
figures a) and b) are from [23] and are reprinted with permission from Elsevier.
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5 FractureMechanics andThePhaseFieldMethod

5.1 Fracture Mechanics

Fracture is the phenomenon where an intact body is split or partially split into
parts. The study and characterization of this phenomenon is the foundation
of the field fracture mechanics [12]. Fracture can occur by one or more cracks
propagating through a body, and can take place at all length scales [13]. It is
of great importance to be able to study the evolution and behaviour of cracks
from an engineering point of view. When relying on continuum mechanics,
material behaviours are often quantified by stresses and strains [12]. These
quantities cannot be directly used to predict fracture behaviour, and there are
two reasons for that. The first reason is that these quantities becomes infinite
close to the crack tip. Dependent on the size of the inelastic region around the
crack tip, referred to as the plastic zone, fracture mechanics can be divided
into two branches; linear-elastic fracture mechanics (LEFM) and nonlinear
fracture mechanics [12, 13]. LEFM can be applied to materials where the
plastic zone is very small or non-existent. This can be seen in brittle fractures,
and therefore LEFM can also be referred to as brittle fracture mechanics [12].
The other reason is that cracks of different lengths behave differentlywhen the
same stress is applied. To quantify this, fracture criterions were introduced
within the field of fracture mechanics. Two examples are the critical energy
release rate presented by Griffith [11] and the stress intensity factor presented
by Irwin [18].

5.1.1 Griffith’s Theory

In 1921, Griffith [11] published the concept that became a milestone within
fracture mechanics. The concept is called Griffith’s fracture criterion, which
is an energy criterion. Griffith’s theory is based on that during stable crack
propagation, there is no change in the total energy of the system [5]. There-
fore energy is dissipating while new surfaces are created when the crack
progresses. This can be expressed by

3 (Π8=C + ΠBDA + Π4GC)
30

= 0, (1)
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where Π8=C is the potential energy of the material, ΠBDA is the surface energy
of the crack faces and Π4GC is the potential energy of the external forces [12].
For an infinitesimal crack length 30, the change in the total energy is equal
to zero. This is applied for plane problems. The expression can be used to
define the energy release rate, which is the energy released when the crack
has advanced with the infinite small crack length 30. The energy release rate
G is expressed in Eq. 2.

G = 3Π
BDA

30
= −3 (Π

8=C + Π4GC)
30

(2)

The criterion for fracture is based on the critical energy release rateG2, which
is a material parameter. This means that for a crack to advance, the energy
released must be equal to or greater than the energy needed for fracture, i.e.
G = G2. The critical energy release rate is also known as the crack resistance
[12].

5.1.2 Stress Intensity Factor

Following the work by Griffith [11], Irwin [18] presented the concept of
linear-elastic fracture mechanics (LFEM) in 1957. The stresses around the
crack tip could now be characterized using stress intensity factors (SIF) [5].
It is also referred to as the K-concept, and it divides the crack into three
different cracking modes, see Fig. 11 [5, 12]. For Mode I, the crack opens
under tensile load. In Mode II, the crack faces are sliding against each other
due to in-plane shear load. The out-plane shear load makes the crack faces
tear against each other in Mode III [5, 12, 13].

Figure 11: The three crack modes with Mode I in a), Mode II in b), and Mode III in c).
Drawn from figure in Carlsson [5].
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The SIF for each mode,  � ,  � � and  � � � , can be used as a fracture criterion
and are then referred to as the fracture toughness  2 [12]. The SIF for the
three different crack modes are defined by

 �,� �,� � � = &f 5
√
c0 (3)

where & is a dimensionless constant which depends on geometry and type
of loading, f 5 is the critical stress, and 0 is the crack length. The fracture
criterion using the fracture toughness is expressed as  �2 =  � , using Mode
I as an example.  2 is a material parameter, similarly to the critical energy
release rate G2 [12].  2 is connected to G2 as described in Eq. 4, where � is
the Young’s modulus and a is Poisson’s ratio [12, 13].

G2 =
 2
2

�′
, with �′ =

{
� for plane stress
�

1−a2 for plane strain
(4)

5.2 The Phase Field Method

With Griffith’s theory [11] in mind, the next step towards the phase field (PF)
method is the variational approach to fracture [5]. It is closely related to
Griffith’s theory. The approach was presented in an article by Francfort and
Marigo in 1998 [9].

In the variational approach to fracture [9], a set of possible crack paths is
considered [5]. The approach includes a condition which states that the crack
path in the set which gives the minimum or a stationary point of the total
energy of the body must be the real one [5, 9]. Basing the PF models on this
approach, contributes to the ability of the PFmethod to model crack initiation
and find the direction of the propagation of the crack. Another condition that
must be fulfilled is regarding the area of the crack faces. It can only increase
or stay constant, never decrease [5]. This is the same as saying that the crack
cannot heal. On the basis of the variational approach, the PF method can be
further described, starting with the total energy of a body.

5.2.1 Total Energy of a Body

Consider a body with a discrete crack Γ, as seen in Fig. 12a. The total
energy of this body can be described by Eq. 5 [5]. The potential energy in
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the bodyΠ8=C , in terms of strain energy, is dependent of the displacement field
u and the crack Γ. The strain energy density is denoted as k̂0. The surface
energy of the crack faces ΠBDA is dependent on the crack Γ and the critical
energy release rate G2 of the material of the body. The potential energy of
the external forcesΠ4GC is dependent on u as well as the body forces b̂ and the
applied traction t, as seen in Fig. 12a. According to Francfort and Marigo
[9], the minimization of Eq. 5 is governing the process of crack growth [2, 5].

Π(Γ, u) = Π8=C (Γ, u) + ΠBDA (Γ) + Π4GC

Π8=C (Γ, u) =
∫
B
k̂0(Γ, Y(u))d+

ΠBDA (Γ) =
∫
Γ

G2d� = G2
∫
Γ

d�

Π4GC =

∫
mB
−t · ud� +

∫
B
−u · b̂d+

(5)

Figure 12: A body B with the boundary conditions u = u and Xu = 0 on mBD and t = t
on mBC . The body in a) has a sharp discrete crack Γ and the body in b) has a diffuse crack
expressed by the crack density function W(3,∇3) which is dependent on the diffuse damage
field 3. Drawn based on figure in Carlsson [5].

5.2.2 Crack Density Function

It is almost impossible to find analytical solutions to the variational approach,
and it must therefore be solved numerically. To make that possible, the
discrete crack Γ, as seen in Fig. 12a, will be modelled with a crack density
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function which is dependent on a diffuse damage field (Fig. 12b), which was
presented by Bourdin et al. in 2000 [4]. The damage field, also called the
phase field 3, is a scalar-valued regularized field. The phase field variable
is therefore defined as a smooth transition between 0 ≤ 3 ≤ 1, and 3 = 0
represents material that is intact and 3 = 1 represents fully broken material
[2, 4, 5, 28].

The crack density function, also called crack functional W(3,∇3), which
models the sharp crack Γ, can be expressed in many ways. It is dependent on
the phase field variable and its gradient. In this thesis, two crack functionals
are used. The crack functionals are referred to as AT1 (Ambrosio-Tortorelli
1) and AT2 (Ambrosio-Tortorelli 2) and are defined in Eq. 6 [5]. AT1 has an
elastic region before the crack is initiated. AT2 does not have a linear region,
and the damage is initiated directly [5, 24].

W�) 2(3,∇3) =
1

2ℓ2
[
32 + ℓ2

2∇3 · ∇3
]

W�) 1(3,∇3) =
3

8ℓ2
[
3 + ℓ2

2∇3 · ∇3
] (6)

The parameter ℓ2 is the length scale parameter or the characteristic length of
the crack which determines the width of the diffuse crack. When ℓ2 → 0,
the sharp crack Γ will be retrieved. The choice of the length scale parameter
comes with a condition regarding the mesh size ℎ. The mesh size ℎ must be
small enough in order to capture and resolve a diffuse PF crack. The conditon
according to Miehe et al. [26] is defined as: ℎ < ℓ2/2.

Using the crack density function, the surface energy of the crack can be
approximated by

ΠBDA (Γ) = G2
∫
Γ

d� ≈ G2
∫
B
W(3,∇3)d+ = Π2A02: (3,∇3). (7)

The advantage of modelling the discrete crack as diffuse crack is that the sur-
face energy, previously expressed as a surface integral, can be approximated
with a volume integral over the whole body. By using this approximation, the
definition of the total energy of the body expressed in Eq. 5 can be rewritten
as

Π(u, 3) = Π8=C (u, 3) + Π2A02: (3,∇3) + Π4GC . (8)
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5.2.3 Isotropic Model

For an isotropic linear elastic body, the strain energy density is defined as

k̂0(9) :=
1
2
9 : C : 9 (9)

where 9 is the small strains defined as 9 = 1
2
(
∇u + ∇u)

)
and C is the linear

elastic stiffness tensor. C in Voight notation, and for plane strain conditions,
can be defined as

C =
�

(1 + a) (1 − 2a)


1 − a a a 0
a 1 − a a 0
a a 1 − a 0
0 0 0 1−2a

2

 (10)

where � is the Young’s modulus and a is the Poisson’s ratio. C can also be
used to express the Cauchy stress tensor for an (undamaged) isotropic linear
elastic material, 20 = C : 9 [20]. Here, 9 = {YGG , YHH, YII, 2YGH}) .

During the growth of a crack, the material will lose its stiffness as the damage
increases. This is introduced using the PF variable 3 and a degradation
function 6(3). A commonly used degradation function is

6(3) = [(1 − 3)2 + :], (11)

where : is a small numerical parameter added for stability reasons [25]. The
Cauchy stress tensor can thereby be expressed as

2 =
[
(1 − 3)2 + :

] mk̂0(9)
m9

=
[
(1 − 3)2 + :

]
20 =

[
(1 − 3)2 + :

]
C : 9

(12)
where 20 is the undamaged Cauchy stress tensor for a linear elastic material.

Another condition that must be fulfilled in the PF model is the irreversibility
of the crack growth [9]. The area of the crack faces can only increase or
stay constant, never decrease. To ensure this condition, Miehe et al. [26]
introduced the history field

H (x, C) = max
g∈[0,C]

k̂0(9(x, g)). (13)

By replacing k̂0 with the history field variable H , it is ensured that the
strain energy in each point x is the largest experienced strain energy in
the simulation history [2, 5]. By always using the maximum strain energy
experienced, the crack cannot heal.
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5.2.4 Anisotropic Model with Strain Energy Split

The isotropic PF models have shown unrealistic and unphysical behaviour,
like crack growth during compression [2]. Therefore a split between tension
and compression can be introduced, where the crack is assumed to grow only
under tensile load, and not under compressive load. Therefore the strain
energy density can be split into two parts: one positive part k̂+0 stemming
from tensile strains and one negative part k̂−0 stemming from compressive
strains [5]. A model with strain energy split is called an anisotropic model
[2].

The positive and the negative parts can be split in many ways. The two most
common splits are the spectral split by Miehe et al. [26] and the volumetric-
deviatoric split by Amor et al. [3]. This thesis is using the volumetric-
deviatoric split because Carlsson and Isaksson [6] used it when modelling
crack propagation in the microstructure of wood and it is easier to implement
compared to the spectral split. The volumetric-deviatoric split divides the
strain energy density k̂0 by the volumetric and deviatoric contributions. k̂+0
and k̂−0 of the split are defined inEq. 14, where = = _+2`

=
is the bulkmodulus

and _ and ` are the Lamé constants [3]. = is the number of dimensions of
the problem, i.e. = = 2 for plane problems. The operators 〈·〉± are defined as
〈·〉± := 1

2 (· ± | · |) and the deviatoric strain is 9
34E = 9 − tr(9)O/3.

k̂0
+(9) :=

1
2
 =〈tr(9)〉2+ + `

(
934E : 934E

)
k̂0
−(9) :=

1
2
 =〈tr(9)〉2−

(14)

For the crack to only grow during tensile load, the degradation function
6(3) will only be applied to the positive part k̂+0 , while the negative part
k̂−0 remains unaffected [5]. Using the degradation function (Eq. 11), the
anisotropic strain energy density can be expressed as

k̂0(9, 3) = [(1 − 3)2 + :]k̂+0 (9) + k̂
−
0 (9) (15)

and the Cauchy stress tensor for an anisotropic material, using the split of the
strain energy and the degradation function, can be expressed as

2(u, 3) :=
[
(1 − 3)2 + :

] mk̂+0 (9)
m9

+
mk̂−0 (9)
m9

=
[
(1 − 3)2 + :

]
2+ + 2−.

(16)
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Similarly to the isotropic model, the history variable H must also be intro-
duced for the anisotropicmodel, to ensure that the crack growth is irreversible.
Since the strain energy density k̂0 is split in this model, the definition for the
history variable must be altered. Miehe et al. [26] therefore introduced H +

as
H +(x, C) = max

g∈[0,C]
k̂+0 (9(x, g)). (17)

UsingH + ensures that the positive strain energy in each point x is the largest
experienced positive strain energy in the simulation history and therefore the
crack cannot heal [2, 5].

5.2.5 The Hybrid Formulation

Choosing an anisotropic model instead of an isotropic model comes with a
greater computational cost due to the non-linearity of Eq. 16 when solv-
ing the problem numerically. Ambati et al. [2] suggested an alternative
method, the hybrid formulation, which lowers the computational cost. The
hybrid formulation is the combination of the isotropic and anisotropic model.
The isotropic formulation is used to describe the displacement field and the
anisotropic formulation is to describe the phase field.

The hybrid formulation retains the linearity of the linear momentum balance
equation from the isotropic model, by using the undamaged Cauchy stress
tensor (Eq. 12) for the displacement field. The governing equation for the
phase field uses the history variableH +, as defined for the anisotropic model
in Eq. 17. The split of the strain energy density is therefore introduced in the
hybrid formulation by using H +. At the end of the next section 5.2.6, the
difference between the isotropic, anisotropic and hybrid formulation becomes
clear when expressed using the strong form.

5.2.6 The Weak and Strong Form

The Dirichlet variational principle, or the principle of least action, will be
used to derive the strong form of both the displacement field u and the phase
field 3. This is done by calculating the first variation of the total potential
energy. The total energy of the body is defined in Eq. 18, combining Eq.
7, 8 and 15. Note that through this section, the stability parameter : will be
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omitted in the equations and the history field variable H + will replace k̂+0 ,
in concordance with the hybrid formulation.

Π(u, 3) = Π8=C (u, 3) + Π2A02: (3,∇3) + Π4GC (u)

=

∫
B

{
[1 − 3]2k̂+0 (9) + k̂

−
0 (9)

}
d+

+ G2
∫
B
W(3,∇3)d+ +

∫
mB
−t · u d� +

∫
B
−u · b̂ d+

(18)

The first variation of the total energy with respect to both the displacement
field u and the phase field 3 is

XΠ(u, 3 | Xu, X3) = lim
n→0

d
dn
Π (u∗, 3∗) = 0, n ∈ R with

u∗ = u + nXu
3∗ = 3 + nX3

(19)

The corresponding boundary conditions, as seen in Fig.12, are u = u and
Xu = 0 on mBD and t = t on mBC .

If the variation in Eq. 19 is solved for the two fields separately with respect
to Xu and X3, the weak form for each field are derived. The weak form of
the displacement field u is defined in Eq. 20 and the weak form of the phase
field 3 is defined in Eq. 21 for the two crack density functions AT1 and AT2
[5, 25].

XΠ(u, 3 | Xu) =
∫
B
2 : ∇Xud+ +

∫
mB
−Xu · td� +

∫
B
−Xu · b̂d+ = 0 (20)

AT2: XΠ(u, 3 | X3)

=

∫
B

{
− X32[1 − 3]H + + G2

2ℓ2
[
X323 + ℓ2

22∇X3 · ∇3
] }

d+ = 0

AT1: XΠ(u, 3 | X3)

=

∫
B

{
− X32[1 − 3]H + + G2

3
8ℓ2

[
X3 + ℓ2

22∇X3 · ∇3
] }

d+ = 0

(21)

The strong form of the displacement field can be derived from the weak
form in Eq. 20 by using Gauss’ divergence theorem together with Cauchy’s
theorem [25]. It is expressed in Eq. 22. The strong form of the phase field
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can also be derived using Gauss’ divergence theorem, however in this case
homogeneous Neumann boundary conditionsmust be assumed: Gcℓ2∇3 ·n =
0 on mB. The strong formof the phase field for the two crack density functions
are given in Eq. 23. For a more detailed derivation, see Appendix A.1. This
set of partial differential equations, together with the boundary conditions
summarized in Eq. 24, is called the Euler-Lagrange equations of the problem
[5, 25].

div2 + b̂ = 0 (22)

AT2: 2[1 − 3]H + − G2
ℓ2

[
3 − ℓ2

2 div∇3
]
= 0

AT1: 2[1 − 3]H + − 3G2
8ℓ2

[
1 − 2ℓ2

2 div∇3
]
= 0

(23)

u = u on mBD

t = t on mBC

G2ℓ2∇3 · n = 0 on mB
(24)

Using the strong forms in Eq. 22 and 23, the isotropic formulation, the
anisotropic formulation and the hybrid formulation can be more easily de-
fined. On the next page there is an equation box presented which summarizes
the difference between those formulations.
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Isotropic formulation
div2 + b̂ = 0

where 2(u, 3) = (1 − 3)2 mk̂0(9)
m9

= (1 − 3)220

AT2: 2[1 − 3]H − G2
ℓ2

[
3 − ℓ2

2 div∇3
]
= 0

AT1: 2[1 − 3]H − 3G2
8ℓ2

[
1 − 2ℓ2

2 div∇3
]
= 0

where H (x, C) = max
g∈[0,C ]

k̂0(9(x, g))

Anisotropic formulation
div2 + b̂ = 0

where 2(u, 3) = (1 − 3)2
mk̂+0 (9)
m9

+
mk̂−0 (9)
m9

= (1 − 3)22+ + 2−

AT2: 2[1 − 3]H + − G2
ℓ2

[
3 − ℓ2

2 div∇3
]
= 0

AT1: 2[1 − 3]H + − 3G2
8ℓ2

[
1 − 2ℓ2

2 div∇3
]
= 0

where H +(x, C) = max
g∈[0,C ]

k̂+0 (9(x, g))

Hybrid formulation
div2 + b̂ = 0

where 2(u, 3) = (1 − 3)2 mk̂0(9)
m9

= (1 − 3)220

AT2: 2[1 − 3]H + − G2
ℓ2

[
3 − ℓ2

2 div∇3
]
= 0

AT1: 2[1 − 3]H + − 3G2
8ℓ2

[
1 − 2ℓ2

2 div∇3
]
= 0

where H +(x, C) = max
g∈[0,C ]

k̂+0 (9(x, g))
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5.2.7 FE-formulations

The Euler-Lagrange equations, i.e. the strong forms, in Eq. 22 and 23
together with the boundary conditions in Eq.24, can be solved using the finite
element (FE) method. Using Voight notation, the displacement field u and
the phase field 3 can be discretized by

u =
==>34∑
8=1

Nu
8 u8 and 3 =

==>34∑
8=1

#838 (25)

where u8 = {DG , DH}) and 38 are the displacement and phase field values
at node 8. #8 is the shape functions associated with node 8 and ==>34 is
the number of nodes for each element [5, 25]. The discretizations of the
derivatives of the displacement and phase field are expressed as

∇u = 9 =
==>34∑
8=1

Bu
8 u8 and ∇3 =

==>34∑
8=1

B3
8 38 (26)

where the strain components are defined as 9 = {YGG , YHH, 2YGH}) . The shape
function matrix and the corresponding derivatives are defined as

Nu
8 =

[
#8 0
0 #8

]
Bu
8 =


#8,G 0
0 #8,H
#8,H #8,G

 B3
8 =

[
#8,G
#8,H

]
. (27)

The virtual quantities Xu and X3 included in the weak form must also be
discretized. The quantities, together with their derivatives are discretized by

Xu =
==>34∑
8=1

Nu
8 Xu8 and X3 =

==>34∑
8=1

#8X38 (28)

∇Xu = X& =
==>34∑
8=1

Bu
8 Xu8 and ∇X3 =

==>34∑
8=1

B3
8 X38 . (29)

Using this FE discretization, the weak forms can be used to express the
residuals for the problem. The weak form in Eq. 20 is discretized to the
residual of displacement field, presented in Eq. 30. The weak forms in Eq.
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21 are discretized to the residuals of phase field, presented for each crack
density function in Eq. 31.

Āu
8 =

∫
B

[
(1 − 3)2

] (
Bu
8

))
20 d+ −

∫
B

(
Nu
8

))
b̂ d+ −

∫
mB

(
Nu
8

)) t d� (30)

AT2: A38 =
∫
B

{
−2(1 − 3)H +#8 +

G2
2ℓ2

[
23#8 + 2ℓ2

2

(
B3
8

))
B3
8 38

]}
d+

AT1: A38 =
∫
B

{
−2(1 − 3)H +#8 +

3G2
8ℓ2

[
#8 + 2ℓ2

2

(
B3
8

))
B3
8 38

]}
d+

(31)

5.2.8 Solution Methods

This FE problem, ru = 0 and r3 = 0, is solved with an iterative Newton-
Raphson scheme. The need of an iterative scheme is due to the fact that the
residuals in Eq. 30 and 31 are non-linear [20]. Additionally, there are two
different solution schemes that can be used to solve the problem, a monolithic
solution scheme or a staggered solution scheme. [20]

The staggered scheme decouples the variables in the coupled displacement-
fracture problem and solves them separately [28]. By fixing one of the
variable, and solving for the other one, this results in two convex problems
instead of the previously non-convex problem [20]. The staggered solution
schemes have shown to be very robust, however at a computational cost since
the method requires very small load steps [20]. The system of equation for
the staggered solution scheme is presented in Eq. 32, where Kuu and K33 are
the tangent stiffness matrices for the displacement field and the phase field,
respectively. The tangent stiffness matrices, for node 8, are expressed in Eq.
33 for the displacement variable and in Eq. 34 for the phase field variable for
both AT1 and AT2.{

u
3

}
C+ΔC

=

{
u
3

}
C

−
[

Kuu 0
0 K33

]−1

C

{
ru

r3
}
C

(32)

Quu
8 9 =

mĀu
8

mu 9
=

∫
B

[
(1 − 3)2

] (
Bu
8

))
C Bu

9 d+ (33)
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AT2: Q33
8 9 =

mA3
8

m3 9
=

∫
B

{[
G2
ℓ2
+ 2H +

]
#8# 9 + G2ℓ2

(
B3
8

))
B3
9

}
d+

AT1: Q33
8 9 =

mA3
8

m3 9
=

∫
B

{
2H +#8# 9 +

3
4
G2ℓ2

(
B3
8

))
B3
9

}
d+

(34)

The alternative, the monolithic solution scheme, presented in Eq. 35, solves
for the variables 3 and u simultaneously, i.e. the non-convex problem [20].
The non-convexity can cause problem with convergence. To counteract this
problem, a quasi-Newton method can be used together with the monolithic
solution scheme. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
is an example of a quasi-Newton method [20]. The Newton-Raphson method
updates the stiffness matrix after each iteration, the BFGS algorithm does
not. Instead, an approximated stiffness matrix is used when convergence
has not been reached with a set number of iterations [20]. By using this
algorithm, the update of approximated stiffness couples the two fields, which
means that the system of equations can initially be expressed as the staggered
solution scheme in Eq. 32 instead of the monolithic scheme without the
BFGS algorithm, as seen in Eq. 35 [20]. The difference is the off-diagonal
matrices Ku3 and K3u. The BFGS algorithm is implemented in Abaqus’
quasi-Newton solver. A monolithic solution scheme with a quasi-Newton
method is faster than the staggered scheme. The load steps used can be
larger, which is a great advantage of the monolithic solution.

{
u
3

}
C+ΔC

=

{
u
3

}
C

−
[

Kuu Ku3

K3u K33

]−1

C

{
ru

r3
}
C

where Qu3
8 9 =

mĀu
8

m3 9
and Q3u

8 9 =
mA3
8

mu 9

(35)
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6 Method

The project is carried out in three steps. First, a PF framework is implemented
to combine andmerge differentmethods and functionalities into a single code.
The framework is based on open source codes published in the literature. To
test and evaluate the framework, three benchmark tests commonly used in the
literature are performed, as a second step. The last step includes simulations
of crack propagation in microstructural models of cortical bone. The models
are based on the XFEM-models from the study by Gustafsson et al. [15].
Crack propagation in the cortical bone models is investigated using different
material parameters, geometries and levels of porosity.

6.1 The Phase Field Framework

6.1.1 User Subroutines in Abaqus

An implementation of the PFmethod ismissing in commercial computational
tools, as mentioned earlier. Although, using Abaqus, the PF method can be
implemented by using the option of user subroutines. The user subroutine
user-defined element (UEL), allows the user to implement calculations for the
stiffness matrices and the nodal force vectors. Implementing the PF method
using user subroutines in Abaqus has been done by for example Molnár and
Gravouil [28], Martínez-Pañeda et al. [25], Kristensen and Martínez-Pañeda
[20] andNavidtehrani et al. [31]. All of the studiesmentioned have published
open source code of their implementations. This thesis is also using the option
of user subroutines in Abaqus in order to implement the PF method. It is
based on the open source code byMartínez-Pañeda et al. [25] and Kristensen
and Martínez-Pañeda [20]. The implementation also takes inspiration from
of the work by Navidtehrani et al. [31]. The UEL elements created in the
subroutine are two-dimensional isoparametric linear quadrilateral elements,
and therefore has four integration points. The elements have three degrees
of freedom for each node, the displacement in the x- and y-direction and the
phase field variable.

Only information regarding the stiffness matrix and the nodal force vector is
transferred as output from the UEL subroutine in Abaqus. No information
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regarding stresses and strains are transferred. The definition of the shape
functions used for the UEL elements is not transferred either. This is a disad-
vantage of using user subroutines, however can be overcome by introducing
a visual mesh. The visual mesh, which is an idea adopted from Martínez-
Pañeda et al. [25], uses the same element nodes and integration points as the
original mesh. The visual mesh uses standard Abaqus elements (in this thesis
CPE4) instead of UEL elements in order to visualize the output. The output
parameters (e.g. stress and strain components and the phase field parameter
d) are transferred using the user material subroutine (UMAT). The visual
mesh have no impact on the solution, because the constitutive matrix and
the stress components for the visual elements are set to zero [25]. Fortran is
used to implement the user subroutines UEL and UMAT. For more details
regarding the subroutines UEL and UMAT, the reader is referred to the doc-
umentation following the open source code by Martínez-Pañeda et al. [25]
and Abaqus-documentations.

6.1.2 Added Functionalities and Solution Flags

The codes provided by Martínez-Pañeda et al. [25] used a staggered solution
scheme and Kristensen andMartínez-Pañeda [20] used a monolithic solution
scheme based on quasi-Newton method. The codes only implemented AT2
as the crack density function, and no split of the strain energy density was
included. The first focus of this thesis is creating a framework using the code
by Martínez-Pañeda et al. [25] as a base, but with added functionalities.

A summary of the functionalities added to the PF framework can be seen in
Fig. 13. The green boxes represents the original code, and the functionality
implemented by Martínez-Pañeda et al. [25]. The yellow, red and blue box
represents the added functionalities within the work performed in this thesis.
To make a choice of which functionality to use (solution scheme, crack
density function and split of the strain energy), solution flags are introduced.
They are defined via the material parameters belonging to the UEL elements
in the Abaqus input-file.
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Figure 13: A summary of the implemented PF framework. The green boxes represents
the original code by Martínez-Pañeda et al. [25]. The yellow box is monolithic scheme
implemented based on the code provided by Kristensen and Martínez-Pañeda [20]. The
Hybrid Split, which is the red box, is the volumetric-deviatoric split using the hybrid
formulation. It is implemented in this PF framework with inspiration from Navidtehrani
et al. [31]. Lastly, the blue box represents the crack density function AT1 which is also
implemented in this PF framework.

By combining the code by Martínez-Pañeda et al. [25] and the code by
Kristensen and Martínez-Pañeda [20], the PF framework can use both a
staggered scheme andmonolithic scheme. The choice is made by the solution
method flag (of 0 or 1). The monolithic scheme is represented by the yellow
box in Fig. 13.

The second crack density function AT1 is also added as an option, by using
another solution flag, called crack functional flag. It is represented by the
blue box in the summary in Fig. 13. The split of the strain energy density is
introduced by implementing a function that calculates the crack driving force,
which is the history field variable H . The implementation is inspired by the
work of Navidtehrani et al. [31]. However, Navidtehrani et al. [31] included
both the spectral split by Miehe et al. [26] and the volumetric-deviatoric split
by Amor et al. [3], and this thesis only implements the volumetric-deviatoric
split which is defined in Eq. 14 in Section 5.2.4. The deviatoric strains in the
implemented framework are calculated directly from the strain tensor. In the
code by Navidtehrani et al. [31], the deviatoric strains are calculated from the
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principal values of the strain tensor using a built-in function in Abaqus called
SPRINC. Though, this is an unnecessary step since the SPRINC-function
at some occasions can produce large principal values, and is therefore not
reliable.

The choice of splitting the strain energy density is also made with a solution
flag, the split flag. The choice is between a hybrid split or no split. The
hybrid split uses the hybrid formulation, where the split of the strain energy
is the volumetric-deviatoric split. In Fig. 13, the volumetric-deviatoric split
with the hybrid formulation is represented by the red box. A summary of all
the solution flags introduced in the PF framework are included in Table 1.

For the hybrid formulation, Ambati et al. [2] included an additional condition.
It is supposed to prevent inter-penetration of the crack faces if a compressive
load is applied. When a crack is created, the new crack faces are separated by
completely degraded elements, i.e. 3 = 1. When the specimen is compressed,
the crack faces penetrate each other, as the elements separating them has no
stiffness. By setting 3 = 0 for the equations governing the displacement field
when k− > k+, this can be prevented. However, this criteria can only be
implemented successfully in the staggered solution scheme, as the two field
are solved separately.

Table 1: A summary of all the solution flags introduced in the PF framework. They are
introduced via the material parameters belonging to the UEL elements in the Abaqus input-
file. It includes the functionality of which solution method to use, which crack density
function and whether the strain energy density will be split.

Solution Flags for the Added Functionalities
Solution Method Crack Functional Split of Strain Energy
0 = Monolithic 1 = AT1 0 = No split

1 = Staggered 2 = AT2
1 = Hybrid split

(using the
volumetric-deviatoric split)

6.1.3 Flow Chart of UEL Subroutine

For a better understanding of how the implemented PF framework works, the
code is summarized in the flow chart in Fig. 14. The yellow, red and blue
box represents the added functionalities.
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Figure 14: A summary of the code of the PF framework. The colors of the boxes follow the
color scheme as in Fig. 13. A description of the variables mentioned in the flow chart is
included in Fig. 15.
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Figure 15: A description of the variables used in the flow chart in Fig. 14.

6.2 Benchmarks

To test and evaluate the implemented PF code, three benchmark tests are run.
Two typical benchmarks are the Single-edged notched test (SENT) specimen
under tensile load and shear load [20]. The third benchmark is a perforated
asymmetric bending test from the study by Molnár and Gravouil [28] and
Mandal et al. [24]. The crack density functions AT1 and AT2 are evaluated
in the SENT benchmarks, and for the perforated asymmetric bending test,
only AT1 is applied. Both the monolithic and staggered solution schemes
are used, to evaluate the difference between the two. All benchmark tests are
be modelled with a split of the strain energy density. It is a hybrid split, as
described in this thesis.

6.2.1 SENT

The first benchmark is the Single-edged notched test (SENT) specimen under
tensile load. It is a model that has been widely used [20]. The geometry is a
quadratic plate with the a side length of 1 mm (Fig. 16a). The geometrically
defined crack is 0.5 mm long and has a width of 0.02 mm at the widest point.
The displacement applied to the specimen is D = 0.01 mm, which is based
on the displacement applied in the study by Kristensen and Martínez-Pañeda
[20].
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Figure 16: SENT Tensile: a) Geometry with boundary conditions b) Mesh with ℎ =

0.001mm

The model is discretized with linear quadrilateral elements with the smallest
mesh size ℎ = 0.001 mm along the expected crack path, which is the same
value used in the study by Molnár and Gravouil [28]. The mesh used can
be seen in Fig. 16b. The material parameters used for the model are listed
in Table 2 and the values are adopted from the study by Kristensen and
Martínez-Pañeda [20]. Note that the length scale parameter ℓ2, together with
ℎ = 0.001 mm fulfills the criteria ℎ < ℓ2/2.

Table 2: Material parameters for the SENT Tensile and the SENT Shear. The values are
adopted from the study by Kristensen and Martínez-Pañeda [20].

� (MPa) a ℓ2 (mm) G2 (N/mm)
210000 0.3 0.024 2.7

The same parameters are also used for the SENT Shear model, which has a
shear load applied, which is the second benchmark. The geometry is the same
as for the SENT Tensile model, but the boundary conditions differ, as seen in
Fig. 17a. The displacement applied to this specimen is D = 0.02 mm. This
value is chosen based on the displacement applied in the study by Kristensen
andMartínez-Pañeda [20]. The mesh, in Fig. 17b is also different. The same
type of elements are used to discretize the model, however the smallest mesh
size is ℎ = 0.002 mm in a square in the lower right corner, which include
the expected crack path for this test. This value was used by Mandal et al.
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[24], and it also fulfills the criteria ℎ < ℓ2/2 for the length scale parameter
ℓ2 = 0.024 mm.

Figure 17: SENT Shear: a) Geometry with boundary conditions b) Mesh with ℎ = 0.002<<

Both the staggered solution scheme and the monolithic solution scheme are
applied in these tests, both for the SENT Tensile model and the SENT Shear
model. In the study by Molnár and Gravouil [28], which used only the
staggered scheme, the step size used was ΔD = 10−4 mm and ΔD = 10−5

mm for both the tensile and shear load. The smaller step size was used to
be able to clearly and precisely follow the propagation of the crack. For
thesis, the step size ΔD = 10−6 mm is used for the SENT Tensile model
and ΔD = 2 · 10−6 mm for the SENT Shear model, when solving with the
staggered scheme. For the monolithic solution scheme, a larger step size is
used. With the monolithic solution, the automatic adaptive step size scheme
in Abaqus is used. It decreases the step size automatically when a certain
number of iterations are needed for the solution to converge. This means that
the step size is decreased to capture unstable crack growth more easily [20].
A step size of ΔD = 10−4 mm is used as the base for the SENT Tensile model
and ΔD = 2 · 10−5 mm for the SENT Shear model. The smallest step size
allowed in the adaptive step scheme is ΔD = 10−11 mm.

The crack density functions, AT1 andAT2, are used for the SENT benchmark
tests. The study by Kristensen and Martínez-Pañeda [20] and Molnár and
Gravouil [28] only used AT2 for SENT models. AT1 was used by Mandal
et al. [24], but only for the SENT Shear model. Generally in literature, AT2
has been used more than AT1. Therefore, this thesis is evaluating both crack
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density functions for both SENT models.

6.2.2 Perforated Asymmetric Bending Test

To be able to investigate how holes affect crack propagation, e.g. by seeing
how they can cause the crack to deflect, another benchmark test is used. It is
a perforated asymmetric bending test, presented in the study by Molnár and
Gravouil [28] and Mandal et al. [24]. It based on experiments carried out in
the study by Ingraffea and Grigoriu [17]. The geometry is of a rectangular
shape perforated with three holes. The geometry with boundary conditions is
displayed in Fig. 18. Ingraffea and Grigoriu [17] tested different geometries
by alternating the length of the introduced crack as well as its location from
the center of the model. The crack paths found in the study by Ingraffea and
Grigoriu [17] varied to a large extent, when the introduced crack was only
slightly altered. The original geometry is expressed in inches, the length
scale presented in Fig. 18 are translated into millimeters. The model is
meshed with two types of element. A section of the model, which contains
the three perforations, is assigned UEL-elements. The rest of the model has
ordinary elements with linear elastic material, and the UEL subroutine is not
applied for these elements.

Figure 18: The geometry (unit of length: mm) and boundary conditions for the perforated
asymmetric bending test. The geometrically introduced crack is 0.1 mm wide. The model
contains both UEL-elements and elastic elements. Drawn based on the measurements in the
study by Mandal et al. [24] and translated into millimeters.
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The material parameters used for this benchmark are included in Table 3 and
are the same values used by Mandal et al. [24]. In the study by Mandal et al.
[24], two sets of parameters was used for the length scale parameter ℓ2 and
the mesh size ℎ. For the benchmark performed in this work ℓ2 = 1.905 mm is
used together with the mesh size ℎ = 0.254 mm. A smaller ℓ2 = 1.27 mm is
also used together with ℎ = 0.254 mm. Both values of ℓ2 fulfills the criteria
ℎ < ℓ2/2. In Fig. 19, the mesh of the model is presented. The mesh size
ℎ = 0.254 mm is used around the first two holes, where the crack is expected
to propagate according to the results presented in the study by Mandal et al.
[24]. Bigger elements are used for the elastic elements.

Neither studies by Molnár and Gravouil [28] and Mandal et al. [24] states
the displacement applied on the model, which is represented by the red arrow
in Fig. 18. In the SENT Tensile model, a displacement of D = 0.01mm
is applied, which is 1% of the height of the model. Using that reasoning,
the displacement applied for this benchmark is D = 2 mm. The crack is
represented by the crack density function AT1, as it is will used for the
cortical bone models.

Table 3: Material parameters for the UEL elements and the elastic elements in the perforated
asymmetric bending test. The length scale parameter ℓ2 and the critical energy release rate
G2 is only applied for the UEL elements. Values are from the study by Mandal et al. [24].

Material Parameters
Type of Element � (MPa) a ℓ2 (mm) G2 (N/mm)

UEL 3275 0.35 1.905 0.315
Elastic 3275 0.35 - -

Figure 19: Mesh of the model used for the perforated asymmetric bending test. The mesh
size ℎ = 0.254 mm is used around the first two holes. The elastic elements are displayed
with a light grey color and the UEL elements are displayed in a darker grey color.
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6.3 Models of Cortical Bone

6.3.1 Geometry and Boundary Conditions

To create realistic models of human cortical bone, the models are based
on microscopy images of a tibial shaft (the shaft of the shinbone). The
geometries used are based upon the models used in the XFEM-study by
Gustafsson et al. [15] and the pipeline for creating the models are displayed
in Fig. 7 in Section 4.4. To use the models with PF instead of XFEM,
a few modifications are made. First of all, the elements representing the
Haversian canals are removed to create holes in the models. The PF method
is not limited to only one active growing crack, and therefore can the canals
be modelled as holes in this thesis. Secondly, the XFEM-elements are
changed to isoparametric linear quadrilateral UEL elements. A visual mesh
is created with Abaqus’ CPE4-elements, using MATLAB, to be able to
visualize the results from the UEL subroutine. The structure of the cortical
bone: interstitial matrix, osteons and cement lines, are divided into three
element sets. The reason is that different material parameters are given to
the different sets. The material parameters used for the models are to be
described in the next section.

Two models are used in this thesis: Model A and Model B (Fig. 20). Model
A is the 4-osteon model used in the XFEM-study by Gustafsson et al. [15].
Model B is rotated 180◦ to generate another geometry. The models are of the
size 1.2x1.2 mm2, and have a thickness of 1 mm. The cement lines have a
thickness of 5 µm around the osteons. The boundary conditions used for the
two models are also presented in Fig. 20, where the displacement applied is
D = 0.02 mm. A geometrical crack is also introduced in the models. The
crack is of a triangular shape with a height of 0.12 mm high (10 % of the
height of the model) and a base of 0.01 mm.
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Figure 20: The two models used based on microscopy images. a) Model A and b) Model
B. Model B is rotated 180◦ compared to Model A. Boundary conditions for each model are
presented as well. The interstitial matrix is represented by the light grey area. The cement
lines are marked with red, and the Haversian canals are the black holes. The grey area
surrounding the Haversian canals are the osteons.

The cortical bone models are in first hand run with the monolithic solu-
tion scheme. As mentioned earlier, the monolithic scheme do not always
converge, due to the non-convexity of the coupled problem. If problems
with convergence occur, the staggered solution scheme is used instead. The
staggered scheme is robust though computationally demanding due to small
step size required. The step size used for the two schemes is based on the
results from a sensitivity analysis of the step size. The same applies for the
mesh, a sensitivity analysis of the mesh size is also performed. Also, the
hybrid split described in this thesis is used within the PF framework for the
cortical bone models. It hinders crack growth during compression and saves
computational time compared to the anisotropic formulation [2].

Even if the crack density function AT2 is more used in the literature, AT1 is
used for the cortical bone models in this thesis. When using AT2, the damage
in the model starts as soon as the load is applied. When using AT1, there is
an initial elastic region before damage is initiated. In the work by Carlsson
[6], AT1 was used to model fracture in microstructure of wood. In this thesis,
the microstructure of the cortical bone is modelled and the brittle response
expected in the bone tissue is better described by AT1, and is therefore used.
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6.3.2 Material Parameters

The individual mechanical properties of the matrix, osteons and cement lines
have been difficult to experimentally determine. Thus, in literature, the values
used asmaterial parameters in computational studies have not been consistent
[10].

In the study by Gustafsson et al. [16], a literature review was performed to
summarize the numerical and experimental findings regarding the material
parameters of the interstitial matrix, the osteons and the cement lines. This
thesis is using parameters that are based on this summary as well as the
material parameters used in the XFEM study by Gustafsson et al. [15] and
the PF study by Maghami et al. [23]. A summary of the material parameters
used in this thesis for the cortical bone models are presented in Table 4.

Table 4: The material parameters used for the cortical bone models.

Material Parameters
� (MPa) a G2 (N/mm) ℓ2 (µm)

Matrix 15 000 0.3 0.4 3.75
Osteon 12 000 0.3 0.48 3.75

Cement line 18 000 0.3 0.13 3.75

Firstly, the values for the Young’s modulus and the Poisson’s ratio of the
interstitial matrix, osteon and cement lines are the same as the values used
in the XFEM study [15]. The stiffness for the matrix is 20% higher than for
the osteons, and the stiffness for the cement lines is 20% higher than for the
matrix.

The values for the critical energy release rate G2 are more difficult to choose.
In the summary by Gustafsson et al. [16], the experimental values for G2
for the matrix is in the range 0.05-0.8 N/mm. The XFEM-study [15] used
G2 = 0.4N/mm for the matrix, and is the value used in this thesis as well. The
same value is chosen to be able to compare the results to the XFEM-models
by Gustafsson et al. [15]. The experimental results from Mullins et al. [30]
are included in the summary [16]. Mullins et al. [30] concludes that G2 for
the osteons are greater than for the matrix. In the computational study by
Maghami et al. [23], G2 for the osteons is 20% higher than G2 for the matrix.
The same ratio is used for the values in this thesis.

40



The critical energy release rateG2 for the cement lines is not well documented
in the literature since it is difficult to determine. Giner et al. [10] estimated
the value with a numerical model calibrated to experimental findings, as
described in Section 4.4. The estimated value was the average value in the
study, which is G2 = 0.1629 N/mm. The study by Maghami et al. [23]
adopted this value in their work and the value was approximately 70% lower
than the value used for the matrix. For this thesis, the same ratio is used to
calculate the G2 for the cement lines from G2 = 0.4 N/mm for the matrix, i.e.
G2 = 0.13 N/mm. Though, for the sensitivity analysis of the mesh and step
size, G2 for the cement lines is 0.17 N/mm. It is a value that lies within the
range estimated and presented in the study Giner et al. [10].

The length scale parameter ℓ2 must be carefully chosen. First of all, it must
fulfill the criteria which relates to the mesh size: ℎ < ℓ2/2 [26]. The reason is
that the meshmust be able to resolve the crack width, and that is difficult if the
mesh size ℎ is too big compared to ℓ2. Secondly, the length scale parameter
must be smaller than the width of the cement lines in order for the crack to
properly propagate inside the lines. The mesh must also be chosen with the
width of the cement lines in mind, which is investigated in the sensitivity
analysis of the mesh.

In the study by Maghami et al. [23], the width of the cement lines were also
5 µm and the length scale parameter ℓ2 = 3.4 µm was used. In an ongoing
study by Gustafsson, models using the length scale parameter ℓ2 = 3.75 µm
converged and fulfilled the criteria ℎ < ℓ2/2. Therefore, this thesis is using
ℓ2 = 3.75 µm.

6.3.3 Sensitivity Analysis of Mesh and Step Size

The PF method is sensitive towards both the mesh and the step size used,
and therefore a sensitivity analysis of both the mesh and the step size must
be performed. For this part, Model B in Fig. 20b is used. The material
parameters in Table 4 is used expect that G2 = 0.17 N/mm for the cement
lines.

The Sensitivity Analysis of Mesh

The sensitivity of the mesh is evaluated by testing different sizes of the
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elements which is described by ℎ, the smallest mesh size used in the region
where the cracks are expected to propagate. The mesh size must fulfill the
criteria ℎ < ℓ2/2, and must also be sufficiently refined to resolve the cement
lines. The cement lines for the cortical bone models used in this thesis are 5
µmwide and the length scale parameter uses is ℓ2 = 3.75 µm. Three different
meshes with different values of ℎ are used, and are presented in Table 5. For
visualization, Model B with three meshes is displayed in Fig. 21. Note that
the smallest elements are concentrated to the structure of the osteons and
bigger elements are used in the periphery of the models. Hence, the mesh
size ℎ is used where the cracks are expected to propagate. The meshes are
chosen based on how many elements the cement lines are discretized with,
see Table 5. The width of the cement line is made up of 2, 3 or 4 elements,
as can be seen in Fig. 21. The coarsest mesh do not fulfill the criteria
ℎ < ℓ2/2, but the two finer meshes do. The analysis is performed using
both the monolithic and the staggered solution scheme. The step size used is
based on the sensitivity analysis of the step size.

Table 5: A summary of the three mesh sizes ℎ used for the sensitivity analysis of the mesh.
The number of elements which the cement lines are discretized with are included, and if the
value of ℎ fulfills the criteria connected to the length scale parameter ℓ2 = 3.75 µm.

Mesh size
ℎ (µm)

No. of elements
in the cement lines ℓ2/ℎ

Fulfills the criteria
ℎ < ℓ2/2

2.5 2 1.5 No
1.67 3 2.2 Yes
1.25 4 3.0 Yes
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Figure 21: Model B meshed with the three mesh sizes: ℎ = 2.5 µm, ℎ = 1.67 µm and
ℎ = 1.25 µm. The number of elements used to discretize the cement lines can also be seen.
The interstitial matrix are represented by the light grey elements, the osteons are represented
by the darker grey elements and the cement lines are represented by the red elements.

The Sensitivity Analysis of Step Size

The sensitivity analysis of the step size is analyzed using ℎ = 2.5 µm. The
step size is of importance for both the monolithic and the staggered solution
scheme, where the latter needs very small steps. The different step sizes used
in the analysis are presented in Table 6. In the study by Maghami et al. [23],
which uses a staggered solution scheme, uses a step size in the order of 10−5

and 10−6. The values for ΔD used for this analysis are of the same order for
the staggered scheme. For the monolithic scheme, greater step sizes are used.
The monolithic solution scheme used is also paired with the adaptive step
size scheme in Abaqus as described earlier. The smallest step size allowed is
ΔD = 10−11 mm.

To determine which step size to use for the rest of the analysis, a convergence
check can be performed. By performing a convergence check, an optimal
step size can be determined. The idea of convergence is that by decreasing
the step size, the solution tends to one specific value. However, in this
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case, it is not a specific value, it is rather a specific mechanical response
in the material. The convergence check for the step size, in this thesis, is
firstly based on the resulting crack paths in the beginning of the propagation.
Model B used in this analysis includes an osteon close to the crack tip of
the geometrically introduced crack, therefore the convergence check is based
on how the cracks advance through the first osteon. The force-displacement
curves of the models are analyzed to determine convergence. In the study
by Kristensen and Martínez-Pañeda [20], the staggered solutions became
closer to the monolithic solutions when the step size was decreased for the
SENT benchmarks. The monolithic solutions, in the study by Kristensen
and Martínez-Pañeda [20], resulted in force-displacement curves with sharp
fracture points and brittle behaviour. This behaviour is sought for when
determining convergence of the step size.

Table 6: A summary of the step sizes ΔD used for the sensitivity analysis of the step size.
Both the monolithic and staggered solution scheme are included.

Step size ΔD (mm)
Monolithic Staggered

2 · 10−4 1 · 10−5 2 · 10−5 2 · 10−6 2 · 10−7

6.3.4 Analysis of Material Parameters

Since the material parameters used to model cortical bone varies in com-
putational studies, it is important to investigate if the chosen parameters in
this study have an effect on crack growth. Therefore, this thesis includes
an analysis of the material parameters. Model A and B are tested for three
different sets of material properties:

Set 1: The standard material parameter summarized in Table 4.

Set 2: The critical release rate G2 for the osteons is altered:
Gosteon
2 = Gmatrix

2 = 0.4 N/mm.

Set 3: Homogeneous material. The material parameters used for the
cement lines, osteons andmatrix are the same. Thematerial parameters
of the matrix is used.
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The first set is the standard material parameters in this thesis which are
outlined in Table 4. For the second set, the critical energy release rate G2 for
the osteons is altered. It is set to be G2 = 0.4 N/mm, which is the value used
for the matrix. The experimental study by Mullins et al. [30] found that G2
was the highest for the osteons. Set 2 can therefore provide information if the
difference in G2 for the osteon and matrix affects the crack propagation. For
the third and last set, the models are assumed to be homogeneous. This is
done by using the material properties of the matrix for the osteons and cement
lines as well. By assuming a homogeneous model, only the Haversian canals
should influence that crack path. By testing the three sets on both Model A
and Model B, the effect of the geometry can also be analyzed.

6.3.5 The Effect of Geometry

To investigate how the porosity of the bone tissue affects the crack propagation
in cortical bone, three different microstructures are tested. As the bone mass
decreases with age, by for example increasing porosity, the investigation can
give an insight in how age and the change in microstructure affect the crack
propagation and behaviour [32].

Model A in Fig. 20a is used in this analysis, and it has a porosity of 7%.
By changing the size of the Haversian canals, the porosity of Model A can
be altered. Two additional models are therefore created with a porosity of
15% and 0%. The percentage is based on the area of the Haversian canals
compared to area of the whole model. 0% means that the Haversian canals
are filled with osteonial material, and it is purely a theoretical model.

One advantage of the PF method is its ability to model crack initiation. To
test it, this thesis is using models with a geometrically introduced crack and
models without. The models, presented in Fig. 22a-c, have a geometrical
crack introduced. For the models in Fig. 22d-f, the geometrically introduced
crack is excluded. The same percentage of porosity is used for both types of
models.
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Figure 22: Model A with different porosity: 0% [a) & d)], 7% [b) & e)] and 15% [c) & f)].
a)-c) A geometrical crack is introduced. e)-f) No geometrical crack is introduced.
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7 Results

7.1 Benchmarks

7.1.1 SENT Tensile

The crack paths for the staggered and monolithic solution method are almost
identical, for bothAT1 andAT2 (Fig. 23). The difference is that the staggered
solution method results in a wider crack, with a smeared effect (Fig. 23b and
23d). This small difference between the solution schemes can also be seen
in force-displacement curves in Fig. 23e, as the staggered solution results in
a greater maximum force and also deforms more. The fracture point for the
monolithic solution is also more distinct than the staggered solution.

AT2 is more smeared than AT1, although the crack paths are almost identical
(Fig. 23). The force-displacement curves for AT1 display a more linear
behaviour compared to AT1 (Fig. 23e), with a higher maximum force,
whereas the maximum deformation is higher in AT2.

The crack paths in Fig. 23 are correspondingwell to results from the literature
presented in Fig. 24. The crack path in Fig. 24a, which used the same
monolithic method as this thesis, is identical to the crack path in Fig. 23c.
The model in Fig. 24b used a staggered solution scheme, and the resulting
crack path is similar to the crack paths in Fig. 23b and 23d. However, the
crack in Fig. 24b is more narrow, and the reason is that the length scale
parameter used was three times smaller. The force-displacement curves for
the SENT Tensile model (Fig. 23e) display the same non-linear behaviour
for AT2 as the curves in Fig. 24c, with the same maximum displacement for
the monolithic solution. The curves for the staggered solutions tend towards
the curve of the monolithic solution with increasing number of increments,
i.e. decreasing step size (Fig. 24c).
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Figure 23: The resulting phase field 3 for the SENT Tensile model. a)-b) Crack density
function AT1. c)-d) Crack density function AT2. e) The corresponding force-displacement
curves. a) and c) Monolithic solution with ΔD = 10−4 mm. b) and d) Staggered solution
with ΔD = 10−6 mm. 3 = 0 represents intact material and 3 = 1 represents broken material.
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Figure 24: Results for the SENT Tensile Model using AT2 from the literature. a) The
resulting phase field 3, here denoted as q, from the study by Kristensen and Martínez-
Pañeda [20]. b) The resulting phase field 3 from the study by Molnár and Gravouil [28].
c) The corresponding force-displacement curve for a). The same material parameters as
presented in Table 2 were used, except that ℓ2 = 0.0075 mm in b). Figures a)-c) are
reprinted with permission from Elsevier.

7.1.2 SENT Shear

The difference between the two solution methods for SENT Shear model
is the smeared effect of the staggered solution scheme (Fig. 25b and 25d).
Beyond that, the crack paths in Fig. 25a-b are similar, and propagate with
approximately the same angle from the crack tip of the geometrically induced
crack. The same can be said for the crack paths in Fig. 25c-d. The force-
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displacement curves for the two solution schemes are also similar to each
other, where the maximum forces are equal and they follow the same pattern
(Fig. 25e). The difference is that the staggered solution allows the model to
deform more, which is the behaviour observed for the SENT Tensile model
as well.

The crack paths, when comparing AT1 and AT2, are different (Fig. 25). The
crack paths are more curved for AT2 than for AT1, and the cracks are also
wider. The difference is also clear in the force-displacement curves in Fig.
25e. The curves for AT1 are more linear in the beginning, and the curves
for AT2 are more non-linear. For AT2, the maximum force is lower and the
model is allowed to deform more. The fracture points are more distinct when
using AT1 as the crack density function.

For a comparison to the literature, the straighter crack paths of AT1 (Fig.
25a-b) can also be seen in the results from Kristensen and Martínez-Pañeda
[20] and from Mandal et al. [24] (Fig. 26). The force-displacement curves
for the SENT Shear model (Fig. 25e) display the same non-linear behaviour
for AT2 as the curves in Fig. 26d, with the same maximum displacement.
The smeared effect of AT2 (Fig. 25c-d) can be seen in the results from
Mandal et al. [24] (Fig. 26a-b) which also used both crack density functions.
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Figure 25: The resulting phase field 3 for the SENT Shear model. a)-b) Crack density
function AT1. c)-d) Crack density function AT2. e) The corresponding force-displacement
curves. a) and c) Monolithic solution with ΔD = 2 · 10−5 mm. b) and d) Staggered solution
with ΔD = 2 · 10−6 mm. 3 = 0 represents intact material and 3 = 1 represents broken
material.
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Figure 26: Results for the SENT Shear Model from the literature. The resulting phase
field from the study by Mandal et al. [24] using the crack density function a) AT1 and b)
AT2. c) The resulting phase field 3, here denoted as q, from the study by Kristensen and
Martínez-Pañeda [20] using AT2 and the corresponding force-displacement curve in d). The
same material parameters as presented in Table 2 are used, except ℓ2 = 0.01 mm in a)-b).
Figures a)-d) are reprinted with permission from Elsevier.

7.1.3 Perforated Asymmetric Bending Test

When running this benchmark, the monolithic solution method had difficul-
ties with convergence. Thus, the staggered solution method was used instead.
The staggered solution method was used both in the study by Mandal et al.
[24] and the study by Molnár and Gravouil [28]. ΔD in the size of 10−4 was
used byMolnár andGravouil [28]. For this thesis, the step size isΔD = 2·10−4

mm.

The simulations of the two models have not been completed, they were
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aborted when the crack started to grow on the upper side of the middle hole.
At this time point, the applied displacement was D ≈ 1.2 mm. The reason
for aborting the simulations is that the experimental results from the study
by Ingraffea and Grigoriu [17] only propagates so far (Fig. 27c).

The crack paths up to the second hole are similar (Fig. 27a-b). The pattern
that can be seen is that the crack is wider and slightly more smeared for the
model with a larger length scale parameter (Fig. 27a). This is expected since
the length scale parameter ℓ2 decides the width of the crack. The resulting
crack paths are not consistent with the experimental crack path (Fig. 27c).
The crack, in the experimental result, is first attracted by the first hole but then
deflects from it. Then it propagates and penetrates the second hole instead.
The crack paths in Fig. 27a-b are affected by holes. They are attracted by
the first hole, however instead of deflecting from it, the cracks penetrate it.
Then the cracks continue to propagate on the other side of the first hole, and
are then attracted by the second hole and eventually penetrate it as well.

For comparison, the benchmark simulated by Mandal et al. [24] is presented
in Fig. 28. The crack path from the experimental findings (Fig. 27c) was
captured, however the geometry used was altered.

Figure 27: The resulting phase field 3 for the perforated asymmetric bending test using
AT1 as the crack density function. The length scale parameter is a) ℓ2 = 1.905 mm and b)
ℓ2 = 1.27 mm. The displacement applied to the model is D = 2 mm. and the step size is
ΔD = 2 ·10−4 mmwith the staggered solution scheme. c) Experimental result from the study
by Ingraffea and Grigoriu [17]. Drawn based on figure in [17].
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Figure 28: The results presented in the study by Mandal et al. [24] for an altered geometry.
The distance from the center of the geometry to the geometrically introduced crack is
increased with 0.15 inches (=3.81 mm). The crack density function used is AT2, with the
mesh size ℎ = 0.127 mm and the length scale parameter ℓ2 = 1.27 mm. The damage is
scaled from 0 (blue) to 1 (red), where the blue represents intact material and the red presents
broken material. Figure is from [24] and reprinted with permission from Elsevier.

7.2 Models of Cortical Bone

7.2.1 Sensitivity Analysis of Mesh and Step Size

The Sensitivity Analysis of Step Size

The results of the sensitivity analysis of the step size show that the step size
have a significant effect on force-displacement curves, but a smaller effect on
the crack paths (Fig. 29). The force-displacement curves for the staggered
solution scheme differ to a large extent for the different step sizes (Fig. 29a).
The step size also influences the results for the monolithic solution scheme,
but not to the same extent. The curves of the monolithic solution schemes
display a more brittle behaviour with distinct fracture points. The maximum
force for the two step sizes of the monolithic scheme is the same, and the
models ruptures at the same displacement. The model with the biggest step
size ΔD = 2 · 10−5 mm for the staggered scheme does not fracture all the
way, and the fracture points are not clear in the force-displacement curve.
The crack path with ΔD = 2 · 10−7 mm does not propagate all the way either,
probably because the increment of displacement is very small. However, the
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force-displacement curve of the latter does coincide betterwith themonolithic
curves. The staggered solution usingΔD = 2 ·10−6 mmdoes capture the same
pattern as the monolithic curves, but the fracture points are not as distinct.

When focusing on the crack propagation to the first osteon, the crack paths
of the staggered solutions in Fig. 29b-d are almost identical. The crack
penetrates the osteons and does not propagate in the cement lines. The
cement lines do however influence the crack path to a small extent as the
crack bends slightly when advancing through the cement line. The crack
path in Fig. 29e with the monolithic scheme, also penetrates the osteon
but not to the same extent. The crack propagates a little bit further in the
cement lines before penetrating the osteon. For the monolithic solution with
a smaller step size, in Fig. 29f, the crack does not penetrate the osteon, it only
propagates within the cement line. For the models where the crack advanced
all the way, the paths through the rest of the geometry are very similar. The
only difference is the width of the crack, where the smeared effect of the
staggered solution can be seen in Fig. 29c.

The computational time must also be mentioned. The computational cost
of the staggered method is greater than that of the monolithic method. The
staggered solutions ran for 5 hours, 1.5 days and 9 days, for the decreasing
step sizes (ΔD = 2 · 10−5, ΔD = 2 · 10−6 and ΔD = 2 · 10−7 mm), respectively.
The monolithic solutions ran for 1 day and 3 days, for ΔD = 2 · 10−4 and
ΔD = 1 · 10−5 mm, respectively.
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Figure 29: The sensitivity analysis of the step size ΔD. a) The force-displacement curves
corresponding to the crack paths in b)-f). b)-d) uses the staggered solution scheme with
ΔD = 2 · 10−5 mm, ΔD = 2 · 10−6 mm and ΔD = 2 · 10−7 mm, respectively. e)-f) uses the
monolithic solution scheme with ΔD = 2 · 10−4 and ΔD = 1 · 10−5 mm, respectively. The
mesh size is ℎ = 2.5 µm. The crack is represented by 3 > 0.9.
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The Sensitivity Analysis of Mesh

The results of the sensitivity analysis of the mesh can be seen in Fig. 30.
The step sizes used are based on the discussion and conclusions drawn from
the sensitivity analysis of the step size, which is ΔD = 2 · 10−4 mm for the
monolithic solution scheme and ΔD = 2 · 10−6 mm for the staggered solution
scheme.

The cracks paths of both the monolithic and staggered solution are almost
identical when focusing on the crack propagation to the first osteon (Fig. 30).
The force-displacement curves of the three mesh sizes for the monolithic
solution are identical (Fig. 30a). The fracture points are distinct and are the
same for the three values of ℎ. The fracture points for the staggered solutions
are not as distinct (Fig. 30b). The mesh size of ℎ = 1.67 µm produces a
curve which is the most similar to the monolithic force-displacement curves.
However, all three mesh sizes produces force-displacement curves with the
similar pattern as the monolithic curves.

There is also an effect of the mesh sizes on the width of the crack. The
coarser mesh (greater value of ℎ) gives wider cracks. The staggered solution
in Fig. 30f-h also has wider cracks, which is the smeared effect mentioned
earlier.

Themesh size does also affect the computation time as the number of elements
increased with decreasing value of ℎ. The number of elements used to
discretize the model for each mesh size ℎ is presented in Table 7. The
number of elements are doubled for each increase in ℎ, and the same applies
for the computational time.

Table 7: The number of elements used when discretizing the models using the three mesh
sizes ℎ for the sensitivity analysis of the mesh.

Mesh Size
ℎ (µm) Number of elements

2.5 ≈ 172 000
1.67 ≈ 354 000
1.25 ≈ 609 000
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Figure 30: The sensitivity analysis of the mesh size ℎ. a) The force-displacement curves
corresponding to the crack paths c)-e). b) The force-displacement curves corresponding to
the crack paths f)-h). c)-e) The monolithic solution with ΔD = 2 · 10−4 for the mesh size
ℎ = 2.5 µm, ℎ = 1.67 µm and ℎ = 1.25 µm, respectively. f)-h) The staggered solution with
ΔD = 2 · 10−6 mm for ℎ = 2.5 µm, ℎ = 1.67 µm and ℎ = 1.25 µm, respectively. The crack is
represented by 3 > 0.9.
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7.2.2 Analysis of the Material Parameters

The analysis shows that the crack paths are affected by thematerial parameters
used to some extent, as can be seen in Fig. 31. Themodels are simulated using
three sets of material parameters. Set 1 is the standard material parameters
presented in Table 4. For Set 2, G2 for the osteons are set to the value used
for the matrix. Set 3 is a homogeneous set of material parameters. Since,
both Model A and B are used in this analysis, Fig. 31 also displays that the
geometry also affects the crack paths. The difference between Model A and
Model B, is that Model B is rotated 180◦. The monolithic solution scheme
with ΔD = 2 · 10−4 mm was used in Fig. 31b-d and 31f, and the staggered
solution scheme with ΔD = 2 · 10−6 mm was used in Fig. 31a and 31e.

For Model A, the crack paths for Set 1 (Fig. 31a), Set 2 (Fig. 31c) and Set
3 (Fig. 31e) are very similar. However, when focusing on the osteon in the
top of the model, the crack propagates slightly different. For Set 1, i.e. the
standard material parameters, the crack propagates longer in the cement lines
than for Set 2. It is deflected more for Set 1. The crack for Set 3 (Fig. 31e),
the homogeneous material, is not affected by the cement lines. It is only
affected by the Haversian canals.

For Model B, the different sets of material parameters affects the crack path
to a greater extent than for Model A. In Fig. 31b, using the standard material
parameters (Set 1), the crack is deflected and follows the cement line of
the first osteon. The cement lines also slightly bends the crack path when
penetrating the upper osteon. For Set 2 and 3, in Fig. 31d and 31f, the first
osteon is instead penetrated. The crack paths for Set 2 and 3 are similar.
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Figure 31: a)-b) Set 1: The standard material parameters as presented in Table 4. c)-d) Set
2: �2 for the osteons and the matrix are set to be equal, i.e. �2 = 0.4 N/mm. e-f) Set
3: All material parameters are set to be equal the material parameters for the matrix, i.e
homogeneous material. Model A is represented in a), c) and e) and Model B is represented
in b), d) and f). The monolithic solution scheme with ΔD = 2 · 10−4 mm was used in b)-d)
and f), and the staggered solution scheme with ΔD = 2 · 10−6 mm was used in a) and e). The
crack is represented by 3 > 0.9.
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7.2.3 The Effect of Geometry

The results shows that the porosity has an effect on the crack propagation, both
when a geometrical crack is introduced and not. The results are presented
in Fig. 32 for the models with a geometrically introduced crack, and in Fig.
33 it is excluded. In Fig. 32a-b and 33a-b, the staggered solution scheme
with ΔD = 2 · 10−6 mm was used. The monolithic solution scheme with
ΔD = 2 · 10−4 mm was used for Fig. 32c and 33c.

The crack path in the model without Haversian canals (Fig. 32a) is a straight
crack, and it penetrates from the geometrically introduced crack and through
the first osteon. It also propagates in the cement line of the upper osteon.
It is different from the crack path in Fig. 32b, where the Haversian canals,
i.e. the holes, affect the crack propagation, as seen also in the perforated
asymmetric bending test. The crack in Fig. 32b propagates through the first
osteon, then the crack is initiated in the Haversian canal of the osteon to the
right in the model and propagates towards the Haversian canal of the upper
osteon. When the crack has reached the canal, the crack continues to grow
from both the upper and the right canal simultaneously. The effect of the
cement lines can be seen as the crack is deflected when propagating from the
right osteon to the upper osteon.

As the porosity is increased, as for the model with 15% porosity in Fig. 32c,
the distance between the Haversian canals decreases. The distance between
the right and upper canal is short. The distance from the geometrically
introduced crack and the first canal is also short. It is here the cracks are
propagating, which is an expected mechanical response. Though, an effect
of the cement lines can be seen, when advancing from the right to upper
osteon. The effect is however smaller than for the crack in the model with
7% porosity in Fig. 32b.

The difference due to the porosities can also be seen in the force-displacement
curves (Fig. 32d). The curve of the model with 0% porosity is straight and
only has one fracture point. The curves of 7% and 15% have two fracture
points that are captured in Fig. 32d. The displacement applied when the
fracture points occur are included in Table 9. The first fracture points are
similar for the all the porosities, but differs more for 15% porosity. The
second fracture points differs with 1.5 µm. The maximum force decreases as
the porosity increases, as can be seen in Table 8.
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The results for the models without a geometrically introduced crack are also
affected by the difference in porosity and are presented in Fig. 33. The
model with 15% porosity, in Fig. 33c, fractures at the same place as the
model with a geometrically introduced crack (Fig. 32c). Although, in Fig.
33c the crack is initiated in the right Haversian canal. There is a small effect
of the cement lines in this model as well. The effect is greater in the model
with 7% porosity in Fig. 33b. The crack is initiated in the right osteon in the
model, but as it propagates to the upper osteon it is deflected into the cement
line.

For the model with 0% porosity and without a geometrical crack introduced
(Fig. 33a), no crack is initiated. Therefore, the force-displacement curve
(Fig. 33d) has no fracture point. This implies that the displacement applied
is not enough for a crack to be formed. In Table 8, the maximum force for
the model is bigger than 308.2 N, as the specific number is not known.

Table 8 and the force-displacement curve (Fig. 33d) show that the maximum
force applied decreases with increasing porosity. The fracture point of the
model with 15% porosity in terms of displacement applied is lower than of
the model with 7% porosity (Table 9). The first fracture points of the models
without an introduced crack coincide with the second fracture points for the
models with an introduced crack. The maximum force is also higher for the
models without introduced cracks (Table 8).
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Figure 32: The influence of porosity. Models with a), 0% b) 7%, c) 15% porosity was
evaluated. d) The corresponding force-displacement curves. a)-b) The staggered solution
scheme with ΔD = 2 · 10−6 mm was used. c) The monolithic solution scheme with ΔD =
2 · 10−4 mm was used. The crack is represented by 3 > 0.9. The stress and strain plots for
these models can be found in Appendix B.

Table 8: The maximum force applied to the models with 0%, 7% and 15% porosity. Both
the models with geometrically introduced crack and without are represented.

Maximum Force (N)
Porosity
(%)

With Geometrically
Introduced Crack

Without Geometrically
Introduced Crack

0 154.8 >302.8
7 145.3 227.6
15 100.4 167.9
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Table 9: The first and second fracture points, i.e. the displacement applied to the models
when the first and second fracture points occur. Models with and without a geometrically
introduced crack and 0%, 7% and 15% porosity are represented.

Fracture Points
Porosity
(%)

First Fracture Point
(µm)

Second Fracture Point
(µm)

With Geometrically
Introduced Crack

0 10.7 -
7 10.1 18.7
15 9.2 17.2

Without Geometrically
Introduced Crack

0 - -
7 19.6 -
15 18.1 -

Figure 33: The effect of porosity, while also excluding a geometrically introduced crack.
Models with a), 0% b) 7%, c) 15% porosity was evaluated. d) The corresponding force-
displacement curves. a)-b) The staggered solution scheme with ΔD = 2 · 10−6 mmwas used.
c) Themonolithic solution schemewithΔD = 2 ·10−4 mmwas used. The crack is represented
by 3 > 0.9. The stress and strain plots for these models can be found in Appendix B.
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8 Discussion

The aim of this thesis is to investigate the feasibility to model crack propaga-
tion in cortical bone using the PF method. The implemented PF framework
is first tested on typical benchmarks from commonly used in literature and
it is then used on cortical bone models. For the cortical bone models, a
sensitivity analysis of the mesh and step size is first performed which will
conclude which mesh and step size to use for the rest of the analysis. The
crack propagation in the cortical bone models is simulated with different
material parameters, geometries and levels of porosity.

8.1 Benchmarks

The benchmark tests show that the implemented PF framework successfully
captures the crack paths presented in the literature. They give insight in how
the resulting crack paths are affected by the choice of crack density function.
The solution methods used also affect the modelled crack. The asymmetric
perforated bending test provides insights in how holes in the geometry affects
the crack propagation.

8.1.1 SENT Tensile

The implemented PF framework successfully models the crack paths under a
tensile load. The crack paths for the crack density function AT2 (Fig. 23c-d)
are corresponding well to the results presented by Kristensen and Martínez-
Pañeda [20] and by Molnár and Gravouil [28] (Fig. 24). Kristensen and
Martínez-Pañeda [20] uses AT2 and a monolithic solution scheme with a
quasi-Newton method. They also use an adaptive step scheme. It should not
be a surprise since the framework for the monolithic solution method used
in thesis is based on the same open source code [20]. The smeared effect in
the beginning of the crack path, as seen in Fig. 23c, is captured in the result
by Kristensen and Martínez-Pañeda [20] as well (Fig. 24a). The crack path
for the staggered solution (Fig. 23d) is similar but wider than the crack path
presented by Molnár and Gravouil [28] which also uses a staggered solution
scheme (Fig. 24b). This is however expected since the length scale parameter
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ℓ2 is 0.0075 mm [28], and therefore 3 times smaller than the ℓ2 used in this
thesis.

The force-displacement curveswhen usingAT2 as the crack density functions
(Fig. 23e), are also consistent with the study by Kristensen and Martínez-
Pañeda [20]. The non-linear behaviour in the curve is also included in the
force-displacement curve in Fig. 24c [20]. The point of fracture (at D ≈ 0.006
mm) and the maximum force (650 − 700 N) is also consistent.

The difference between AT1 and AT2 can clearly be seen in Fig. 23e.
The curves for AT2 deviates and behave more non-linear, compared to the
linear curves for AT1. This is the effect of the initial elastic domain of the
crack density function AT1. Without an initial elastic domain, the damage
start as soon as the load is applied, i.e. the response when using AT2. The
force-displacement curve when using AT1 results in a higher maximum force
(> 700 N) and the fracture point is sharper. This brittle response is expected
in bone tissue. This concludes that AT1 will most likely be a good choice for
the cortical bone models [33].

8.1.2 SENT Shear

The cracks when using the crack density function AT1 (Fig. 25a-b) have
propagated along the expected crack path. The crack paths have the same
direction and approximately the same angle. The results corresponds well
to the results presented in the literature [20, 25] (Fig. 26). Mandal et al.
[24] uses the staggered solution scheme with both AT1 and AT2. Kristensen
and Martínez-Pañeda [20] uses the monolithic solution scheme with a quasi-
Newton method for the crack density function AT2.

The force-displacement curves for AT1 in Fig. 25e do have a similar pattern
to the curves presented in Fig. 26d. The small difference can be due to
that Kristensen and Martínez-Pañeda [20] uses AT2 instead of AT1. The
force-displacement curves for AT2 also presented in Fig. 25e corresponds
better, as could be expected. The curves for AT2 have the same non-linear
behaviour in the initial phase. The maximum force (≈ 325 N) for AT1 is
closer to the results presented by Kristensen and Martínez-Pañeda [20] than
the maximum force for AT2 (> 350 N). The fracture points also coincides
better for AT2.
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However, the crack paths using AT1 (Fig. 25a-b) are more similar to the
expected crack path than using AT2 (Fig. 25c-d). The expected crack path is
based on the results presented in Fig. 26. Kristensen and Martínez-Pañeda
[20] uses AT2, and the crack paths presented have the same straighter path
as seen in the results for AT1 in this thesis (compare Fig. 26c to Fig. 25a-b).
The curved crack paths when using AT2 (Fig. 25c-d), have not been captured
by the results from the literature in Fig. 26.

The smeared effect of the crack path is seen when using AT2 compared to
AT1. It can be seen both for the SENT Shear model and the SENT Tensile
model. This behaviour is also captured in the results presented by Mandal et
al. [24] in Fig. 26a-b, which uses both AT1 and AT2. For the two SENT
models, there is also a smeared effect when using the staggered scheme
compared to the monolithic scheme. However, for the SENT Shear model, it
is mostly seen at the end of the crack path in the lower corner in Fig. 25b and
25d, whereas for the SENT Tensile model, the smeared effect can be seen
along the full length of the crack.

The results from this benchmark show that the framework implemented
successfully can model the crack path for a shear load. The results also show
that even if the force-displacement curves for AT2 are more consistent with
results in literature, the crack paths for AT1 is a better match. The elastic
domain of AT1 creates the more brittle behaviour in the force-displacement
curves, which is sought for the cortical bone models.

8.1.3 Perforated Asymmetric Bending Test

The resulting crack paths in Fig. 27a-b for the perforated asymmetric bending
test are not consistent with the crack path found experimentally [17], as can be
seen in Fig. 27e. However, the crack paths are influenced by the perforations,
which is the effect that this thesis wants to investigate when choosing this
benchmark test. The results clearly show that the holes in the geometry affect
the crack path.

Mandal et al. [24] were not able to capture the experimental crack path in
[17] (Fig. 27e), with the same geometry as used in this thesis. However,
with an altered geometry, they captured the experimental crack path (Fig.
28). They found that it is difficult to capture the correct crack path with the
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dimensions used in the geometry in Fig. 18 [24]. By adjusting the position
of geometrically introduced crack with 0.15 inches (= 3.81 mm), they were
able to capture the experimental crack path from [17] using the crack density
function AT2 [24]. Molnár and Gravouil [28] also tried to simulate the
experimental crack path from [17] but were not able to do so. They presented
a crack path similar to the ones presented in this thesis, but the geometry was
different.

Since Mandal et al. [24] claims that it is difficult to model the exact crack
path using the correct geometry, the benchmark test in this thesis can be
considered relatively successful. The importance of this test is to evaluate
if the holes affect the crack propagation when using the implemented PF
framework, and they do.

8.2 Models of Cortical Bone

8.2.1 Sensitivity Analysis of Mesh and Step Size

The Sensitivity Analysis of Step Size

The crack paths when using the monolithic solution scheme differ for the
two step sizes (Fig. 29e-f). The crack path when using the smaller step size
deflects into the cement line when approaching the first osteon (Fig. 29f).
When using a bigger step size (Fig. 29e), the crack instead penetrates the
first osteon. After the first the osteon, the crack paths for both step sizes
continues to propagate in the same manner (Fig. 29e-f). The corresponding
force-displacement curves in Fig. 29a also behaves similarly. The models
exhibit brittle behaviour, as expected for cortical bone. The maximum force
for the two step sizes are the same. There is also a difference in computational
time for the two step sizes. The advantage of the monolithic solution scheme
is that the correct crack paths can be modelled with a greater step size, which
saves computational time. Therefore, ΔD = 2 · 10−4 is the step size used for
the monolithic solutions.

In the case that the monolithic solution scheme has problems with conver-
gence, the staggered solution scheme is used instead. The staggered solution
is more robust though known to be sensitive to step size [28]. It requires a
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small step size which makes it computationally demanding. The step size
affects the force-displacement curves in Fig. 29a, whereas the crack paths
(Fig. 29b-d) are almost identical when observing the propagation to the
first osteon. As the step size is decreased, the force-displacement curve be-
comes more similar to the monolithic curves. This step size dependency is
in concordance with the conclusion drawn in the study by Kristensen and
Martínez-Pañeda [20], and can be seen in Fig. 24c for the SENT Tensile
model. The force-displacement curve for smallest step size coincides with
one of the monolithic curves (Fig. 29a), however the model does not fracture
all the way. There is also a difference in computational time between the step
sizes ΔD = 2 · 10−7 mm and ΔD = 2 · 10−6 mm and the difference is measured
in days. The force displacement curve of the step size ΔD = 2 · 10−6 mm
follow the same pattern as the monolithic curves and the first and last fracture
points coincide with the monolithic solutions. The step size ΔD = 2 · 10−6

mm is therefore a good choice as it also saves computational time. Since the
crack paths of the staggered solution in Fig. 29b-d are nearly identical, the
model using step size ΔD = 2 · 10−6 mm is considered converged. Therefore,
ΔD = 2 · 10−6 is the step size used for the staggered solutions.

The Sensitivity Analysis of Mesh

The mesh size that is used for the cortical bone models is ℎ = 1.67 µm,
which discretizes the cement lines with three elements and it fulfills the
criteria related to the length scale parameter ℓ2. This conclusion is firstly
based on that all crack paths in Fig. 30 are nearly identical, when focusing on
the propagation to the first osteon. Secondly, the force-displacement curves
for the monolithic solutions in Fig. 30a coincide. The force-displacement
curve for ℎ = 1.67µm for the staggered scheme (Fig. 30b) is the curve that is
most similar to the monolithic curves. Lastly, to fulfill the criteria ℎ < ℓ2/2
and also save computational time, ℎ = 1.67 µm is a reasonable choice.

8.2.2 Analysis of the Material Parameters

The material parameters used when modelling human cortical bone can
affect the resulting crack paths. Changing the material parameters affect
both Model A and B, but the effect is more clear for Model B (Fig. 31b, 31d,
31e). When the critical energy release rate G2 for the osteons is higher than
for the matrix, which was experimentally determined by Mullins et al. [30],
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the crack is deflected and propagates in the cement line (Fig. 31b). When
Gosteon
2 = Gmatrix

2 , as in Fig. 31d, the crack instead penetrates the osteon. This
corresponds to the results found in the study by Mischinski and Ural [27],
which used the cohesive elements method. The osteons are protected from
damage by a higher value of the critical energy release rate G2.

The difference in the resulting crack paths between Model A and B can be
explained by the difference in geometry. InModelA, the crack approaches the
cement line of the first osteon at approximately 90◦ and the crack penetrates
the cement line (Fig. 31a). The crack in Model B approaches the cement line
with a smaller angle and it is deflected (Fig. 31b). The results suggests that
when approaching the cement lines with a smaller angle, the crack deflects
into the cement lines. In the PF method, the critical release energy G2 is
the driving force for crack propagation. For the crack to be able to advance,
the energy released must be equal to or greater than the energy required for
fracture, i.e. G = G2. The crack will propagate where it requires the least
amount of energy to advance. When the angle is small, the cement lines
provides a weaker path with a lower value for G2. Hence, the cement lines is
the preferred crack path as the critical limit for the released energy to reach
is lower. As seen in the SENT Tensile model, the crack wants to propagate
perpendicular to the tensile load applied. When the angle is approximately
90◦ to the cement lines, the crack must turn and propagate parallel to the
load applied in order to propagate in the cement lines. This requires more
energy than penetrating the cement line and propagating to the canal, which
is a crack path perpendicular to the load applied. Therefore, when the angle
is bigger, the preferred crack path is to propagate through the cement lines
towards the canal.

For an insight of the effect of G2 for the cement lines, Model B can be used.
The crack path in Fig. 30b can be compared to Fig. 31b. The same material
parameters are used except G2 for the cement lines. In Fig. 30b G2 = 0.17
N/mm and the crack penetrates the first osteon. With G2 = 0.13 N/mm in
Fig. 31b, the crack is deflected into the cement line when approaching the
first osteon. Since the same geometry is used, the angle in which the crack
approaches the cement line is the same. The higher value of G2 for the
osteons compared to the matrix is also the same for the two models. This
suggests that the osteons are protected from damage when a higher value
of G2 for the osteons is combined with a lower value of G2 for the cement
lines compared to the matrix. Experiments by Koester et al. [19] and Chan
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et al. [7] show that the cement lines play an important role in deflecting
cracks. By modelling the cement lines with different material parameters,
it can give an insight in how the bone tissue is designed to stop, slow and
redirect propagating cracks, which is one of the toughening mechanisms in
the tissue. It is not only the values that are important to investigate, but the
ratios (the ratio between matrix, osteons and cement lines) used are also key.

ModelA is based on one of theXFEM-models used in the study byGustafsson
et al. [15]. The crack for Model A propagates differently compared to the
XFEM-model, seen in Fig. 9A. The crack path in the XFEM-model was
more straight, penetrated the first osteon and deflected into the cement lines
in the upper osteon. In Model A (Fig. 31a and 31c), the crack penetrates
the first osteon and then a second crack is initiated in the Haversian canal
of the right osteon. The XFEM-method implemented in Abaqus and used
by Gustafsson et al. [15], only allows one active crack. The PF method
can simulate multiple crack paths, which could explain the difference in the
resulting crack paths as another crack is allowed to be initiated in Model A.
In the XFEM-model only one crack was propagating and another crack could
not be initiated. Another important difference between the two methods
are the criteria for crack advancement. In the PF method, it is the fracture
criterion based on the critical energy release rate G2. In XFEM, the criteria
is based on the maximum principle strain. In the study by Gustafsson et
al. [15], the same value for G2 was used for the matrix, osteon and cement
lines, i.e. G2 = 0.4 N/mm. In the PF method, G2 is important to model
crack growth, this thesis uses different values of G2 for the matrix, osteon
and cement lines. The different values of G2 clearly has an effect on the crack
paths as seen when comparing Set 1 and Set 2 for both Model A and B in
Fig. 31.

When adopting the homogeneous set of material parameters (Set 3), the weak
interface of the cement lines is not present. The only part of themicrostructure
that is included is the Haversian canals. In Model A (Fig. 31e), the crack
path is only affected by the canals. The crack first propagates from the tip of
the geometrically introduced crack to the first osteon. A new crack is then
initiated in the right canal. The canals attract the crack and this influence of
the holes is expected, as it is seen in the perforated asymmetric bending test
as well as in two studies by Gustafsson et al. [14, 15], where the Haversian
canals attracted and affected the crack propagation. This gives additional
insights into the importance of the microstructure, as it provides the tissue
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with an interface in which crack paths are affected in order to dissipate energy.
By dissipating energy, the tissue protects itself from fracture.

8.2.3 The Effect of Geometry

The crack propagation is affected by the geometry of the cortical models, both
due to porosity and if a geometrical crack is introduced (Fig. 32 and 33). The
crack path of the model with 0% porosity and an introduced crack (Fig. 32a)
shows that the Haversian canals do affect the crack path, especially compared
to the models with 7% and 15% porosity (Fig. 32b-c) as 0% porosity results
in a straight crack. The model also show some effect of the cement lines, as
it propagates along the cement line of the upper osteon (Fig. 32a).

The increase in porosity also affects the crack paths. The model with 15%
porosity in Fig. 32c breaks at weak regions and the cement lines only
influence the crack path to a small extent. The cracks in the model with 7%
porosity in Fig. 32b are more influenced by the cement lines, even if the
difference is still small. As the porosity increases with age, it can be said
that the effect of cement lines is decreased with age, which agrees with both
experimental and numerical findings in literature [7, 23]. The Haversian
canals attract the propagating cracks and the cement lines stop or redirect
the cracks. In healthy young bone, this protects the osteons from being
penetrated. In older bone, the porosity is increased and the holes are bigger,
which increases the ability to attract the cracks. The relationship between
the canals and the cement lines have changed, which affects the cement lines’
ability to stop or deflect the cracks. This behaviour is captured in the sketch
in Fig. 4, which shows that the cracks are more deflected and affected by the
cement lines in the younger bone compared to the older bone. The sketch is
based on experimental findings in the study by Chan et al. [7].

The porosity of the models also affects the initiation and crack propagation
when a geometrically crack is not introduced in the model, as seen in Fig.
33. The cracks are initiated in the Haversian canals, instead from the tip
of the introduced crack as in Fig. 32. The maximum force experienced in
the models are also affected by porosity. A higher degree of porosity makes
the models weaker and break under a lower force than a model with a lower
degree of porosity (Table 8). The same behaviour is seen for both models
with and without a geometrically introduced crack. Although, the maximum
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force for the models without a geometrically introduced crack is greater. It
requires more load to initiate a new crack than to continue to propagate from
an already existing crack tip. For the model with 0% porosity (Fig. 33a), the
load applied is not enough as no crack is initiated.

The effect of the cement lines can also be seen when comparing Fig. 33b
and 33c. The cement lines in the model with 7% porosity are more effective
in deflecting the crack and protecting the osteon than the model with 15%
porosity, which further suggests that the effect of the cement lines decreases
with increasing porosity and age as seen experimentally by Chan et al. [7].
However, it is not beneficial for the structure of the bone tissue if cracks are
initiated in the canals. The models used in this thesis are simplified, and there
is no microdamage and microcracks included which is more likely the source
of crack initiation in real cortical bone. As the bone remodelling process is
impaired with age, the microdamage accumulates and becomes a possible
source for crack initiation.

In the XFEM-study by Gustafsson et al. [15], the effect of ageing was
investigated by analysing the effect of increasing porosity (Fig. 8). The
models used in the analysis include eight osteons instead of four. When
comparing 7% and 15% porosity (Fig. 8C and 8E), the cracks were deflected
into the cement lines to a greater extent for 7% porosity. The crack path was
straighter and penetrated the osteons for the model with 15% porosity. This
behaviour due to increased porosity agrees with the results presented in this
thesis. The maximum force applied also decreased when the porosity was
increased [15]. However, the actual crack paths and the force-displacement
curves differ. The force-displacement curves in Fig. 32d and 33d display
brittle behaviour and the XFEM-models failed to capture a brittle behaviour
for the models with different porosities. The purely theoretical model of 0%
porosity was also modelled by Gustafsson et al. [15]. The crack path for the
8-osteon model with 0% porosity (Fig. 8A) was not as straight as the crack
path presented in Fig. 32a. The crack path in the XFEM-model (Fig. 8A)
was also propagating in the cement lines to a greater extent. As discussed
above, the difference can be explained by the method used, XFEM or PF.
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8.3 Limitations and Sources of Error

First of all, the cortical bone models used in this thesis are simplified. The
osteons and the interstitial matrix are assumed to be homogeneous, excluding
both microdamage and the structure of the lamellae [33]. The cement lines
are also assumed to be 5 µmwide all the way around the osteons, which is not
the case in real cortical bone [8]. The width actually varies in size. However,
a constant width make it easier to ensure that the the cement lines are resolved
properly when meshing the models. A finer mesh would probably be needed
if the width varies, which results in an increase in computational time.

The geometries of the osteons and the Haversian canals are also simplified
by fitted ellipses. In real cortical bone, as seen in Fig. 7, they are not
perfect ellipses. The models used in thesis are based on the XFEM-models
used in the work by Gustafsson et al. [15]. In the XFEM-method, normal
vectors for each element in the cement lines were used in the damage criterion
implemented by Gustafsson et al. [15], and was the reason for using ellipses.
A further improvement could be to model more realistic shapes of the osteons
and canals, since the PF method does not require the normal vectors.

As seen in the benchmarks, the solution scheme used can have an effect on the
resulting crack paths and force-displacement curves. Themonolithic solution
scheme is used in first hand in this thesis, and if problems with convergence
occur, the staggered solution scheme is used instead. The solution scheme
which is used can therefore differ in the results presented, and can be a source
of error.

A disadvantage of the PF method is the problems with convergence of the
monolithic scheme. A solution is not always found. The alternative, the
staggered scheme, is computational demanding where the simulations in
this thesis run for several days and in some cases a week. Problems with
numerical instability only occurred sporadically when using XFEM in the
work by Gustafsson [13]. Another limitation of the PF method is that the
crack initiation is driven by the history field variableH + which is dependent
on the strain energy density. Physically, cracks are initiated due the stresses
and are related to the strength of the material. Among others, Kumar et al.
[21] are exploring the option of amending the PF method with an additional
crack driving force based on the strength of the material to address this
limitation.
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Lastly, the crack propagation is modelled in 2D under plane strain conditions.
It could be modelled in 3D instead to model even more realistic crack paths.
The implementation for 3D in the PF framework is not difficult, however the
computational time would increase a great deal and convergence can also be
an issue. The models used in this thesis, with the size 1.2x1.2 mm2, take
days to run, even a week in some cases. In the literature, modelling of crack
propagation in 3D in the microstructure of cortical bone have not yet been
done [14].

8.4 Future Work

To capture realistic crack paths, the geometry used in the models should be
even more realistic. In the future, the PF method could be used to model
geometries which includes more osteons than the four included in the models
in this thesis. By including more osteons, the effect of the microstructure
on crack propagation can be further analyzed. Also, the osteons and canals
could be segmented and modelled with a more realistic shape than ellipses,
as in the study by Maghami et al. [23] (Fig. 10).

The individual mechanical properties of the osteons, cement lines and inter-
stitial matrix and the ratio between them should be further investigated. It
could answer questions regarding how the bone tissue is designed to resist
fracture. The effect of age on these properties is also important to continue
to analyze. By using different material parameters, it can give an insight into
the individual properties of the osteons, cement lines and interstitial matrix
which are difficult to determine experimentally.

Regarding the PF method, other definitions for the split of the strain energy
density can be tested. This thesis uses the volumetric-deviatoric split by
Amor et al. [3]. Another common choice is the spectral split by Miehe et al.
[26]. It would be interesting to compare the influence of the split used on the
crack propagation.

There is a debate going on regarding the length scale parameter ℓ2 [29]. Is
it a numerical parameter or is it a material parameter? In this thesis, only
one value for ℓ2 is used. It would be interesting to test different values, and
also individually different values for the osteons, cement lines and interstitial
matrix to see if it could give some answers to if ℓ2 is a numerical or material
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parameter.

For the further understanding of crack propagation, a 3D-model would give
a better understanding of the crack growth in the microstructure of cortical
bone. However, as mentioned in Section 8.3, it is a demanding and difficult
task.
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9 Conclusions

In this thesis, A PF framework is implemented to be able to model crack
propagation in the microstructure of human cortical bone. The cortical bone
models, which are based on microscopy images, are modelled with different
material parameters, geometries and levels of porosity.

This thesis show that the material parameters used to describe the osteons,
cement lines and the interstitial matrix play a role in the crack growth, and are
of importance to be able to capture realistic crack pathswith deflection into the
cement lines. A higher value for the critical energy release rate of the osteons
compared to the interstitial matrix protects the osteons from penetration of
the crack. It can also be concluded that age affects the crack propagation.
The ability to deflect the cracks into the cement lines is degraded with age,
as porosity increases. The findings also suggest that the cracks are more
likely to deflect and propagate in the cement lines if the crack approaches the
cement lines with a smaller angle.

To conclude, the PFmethod is a promising tool to use tomodel human cortical
bone at the microscale. It can give insights in how the microstructure of the
cortical bone tissue affects crack propagation, which can be difficult to test
experimentally.
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A Appendix

A.1 Derivation of the strong form

Start with the total energy of the body:

Π(u, 3) = Π8=C (u, 3) + Π2A02: (3,∇3) + Π4GC (u)

=

∫
B
[1 − 3]2k̂+(9) + k̂−(9)d+ + G2

∫
B
W(3,∇3)d+

+
∫
mB
−t · ud� +

∫
B
−u · b̂d+

The first variation of Π(u, 3):

XΠ(u, 3 | Xu, X3) = lim
n→0

d
dn
Π (u∗, 3∗) = 0, n ∈ R with

u∗ = u + nXu
3∗ = 3 + nX3

This will give a set of partial differential equations (PDE) called Euler-
Lagrange equations.

A.1.1 Variation of the displacement field

Variation of the displacement field:

XΠ(u, 3 | Xu) = lim
n→0

d
dn
Π (u∗, 3) = 0 with u∗ = u + nXu

XΠ(u, 3 | Xu) = lim
n→0

d
dn

∫
B
[1 − 3]2k̂+ (9 (u∗)) + k̂− (9 (u∗)) d+

+ lim
n→0

d
dn

{ ∫
mB
−u∗ · td� +

∫
B
−u∗ · b̂d+

}
= lim
n→0

∫
B

{
[1 − 3]2 mk̂

+

m9
:
m9

mh
:

d
dn
(∇(u + nXu))

+ mk̂
−

m9
:
m9

mh
:

d
dn
(∇(u + nXu))

}
d+

+ lim
n→0

{ ∫
mB
− d

dn
(u + nXu) · td� +

∫
B
− d

dn
(u + nXu) · b̂d+

}
= 0
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where 9(u) = 1
2
[
h(u) + hC (u)

]
and h = ∇u.

XΠ(u, 3 | Xu) = lim
n→0

d
dn

∫
B

{
[1 − 3]2 mk̂

+

mY
:
mY

mh
:

d
dn
(∇(u + nXu))

+ mk̂
−

mY
:
mY

mh
:

d
dn
(∇(u + nXu))

}
d+

+ lim
n→0

{ ∫
mB
− d

dn
(u + nXu) · td� +

∫
B
− d

dn
(u + nXu) · b̂d+

}
= lim
n→0

d
dn

∫
B

{
2+ : OBH< : ∇Xu + 2− : OBH< : ∇Xu

}
d+

+ lim
n→0

{ ∫
mB
−Xu · td� +

∫
B
−Xu · b̂d+

}
=

∫
B
(2+ : ∇Xu + 2− : ∇Xu)d+ +

∫
mB
−Xu · td� +

∫
B
−Xu · b̂d+

=

∫
B
2 : ∇Xud+ +

∫
mB
−Xu · td� +

∫
B
−Xu · b̂d+ = 0

The first integral can be rewritten using the identity:

div(Xu ·2) = ∇Xu : 2+Xu ·div2 ⇔ ∇Xu : 2 = div(Xu ·2)−Xu ·div2

together with the divergence theorem and Cauchy theorem:∫
B

div(Xu · 2)d+ =
∫
mB
Xu · 2 · nd� =

∫
mB
Xu · td�

The final expression of the variation of the displacement field is then:

XΠ(u, 3 | Xu) =
∫
B
∇Xu : 2d+ +

∫
mB
−Xu · td� +

∫
B
−Xu · b̂d+

=

∫
B

div(Xu · 2)d+ −
∫
B
Xu · div2d+ +

∫
mB
−Xu · td� +

∫
B
Xu · b̂d+

=

∫
mB
Xu · td� −

∫
B
Xu · div2d+ +

∫
mB
−Xu · td� +

∫
B
−Xu · b̂d+

=

∫
B
−Xu · div2d+ +

∫
B
−Xu · b̂d+ =

∫
B
−Xu · (div2 + b̂)d+ = 0
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and the strong form for the displacement field is:

∫
B
Xu · [div2 + b̂]d+ = 0 ∀Xu ⇒ div2 + b̂ = 0

A.1.2 Variation of the phase field

Variation of the phase field:

XΠ(u, 3 | X3) = lim
n→0

d
dn
Π (u, 3∗) = 0 with 3∗ = 3 + nX3

XΠ(u, 3 | X3) = lim
n→0

d
dn

∫
B
[1 − 3∗]2 k̂+(Y) + k̂−(Y)d+ + G2

∫
B
W(3,∇3)d+

Since the crack functional W(3,∇3) can be described using two different
equations, the derivation to the strong form of the phase field will differ.

Variational approach using the crack functional AT2

XΠ(u, 3 | X3) = lim
n→0

d
dn

∫
B
[1 − 3∗]2 k̂+(Y) + k̂−(Y)d+ + G2

∫
B
W�) 2(3,∇3)d+

= lim
n→0

d
dn

∫
B
[1 − 3∗]2 k̂+(Y) + k̂−(Y)d+

+ G2 lim
n→0

d
dn

∫
B

1
2;0

[
3∗2 + ;20∇3

∗ · ∇3∗
]

d+

The derivations and limits are as followed:
d
dn
3∗2 =

d
dn

(
[3 + nX3]2

)
=

d
dn

(
32 + 23nX3 + n2X32

)
= 23X3+2nX32 n→0

= 23X3

d
dn
3∗ = X3

d
dn
(∇3∗ · ∇3∗) = d

dn
(∇(3 + nX3) · ∇(3 + nX3)) = [apply product rule]

=
d
dn
∇(3 + nX3) · ∇(3 + nX3) + ∇(3 + nX3) · d

dn
∇(3 + nX3)

= ∇X3 · ∇(3 + nX3) + ∇(3 + nX3) · ∇X3
n→0
= ∇X3 · ∇3 + ∇3 · ∇X3 = 2∇X3 · ∇3
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Inserted into the variation of the phase field 3:

XΠ(u, 3 | X3) =
∫
B

{
− X32[1 − 3]k̂+ + G2

2;0
[
X323 + ;202∇X3 · ∇3

] }
d+ = 0

Using the identity ∇X3 · ∇3 = div(X3∇3) − X3 div∇3, the expression can be
rewritten:

XΠ(u, 3 | X3) =
∫
B
−X32[1 − 3]k̂+

+ G2
;0

[
X33 − ;20X3 div∇3

]
d+ +

∫
B
G2;0 div(X3∇3)d+ = 0

Using Gauss divergence theorem
∫
B div(X3∇3)d+ =

∫
mB X3∇3 ·nd� and as-

suming homogeneousNeumann boundary conditions for the 3-field: Gc;0∇3·
n = 0 on mB gives:

XΠ(u, 3 | X3) =
∫
B
X3

[
−2[1 − 3]k̂+ + G2

;0

[
3 − ;20 div∇3

] ]
d+ = 0 ∀X3

⇒ 2[1 − 3]k̂+ − G2
;0

[
3 − ;20 div∇3

]
= 0

Variational approach using the crack functional AT1

XΠ(u, 3 | X3) = lim
n→0

d
dn

∫
B
[1 − 3∗]2 k̂+(Y) + k̂−(Y)d+ + G2

∫
B
W�) 1(3,∇3)d+

= lim
n→0

d
dn

∫
B
[1 − 3∗]2 k̂+(Y) + k̂−(Y)d+

+ G2 lim
n→0

d
dn

∫
B

3
8;0

[
3∗ + ;20∇3

∗ · ∇3∗
]

d+

The derivations and limits expressed in previously can be inserted into the
variation of the phase field 3:

XΠ(u, 3 | X3) =
∫
B

{
− X32[1 − 3]k̂+ + G2

3
8;0

[
X3 + ;202∇X3 · ∇3

] }
d+ = 0

Using the identity ∇X3 · ∇3 = div(X3∇3) − X3 div∇3, the expression can be
rewritten:

XΠ(u, 3 | X3) =
∫
B
−X32[1 − 3]k̂+ + G2

3
8;0

[
X3 − ;202X3 div∇3

]
d+

+
∫
B

3
4
G2;0 div(X3∇3)d+ = 0
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Using Gauss divergence theorem
∫
B div(X3∇3)d+ =

∫
mB X3∇3 ·nd� and as-

suming homogeneousNeumannboundary conditions for the 3-field: 3
4Gc;0∇3·

n = 0 on mB gives:

XΠ(u, 3 | X3) =
∫
B
X3

[
−2[1 − 3]k̂+ + 3G2

8;0
[
1 − 2;20 div∇3

] ]
d+ = 0 ∀X3

⇒ 2[1 − 3]k̂+ − 3G2
8;0

[
1 − 2;20 div∇3

]
= 0

A.1.3 The strong form

The strong forms using the two different crack functionals are and with
the positive part of the strain energy density replaced with the history field
k+ = H :

The strong form using AT2

The strong form for the crack functional AT2 is:

div2 + b̂ = 0

2[1 − 3]H − G2
;0

[
3 − ;20 div∇3

]
= 0

subjected to the boundary conditions:

u = u on mBD

t = t on mBC

G2;0∇3 · n = 0 on mB

The strong form using AT1

The strong form for the crack functional AT1 is:

div2 + b̂ = 0

2[1 − 3]H − 3G2
8;0

[
1 − 2;20 div∇3

]
= 0

86



subjected to the boundary conditions:

u = u on mBD

t = t on mBC

3
4
G2;0∇3 · n = 0 on mB
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B Appendix

B.1 Plots of strain of Model A for different porosities
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B.2 Plots of stress of Model A for different porosities
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