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Abstract

Automated machine learning methods have seen increasing success in opti-
mizing database configuration parameters for better performance. While these
methods use techniques to e�ciently explore and evaluate possible combina-
tions of parameter values, running them may use large computational resources.
As database systems have tens of configurable parameters, this master thesis
explores the possibility of reducing the number of parameters to optimize by
identifying what parameters are most important. To do so, we applied di�er-
ent parameter importance methods on parameters from the database systems
RocksDB and PostgreSQL. We combined the methods by introducing a new en-
semble method to reach a final set of most important parameters. Using this set,
we then compare the performance gains obtained from optimization and dis-
cuss whether reducing the set of parameters is a worthwhile e�ort despite the
possibility of achieving lower performance. After setting a threshold for what
importance value a parameter must cross to still be considered, the results for
RocksDB show that we can match the performance gain by 60-70%, suggesting
that the threshold may have been set too high. For PostgreSQL we find that we
need more repetitions to come to a similar conclusion. In addition, we observe
that the results from applying the parameter importance methods sometimes
disagree and the type of workload being used is crucial.

Keywords: databases, SQL, NoSQL, graph databases, optimization, machine learning,
feature importance



2



Acknowledgements

Due to a variety of issues faced, this master thesis took longer than expected to complete.
However many obstacles I faced, I am grateful for my supervisor Luigi Nardi (professor at
the CS department) who had the patience and dedication to help me move forward with my
work. I express my deepest gratitude to Luigi and his team at DBtune, who have taught me a
lot about the field of database parameter optimization and the opportunities that this type
of work holds for the future. The scope of this master thesis took a lot of twists and turns,
but I am pleased to have arrived at the state it is currently at.

The optimization procedures in this thesis were enabled by resources provided by the
Swedish National Infrastructure for Computing (SNIC), partially funded by the Swedish
Research Council through grant agreement no. 2018-05973.

3



4



Contents

1 Introduction 7
1.1 Domain background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Database systems in study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 SQL databases (PostgreSQL) . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 NoSQL databases (RocksDB) . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Graph databases (Neo4j) . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13
2.1 Database Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Approach 17
3.1 Parameter importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Parameter importance using Random Forests . . . . . . . . . . . . 18
3.1.3 Parameter importance using CAVE . . . . . . . . . . . . . . . . . . 21
3.1.4 Parameters considered . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Evaluation 31
4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Parameter Importance Study . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Test functions: Branin and Rosenbrock . . . . . . . . . . . . . . . . 32
4.2.2 RocksDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Neo4j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5



CONTENTS

5 Conclusion 55

6



Chapter 1

Introduction

In this chapter we present the research domain of applying automated machine learning to
optimize database systems as well as provide the relevant background to the thesis context.

1.1 Domain background
Databases are essential for long term storing of data and processing queries received from
software programs interacting with the data. A database is commonly referred to as a DBMS
(Database Management System) because a database typical comes with software that allows
end users to e�ciently interact with the database. Examples of what a DBMS can o�er is
software for defining di�erent ways of filtering the data, allow retrieval of data in di�erent
formats, and enforce security rules on the user interacting with the system. In general, the
way a database is designed to store data and process queries is vital to the application area in
which a database will succeed in being widely adopted. This has made the market o�ering
of database technologies diverse with some being better suited for specific applications than
others. For example a database system can be designed for storing data that is frequently
accessed or for data that acts as a backup state.

Many DBMS allow database administrators (DBA) to change the values of some database
configuration parameters. These can be diverse and related to things like caching, memory al-
location, read/write concurrency, compression algorithms, etc. The role of DBAs (henceforth
called users) includes being knowledgeable about these parameters and configuring the right
values so that the DBMS performs optimally. However, tuning configuration parameters can
be a di�cult task when the number of parameters is large. What values a parameter can hold
are also important; if a parameter is continuous within some range, it means in theory it can
hold an infinite number of possible values. Many of the popular DBMS expose tens if not
hundreds of parameters to users that can feel quite daunting if one is not too familiar with
the specific DBMS they are using. Not to mention, hiring database analysts to monitor and
tune a DBMS can be quite expensive. Therefore the goal in this research domain is to meet
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1. Introduction

the growing incentive to apply automated machine learning methods in database systems so
that that they can attain better performance with as little resources as possible. When we
say database performance, we could be referring to di�erent metrics. The performance of
a DBMS is often measured either by the number of transactions a DBMS can process per
second called the throughput, or by the average time it takes to process a transaction called
the latency. In general, the most relevant metric is dependent on the use case of the DBMS so
there could naturally be others that are more applicable such as energy consumption.

Database configuration parameters are often called knobs in the literature, and in practice
we often want to limit the number of knobs we use during our automatic tuning process. The
number of knobs and the values they can hold can quickly create a very large parameter space
that would constitute the search space explored by a machine learning method. To create a
good initial set of parameters to tune, expert knowledge is often exploited as much as it is
available to choose parameters that we feel confident as having an impact on the performance
of a DBMS. This can be done by consulting with DBAs, reading online documentation for the
DBMS, or learning from the tuning experiences of other users in articles or blogs. In the case
of very limited information the user will just have to use intuition and use trial-and-error
to monitor the outcome of changing the values of some parameters here and there. Thus
the constriction of the space as much as possible helps the machine learning method more
e�ciently explore it and converge faster.

Once we have set up a parameter space, we can apply an optimization method to ef-
ficiently explore the span of possible parameter configurations. Each configuration of pa-
rameters in the search space is called a sample that the optimization method evaluates at
every iteration. The sample is evaluated by measuring the resulting performance it caused in
the database. We typically perform automatic tuning of parameters using established opti-
mization frameworks (called optimizers) like HyperMapper [25], Hyperopt [5] and Optuna [1]
that include options for users to customize their optimization procedure. The optimization
methods that di�erent frameworks choose to employ are diverse, but one particular success-
ful method is called Bayesian optimization (BO). More details on the choice of optimization
method is provided in section 2.1.1.

Evaluating a database configuration means we need to measure the resulting performance
using a workload containing a specific set of queries (more on this in section 2.2). Since a
workload may have many thousands if not millions of queries depending on how we want to
test the system, optimizing databases is generally seen as an expensive process. Thus we want
to establish an optimization procedure that e�ciently explores di�erent configurations to
improve the database performance. In this thesis, we continue in this direction but instead
of looking at di�erent optimization methods and how we can customize them better, we
analyze the parameter space itself in order to settle with a set of parameters that we feel has
the most impact on the performance. Reducing the dimensionality of the problem to some k
most important parameters and still achieve a relatively high improvement in performance
over default would be a huge win. Hence we will explore ways in quantifying the importance
of a parameter so that in the future we can start optimizing DBMS more e�ectively.
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1.2 Database systems in study

1.2 Database systems in study
We explore di�erent parameter importance methods in a variety of database systems in or-
der to compare the systems and gather insights on their similarities and di�erences. Specif-
ically, we aim to compare di�erent categories of databases knowing that there have been
several that have garnered a lot of attention. In this thesis we investigate three di�erent cat-
egories of databases: SQL (or ’relational’), NoSQL (non-relational), and graph. Although
graph databases belong in the NoSQL category, they are di�erent enough that we decided to
describe them separately.

1.2.1 SQL databases (PostgreSQL)
SQL databases most commonly utilize a relational model for structured data stored as a col-
lection of tables. The relationships between data are thus already pre-defined so that ref-
erences between di�erent tables are established from the beginning. SQL has been a popu-
lar standardized language since the 1970s which eases migration between di�erent database
technologies. However, di�erent vendors can still have their own features and compatibility
measures that makes SQL code in two di�erent databases look slightly di�erent. Many SQL
databases today are utilized through licensed DBMS such as MySQL and Oracle, with the
exception of PostgreSQL, which has seen tremendous success as an open source DBMS. Post-
greSQL has been developed for over 30 years and has a reputation for being very fast [14].
The DBMS also have a large number of knobs that the user can configure, with the paper by
Kanellis et al. [19] from 2020 stating that there are about 170 knobs.

1.2.2 NoSQL databases (RocksDB)
As the name suggests, NoSQL databases do not conform to the standard relational model
with SQL, which means they provide di�erent ways of storing and interacting with data.
NoSQL databases are diverse, with the main types being document, key-value, wide-column
and graph databases. They rose in popularity in the late 2000s, where focus started being
placed on creating e�ective ways on managing flexible data models and increase developer
productivity [24].

RocksDB
As an embedded key-value storage system, RocksDB has seen wide success in being used to
support large scale systems at companies like LinkedIn, Yahoo and Pinterest [33]. It was
developed by Facebook and optimized for high speed disk drives (e.g. SSDs). RocksDB has
three basic structural components: The memtable, sst files and log files [31]. The memtable is
an in-memory data structure that fills up with data from new write operations that in turn
optionally fill up the log files. When the table gets full, the stored data is flushed into one
or more SST files (essentially the basic storage uniets). These files are stored in di�erent
layers and events, called compactions, are triggered regularly in order clean data in the layers
by removing duplicates and overwritten keys [31]. As a strong representative of an embedded
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1. Introduction

NoSQL database, we study RocksDB to learn more about how its knobs contribute to the
DBMS performance.

1.2.3 Graph databases (Neo4j)
Graph databases, or Graph Database Management Systems (GDBMS), are themselves NoSQL
systems because they do not rely on SQL, but instead process queries in a language that is
written specifically for graphical relationships. Some of the currently most popular graph
query languages are Gremlin, Cypher, and GSQL which are used by Azure Cosmos DB, Neo4j
and TigerGraph respectively. An initiative to create a universal language has been proposed
in 2019 called GQL (Graph Query Language) by the widely known ISO organization that is
currently in a preparatory development phase [18].

Graph databases aim to more naturally capture the relationships between data in com-
parison to traditional relational databases. Their adoption has become widespread as social
networks and user interactions have increased due to people becoming more actively engaged
online. The database parameter tuning literature has shown successful experiments at mak-
ing traditional database management systems like PostgreSQL [19], MySQL, MongoDB [39],
RocksDB [2] and FoundationDB [34] increase their performance but as of yet there has not
been any similar e�orts for graph databases. It would be interesting to explore optimizing
graph databases as they provide a unique set of challenges to this domain because both stor-
ing and querying data is done in terms of the relationships that exist in the data. Neo4j,
a company with its own platform that is widely regarded as the largest GDBMS, defines a
graph database as a database that is designed to treat these relationships equally important
to the data itself [29].

In this thesis we will study Neo4j as a GDBMS, which is also known to be user-friendly
with a large community support. It exposes a large number of tunable configuration parame-
ters and there are even guides on performance tuning on their website that allows us to delve
quickly into the Neo4j ecosystem. We will attempt to optimize Neo4j as a GDBMS and learn
more about how its configuration parameters contribute to the performance.

1.3 Contributions
The optimization data obtained by applying an optimization framework on di�erent databases
allows us to analyze it more closely. In this thesis we look at applying parameter importance
methods to obtain more information about what database knobs are most important with
some consideration for the type of queries that were executed. This allows us to refine our
initial search space in a database optimization problem by identifying a selection of impor-
tant parameters that we can dedicate all of our resources into e�ciently tuning. While it
may be that the search space restriction leads to a worse performance improvement than if
we were to use the entire initial space, it can still be more advantageous if the result is that
we managed to greatly reduce the amount of resources spent and still obtain a ’good enough’
improvement. Using di�erent parameter importance methods to help explain the impact
of database knobs on the performance is the basis of our contribution to the field. More
specifically, we answer the following questions:
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• What do di�erent parameter importance methods tell us about what parameters are
most important?

• Is focusing only on the identified most important parameters a worthwhile e�ort to
pursue?

• Are the results consistent across di�erent database workloads?

By tackling these questions, we aim to open up for greater opportunities in the research area
of database parameter tuning using automated methods.

1.4 Related work
The most relevant work that has explored the importance of database knobs is a paper by
Kanellis et al. [19]. The authors investigate if a reduced set of parameters can still achieve
good performance by looking at two databases: Cassandra and PostgreSQL. The reduced set
contains some top most k parameters and they explore this for two di�erent workloads in
the YCSB benchmarking tool. In our thesis we follow a similar strategy to find out what
parameters are most important. The authors first use an optimizer to tune databases with
a large number of parameters. The optimization data is then analyzed to quantify the im-
portance of each parameter. Finally, they choose the most important ones they found and
perform the tuning process again and compare the performance improvement gained from
this reduced set to the one using the initial set. The authors show that just by tuning the five
most important parameters in both Cassandra and PostgreSQL it is possible to match the
performance gained at over 99% by tuning an initial set of 30 parameters. They also highlight
that the two workloads they look at show very similar results for which parameters are most
important.

The results from Kanellis et al. [19] may tell us that by only tuning a few parameters
we perhaps do not need to care about the type of workload. While the strategy is similar,
in our thesis we aim to focus more on the method we use to quantify the importance of a
parameter. The authors determine importance values using a random forest and while they
do not provide details on how the calculations are performed, we believe it is similar or the
same as we describe it later on in section 3.1.2. Our work extends this by providing a more
detailed discussion around what method one should use to calculate parameter importance
values by investigating three additional methods from a framework called CAVE (more on
this in section 3.1.3).

There are others that have quantified parameter importance to optimize a database with a
good set of initial knobs that seem relevant. A paper by Mahgoub et al. [22] investigates opti-
mizing Cassandra for high performance computing (HPC) workloads using an optimization
framework called Rafiki. The authors utilize a parameter importance method called ANOVA
to identify five key parameters to optimize. In ANOVA, every parameter is analyzed once
at a time and a variance is calculated based on the database throughput obtained after only
changing the value of the parameter itself. The five key parameters are thus the ones with
largest impact on the performance, which corresponds to the largest variances.

Another paper by Schmied et al. [34] used a sampling method to gather 200 samples
and train a random forest to provide the 10 most important parameters that they then use
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1. Introduction

to tune a DBMS called FoundationDB. Again, the details are not provided in the paper but
we assume the approach using random forests is similar or the same as we later explain in
section 3.1.2. This thesis complements the prevalence of random forests being used to create
importance rankings by exploring other methods that measure parameter importance in a
di�erent way, for example with a more local or global perspective.
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Chapter 2

Background

2.1 Database Optimization
A popular optimization method to evaluate costly black box problems is widely considered
to be Bayesian optimization (BO). As Shahriari et al. [35] point out in their extensive review
of the method, BO is e�cient when we deem our objective function (or black box function)
expensive to evaluate due to lack of derivatives and possibly being multimodal. BO is de-
scribed as a sequential model-based method due to it involving establishing a prior belief
state over how the objective function looks like and then iteratively refining that belief and
decreasing the uncertainties in it. These updates of the prior create a posterior that repre-
sents our updated beliefs based on our observed data on how the objective function looks
like. The model that holds this posterior is called the surrogate model, and together with an
acquisition function are the two parts that are central to BO.

The acquisition function in BO uses the uncertainties we have in the posterior to guide
the BO method on what sample to evaluate in the next iteration. As described in [35], there
are many acquisition functions whose purpose is essentially to create a trade-o� between
exploitation and exploration. The idea is that sometimes we try to exploit samples we found
that were good by looking for others that are close by in the search space and sometimes we
want to look further away in hopes of finding some other optima.

The surrogate model that is used in BO is often a Random Forest (RF). Random Forests are
considered an ensemble method in machine learning since they are collections of individual
decision trees and predictions are made by aggregating their every tree’s contribution. Due to
being based on decision trees, they are more intuitive to interpret and debug in comparison
to for example neural networks. Random forests can also easily handle categorical parameters
according to [35] and [25], which are a type of parameters that we find frequently in database
systems.

In some recent e�orts, we have also seen some combinations of deep learning and rein-
forcement learning being used to optimize databases. CDBTune+ is a framework by Zhang et
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2. Background

al. [39] that shows high e�ciency during ’online’ tuning, the process by which a user connects
their database system to the framework and tunes it. The drawbacks of this approach is that
there is considerable ’o�ine’ model training done prior to creating the online tuning ser-
vice. The o�ine model is an established knowledge base that the online tuning process then
exploits to make it faster. This also means that the tuning service is restricted to database
systems that have been used prior for o�ine learning. In our case we want to look at a variety
of DBMS without gathering the resources to leverage a large o�ine model. Hence we deem
BO to make most sense as an optimization method to use for optimizing our costly objec-
tives functions. Evaluating a single sample through a benchmark takes in our case at least 10
minutes.

2.1.1 Optimizer
Each database in the study is optimized using an optimization service called DBtune [11], that
itself is based on the open-source optimization framework called HyperMapper [25]. The
framework utilizes BO with a random forest as its surrogate model and runs an optimization
procedure in two phases: (1) a warm-up phase, followed by (2) a main phase. The aim of
the warm-up phase is to build an initial belief system in the surrogate model based on a few
samples from di�erent parts of the search space, which is the set of all samples that can be
made from combinations of the input parameters values. The sampling method used in the
warm-up phase is thus something like random sampling to obtain a diverse set of samples.
In the main phase, the surrogate model (also called the predictor) continues to be iteratively
trained from drawing a sample and evaluating it [25]. The idea is that at each iteration the
predictor is used to choose the features/parameters that are most important for the next
iteration while at the same time utilizing an ’exploration and exploitation’ scheme. Essentially
it ’guides’ the optimization on what parts of the search space should be exploited more with
occasional evaluations of samples further away.

DBtune contains many adjustable parameters, such as the sampling method in the warm-
up phase as well as the number of trees that are used in the random forest. Due to time
constraints, this thesis will leave most parameter values as their default. This means for ex-
ample that a random forest will be used with the number of trees being ten and the minimum
number of samples in a leaf node being five [17].

2.2 Benchmarking
Evaluating a sample consisting of parameter values for a specific database to measure the
resulting performance is done by executing a benchmark. A benchmark is a tool that is
able to interface with a database and collect performance metrics for how well it processes
a set of pre-defined queries. Benchmarking tools for DBMS are numerous, with some being
targeted for specific query languages and databases while others can be used for multiple
di�erent systems. Database benchmarking tools started being developed many decades ago
with the foundation of the Transaction Processing Performance Council (TPC) initiative.
TPC was first introduced during the 1980s in response to many companies claiming that they
o�ered the best Online Transaction Processing (OLTP) systems [20]. TPC has evolved over
time from creating a benchmarking standard for evaluating a system’s capability of handling
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online transactions to incorporate a much larger collection of benchmarks for di�erent use
cases like TPC-C and TPC-H.

There is no universal benchmarking tool in the database tuning literature that can be
used for any arbitrary DBMS. Some database providers like RocksDB o�er their own in-
ternal benchmarking tool called db_bench [32], which makes it easily accessible for existing
database users. SQL-based DBMS often use OLTP-Bench [12] for benchmarking while NoSQL
databases are often benchmarked with YCSB [9]. For graph databases there has been an ini-
tiative by LDBC (Linked Data Benchmark Council) [21] to create a benchmark called SNB
(Social Network Benchmark), a fairly recent and growing e�ort to create a robust standard
benchmarking tool for evaluating data systems with graphical relationships. In our thesis, we
use db_bench for RocksDB, OLTP-Bench for PostgreSQL, and LDBC SNB for Neo4j as tools to
evaluate di�erent parameter configurations. More information on each tool and how we use
it is provided below.

db_bench
The internal tool in RocksDB supports many options to generate di�erent types of work-
loads. It also provides detailed output results, with both overall metrics for the database
performance but also for individual components of the database (e.g. each layer of SST files).
For this thesis we use the ’readrandomwriterandom’ workload type, which performs random
reads and writes over time. We can specify the ratio of read to write queries to perform,
which means we can compare read-heavy to write-heavy workloads.

OLTP-Bench
OLTP-Bench is a testbed environment created by Difallah et al. [12] to make benchmarking
relational databases easier. It reduces the engineering e�ort required to set up a benchmark-
ing environment customized for a specific use case. In this tool, we can specify what workload
we want to run depending on the DBMS at hand. The tool itself consists of popular work-
loads from benchmarks like TPC-C, LinkBench, and even YCSB, whose properties can be set
up using a configuration file. We use this tool in this thesis to benchmark PostgreSQL.

LDBC SNB
From the specification [10], the goal of the benchmark LDBC SNB is to define a framework
where di�erent graph based technologies can be fairly tested and compared. The benchmark
o�ers two workloads: the Interactive Workload with user-centric transaction queries and the
Business Intelligence Workload with analytic queries. We use the former workload as it is closest
to what users may have in their real time graph databases. LDBC SNB is intended to be used
by a variety of people: from researchers to graph database companies to end users trying
to compare di�erent GDBMS. The benchmark also intends to support many DBMS, both
relational and non-relational. The benchmark has a number of queries that perform specific
tasks, where some are easy and some complex. In configuring the benchmark, we can specify
the ratios between the queries we want to execute and how often we want to perform a
write operation between series of reads. In the context of GDBMS, to our knowledge no
other benchmark has been developed to the level of sophistication that we see in LDBC SNB.
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2. Background

Therefore we use this benchmark in our study to evaluate the parameter configurations in
Neo4j.

An optimization procedure for a specific problem like optimizing a database to maxi-
mize throughput consists of many intricate details that can be further explored. Firstly, we
discussed the diverse ways we could design an optimization problem such as by choosing an
appropriate surrogate model. We also need to think about the validity of the samples we ex-
plore during optimization by choosing an appropriate benchmarking tool. In this thesis we
have not meddled much with the options for the optimization algorithm that is in Hyper-
Mapper (the optimizer we use) due to time constraints, but we have spent time creating an
optimization environment that makes sense given the benchmarking tools we have presented
and used. More details on the benchmarking setup are later described in section 4.1.
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Chapter 3

Approach

3.1 Parameter importance

3.1.1 Background
When optimizing the performance of a database as a function of its parameters, the user may
be interested in how each parameter contributes to the performance. Deriving some sort of
ranking system for the parameters involved is useful for limiting the parameters involved in
the optimization algorithm to the most important parameters. This reduces the complexity
of the black-box problem by reducing the number of dimensions in the sample space cre-
ated by including all initial interesting database parameters. This allows an optimization
algorithm to focus on parts of the sample space that matter more towards the measured per-
formance and at the same time converge faster to an optimum.

A parameter ranking system from which a user can then restrict the sample space is sub-
ject to a possible trade-o� during optimization. The smaller space that is likely to lead to
a higher convergence rate and more focused sampling does not guarantee that the best per-
forming configuration lies in this new restricted space. It may be the case that the best per-
forming configuration involves changing values of the parameters that were left out. Given
this trade-o�, in what kind of optimization problems is this risk still acceptable? It depends
on the user’s goal and the amount of resources that are available. The user may not have
enough time or computing capacity to be able to run an optimizer for very many iterations.
In that case the user may be open to restricting the sample space if it would mean that the
optimizer would at least obtain some satisfactory level of performance improvement over
default.

In essence, a parameter importance ranking helps a user reduce the complexity of the
optimization search space to match resource availability. The problem we need to note here,
however, is that to create parameter rankings we would need to explore the entire search
space first. This might seem counter-intuitive to the argument above stating that the user
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3. Approach

may have little resources available to begin with, but here we only need to do this once and
then we can use the smaller space that we create to save resources in future optimization runs.
We can also think of a situation where a person creates an open tuning system with many
users and the person (system owner) runs an optimization process to identify the most impor-
tant parameters. The users of the system can then use these results, which may be applicable
to them if they have low amounts of resources. We also have to note that for the parame-
ter importance results to be applicable in future optimization runs, we make an assumption
regarding the database workload. Firstly, database workload should not be drastically di�er-
ent. If the types of requests a DBMS handles change remarkably then it might cause di�erent
parameters to be more important and thus result in a di�erent ranking system. Therefore
ideally we want to perform the optimization runs for a diverse set of workloads and observe
their di�erences. If the workloads used lead to very similar rankings, then the importance
of a parameter is likely to be workload-independent. If the rankings are di�erent, then the
results would be only interesting to a user that can expect a consistent workload over time.

In the paper by Kanellis et al. [19], the parameter rankings the authors identify are al-
most identical for the DBMS Cassandra but much more di�erent for PostgreSQL. In the
paper explaining OtterTune [38], a system for automatically tuning database systems, the
authors report that three di�erent workloads showed drastically di�erent latency measure-
ments for three configurations in a popular DBMS called MySQL. The authors argue that
configurations are non-reusable due to the influence of the workload type (’application’) on
the database performance. Hence we have to be mindful of these when making conclusions
about the generalization of parameter importance rankings we obtain.

In this thesis we identify parameter rankings by utilizing di�erent parameter importance
methods. As discussed above, to calculate a ranking it would require that all available and
relevant parameters be explored first, which means that in practice we have to optimize our
black box function with an initial set parameters that may be large. It is only after we run this
once and analyze the results that we then decrease the set of parameters (similar to what was
done in [19]). We then compare the improvement gained from optimization using the smaller
set to the initial one and discuss the e�ciency of using parameter importance rankings to
only tune the most important parameters. The reason as to why we perform optimization
procedures and do not use just take random samples from the search space (i.e. random sam-
pling) to learn about parameter importance is because want to learn about the contributions
of the parameters to the performance metric in areas of the search space where optimiza-
tion prioritizes. Random sampling would mean drawing random samples across the entire
search space, which in order for this to be feasible we would also have to evaluate very many
samples depending on the search space complexity (i.e. this leads to longer experiments). A
key feature in optimization is to more e�ciently navigate a search space and our goal with
parameter importance in this thesis is to investigate if the optimization procedure itself can
be made simpler by focusing on fewer parameters.

3.1.2 Parameter importance using Random Forests
Due to being a collection of individual decision trees, random forests manage to account for
less overfitting than what commonly occurs in a regular decision tree. Each decision tree
in a random forest model contains a bootstrapped dataset (a randomly sampled copy of the
original data with replacement) as well as a random subset of the features/parameters in
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the data. A prediction is made by aggregating the predictions from the individual trees and
choosing the result that is most popular. Random forests can be used for both classification
and regression problems but the implementation of the model will vary slightly depending
on which is used. This is also reflected in how we calculate parameter importance rankings
using random forests, as we shall see soon.

Third party libraries for implementations of a random forest often come with their own
method for calculating the importance of each parameter in a trained instance of the model.
In DBtune, the random forest is an instantiation of the model provided by the popular library
called scikit-learn. It has a method for determining the feature importance values based on
the concept of Gini impurity. Gini impurity is a popular method to quantify the quality of
a tree node after a split. It is worth noting that the Gini impurity is specifically used during
classification (i.e., the random forest model would be a classifier). This is connected to the
criterion method of the random forest model, which is how a tree in the model calculates the
quality of a node split during training.

In the scikit-learn random forest model, the default criterion for classification is the Gini
impurity, while for regression it is the squared error. For black-box optimization problems
like database parameter tuning in which DBtune is used, we are dealing with a regression
problem (i.e., predicting the database performance) and use the random forest as a regressor.
Hence the quality of node splits in the random forest trees are based on the the squared error
(which is better when lower). Whether we use classification or regression, we still follow
a similar concept of determining how to best split nodes in the random forest trees. To
understand how parameter importance is calculated, we will first illustrate how decision
trees splits its nodes and then show the actual calculations that are made. The concept is
more easily illustrated for a classification problem so we will do that and discuss where things
would be di�erent if we use regression like in the context of our thesis experiments.

During training, every decision tree in a random forest (henceforth referred to as RF)
is constructed in a top-down manner by deciding what features best split the data at every
level. Every node answers a binary question in deciding how to split the data. After testing
every feature, we calculate the quality of the split by quantifying the impurity as previously
mentioned The feature that leads to the least impurity is chosen and we split the data ac-
cordingly. Then we move on lower to the next level with the remaining features and repeat.
If there are no features left, or if we specify that the number of remaining samples in the data
has to be higher than a specific threshold, we label that node as a leaf node (i.e., a node with
no outgoing branches). Given a node with the binary classes x and y, the impurity of a node
n using the Gini impurity is calculated using the following formula:

impurity(n) = 1 − (
#x

#x + #y
)2 − (

#y
#x + #y

)2 (3.1)

where #x and #y are the number of samples in the two classes.
As an example, consider the decision tree example in figure 3.1. The impurity of a node,

say the leftmost leaf node (green) would be: 1− ( 4
4+0 )2 − ( 0

4+0 )2 = 0, which makes sense since
all the samples belong in one class, making it pure with 0 as an impurity value. For regression,
the leaf nodes do not contain binary values for the target variable, where the value of a leaf
node is given by the modal class that is present. Instead, the value of a node is the average of
the target variable values for all samples in the node. Then to calculate the impurity value we
use the squared error, where we take we the sum of squares of the di�erence between every
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observed target variable value and the mean value. The higher this di�erence is, the more
impure the node.

Feature 1 
 

x: 19, y: 16

Feature 3 

x: 9, y: 12 

Feature 2 

x: 10, y: 4 

NoYes

Feature 2 

x: 6, y: 5 
x: 3, y: 7

x: 4, y: 0 

Result (mode): x 

x: 2, y: 5 

Result (mode): y

Yes No Yes No

Yes No

x: 9, y: 1 x: 1, y: 3

Target variable with
classes {x, y}

Figure 3.1: Example of a decision tree with four features and a target
variable with classes x and y. The decision in each blue node (or box)
that is portraying the situation in which we are answering a specific
question relating to the feature with either ’yes’ or ’no’.

Computing parameter importance values follows the same concept. After training a ran-
dom forest, we calculate parameter importance values by analyzing each individual model
tree, then average across all trees. When inspecting a tree, we look at every feature node and
calculate the quality of the split it creates by analyzing the node itself and its resulting child
nodes. For a given feature (parameter) x, its importance i in a tree is given by the following
formula:

imp(x) = wxex − wL(x)eL(x) − wR(x)eR(x) (3.2)

where wx is the weighted number of samples reaching the node (= samples in node divided by
the total number of samples in the tree) that is responsible for splitting itself by x, ex in our
regression context is the squared error (Gini impurity in classification) of that node, and the
negative terms are similar but correspond to the left L(x) and right R(x) child nodes after
the feature split. The weights added to each error term makes sense when you think about
how they would be larger (due to more samples) the higher up the feature is located in the
tree. After all, being placed higher corresponds to being the better splitting feature during
training.

Note that a feature may be responsible for multiple splits in a given decision tree. Looking
at the example tree in figure 3.1, we see that ’Feature 2’ causes two splits. Thus following the
calculation above, we would obtain two importance values. The resulting importance for
’Feature 2’ would be the sum of these. Essentially the more a feature plays a role in node
splitting as well as the higher it is placed, the higher its evaluated importance will be. For
’Feature 2’ in the example tree, the resulting importance value is the sum of two contributions
C1 and C2 it has in the tree, given we are using the Gini impurity since we are dealing with
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a classification tree:

C1 =
6 + 5

19 + 16
·

(
1 − (

5
6 + 5

)2 − (
6

6 + 5
)2
)

−
4 + 0

19 + 16
·

(
1 − (

4
4 + 0

)2 − (
0

4 + 0
)2
)

−
2 + 5

19 + 16
·

(
1 − (

2
2 + 5

)2 − (
5

2 + 5
)2
)

= 0.0742

(3.3)

C2 =
10 + 4
19 + 16

·

(
1 − (

10
10 + 4

)2 − (
4

10 + 4
)2
)

−
9 + 1

19 + 16
·

(
1 − (

9
9 + 1

)2 − (
1

9 + 1
)2
)

−
1 + 3

19 + 16
·

(
1 − (

1
1 + 3

)2 − (
3

1 + 3
)2
)

= 0.0690

(3.4)

imp(Feature 2) = C1 +C2 = 0.0742 + 0.0690 = 0.1432 (3.5)

Once we repeat the procedure for the other features, we then normalize the importance
values to be between 0 and 1. Finally, we compute average values across all decision trees in
the model. One thing to note is that since the trees are bootstrapped, a feature that is missing
in a tree is simply assigned a value of zero.

3.1.3 Parameter importance using CAVE
An open source framework called CAVE (Configuration Visualization, Assessment and Eval-
uation) provides multiple parameter importance methods based on previously obtained op-
timization data [6]. The framework was developed by a research group called AutoML at the
universities of Freiburg and Hannover with the goal of expanding the area of machine learn-
ing automation [4]. In pursuit of this goal, CAVE allows users to generate detailed insights
into the obtained data and produce informative plots. The framework is comprised of di�er-
ent categories of methods that analyze an algorithm’s inputs and outputs. One such category
is parameter importance, which is what we are interested in for our use case. Nonetheless,
the methods are defined in the context of being part of a larger framework that target a gen-
eral optimizer that they refer to as an Algorithm Configurator (AC). The name originates
from a paper by one of the CAVE authors describing an algorithm configuration framework
called ParamILS [16], where it is written that algorithm configuration is an alternative term
to the commonly known parameter tuning. They explain that they favor this term due to the
fact that they are interested in methods that can deal with a potentially large number of
parameters, each of which can be numerical, ordinal or categorical.

To use the methods we are interested in we must first understand some of that context.
The research group behind CAVE has developed many tools and ideas for algorithm opti-
mization over the past decade that build on top of each other and include mutual naming
conventions. To understand the context behind CAVE, there are specifically two main ideas
that should be outlined (1) how an algorithm configurator is defined and (2) how CAVE can
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say something about configurations that have not been previously evaluated, i.e. missing from
the user’s obtained data.

Algorithm Configurators are an extension of the more well-known topic called hyperpa-
rameter optimization (HPO). According to Eggensperger et al. [13], the goal is to optimize
an algorithm based on a given performance metric m : Θ × π → R across a set of problem
instances π ∈ Π. They thus express the portfolio optimization problem as:

θ∗ ∈ arg min
θ∈Θ

{
1
|Π|

∑
π∈Π

m(θ, π)}. (3.6)

As stated by the authors, the concept of problem instances arises in the context of param-
eterized solvers for problems like proposition satisfaction. Nonetheless, it is argued that the
reason HPO is a special case of AC is because in HPO we can use the cross-validation folds
in machine learning models as problem instances Π. With this in mind, we can also argue
that an AC can just as well generalize to database parameter optimization where database
workloads (sets of predefined queries) are seen as problem instances. Since we measure the
database performance by executing a specific workload, we can define a problem instance as
the workload itself. Hence to create di�erent instances we could experiment with di�erent
ratios of read and write queries as workloads. Parameter importance can then be studied
as a function of these instances. Doing that may reduce the complexity of the parameter
importance study by just creating one ranking of parameters that generalizes to all types of
workloads. However, performing a parameter importance analysis that way is questionable.
In many cases we want to optimize a database for a specific workload if we assume that it
remains consistent over a relatively long period of time (e.g. many times longer than what it
takes to optimize the database). It thus wouldn’t make sense to generalize any results in this
context, especially when taking into account the possibility of di�erent workloads leading
to very di�erent importance rankings that would get lost in aggregation. In the more ap-
propriate single workload case, we e�ectively only using one problem instance such that the
expression above simplifies to the following:

θ∗ ∈ arg min
θ∈Θ

{m(θ)}. (3.7)

The second part is understanding how CAVE handles configurations that we have previ-
ously not evaluated. CAVE utilizes a surrogate model as an Emprical Performance Model (EPM)
that is retrained on the input data we provide CAVE from a previous algorithm (optimiza-
tion) run we have performed. Thus, when calling a CAVE method, all of the configurations
that it incorporates are used in predictions to obtain their performance values. This surro-
gate model is ultimately a random forest model whose own parameters have been optimized
using an optimization algorithm. The source code lies in a referenced package that the afore-
mentioned research group is responsible for in [3]. Now that we know that CAVE can be used
in the context of databases and how it handles configurations not previously evaluated, we
can learn more about some of the framework’s interesting parameter importance methods
below.

Local Parameter Importance
One parameter importance method from CAVE is called Local Parameter Importance (LPI).
LPI is a straightforward method based on the human strategy to look for performance changes
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after changing one parameter in a specific configuration. The method essentially takes the
best performing configuration (the incumbent) and for each parameter then calculates the
variance of the performance values obtained by changing the value of that parameter. The
method can be explained as follows. Given the incumbent, we can compute the importance
of a parameter p by following these steps:

1. For every value v in p, determine a new configuration and evaluate its performance
using the EPM. Store all resulting performance values.

2. Calculate the variance of the stored performance values.

3. Calculate the importance of p by dividing the calculated variance by the sum of all
variances after using this method on all parameters involved.

The reason why the method has the word ’local’ in it is presumably because we only
use one sample ( the incumbent configuration) and then explore the samples around it by
changing one parameter in the configuration at a time. Essentially we are not taking large
leaps away from the incumbent.

One thing we would like to mention regarding point 1 in the method is that in the case
of a continuous parameter, CAVE takes 500 evenly spaced samples to consider within the
parameter’s value boundaries. In this thesis we do not use continuous parameters (see section
3.1.4).

Ablation Analysis
CAVE provides another parameter importance method called Ablation Analysis (AA), which
is based on a drastically di�erent view of how to calculate the importance of a parameter.
AA is based on investigating a path (or series) of configurations where parameter values
are modified from the source (default configuration) to the incumbent. Parameter values
are modified once every iteration and the modification that leads to the best performing
configuration makes the modified parameter the most important one during that specific
iteration. The steps can be summarized as follows:

1. For every parameter p, create a new configuration based on the default configuration.
Modify the default of value of p to its value in the incumbent configuration.

2. Out of all new configurations with single modifications, choose the configuration that
results in the highest performance (lowest cost) obtained using the EPM. The most
important parameter is the one that has been modified to obtain this configuration.

3. In the next iteration, we start with the configuration as previously that showed the
best performance. We now make single modifications to the remaining unmodified
parameters and repeat what we did above.

4. Repeat for future iterations until there are no remaining parameters that we can mod-
ify by changing their default to their incumbent values.

Ultimately the maximum number of iterations in the method is the number of parameters
present in a configuration. If the value of a parameter is the same in the default configuration
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as it is in the incumbent, it will simply be ignored. Thus it is possible that the importance
ranking of the parameters include only a subset of the parameters.

While the method arrives at a ranking in a straightforward fashion, we also want to un-
derstand the importance value that is assigned to each parameter. By looking at the source
code in [3], we found that the the importance value attached to a parameter is based on the
improvement attained in a specific iteration. For example, let’s consider the first iteration,
where all parameters are subject to modifications. For each parameter, we calculate the re-
sulting performance as described above and store this value. When we move on to the next
parameter, if we find a performance value that is better, we replaced the stored value with it.
The ’winning’ parameter gets an importance value (or weight) w that is calculated as follows:

w =
current configuration performance − previous best performance

incumbent performance − source performance
(3.8)

where the previous best performance is the best performance found so far in the iteration.
The reason the value is divided by the di�erence in the performance of the source and in-
cumbent configurations is to express the value as a percentage of the total improvement made
from optimization. Note that it is possible to obtain a negative importance value. If every
modified configuration in an iteration leads to worse performance values, we would be in
a situation where we are trying to choose the parameter that has the least negative impact.
Dealing with negative values is di�cult in the context of the this thesis where we compare
the values obtained using di�erent parameter importance methods. Hence if a parameter re-
ceives a negative importance value from AA, we choose to set it to zero. Also, we normalize
the remaining set of importance values to sum to one again.

Functional ANOVA
Functional ANOVA, or fANOVA, is a method based on treating the objective function as
an additive combination of several components. This method in CAVE is based on the im-
plementation by Hutter et al. in [15] (also provided as a standalone library). An objective
function, like in our case the throughput of a database, is broken down into components that
act as di�erent sources of contributions to the function values. Specifically, we can divide
the types of contributions into di�erent orders:

• First-order e�ects: Also called main e�ects, these are contributions we see from tuning
one single parameter at once.

• Second-order e�ects: Contributions which are due to changing how the values in two
parameters at once, emphasizing the interactions between them.

• Higher-order e�ects: Similar to above but covers interactions between multiple param-
eters at a time, with at least three parameters or more.

The fANOVA method in CAVE calculates parameter importance values by considering
first order and pairwise second order e�ects. For every parameter p, we calculate the param-
eter importance by following these steps:
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1. For every value in p, calculate the average performance value yp obtained when marginal-
izing over all other parameters 1.

2. Compute the parameter importance by calculating the variance of all yp (later normal-
ized so that all importance values sum to one).

We do similar calculations for pairwise second order importance values, but instead compute
an average performance value for every combination of two values in two di�erent parame-
ters. The importance values are in the end all normalized so that they sum to one.

The first step requires an exponential number of calculations that scale with the number
of parameters, which means that this method can be expensive to run. Fortunately, the clever
fANOVA implementation by Hutter et al. [15] specifically targeting decision tree models like
random forests is able to run in linear time by exploiting the fact that predictions are made
very quickly.

A New Feature Importance Ensemble Method
Comparing the results obtained from the above four methods is useful in trying to understand
their di�erences. However, in order to see if we can get matching improvement gains from
optimization by only using a select number of the most important parameters means we have
to aggregate the results in some manner. Since the methods may return di�erent parameter
importance rankings, we need to construct an ensemble method based on the results of the
four parameter importance methods we are studying. To this end, we aggregate the results
by summation: For each parameter p, we calculate its aggregated importance Ip by:

Ip =

4∑
n=1

wp(k) (3.9)

where wp(k) is the performance value returned by a method k for parameter p.
After performing this ensemble, we need a way to decide what parameters are most im-

portant. We could, for example, pick a number k and choose the top k parameters according
to the values obtained above and include them in our final reduced set. In this thesis we
instead set a threshold value that would divide the parameters into groups: (1) parameters
with values above the threshold and thus included in the reduced set and (2) parameters with
values below it. What threshold one should set in itself is an open discussion; but for this
thesis we will set it at a value of 0.2. Considering that each parameter importance method
returns values that sum to one, we can think of a threshold of 0.2 as allowing parameters
with at least 20% contribution to the objective function become labeled as important. This
is, however, slightly misleading since when we perform the ensemble calculation in equation
3.9, a parameter may have a value that is larger than 1. Thus in the extreme case where every
method identifies only one and the same parameter contributing towards the objective, it
would receive the value 4.

To summarize, creating a threshold in this manner allows us to create a reduced search
space in a new optimization run that consists of parameters with importance values above
the threshold. Then we can evaluate the improvement gain in the optimization run using the

1Marginalizing over other all other parameters means we collect all combinations of possible configurations
with the fixed value of the parameter p.
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new and reduced search space. One thing we can note is that when the importance values
of the parameters are more equally distributed (i.e. similar to each other), we would see
more parameters that lie above the threshold. In contrast, if some parameters are especially
dominant, then our new sample space would be formed from fewer parameters.

We also have to remember that the method fANOVA provides importance values for both
the individual parameters and all possible combinations of two parameters. Hence in order
to aggregate like above we have to consider only the individual parameter values returned by
the method. Due to this, the sum of these values may not be one since the pairwise second
order factors receive non-zero importance values. To fix this we normalize the individual
importance values to sum to one.

3.1.4 Parameters considered
The DBMS parameters we took into account were chosen from a variety of sources to en-
sure a good starting point for optimization. We want to start with a set of parameters that
we suspect have an impact on the database performance. Although this approach is counter
intuitive to the point of utilizing parameter importance methods in the first place to select
a set of knobs that are most e�cient, we still want to save time and avoid having an initial
search space that is too large. If the initial optimization process considered all possible pa-
rameters, it would take forever in the case of a database like PostgreSQL to properly explore
its search space with hundreds of parameters. The chosen parameters for the databases we
have studied are thus based on previous research, online documentation and blogs that have
presented impacting parameters. Since we specifically study the throughput in this thesis, we
have selected sources that have studied the throughput as a metric. If information relating to
the throughput is missing, other metrics like latency were considered. Below we present the
parameters considered for each database in our study.
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RocksDB
The parameters chosen for RocksDB were largely based on a paper by Alabed and Yoneki
[2] that explored tuning RocksDB parameters to optimize a problem with multi-task objec-
tives. The authors sought to maximize the database performance indirectly through three
smaller objectives. A total of 10 knobs were used and they were all chosen using prior expert
knowledge and then manually clustered into the multi-objective categories. An additional
parameter observed by Ouaknine et al. [30] in a performance analysis as well as two categor-
ical parameters mentioned in the RocksDB online documentation were deemed important
and will be considered. In total this makes 13 knobs. Besides choosing the parameters, their
value ranges were also inspired from the sources mentioned, either directly if they are ex-
plicitly defined, or indirectly from an intuition about previous results obtained using the
parameters. Table 3.1 lists all the selected knobs in this thesis.

Table 3.1: The RocksDB knobs we consider in our optimization and
parameter importance analysis.

Knob (total 13) Value range Default value

block_size 1, 2x, x ∈ [2, 19] 212

cache_index_and_filter_blocks {false, true} false

compaction_readahead_size x ·104, x ∈ [0, 10] 0

compression_type {snappy, zstd, lz4} snappy

level0_file_num_compaction_trigger 2x, x ∈ [0, 8] 24

level0_slowdown_writes_trigger 0, 2x, x ∈ [0, 10] 0

level0_stop_writes_trigger 2x, x ∈ [0, 10] 25

max_background_compactions 2x, x ∈ [0, 8] 1

max_background_flushes [1, 10] 1

max_bytes_for_level_multiplier [5, 15] 10

max_write_bu�er_number 2x, x ∈ [0, 7] 2

min_write_bu�er_number_to_merge 2x, x ∈ [0, 5] 1

write_bu�er_size 1, 2x, x ∈ [2, 30] 226
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PostgreSQL
The list of configuration parameters that form the initial search space for PostgreSQL op-
timization is shown in table 3.2. For this DBMS, we managed to receive expert advice from
developers at DBtune [11], a company that provides database parameter optimization services
with a lot of experience optimizing PostgreSQL. From them we were able identify a list of
relevant parameters that can impact the throughput performance as well as their valid value
ranges. For the purpose of protecting intellectual property rights, the value ranges for the
parameters are not shown in table 3.2.

Table 3.2: The PostgreSQL knobs we consider in our optimization
and parameter importance analysis. The value ranges are not pro-
vided due to intellectual property rights.

Knob (16 in total) Default value

bgwriter_delay (ms) 200

bgwriter_lru_maxpages 100

checkpoint_timeout (mins) 5

deadlock_timeout (ms) 1000

default_statistics_target 100

e�ective_cache_size (kB) 2016383

max_parallel_workers 4

max_parallel_workers_per_gather 2

max_worker_processes 4

max_wal_size (GB) 8

default_statistics_target 100

random_page_cost 1.1

shared_bu�ers 4096

temp_bu�ers (kB) 1024

wal_bu�ers 8192

work_mem (kB) 6990
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Neo4j
We were able to contact a developer at Neo4j with extensive knowledge of their platform
that provided us with parameters that were interesting to tune. On top of that, Neo4j it-
self o�ers a performance tuning guide [27] with focus on memory management. This guide
is also part of a larger operations manual [26] that goes into depth on configuring di�erent
parts of the system, such as garbage collection. Neo4j runs in a Java Virtual Machine (JVM),
a Java compiler system that takes care of the memory management of class instances and
arrays belonging to the application it runs. Table 3.3 shows the list of parameters we con-
sidered. All parameters were inspired by the suggestions of our contact at Neo4j with the
exception of the JVM parameters that we had to choose ourselves. A JVM itself has a lot
of configuration parameters that can be tuned but in order to not complicate the optimiza-
tion we chose two parameters that seemed influential in regards to garbage collection. The
value ranges for most parameters were arbitrarily as plausible distributions but the param-
eters dbms.memory.heap.max_size and dbms.memory.pagecache.flush.bu�er.enabled required some
manual testing first. The two parameters use up di�erent parts of the RAM so they cannot
together add up to more than there is RAM available in the system. If an error relating to
this occurs, we consider that specific configuration (i.e. sample in the optimizer search space)
as invalid.

Table 3.3: The Neo4j knobs we consider in our optimization and parameter importance
analysis.

Knob (10 in total) Value range Default value

checkpoint.interval.time (mins) [5, 25] 15

checkpoint.interval.tx 1 linspace(104, 2 · 105, 104) 105

2jvm.additional - GC algorithm {G1, Parallel, Serial}GC G1GC
3jvm.additional - Survivor Ratio {none, 2, 4, 6, 8} 4 none

heap.max_size (GB) linspace(4.1, 37.1, 4) 24.1

o�_heap.max_size (GB) linspace(0.5, 5, 5) 2.00

pagecache.flush.bu�er.enabled {false, true} false

pagecache.flush.bu�er.size_in_pages 2x, x ∈ [0, 9] 24

pagecache.size (GB) linspace(4, 38, 4) 50% of (RAM) ≈ 28

tx_state.memory_allocation {OFF, ON}_HEAP OFF_HEAP
1 Means an evenly spaced sample distribution with arguments (start value, stop value, number
of samples to draw in between start and stop values).
2 Parameter for choosing the garbage collection algorithm.
3 Parameter for specifying the JVM survivor ratio. This is the ratio between the survivor
space and eden space. The eden space is the pool with memory that is allocated to most
application objects and the survivor space is the set of objects that have survived garbage
collection from the eden space. If the ratio is too small, we get an overflow into an ’older
generation space’. If it is too large, the survivor space could be mostly empty.
4 ’none’ meaning this parameter is left alone to be set by the operation system.
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Chapter 4

Evaluation

4.1 Setup
Optimization
The discussed CAVE methods were applied using optimization data provided as CSV files
by DBtune, after first being converted into a valid format. During optimization, the number
of samples we choose to evaluate is hindered by a limitation in computational resources. The
more samples the better, but the process should be done within a reasonable amount of time
for a user. In our case, we chose D+1 samples during the warm-up phase and 30D samples in
the main phase, where D is the number of parameters. The first number is low because we
want to spend a lot less time during warm-up than doing actual optimization.

Hardware
All experiments for database optimization were run using using cloud instances on SNIC [36]
with 4 CPU cores and 8 GB RAM. Every DBMS was dedicated its own instance so as to not
interfere with each other and minimize the activity produced by background applications.
A hard drive disk (HDD) is attached to each instance with a capacity such that it can hold
all the data stored in a DBMS for benchmarking.

Software versions
RocksDB version 6.22 and PostgreSQL 14.1 were used. The benchmarking tool db_bench
was already provided together with RocksDB, while for PostgreSQL the latest version of
the OLTP-Bench repository on Github was used (commit reference 9279ce2ed9aa130afd08c0-
de29b81bd99a9af008). For Neo4j, we used the version of LDBC SNB provided by the com-
mit reference 1333d4cf94eabf79ebb8a50316ab143fa2496769 that utilizes version 4.3 of the Neo4j
community edition.
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Benchmarking
A benchmark has several properties that can be considered. Since we used di�erent bench-
marking tools we have to acknowledge the di�erences in how we benchmark and measure
the performance of the DBMS we study. Here is a list of things we configured for our bench-
marks:

1. Size of data: If the size of data we store in the database is too small then it is trivially
handled by the DBMS. We also want to consider the case when users do not have suf-
ficient RAM in their system to store all their data so we want data sizes that are larger
than the RAM available (in our case this means > 8 GB). At the same time, the size of
data cannot be so large that it would take too long to refresh the state of the DBMS
between consecutive benchmark runs.

2. Workload sensitivity: We tried to explore di�erent workloads where it is possible to
gather insights on what impact it has on the parameter importance results. Specifi-
cally, this entails changing the mixture of read and write queries to make the DBMS
more read or write heavy. For RocksDB and Neo4j this is trivially handled by the
benchmarking tools db_bench and LDBC SNB due to the presence of a parameter that
specifies the ratio of read to write queries we want to use. In the case of PostgreSQL,
we chose to look at di�erent workloads o�ered by OLTP-Bench and described in the
original paper [12]. These workloads work a bit di�erently, where although the amount
of read-only queries can be calculated as presented in the paper, the workloads still rely
on what so called transaction profiles. Transaction profiles define a specific sequence of
actions that model real-world behaviors and usually contains multiple di�erent queries
executed in succession.

3. Number of threads: Both db_bench and LDBC SNB allow users to run queries in parallel
by specifying the number of connection threads we should have open. We chose to use
a constant number of 8 threads where possible. We do not explicitly study di�erent
number of threads as we believe as long as it is kept consistent the result we get would
be valid.

4. Benchmark execution time: Evaluation of a sample during optimization was done by
running a benchmark for 10 minutes. In between benchmarks runs the state of the
database is restored, which takes a few varying number of minutes depending on the
benchmark tool that is used.

4.2 Parameter Importance Study
4.2.1 Test functions: Branin and Rosenbrock
Results
To gain an understanding of how the parameter importance methods work in practice, we
applied them on two well known optimization test functions called Branin and Rosenbrock.
Figure 4.1 shows how both functions look like in two dimensions. These functions were
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already supported by DBtune and we optimized them using 100 warm-up iterations with
random sampling and 1000 iterations in the main optimization phase. The results obtained
are summarized in table 4.1. Note that the method AA considers both the default and best
performing configuration in order to calculate parameter importance. Since the default con-
figuration can be arbitrarily set by the user for both Branin and Rosenbrock (i.e., we can
choose the starting point ourselves), we have chosen to use the worst performing configura-
tion as the default configuration in AA. This would at least perhaps cover a large di�erence
in performance between the default and the incumbent configurations, which could be our
best bet in analyzing parameter importance for these functions. Finally, CAVE creates some
insightful plots for the LPI and AA methods, which we show in figures 4.2-4.3.

(a) Branin (b) Rosenbrock

Figure 4.1: 3D surface plots of two optimization test functions. The
expressions for the functions Branin and Rosenbrock can be found
in [7] and [8] respectively.

Parameter RF LPI AA fANOVA Ranking {RF,
LPI,AA,fANOVA}

Branin x1 0.665 0.509 0.921 0.111 {1,1,1,3}

Branin x2 0.335 0.491 0.079 0.255 {2,2,2,2}

Interaction {x1,x2} - - - 0.634 {-,-,-,1}

Rosenbrock x0 0.940 0.952 1.003 0.896 {1,1,1,1}

Rosenbrock x1 0.060 0.048 -0.003 0.015 {2,2,2,3}

Interaction {x0,x1} - - - 0.089 {-,-,-,2}

Table 4.1: Parameter importance results for Branin and Rosenbrock.
The second order parameters (or terms) in fANOVA have been in-
cluded.
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(a) Branin x1 (b) Branin x2

(c) Rosenbrock x0 (d) Rosenbrock x1

Figure 4.2: Predicted cost of evaluated Branin (top) and Rosenbrock
(bottom) configurations in Local Parameter Importance with uncer-
tainty as the standard deviation.

Discussion
The results show some interesting di�erences between the methods. For Branin, the impor-
tance appears almost equally distributed using RF and LPI. The plot in figure 4.2 shows that
while the minimum is similar, the maximum of cost values in x1 comes close to 200 while in
x2 to 150. This slightly larger variation in cost values means that the variance calculated for
cost values due to x1 is higher, but also explains why the parameter importance values calcu-
lated using LPI are almost equal. In contrast, AA identified x1 as drastically more important,
which can be explained by the fact that it was enough to use only x1 to obtain a function
value that is substantially lower (close to local minimum). This means that modifying the
remaining x2 caused only a small decrease in the objective. On the other hand, fANOVA
complements these results with an interesting insight showing that the interaction between
x1 and x2 is much more important than the individual contributions of the two parameters.
Essentially this means that for Branin, fANOVA tells us that it is better to tune both param-
eters at the same time rather than have a narrower focus by analyzing singular parameters.
On the contrast, AA identified values of x1 that lead to a very close minimum which means
that perhaps a user would be satisfied with only tuning that one parameter by itself.

The results for Rosenbrock show that x0 is the clearly dominant parameter by all meth-
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(a) Branin (b) Rosenbrock

Figure 4.3: Ablation Analysis plots for Branin and Rosenbrock with
the cost (function value) obtained along a path from the default
(source) configuration to the incumbent (target) with uncertainty
as the standard deviation. A decrease in cost means a decrease in
function value.

ods. Despite this, AA shows rather peculiar importance values. We know that the assigned
importance weights always sum to one, but it appears strange that x1 is assigned a negative
value, forcing x0 to have a value larger than one. The complementary plot in figure 4.3 for
Rosenbrock helps us explain these results. We see that after only modifying x0 we get a suf-
ficiently low value such that modifying x1 afterwards to reach the incumbent (denoted as
’target’ in the plot) may well lead to increase in cost. Hence these results tell us that for
Rosenbrock it is enough or perhaps even better to only be tuning x0 to reach configuration
with very low cost. Despite this, we could try to discuss the uncertainty in the EPM predic-
tions made using the Rosenbrock optimization data. Looking at the LPI plots in figure 4.2,
we see that while the plot for x0 seems feasible, the one for x1 appears to be at certain points
highly unreliable. The uncertainty is very high within a narrow band around the incumbent.
To further validate the obtained results, one could try to reduce the discussed uncertainty by
e.g. providing more optimization data.

The parameter importance methods from CAVE ultimately depend on the accuracy of
the EPM predictions. The EPM’s accuracy in turn is dependent on the amount of training
data that we have provided it, so it is likely in the case where we obtain highly contradicting
results that we have simply not provided enough training data. Now that we have studied
the two test functions and hopefully better understand the parameter importance methods,
we are ready to do similarly for database parameters.

4.2.2 RocksDB
A parameter importance study was conducted on RocksDB optimization data for three work-
loads with di�erent read to write query ratios: 1:9, 1:1, and 9:1 in the benchmarking tool
db_bench. An analysis was performed on each workload so that we can compare them and
investigate if any drawn insights can be generalized. The resulting parameter rankings are
thus specific for the workload they are associated with. The throughput results for default
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and best found configurations are shown in table 4.2. We have also plotted the best found
configuration found so far at every iteration as a means of drawing a convergence curve in
figure 4.4. Every optimization run is repeated twice (for a total of 3 runs) in order to plot an
error region. The curve represents the mean best performance found so far. The shared er-
ror region represents the di�erence between the maximum and minimum best performance
found so far among all three optimization runs that were performed.

Workload (r:w) op/s at default op/s at incumbent (best) Improvement
1:9 142,195 161,622 13.7%
1:1 124,853 199,193 59.5%
9:1 149,040 333,824 124.0%

Table 4.2: Throughput results from optimizing RocksDB using three
di�erent workloads with specific read to write (r:w) ratios.

Results
The feature importance results for RocksDB are summarized in figures 4.5-4.7. Each figure
has two plots for every workload studied, where the top plot shows the weights (values) re-
turned by the parameter importance methods and the bottom one shows the values returned
by fANOVA specifically. Note that we have only included the fANOVA terms that show a
non-zero importance value, which means that not all terms are shown in the plot. Regarding
plots from CAVE itself, we chose not to include them due to visual errors; for the test func-
tions we studied above there are no problems but it appears that with many input parameters
as in this case with RocksDB, the plots were not able to be visualized coherently. As of the
time of writing this thesis, the CAVE repository is not actively maintained.

Discussion
With three di�erent workloads and four parameter importance methods, there is a lot to un-
pack in the results. Firstly, for the write-heavy workload in figure 4.5, we see that write_bu�-
er_size appears to be a dominant parameter according to LPI and fANOVA. AA has a more
equal distribution between the parameters while RF instead highly regards max_backgrou-
nd_compactions. The write-heavy workload shows the least improvement attained at 13.7%,
which suggests that the default configuration could already be highly optimized for write
queries. If the improvement gained is very low, analyzing parameter importance would not
be practical but it may say something about the worse configurations attained during the op-
timization process. The distribution of importance weights could say something about how
changing certain parameters leads to worse performance. The parameter importance meth-
ods like LPI and fANOVA in our case end up measuring the variance of set of throughput
values, which means that essentially even if we do not obtain a significant improvement gain
after optimization, it is the contributions from the worse configurations that can have a large
influence on the parameter rankings.

For the other workloads we see much better improvement gains. The read-heavy work-
load with a 9:1 read to write ratio has the highest improvement at 124.0%, which suggests that
perhaps the RocksDB parameters we tuned are more sensitive to read queries. Therefore the
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default RocksDB configuration could be said to not be directly optimized for read-heavy op-
erations. For the 9:1 workload, the method AA finds that level0_file_num_compaction_trigger is
most important with block_size and write_bu�er_size receiving a considerable share. LPI agrees
with this to a large extent but DBtune’s RF shows a di�erent perspective. It finds that the
parameter max_background_compactions is significant while having a more equal distribution
around multiple other parameters. The distribution is similar in the case of workload 1:1 in
figure 4.6 but with all methods except RF placing more emphasis on write_bu�er_size. This
seems reasonable since the workload has a larger proportion of write queries that takes ad-
vantage of more optimal values for this parameter.

The bottom plots in figures 4.5-4.7 show that some second order terms are highly valued
by fANOVA. However, the terms already consist of parameters that were highly valued by
themselves as singular terms. What we draw from this is that interaction e�ects between the
parameters in RocksDB are possibly influential but perhaps not dominant enough to raise an
issue with using the ensemble method that we discussed in section 3.1.3 based on first order
contributions that we will use to form a reduced search space.
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Figure 4.4: Three plots for the three workloads we studied showing
the best achieved throughput during optimization so far using the
initial set of RocksDB parameters we considered. DBtune represents
the best found configuration so far by the DBtune as the optimizer.
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Figure 4.5: Results for RocksDB using a workload with a read to
write ratio of 1:9. The stacked horizontal bar chart (top) shows the
individual importance weights given to each parameter by the dis-
cussed importance methods. The bottom plot shows the values re-
turned by fANOVA to showcase the importance of both singular
parameter terms and the pairwise second-order terms.
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Figure 4.6: Results similar to figure 4.5 but using a workload with a
read to write ratio of 1:1.
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Figure 4.7: Results similar to figure 4.5 but using a workload with a
read to write ratio of 9:1.
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Optimization with top RocksDB parameters
Using the ensemble method we defined in equation 3.9, the most important parameters we
identify are listed in table 4.3. We can see that although the rankings di�er, all three work-
loads are very similar, with the 1:1 workload including an additional parameter. A new search
space consisting of these parameters were then used in a new optimization run to get new
results, which are shown in table 4.4. The graphs showing the best achieved throughput so
far are presented in figure 4.8

Rank r:w - 9:1 r:w - 1:1 r:w - 1:9

1 level0_file_num_compaction_trigger write_bu�er_size write_bu�er_size

2 write_bu�er_size level0_file_num_compaction_trigger max_background_compactions

3 cache_index_and_filter_blocks block_size block_size

4 block_size cache_index_and_filter_blocks cache_index_and_filter_blocks

5 max_background_compactions max_background_compactions level0_file_num_compaction_trigger

6 - max_background_flushes -

Table 4.3: The selected most important parameters after studying
workloads with di�erent read to write ratios for RocksDB. The pa-
rameters form smaller search spaces in new optimization and the
performance gains will be reported.

After determining a smaller set of parameters consisting of only the most important pa-
rameters, we see in table 4.4 that for all workloads we match at least 60% of the improvement
gained from using the entire set of parameters we initially considered. Matching only at
around 60% can be seen as rather unimpressive when comparing to the work done by Kanel-
lis et al. [19] that consistently show at least 99%. The plausible reason for this is that the
threshold we use in our ensemble is too high. Using the threshold value of 0.2, we were able
to roughly halve the number of parameters. Using a more generous (lower) threshold would
likely lead to better improvement numbers at the cost of a more complex search space due
to the inclusion of more parameters.

It still appears that the more read-heavy a workload is, the higher the improvement gain
that can be achieved. The improvement gain for the write-heavy workload is still small, which
could potentially cause an issue surrounding the e�ciency argument with using parameter
importance methods. Since tuning a database overall takes time in order to properly explore a
search space, it can be seen as infeasible for the user to spend a lot of computational resources
in order to gain a few percentage points of improvement that might as well be attributed to
noise. Nonetheless, this depends on the context in which the DBMS is used and the perfor-
mance requirements for it. A few percentage points may deliver a large impact towards end
users.

Comment on the default RocksDB performance variation
The heavy-write (9:1) workload shows a large variation in performance for the default config-
uration (our starting point) in both figures 4.4 and 4.8. Why this occurred is unclear and our
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Workload (r:w) GainInitial GainRe f ined (%) of GainInitial
1:9 13.7% 10.1% 73.7%
1:1 59.5% 38.4% 64.5%
9:1 124.0% 86.5% 69.8%

Table 4.4: A comparison of the improvements gained from optimiz-
ing RocksDB for the three workloads we studied using the initial set
of parameters from table 3.1 and the refined set from table 4.3.

best guess is that there was a lot of noise that influenced the CPU performance. Consider-
ing that we also obtain the least amount of improvement using this workload, this variation
plays an even bigger role. Repeating the optimization procedure many more times would
likely shed more light on this problem but due to time constraints we were not able to.
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Figure 4.8: Three plots for the three workloads we studied show-
ing the best achieved throughput so far using the reduced set of
RocksDB parameters consisting of the identified most important
parameters.
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4.2.3 PostgreSQL
For PostgreSQL we explored two di�erent workloads called TPC-C and Wikipedia that rep-
resent two very di�erent sets of queries. As highlighted in the paper for OLTP-Bench [12],
TPC-C consists of 8.0% read-only transactions by default, while for Wikipedia that number
is 92.2%. Both workloads appear di�erent in the types of transactions they execute, with
the authors in [12] classifying TPC-C as a transactional workload while Wikipedia as a Web-
oriented workload. With TPC-C being described as a classic industry standard for evaluating
OLTP systems and Wikipedia representing the largest online encyclopedia, we thought the
stark contrast between the two makes them good study subjects. TPC-C is a collection of five
transaction profiles where some are read-only but others a mixture of read and write queries
[37]. The significance of each transaction profile also di�ers, where some transactions are de-
scribed by TPC-C to be more frequently occurring and requiring stringier response times as
to not cause problems for users. While we could change the amount of each transaction pro-
file we execute, we feel that it would distort the purpose of the benchmark, which emulates a
complex retail setting. Therefore we use default values as specified by OLTP-Bench, where it
appears that more weight is placed on the more important transaction types. The Wikipedia
workload, as the name suggests, is based on the online encyclopedia Wikipedia and devel-
oped by the OLTP-Bench authors using information such as data dumps and browser access
patterns. Essentially the workload expresses the most common type of operations found in
Wikipedia.

The initial optimization runs using the parameters we listed in the chapter 3.1.4 in table
3.2 leads to the graph we see in figure 4.9 and the comparison between the default and best
configuration found in table 4.5. Every iteration took around 30 minutes to evaluate, which
means the entire optimization run took around between 10-11 days. Unfortunately due to
time constraints in the project this pressured us to not repeat the optimization run in order
to include an error area around a calculated mean curve as we showed previously for RocksDB
in figure 4.4.

Workload op/s at default op/s at incumbent (best) Improvement
TPC-C 351 528 50.4%

Wikipedia 1,107 1,184 7.0%

Table 4.5: Throughput results from optimizing PostgreSQL using
two di�erent workloads, TPC-C and Wikipedia.

Results
After applying the parameter importance methods on optimization data using the TPC-C
and Wikipedia workloads we obtain the plots in figures 4.10 and 4.11.

Discussion
To start o�, we see that the optimizing PostgreSQL for read-heavy workloads such as Wikipedia
appears to be ine�cient, given the much smaller improvement gain in comparison to TPC-C
as we see in table 4.5. From this may we reason that PostgreSQL is already optimized well for
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Figure 4.9: Two plots showing the best achieved throughput so far
using the initial set of parameters we considered for PostgreSQL.
The top plot is for the TPC-C workload and the bottom is for
Wikipedia. This graph is similar to the one for RocksDB in figure 4.4
but includes only a single optimization run due to time constraints.

read-heavy applications by default and write queries made to the DBMS are more sensitive
to changes in the parameters we considered.

Concerning the parameter importance results, the TPC-C workload shows us that some
parameters like shared_bu�ers and work_mem dominate according to most methods. LPI and
fANOVA seem to agree with each other the most. AA assigned some high values for param-
eters like max_wal_size and deadlock_timeout that other methods thought were insignificant.
Since AA in practice creates a path of configurations from the source to the incumbent, we
can perhaps say something about the change in performance along that path being hard to
predict. This can occur if the EPM in CAVE does not have su�cient training data that makes
it di�cult to identify patterns in the search space to allow for better predictions. It could also
be that along the path there exist influential interaction e�ects between certain parameters
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Figure 4.10: Feature importance results for PostgreSQL using the
TPC-C workload in a similar fashion as to what was shown for
RocksDB in figure 4.7.

that impacts the performance. These interactions e�ects are ideally captured by fANOVA,
but at least for second-order terms this doesn’t appear to be the case when analyzing the
weights in the bottom plot of figure 4.10. The more important second order terms consist
of parameters that were seen as highly important as singular terms already. The method we
called RF from the original model in DBtune shows a more equal distribution among the pa-
rameters, while generally agreeing that the memory-related parameters like shared_bu�ers and
work_mem matter most. To contrast TPC-C with Wikipedia, the latter workload shows us
more dominant parameters as see in figure 4.11. The weight distribution is less equal and the
parameter importance methods seem to agree with each other a lot. Interestingly enough,
Wikipedia shows us that the parameter wal_bu�ers plays a much bigger role in the DBMS

47



4. Evaluation

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Importance weight

bgwriter_delay
bgwriter_lru_maxpages

checkpoint_completion_target
checkpoint_timeout
deadlock_timeout

default_statistics_target
effective_cache_size

effective_io_concurrency
max_parallel_workers

max_parallel_workers_per_gather
max_wal_size

max_worker_processes
random_page_cost

shared_buffers
temp_buffers
wal_buffers
work_mem

PostgreSQL - Wikipedia

RF
LPI
AA
fANOVA

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Importance weight

['random_page_cost', 'wal_buffers']
['shared_buffers', 'random_page_cost']

['shared_buffers', 'temp_buffers']
['shared_buffers', 'wal_buffers']
['shared_buffers', 'work_mem']

['temp_buffers', 'random_page_cost']
['temp_buffers', 'wal_buffers']

['work_mem', 'random_page_cost']
['work_mem', 'temp_buffers']
['work_mem', 'wal_buffers']

bgwriter_delay
bgwriter_lru_maxpages

checkpoint_completion_target
checkpoint_timeout
deadlock_timeout

default_statistics_target
effective_cache_size

effective_io_concurrency
max_parallel_workers

max_parallel_workers_per_gather
max_wal_size

max_worker_processes
random_page_cost

shared_buffers
temp_buffers
wal_buffers
work_mem

Co
nt
rib

ut
in
g 
te
rm

fANOVA weight

Figure 4.11: Feature importance results for PostgreSQL using the
Wikipedia workload similar to figure 4.10.

performance in comparison to what TPC-C showed.

To compare with previous literature, we have the paper by Kanellis et al. [19] that has
also identified parameter rankings for PostgreSQL. In their study the authors utilized YCSB,
which is a di�erent benchmarking tool from the one we used (OLTP-Bench). In YCSB [9],
users can specify the proportion of read and write queries they want to use directly, but this
means they cannot use well-defined and popular workloads such as TPC-C and Wikipedia
like we have done in our experiment. Due to this, direct comparisons are hard to make - not
to mention di�erences in hardware and software setups that we would have to account for.
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Optimization with top PostgreSQL parameters
Similar to what we did for RocksDB, we use the ensemble method to identify the parameters
with importance values whose sum is greater than the pre-defined threshold value that we set
at 0.2. This leads us to the list of ranked parameters shown in table 4.6. A new search space
consisting of these parameters were then used in a new optimization run to get new results,
which are shown in table 4.7. The graphs showing the best achieved throughput so far are
presented in figure 4.12

Rank TPC-C Wikipedia

1 shared_bu�ers work_mem

2 work_mem shared_bu�ers

3 wal_bu�ers temp_bu�ers

4 random_page_cost wal_bu�ers

5 max_wal_size random_page_cost

6 deadlock_timeout max_parallel_workers_per_gather

7 - e�ective_cache_size

8 - max_wal_size

Table 4.6: The selected most important parameters after studying
both workloads for PostgreSQL (TPC-C and Wikpedia). The pa-
rameters form smaller search spaces in new optimization runs and
the performance gains will be reported.

Just like when we used the initial set of parameters, the improvement gain is once again a
lot higher for TPC-C in comparison to Wikipedia. However, we note that we observe a prob-
lem in the default performance using the TPC-C workload. Comparing the TPC-C graph in
figure 4.12 with 4.9, we see that the default performance is very di�erent (approximately 225
versus 350). This variation is large and signals that we need more repetitions to find out why
the default configuration showed lower performance after tuning a smaller set of parame-
ters. Unfortunately due to time constraints, we can only speculate that some type of noise
(such as an active running application) may have used up some of the CPU. As we see can in
table 4.7, the results from optimization shows that we match the initial improvement by an
enormous 239.3% . Instead, we can consider using the default performance value from figure
4.9, meaning that the improvement gain using the refined set of parameters is approximately
38.9%. We thus match the improvement gain by 38.9%

50.4% = 77.2% when comparing the initial
and reduced set of parameters. This result would make more sense, though the issue we raised
should be investigated further with more optimization repetitions.

As for Wikipedia, while we see that we obtain a higher improvement gain using a refined
set of parameters, we also should keep in mind that the absolute gains are rather small, mean-
ing that optimizing PostgreSQL for workloads like Wikipedia could be regarded as ine�cient
depending on the user’s resource availability.
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Workload GainInitial GainRe f ined (%) of GainInitial
TPC-C 50.4% 120.6% 239.3%

Wikipedia 7.0% 10.3% 147.1%

Table 4.7: A comparison of the throughput improvements gained
from optimizing PostgreSQL for the two workloads we studied after
using the initial set of parameters from table 3.2 and refining the set
to include only the most important parameters.
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Figure 4.12: Plots similar to the ones in figure 4.8 for RocksDB where
we show the best obtained throughput so far during optimization
for the two PostgreSQL workloads TPC-C and Wikipedia using a
reduced set of parameters. Here we do not have have an error area
due to lack of multiple repetitions.
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4.2.4 Neo4j
Benchmarking Neo4j using LDBC SNB to evaluate a configuration proved to be di�cult as
we could not obtain any reliable results. When using data sizes that were larger than the
RAM (i.e. not fitting into memory), the measured overall throughput kept shrinking over
time. This was observed in the output that is produced by the benchmark every second,
which reports the throughput during the last second and the overall throughput since the
beginning. When we used low data set sizes like 3 GB (scale factor of 3) that is lower than
the 8 GB of RAM available, we managed obtain a stable throughput over time. However, the
problem with using small data sizes is that incoming queries are then trivially handled by the
DBMS. The parameters we had chosen were mostly connected to the java virtual machine that
is run by Neo4j with heavy focus on memory management. For small amounts of data, these
parameters have little to no impact, which means that the stable throughput that we obtained
would be consistent no matter how we tuned the configuration parameters of Neo4j. Using
larger data sizes as described above, the throughput drop over time also occurred no matter
how we tweaked the benchmark set, e.g. by allowing only read queries, disabling complex
queries, or changing the number multiple threads.

Whether the issues are related to the benchmark itself or if they are due to limitations in
the current versions of Neo4j (and likely, other graph databases) is unclear. In the future we
hope that the LDBC benchmark can be demonstrated to work with any size of data that user
has regardless of the computer RAM so that we can e�ectively tune the vital memory man-
agement parameters. An alternative would be to explore other types of parameters, though
in our case there hasn’t been any meaningful online documentation or other references show-
ing how other parameters than the ones we considered impact the performance of a Neo4j
instance.

Apart from failure in performing proper evaluations of the performance, our long period
of debugging has led to fruitful discussions with both Neo4j developers as well as the active
LDBC SNB developers. The problems we faced led to weekly online meetings with both par-
ties involved over a period of two months to discuss issues relating to the benchmark and
future work. For example, one of the LDBC SNB developers recommended we try another
smaller and uno�cial benchmark called Labelled Subgraph Query Benchmark (LSQB) [23] that
is setup in a similar fashion to LDBC SNB. It executes a set of 9 di�erent queries and re-
turns the response times for each query, which means we do not have the throughput as the
objective but rather the latency. An overall performance metric could for example be the ge-
ometric mean of the response times obtained for each query. However, we faced another issue
where the maximum data size we could use was around 0.3 GB - a very trivial size consider-
ing our hardware setup. Any larger and multiple queries return a timeout due to the DBMS
taking too long to process them. Even for that data size, we did not see any impact of tuning
Neo4j parameters on the performance. Though this can be regarded as reasonable because
as discussed earlier, we are mostly tuning memory-related parameters, which in this case the
memory is not even close to its limit. An interesting insight we gained from experimenting
with LSQB is that changing neo4j license to an enterprise edition allowed us to obtain much
faster response times for each query. It enabled us use a data size of 3 GB, but it was still
very small. The reason behind the di�erence between the normal community edition and
the enterprise edition was explained to us by both LDBC SNB and Neo4j developers to be
due to the di�erence in how queries are executed. The Neo4j documentation in [28] explains

51



4. Evaluation

that the normal edition uses an interpreted runtime, while the enterprise edition uses either a
runtime that is slotted or pipelined, essentially consisting of additional optimizations to boost
query execution performance.

Another insight we arrived at from our frequent meetings was that initially it was di�cult
to configure the Time Compression Ratio (TCR), a variable in the benchmark to control the
scheduling of query executions. As briefly explained in the specification [10], this variable is
configurable if a user wants to set a specific target throughput to test. The goal would then
be to measure another objective like the latency of each query. Since in our case we are only
interested in thorughput as the performance metric, we need to have a TCR value that makes
incoming queries execute quickly in order to ensure that the system is being stress-tested.
In the benchmark setup, we tried using a TCR value that is as low as possible since a lower
value means less time between query executions. We also saw that the ratio could not be too
low, as that would strangely enough cause severe throughput drops (over time) regardless of
the data size we used. It takes more e�ort for the user (us, in this case) to take into account
another parameter that needs to be tuned before benchmarking our system of interest in
the first place. After discussing this with the benchmark developers, they have added scripts
to tune this parameter beforehand. Finally, an additional highlight from our discussions
is that because we want to run an optimization sequence on this system by benchmarking
every optimization sample, we needed a convenient way of backing up and restoring data
between iterations. The benchmark did not have such a solution but it was also something
that the developers added to make LDBC SNB more pleasant to use. Overall, we find that
both developers at Neo4j and those maintaining the benchmark are positive and ambitious
towards creating ideal testing environments for graph databases.

4.3 Summary
Optimizing databases for the right workload can be an expensive process and we have seen
di�erences in how workloads with di�erent mixtures of read and write ratios have impacted
the results. The experiments for RocksDB have shown that the improvement we expect from
optimizations appears to be higher with a higher read to write ratio in the workload. The
identified most important parameters have shown that a smaller search space created using
these parameters leads to at least 60% of the performance improvement gained by tuning
the initially large set of parameters. What these experiments have shown is that using as few
as 5-6 parameters for RocksDB instead of the initial 13, we ultimately face a trade-o�. The
trade-o� is between spending resources during optimization due to requiring more iterations
in order to properly explore a larger search space versus using a smaller set of important
parameters to decrease these resources and still obtain a ’good enough’ improvement. The
parameter importance methods in some cases show drastically di�erent priorities, which
raises interesting questions on the validity of each one and the overall ensemble method we
defined and used (see section 3.1.3).

In contrast to the results for RocksDB, the PostgreSQL experiments have shown that the
more heavy-write workload TPC-C has a much larger potential of reaching higher perfor-
mance values than the read-heavy Wikipedia. Ideally the results we obtained for PostgreSQL
should be complemeted with more optimization repetitions, as that would make the results
more clear.
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Finally, while it was unfortunate to not be able to successfully tune Neo4j for any param-
eter importance experiments, we are still optimistic about any e�orts put into optimizing
GDBMS in general. These systems appear to have a lot of configuration parameters that play
a vital role in how the GDBMS performs (e.g. Neo4j Java virtual machine) that can be tuned
for some specific use case.
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Conclusion

Applying and comparing parameter importance methods in the context of database param-
eter optimization has provided us with lessons about the complexity of the problem as well
as future possibilities. The aim of the thesis was to learn about quantifying parameter im-
portance using the di�erent methods we presented and use them in an ensemble method
to establish a subset of the parameters containing only the ones that were identified to be
most important. We compared using the initial set of the parameters and this subset to de-
termine the di�erence in improvement obtained during optimization. If the subset manages
to obtain a high enough improvement it could mean that a user could use a smaller search
space during optimization (hence faster optimization procedure) and still be satisfied with
the optimal configuration they reach.

We could say that the results for both RocksDB and PostgreSQL reflect a trade-o� be-
tween using a smaller search space and achieving a smaller improvement gain from optimiza-
tion, though in cases where the absolute improvements were very small, this does not seem
to apply. Furthermore, we have seen that there may be large di�erences in the parameter
importance results depending on the workload used. We cannot forget that an assumption
made about pursuing the parameter importance study was that a user has a workload that
they deem is relatively consistent over time. If users find themselves in situations where the
database changes often and unpredictably then this type of study does not carry a lot of
meaning. Essentially the users would have to find out the most important parameters every
time their workload changes. Whether there is a DBMS with parameters that are insensitive
to the workload exists or not is an interesting question to pursue. To this end, we might
find interesting insights from optimizing graph databases like Neo4j, which is not studied in
the literature. In the meantime, these experiments assume workload insensitivity in order to
make parameter importance appropriate to study.

As future work, the options that can be further explored are almost endless. Firstly we
would recommend that the experiments we performed be validated with many more opti-
mization repetitions. This would add clarity surrounding the issues we faced regarding o�
performance numbers around the default configuration. Otherwise there are many parts to

55



5. Conclusion

this type of study that one can spend more time on to see if results generalize and find new
insights: the benchmarking tools, the optimization algorithm itself, utilizing more work-
loads, comparing the results to even more database systems in each category (SQL, NoSQL,
graph), modifying the ensemble method we defined in section 3.1.3, and more. In addition,
we would encourage future researchers to dive deeper into graph databases like Neo4j as ap-
plying automated methods on them has very few traces in the research community and it
could open up lucrative opportunities to make graph databases more widely known as data
storage solutions.
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Effektiv optimering av databasparametrar

POPULÄRVETENSKAPLIG SAMMANFATTNING Osama Eldawebi

Optimering av databasparametrar har uppmärksammats allt mer under den senaste
tiden i samband med att datorkraft ökar och blir mer lättillgänglig. Detta arbetet
gick ut på att undersöka ifall det går att göra optimeringen av databasparametrar mer
effektiv genom att endast fokusera på de mest viktiga parametrarna.

Inte sällan har databaser ett tiotal eller hundratal
parametrar som påverkar olika delar av databasen
(t.ex. hur minneseallokering ska gå till, val av kom-
primeringslalgoritm, och hur ofta databasen säker-
hetskopierar) som i sin tur påverkar databaspre-
standan. Arbetet som en databasadministratör ut-
för till att försöka ställa in bra värden i parame-
trarna kan underlättas genom att utnyttja optimer-
ingsalgoritmer inom maskininlärning. En specifik
metod, Bayesian optimization, används ofta inom
forskingsämnet som en kostnadseffektiv algoritm
för att undersöka och utvärdera olika parameter-
värden i syfte att hitta värden som leder till bäst
prestanda. Eftersom inte alla parametrar bidrar
till prestandan på samma sätt kan det finnas vissa
som har lite betydelse och därför kan bortses från
optimeringen. Att hantera ett färre antal parame-
trar innebär mindre kostnad eftersom algoritmen
inte behöver undersöka lika många olika kombina-
tioner av värden men samtidigt kan det innebära
att vi inte når samma prestanda som om vi hade
försökt optimera med fler parametrar.

I detta arbetet har prestandan definierats som
antalet transaktioner en databas kan hantera per
sekund (s.k. throughput). Olika parameter
importance-metoder har använts för att kvantifiera

bidraget varje parameter har på prestandan och
därmed utvärdera vilka parametrar är mest vik-
tiga och vilka som kan uteslutas från optimeringen.
Totalt har fyra metoder undersökts som bygger på
olika beräkningsmetodik. En övergripande ensem-
ble metod har introducerats som ett sätt att slå
samman resultaten och komma fram till ett slut-
giltigt uppsättning av de parametrar man anser är
mest viktiga. Vad vi åstadkommer med detta är att
framtida optimeringsrutiner kan spara på resurser
i och med att man nu kan endast fokusera på de
viktiga parametrarna.

Resultatet visar att genom att kapa ner an-
talet parameter med hjälp av ensemble-metoden
för både databaserna RocksDB och PostgreSQl har
man kunnat nå cirka 60-70% av den förbättringen
man annars hade fått genom att inte utesluta nå-
gon parameter. Det visar sig även att vissa parame-
trar har en större eller mindre roll beroende på den
typen av arbetsbelastning som databasen tar emot.
Dessutom visade det sig att man kan optimera
RocksDB och PostgreSQL bättre för vissa arbets-
belastningar än andra. Fler repetitioner och mer
hänsyn till arbetsbelastningen i databasen hade ön-
skats som framtida arbete för att validera och gen-
eralisera resultaten.
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