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Abstract

For audio-based conversational applications, adapting responses to the at-
tributes of the correspondent is an integral part in making the conversations
sound natural. Two speaker attributes that humans can estimate quite well,
based solely on hearing a person speak, is the gender and age of that person.

In the field of speech processing, age and gender classification are relatively
unexplored tasks, especially in a multilingual setting. In most cases, hand-crafted
features, such as MFCCs, have been used with some success. However, recently
large transformer networks, utilizing self-supervised pre-training, has shown promise
in creating general speech embeddings for various speech processing tasks.

We present a baseline for gender and age detection, in both monolingual
and multilingual settings, for multiple state-of-the-art speech processing models,
fine-tuned for age classification.

We created four di�erent datasets with data extracted from the Common-
Voice project to compare monolingual and multilingual performances. For gen-
der classification, we could reach a macro average F1 score of ∼96% in both a
monolingual and multilingual setting. For age classification, using classes with a
size of 10 years, we obtained a macro average mean absolute class error (MACE)
of 0.68 and 0.86 on monolingual and multilingual datasets, respectively.

For the English TIMIT dataset, we improve on the previous state of the art
for both age regression and gender classification. Our fine-tuned WavLM model
reaches a mean absolute error (MAE) of 4.11 years for males and 4.44 for females
in age estimation and our fine-tuned UniSpeech-SAT model reaches a macro
average F1-score of 0.998 for gender classification.

In order to improve the performance of the pre-trained state-of-the-art speech
processing models we applied transfer learning. This increased performance
for both gender and age classification. Thus, the networks successfully became
better at distilling speaker related information out of voice clips through fine-
tuning.

All the models were deemed fast enough on a GPU to be used in a real-time
settings, and accurate enough to be applicable in multilingual conversational
applications.

Keywords: Age estimation, gender classification, multilingual, speech processing, pre-
trained, fine-tuning, embeddings
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Chapter 1

Introduction

Artificial intelligence and machine learning are consistently replacing humans in tasks that
are simple enough for a machine to deal with. However, these tasks are increasingly getting
more complex due to improvements in the methods and algorithms within machine intelli-
gence, as well as increasing computational resources. One such task, on the brink of being
able to be automated, is conversation.

An important part when trying to make conversations with a machine sound natural, is
to mimic the way humans would approach the conversations. A human typically has a good
sense of whom they are speaking with and can observe the other party’s personal attributes.
This information is then used in order to adapt one’s answers to the other party, making the
conversation sound more natural.

Specifically, human beings instinctively know a lot about another person based solely on
their voice. In the context of conversational applications, such as customer services, support
and commerce, adapting to speaker attributes could play an important role in delivering a
high quality user experience. By incorporating knowledge of the user into the voice bots, one
enables them to adapt their responses accordingly. Thus, they can provide better service and
an improved experience.

Two speaker attributes that humans can estimate quite well by only hearing a person
speak, is the gender and the age of the person. Thus, we set out to build a machine learning
model to classify a person’s age and gender based solely on their voice. Ideally, this model
should also be language-agnostic and make correct classifications regardless of the language
spoken.

1.1 Previous work
Historically, hand-crafted features combined with classical machine-learning techniques, such
as linear discriminant analysis, K-nearest neighbors, CART, random forests and support vec-
tor machines, have been used with some success in order to classify speaker attributes in
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1. Introduction

voice. However, in recent years, advancements in artificial neural networks and deep learn-
ing (mainly due to increased computational capacity) has improved the state of the art in this
domain (Kwasny and Hemmerling, 2021). Thus, the hand-crafted features are becoming less
e�cient compared to large embedding networks that are constructing more useful features
by themselves. Below is a description of some of the most important studies throughout this
journey, pertaining to gender and age detection in voice.

In the field of speech categorization, speaker identification is a more prevalent speech
processing task than gender and age detection. In the next section, we therefore provide a
description of the state of the art within speaker identification, given that this field is larger,
with more activity and that the techniques are relatively applicable to both gender and age
detection.

1.1.1 Speaker attribute classification
Shue and Iseli (2008) found that features related to the voice source, i.e. the physiological
properties of the glottis and the vocal tract, can be used to improve the performance of gender
detection systems. In particular, they successfully used voice source measures such as formant
frequencies, formant bandwidths, open quotient and source spectral tilt correlates to increase
gender classification accuracy.

In a survey paper, Mishra and Shukla (2017) conclude that pitch and formant frequencies
are unsatisfactory features due to their sensitivity to noise. Instead di�erent cepstral domain
features, such as Mel frequency cepstral coe�cients (MFCC) and RASTA-PLP have proven
more successful in gender detection systems.

Qawaqneh et al. (2017) suggest that the most important feature set within gender and
age classification has been the MFCCs, since they capture the part of the spectrum that is
related to the vocal tract and filter out the prosodic information, i.e. what consonants are
pronounced and when. Furthermore, the authors suggest that DNNs have great potential to
improve these features, just like they have done in computer vision. Specifically, they suggest
the I-vector as a potential technique, as it was the state-of-the-art technique within speaker
recognition and language detection at the time of the article (in 2017).

Alkhawaldeh (2019) states that the most commonly utilized feature sets within voice gen-
der recognition are mel-scaled power spectrogram (Mel), mel-frequency cepstral coe�cients
(MFCCs), power spectrogram chroma (Chroma), spectral contrast (Contrast), and tonal cen-
troid features (Tonnetz). He concludes that the MFCC, Chroma, and Mel features are the best
for this task and yield similar results as they are related to each other. This author also writes
that the most e�cient classifiers and feature extractors of superior accuracy on voice gen-
der recognition include deep neural networks (DNNs) and convolutional neural networks,
which is consistent with the notion that these are becoming good enough to create their own
features, rather than relying on, for example, MFCCs.

Nasef et al. (2021) outline the importance of feature extraction in voice gender recogni-
tion, and how spectral features, such as MFCC, have outperformed more classical pitch-based
approaches. Their study concludes that the biggest shortcoming among these feature engi-
neering techniques is their poor performance in noisy environments, which is expected to be
better with more complex deeper networks using attention. The study introduces two net-
works on top of MFCC features that use self-attention and claims to achieve state-of-the-art
performance in noisy environments for voice gender recognition, with an accuracy of 96% on
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1.1 Previous work

VoxCeleb.
Overall, the gender detection accuracy is quite high. The best results are ranging from

87% to 100%, depending on the dataset, in particular its noise level. For example, Nasef
et al. (2021) reached 96% on the noisy VoxCeleb, whereas Kwasny and Hemmerling (2021)
get 99.6% on the popular, yet much cleaner dataset, TIMIT.

Research on age detection is sparse, as most research rather focuses on speaker identifi-
cation and verification. However, Kwasny and Hemmerling (2021) seem to have achieved the
best published results on the TIMIT dataset. They achieve a 5.12 mean absolute error (MAE)
for males and 5.29 MAE for females by training a QuartzNet embedder (using MFCC fea-
tures) with a two-stage transfer learning scheme (pre-training on both CommonVoice and
VoxCeleb). Importantly, the paper shows the usefulness of deep, residual, convolutional ar-
chitectures for this type of task.

1.1.2 MFCCs and F-bank features
Since MFCCs are one of the most important feature sets within voice classification, this
section provides a quick explanation of them. The conversion of an audio signal into MFCCs
consists of the following steps:

1. Pre-emphasis. This step emphasizes higher frequencies in order to make the sound
more like the true spectrum directly from the vocal tract.

2. Windowing. A Hanning or Hamming window of 20-25 ms is panned over the signal.
Importantly the windows should be overlapping, ensuring all parts of the sound signal
are close to the center of some window. The rest of the calculations is done for each
frame respectively.

3. Discrete Fourier transform (DFT). This is used in order to convert the signal to the
frequency spectrum.

4. Compute Mel-spectrum. This is computed by passing the signal through the Mel-filter
bank (F-bank), which is a set of triangular band-pass filters over the frequency spec-
trum. Notably, the Mel-scale is constructed to represent the way human ears would
interpret a sound signal, meaning the filters at higher frequencies have a larger band-
width. This is because di�erences in frequency at higher frequencies are less noticeable
by humans.

5. Discrete cosine transform (DCT). This step creates the final uncorrelated coe�cients
called Mel frequency cepstral coe�cients (MFCCs).

After step four, so called F-bank features have been created, however they can su�er from
a high degree of correlation, meaning some networks can’t handle them very well. The solu-
tion to this is to apply a DCT (i.e. the fifth step) to the F-bank features, creating uncorrelated
coe�cients (MFCCs).

Historically, the conversion of F-bank features into MFCCs has in many instances been
necessary to remove correlations. However, the recent trend is to use the F-bank features
directly and let the network deal with the correlation issues.
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1. Introduction

1.1.3 Speaker identification and verification
At the time of publishing, Desplanques et al. (2020) set the state of the art in speaker ver-
ification with their new network (ECAPA-TDNN), an update on the previously successful
x-vector network. This is still the most successful network that uses some form of feature
engineering, in this case 80-dimensional F-bank features.

Most of the cutting-edge research within creating embeddings from voice focuses on
creating generally applicable embeddings. In October 2021, Yang et al. (2021) introduced
the SUPERB-benchmark, which compares the performance of di�erent voice embedder net-
works 13 di�erent tasks. The speaker-related tasks of this benchmark are speaker identifica-
tion (classifying the specific speaker, using VoxCeleb), speaker verification (determining if
two voices are from the same speaker) and speaker diarization (separating multiple speakers
from the same sound). These are of course not exactly gender and age classification, how-
ever, it is expected that the embedders that provide the most useful embeddings for the tasks
described above are also the best candidates for this thesis.

At the time of writing, WavLM-large is the network that tops the SUPERB leaderboard
on all speaker-related tasks. This is a network created by Microsoft’s UniSpeech project. The
same project hosts the UniSpeechSAT-large model, which boasts a very similar performance
within speaker-related tasks, however is not listed on the SUPERB leaderboard for unknown
reasons. Chen et al. (2021b) describe how SAT stands for “Speaker Aware pre-Training” which
alludes to the fact that speaker information is supposed to be saved through the unsupervised
pre-training, not surprisingly making this model good at speaker-related tasks.

In Microsoft’s corresponding speaker verification paper, Chen et al. (2021c) describe that
ECAPA-TDNN (using F-bank features) is the previous state of the art in speaker verification,
which they improve upon by funneling the embeddings of UniSpeechSAT-large into a small
ECAPA-TDNN, see Figure 1.1. Specifically, a trainable weighted average is taken of all the
hidden layers in the UniSpeech embedder. This ensures information from all layers can be
used in the ECAPA-TDNN model. The results they achieve are presumably better than if
using a simple MLP on top of the UniSpeechSAT embeddings.

The authors noted that earlier layers in the self-supervised pre-trained model are more
associated with speaker attributes, whereas the later layers are more associated with the lin-
guistic content. Hence, it is not surprising that a weighted average outperforms simply taking
the final layer for speaker-related tasks.

1.2 Background

1.2.1 ECAPA-TDNN
Desplanques et al. (2020) proposed the ECAPA-TDNN architecture. It is an improved ver-
sion of the previously existing x-vector architecture proposed by Snyder et al. (2018).

As an input, the network takes 80-dimensional F-bank features of the recording, i.e. a
two-dimensional input of 80 channels with a certain number of temporal frames, depending
on the length of the recording. The network itself is in the basic sense a stack of 1-dimensional
convolutions, ReLU nonlinearities, and batch normalizations, with some residual connec-
tions. This is followed by a statistical pooling layer, and a final dense layer. This creates a
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1.2 Background

Figure 1.1: The architecture used to get the best performance within
speaker identification. Information is passed from all hidden layers
of a self-supervised pre-trained model such as UniSpeech-SAT, re-
placing the F-bank features otherwise used in the ECAPA-TDNN.
After (Chen et al., 2021c)

fixed-sized embedding of the variable size (in the temporal dimension) input.
Desplanques et al. (2020) wanted to extend the attention mechanism used in the statis-

tical pooling layer to also include the channel dimension. Previously, soft self-attention had
only been used to decide which (time-)frames are the most important. The authors suspected
this left some information unnoticed as di�erent speaker characteristics might be more easily
detected at di�erent sets of frames. They hence adopted the attentive statistics pooling pro-
posed by Okabe et al. (2018), but modified it to also be channel-dependent, i.e. containing a
complete set of temporal attention weights for each channel independently.

Furthermore, in order to make the attention mechanism more adaptable to global prop-
erties of the recording, such as noise and recording conditions, the global mean and standard
deviation of each channel are concatenated to the input to the statistical pooling layer de-
scribed above.

In order to further improve the attention mechanism in the network, Desplanques et al.
(2020) also introduce the computer vision inspired 1-dimensional squeeze-excitation blocks
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1. Introduction

(SE-blocks). The squeeze operation merely calculates the so-called descriptor of each chan-
nel by mean-pooling over the temporal dimension. The excitation operation however, uses
trainable weights and the channel descriptors to figure out a number between 0 and 1 for
each channel. These numbers are subsequently channel-wise multiplied by the input of the
block, producing the output, a channel-wise reweighting.

These SE-blocks are then incorporated into the x-vector architecture in a way that is not
obstructing the benefits of residual connections and not raising the total parameter count
too much. This involves a dense layer to reduce the feature dimension before the dilated
convolutional layer, as well as another dense layer to restore the dimensionality afterwards,
before applying the SE-Block described above. This results in the SE-Res2Block shown in
Figure 1.2a.

Finally, the authors use what they call Multi-layer Feature Aggregation (MFA) in order
to utilize outputs from all the SE-Res2Blocks in the networks, arguing that some important
information about the speaker might be hidden in the earlier layers. These outputs are merely
concatenated and sent to a dense layer that generates the features to feed into the statistical
pooling layer. This is represented by the skip connections shown in Figure 1.2b.

(a) The SE-Res2Block proposed by Desplan-
ques et al. (2020). The Conv1D-layers have a
kernel size of 1, essentially acting like dense
layers, whereas the dilated convolution has a
kernel size of 3 and a dilation factor of 2, 3 or
4.

(b) The full architecture of the ECAPA-
TDNN network proposed by Desplanques
et al. (2020).

1.2.2 HuBERT and HuBERT-based models
Hsu et al. (2021) proposed a model called HuBERT, or Hidden-Unit BERT, to combat the
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1.2 Background

biggest challenges in self-supervised speech representation learning. The backbone of Hu-
BERT is a transformer encoder model, where the central idea is to learn speech representa-
tions by an iterative re-clustering and re-training process. The authors state that after only
two iterations of clustering, HuBERT improves upon, or at least matches, the previous state
of the art.

Every iteration starts with an o�ine clustering step of each indexed time frame t : 1 −→ T
in the input signal. To initialize the clustering, the first iteration clusters the MFCCs of the
input utterance. The cluster center of each frame is indexed with a pseudo-label zt , which we
denote as Z = { zt }

T
t=1.

Next, we extract a feature sequence X = { xt }
T
t=1 from the utterance with the CNN

encoder and mask a subset of the features. We denote M ⊂ { t }Tt=1 as the randomly selected
subset of indices to mask the corresponding features in X . We can write X̃ = r( X,Tm )
as the corrupted feature sequence, where each { xt | xt ∈ X, t ∈ M} is replaced with a
random-initialized mask embedding.

The transformer model ft(·) is then trained to predict the correct labels { zt | zt ∈

Z, t ∈ M} of the masked features, based solely on the context of the unmasked features in
the corrupted feature sequence X̃ . The model is trained with a mask prediction loss, i.e. a
training criterion based on the masked indices t ∈ M , specifically the cross-entropy loss
L =
∑

t∈M log f ( zt | X̃, t ).
For the following iterations, the model will cluster the representations generated by the

previous iteration of the model, not the MFCCs. Thus, throughout the iterations HuBERT
will improve on extracting acoustic features from the continuous inputs, while also refining
a language model to predict information based only on context.

Figure 1.3: HuBERT model architecture, showcasing the trans-
former and encoder backbone with masked prediction of the clus-
tered pseudo-labels.

As previously mentioned, Yang et al. (2021) created the speech processing universal per-
formance benchmark (SUPERB) to evaluate di�erent model’s performances on various speech
tasks. HuBERT is primarily trained for automatic speech recognition (ASR) but as the
SUPERB leaderboard shows, HuBERT achieves a very respectable performance in multi-
ple speech processing tasks. Because of this, other models have recently used HuBERT as a
foundation to build upon, where learning more versatile representations is the main focus.
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1. Introduction

That is, extending HuBERT and incorporating di�erent learning strategies to carry out tasks
beyond ASR and thus produce better speech representations across all tasks. We use two of
these models, namely UniSpeechSAT (Chen et al., 2021b) and WavLM (Chen et al., 2021a).

UniSpeech-SAT
UniSpeech-SAT, or Universal Speech representation learning with Speaker Aware pre-Training,
is a model proposed by Chen et al. (2021b), which applies utterance-wise contrastive learning
and utterance mixing augmentation on top of HuBERT. Both techniques improve the repre-
sentations di�erently, where the former enhances single speaker information and the latter
multi-speaker. Thus, we get a more well-rounded model that can handle di�erent speech
processing tasks. Figure 1.4 shows the model architecture together with a schematic view of
the two learning techniques.

The main idea of utterance-wise contrastive learning is to teach the model how to produce
latent representations that have a low cosine similarity between di�erent speakers. Suppose
that we have a latent representation Lb = { lb

t }
T
t=1 of a feature sequence for the b-th utter-

ance in a batch. The latent representation Lb is then passed to a quantization module and
discretized to a finite set of speech representations Qb = { qb

t }
T
t=1. Now, for each masked

latent representation lb
t , t ∈ Tm in the b-th utterance, we group all masked quantized speech

representations Q̃b = { qt | qt ∈ Qb, t ∈ Tm} from the same utterance. We also include can-
didate masked speech representations uniformly sampled from other utterances in the same
batch Q̃ = ∪B

b=1Q̃
b. The model is then trained to identify the real quantized representations

from the candidate ones.

Figure 1.4: Schematic of the model architecture and learning tech-
niques of the UniSpeech-SAT model by Chen et al. (2021b)

In tasks such as speaker diarization, where the goal is to distinguish between di�erent
speakers, problems arise when only single-speaker data is available. By using an utterance
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1.2 Background

mixing strategy, a batch of single-speaker utterances can be augmented to simulate multi-
speaker data. Given a set of N utterances U = { ui }

N
i=1, S utterances { ũ j }

S
j=1 ⊂ U are

randomly selected for augmentation. For each of these utterances ũ, a random utterance
u ∈ U is selected. A random part of u is then mixed into a random region of ũ. From
the mixed audio, the model is trained to extract representations and predict the content
information of only the main speaker, not both. Therefore, the model will be forced to learn
how to distinguish the main speaker from the mixed speaker in the convoluted audio and
thus also improve its performance on multi-speaker tasks.

WavLM
Chen et al. (2021a) introduced the WavLM model in order to explore self-supervised learning
(SSL) for speech processing tasks other than automatic speech recognition (ASR). WavLM
achieves state-of-the-art performance on the SUPERB benchmark by utilizing denoising in
addition to the HuBERT’s masked speech prediction during pre-training. The denoising
creates robustness to di�erent environments and improves on the extraction of speaker in-
formation for non-ASR tasks.

Figure 1.5: The WavLM model architecture with a schematic view
of utterance mixing and masked prediction loss.

Similarly to UniSpeech-SAT, an utterance mixing of the inputs is done as a pre-processing
step. In each batch, a random selection of utterances is mixed with either randomly selected
noise or a random region of a secondary utterance in the batch. This creates both multi-
speaker data and noisy speech in the self-supervised pre-training step.

WavLM uses HuBERT’s masked prediction loss which implicitly trains the model to de-
noise and identify the main speaker in the noisy or overlapped input utterances. The masked
prediction also trains the model to predict content information from the main speaker’s ut-
terance based on context. Therefore, the model learns to first denoise the speech in order to
make a better prediction. We can see how WavLM learns to extract speech representations
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1. Introduction

relevant for non-ASR tasks as it implicitly learns to denoise mixed audio and find the most
relevant speaker information.

1.2.3 Wav2Vec 2.0 and XLS-R
Babu et al. (2021) presented a large-scale model for cross-lingual speech representations,
called XLS-R. The model is a wav2vec 2.0 (Baevski et al., 2020) based model, using self-
supervised pre-trained with 0.3B, 1B and 2B parameters on public speech data in 128 lan-
guages. XLS-R improves on many benchmarks as it is fine-tuned for tasks regarding language,
such as speech recognition, language identification, and speech translation. Additionally, it
performs very well on speaker identification according to the SUPERB benchmark (Yang
et al., 2021).

Figure 1.6: Schematic view of the XLS-R architecture with it’s self-
supervised pre-training on unlabeled multilingual speech as well as
the fine-tuning for specific speech processing tasks.

The wav2vec 2.0 model consists of a CNN encoder f : X −→ Z mapping raw audio X to
a latent representations Z = { zt }

T
t=1. Every zt represents 25ms of audio, while the encoder

strides the audio with 20ms, creating a slight overlap, which can be seen in Figure 1.6. A
transformer g : Z −→ C then creates context representations C = { ct }

T
t=1 from the latent

representations. The latent representations from the encoder are also discretized into a set
of speech representations q = { qt }

T
t=1 using a quantization module h : Z −→ Q.

The wav2vec 2.0 model adopts a learning objective similar to HuBERT (Hsu et al., 2021),
where a certain proportion of latent representations are masked before being fed into the
transformer. We denote this as { z̃t | z̃t ∈ Z, t ∈ M}, where M is the set of masked indices.

The model is then tasked to identify the corresponding quantized speech representations
{ q̃t | q̃t ∈ Q, t ∈ M} of the masked time steps based on the context representations { c̃t | c̃t ∈

C, t 6∈ M} . It does this with a selection out of a set combined with distractors, i.e. in a set
with quantized candidate representations { qt | qt ∈ Q, t 6∈ M}. This can be seen in the
middle of Figure 1.6, where the contrastive loss used to train the model is based on multiple
quantized representations as well as a masked time step. Thus, the model learns to extract
features for intent classification as the task is context driven and only learns features related
to speaker information implicitly.
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1.2.4 Ordinal classification
In machine learning, we often make the distinction between classification and regression
problems. Regression produces a continuous numerical output, while classification is dis-
crete. Additionally, in regression problems, the targets are ordered and a prediction will be a
certain distance from its corresponding target, compared to classification where a prediction
is either correct or incorrect.

For age estimation there is a clear ordering in the data. A 60 year old person likely sounds
more similar to a 70 year old than a 20 year old. Thus, regression seems appropriate. How-
ever, if we have age groups rather than exact ages, we still have an ordering, but our problem
has transformed into a classification problem. To utilize the ordering of our data in a classi-
fication model, we can apply something called ordinal classification.

Ordinal classification takes the classes’ order into account by modifying the network and
loss function. The output layer uses the same number of nodes as classes, but also sigmoid
activation, rather than the softmax activation commonly used in regular multi-class classifi-
cation. The prediction is then obtained by looking at how many of the first/lowest output
nodes are above 0.5. For example, given five classes, the output activations for a specific input
could be: [0.9, 0.8, 0.6, 0.2, 0.1]. This would amount to a prediction of the third class, as the
first three output nodes are above 0.5.

The loss function can be chosen in a couple of di�erent ways. In this thesis, we chose
to utilize a mean-squared-error (MSE) loss for each individual output node and simply sum
these losses to get the total loss of a given voice clip.

We utilized the mean absolute class error (MACE) metric in order to measure how good an
ordinal classification is. The absolute class error is simply the number of classes separating
the prediction from the truth.

In order to put equal importance on all ages although the datasets are skewed, we calcu-
lated the MACE for each class respectively and we used the macro average over all the classes
as a final metric.

1.3 Problem statement
This thesis aims to investigate the applicability of machine learning models to predict the
gender and the age of a person, solely given a recording of the person’s voice, in the setting of
conversational applications. In order to do this, we will try to answer three main questions:

1. Can machine learning models classify the gender and estimate the age of a person
within a useful error margin, using only a clip of that person’s voice?

2. Could such models be used in multilingual settings and perform well on unseen lan-
guages, i.e. be language agnostic?

3. Could such models be used in a real-time manner, and thus be applicable for real-time
conversational applications?
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Chapter 2

Dataset

Speech-enabled applications using machine learning require large amounts of data and nor-
mally this data is owned and kept private by companies. However, in this thesis we use
Mozilla Common Voice, one of the few large public datasets, as well as TIMIT, a much smaller
yet commonly used English dataset. We explain how we created datasets suited for our tasks
by selecting portions of the Common Voice corpus, and we outline their properties in an
exploratory data analysis. A very minimal exploration of TIMIT is also provided.

2.1 Mozilla Common Voice

The Mozilla Common Voice project by Ardila et al. (2020) is a initiative to help o�set the
lack of public data. By introducing a large, public, open-source voice database that’s easily
accessible, advancements in machine-learning based speech technology are encouraged.

The Common Voice database is built through crowd-sourcing. Each voice clip in the
database is recorded and donated by a voluntary contributor who reads from a bank of sen-
tences in a language of their choice. The recorded voice clip is then queued for validation,
where other users will listen to the recording and verify that the sentence is read correctly.
If a clip gets two or more confirming votes, it is accepted into the final corpus. Conversely,
two or more disapproving votes lands the clip in the so-called clip graveyard.

The database entries include an MP3-file with the recorded voice as well as a text file
with the corresponding sentence. Many entries also have demographic metadata including
age, sex, and accent. The age is not exact, but rather labeled in 10-year intervals ranging from
teens to nineties. At the time of writing, the latest version of the dataset is Common Voice
Corpus 7.0 which consists of 11,192 validated hours in 76 di�erent languages.
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2.2 The Common Voice XL Corpus
We used Mozilla Common Voice Corpus 7.0 by Ardila et al. (2020) as a basis for building our
di�erent datasets. The corpus is divided into 76 di�erent languages and for each language
there exists a validated dataset which contain clean data, approved by the Common Voice
community. We concatenated all these validated datasets across the whole corpus to build
one unified pool of voice clips.

Due to the lack of demographic data in the corpus, we could not use a large portion of it.
Instead, we selected a subset of the corpus, where both the age and the gender of the speaker
was documented. Subsequently, this means that we discarded data with only one of those
labels, even though it would be su�cient for the respective age or gender classification tasks.
However, the simplicity of having the same collection of voice clips for all datasets across
both tasks was prioritized.

The speakers of the corpus also have a varying amount of entries due to the open nature
of the project. To remove any bias towards more prevalent speakers, this was regularized,
and a maximum of five clips per unique speaker was set for each language. We selected clips
from each speaker based on their occurring order in the corpus and thus the clips following
the first five examples were disregarded. The clip length was also limited to 15 seconds and
instead of discarding clips exceeding this limit, we cut the clips and only used the first 15
seconds.

Figure 2.1: The age distribution in the Common Voice XL corpus
showing the number of clips per age group. The mean age is 33.3
years with a standard deviation of 13.3 years.

Due to the large original size of the corpus, the reduced version still contains a lot of data.
We call the reduced version of the Common Voice Corpus 7.0 with full demographic metadata
Common Voice XL or CVXL. It contains 74 di�erent languages, 43,255 unique speakers, 318
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hours and 221,211 clips of recorded voice data and require over 70 GB of space if stored at its
full quality of 16 kHz sample rate.

2.2.1 Exploratory data analysis
We’re now going to look deeper into CVXL and do an exploratory data analysis to get a better
understanding of the corpus. The first aspect we’ll consider is the gender distribution. The
corpus consists of 168,481 (76.2%) male voice clips and consequently 52,730 (23.8%) female
voice clips. With regard to speakers, the voice clips relate to 33,136 male speakers and 10,119
female speakers. It’s clear that we have strong male bias in our corpus.

Figure 2.2: A histogram of the clip length distribution in the Com-
mon Voice XL corpus with a 100 bins. The mean clip length is 5.2
seconds with a standard deviation of 1.9 seconds.

Figure 2.1 shows the distribution of voice clips with respect to the age groups. By assuming
each speaker’s age is in the middle of their respective age group, i.e. regarding a speaker in
their forties as 45 years old, we can calculate a mean. The mean age in the corpus is 33.3
years with a standard deviation of 13.3 years, which is significantly lower than the median
age of 50. It’s evident that we have an imbalance and there is greater support for speakers in
their twenties, which represent 40.6% of the data, and progressively less as the age increases.
Teens also have low support and stand for only 9% of the voice clips, matching the support
for speakers in their fifties with 8.4% of the voice clips. The older age groups represent a
substantially small amount of data with respect to the whole corpus.

Speakers in their seventies, eighties, and nineties together represent a mere 1.2% of the
recorded voice clips and it’s therefore probable that a model would have di�culties in dis-
tinguishing between these age groups. Even if it was possible, the data lacks statistical sig-
nificance and do not portray the real world age distribution su�ciently well as there are too
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few examples across these older age groups, especially for the 80-100 years range. From a
practical standpoint, there is also less applicable value to being able to distinguish speakers
between these higher age groups even if the data could support such a distinction. There
is thus a basis for unifying the subset of clips from speakers in their seventies, eighties and
nineties as one 70+ age group and regarding it as one class.

Another aspect of the CVXL corpus is the clip length, which as already mentioned, is
limited to 15 seconds. Figure 2.2 shows the distribution of clip lengths across the corpus
which has a mean of 5.2 seconds and a standard deviation of 1.9 seconds. It’s evident that
almost all of the voice clips are less than 11 seconds long, in fact 99.95%, but we can see
a small uptick at 15 seconds, where all clips exceeding the 15 seconds limit have grouped.
The outlying voice clips do not feature speakers reading unusually long sentences but rather
speakers who fail to stop recording and subsequently pollute the clip with pure background
noise for up to 10 seconds.

Figure 2.3: The language distribution in the Common Voice XL cor-
pus with regard to the number of clips. The languages are sorted in
descending order and displayed in their ISO format.

The final attribute of the corpus that needs to be explored is language. Here, we also
see a big di�erence between languages ranging from 0.3 minutes of recorded speech in Basaa
(bas), a Bantu language, to 6,882 minutes, or 115 hours, of English (en) speech. Figure 2.3
shows the distribution across all 74 languages and Table A.3 shows the details of it. Due to
this large di�erence, merely splitting the data into train, validation and test sets without
thought would result in a heavy language bias in both training and evaluation. This brings
us to the next part of CVXL, namely the four datasets we created.
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2.2.2 The four datasets
With the CVXL corpus built and explored, the next step is to split the data into training,
validation, and test sets. Since we are to produce language-agnostic models, we need to prove
that our models can perform su�ciently well regardless of the language spoken. We will
therefore not use all languages in training, but rather a subset of them, and use the rest for
validating and testing performance on unseen languages.

From the CVXL corpus, we constructed four di�erent datasets: Common Voice XL English
(CVXL Eng), Common Voice XL 1 Biggest (CVXL 1b), Common Voice XL 5 Biggest (CVXL 5b), Com-
mon Voice XL 20 Biggest (CVXL 20b), where the number corresponds to the number of training
languages. Each dataset uses the specified number biggest languages for training and the rest
for evaluation, except for the English dataset, which uses English for training and evaluation.
The training and test languages used in each dataset can be seen in Table 2.1, together with
their respective size, amount of speakers and the training set split of the whole CVXL corpus.

Table 2.1: The four datasets and their respective training and testing
languages written in ISO format. Due to the large number of testing
languages, they were denoted as the complement to the training lan-
guages. The total size in hours, number of speakers and the training
set split of the whole CVXL corpus is also shown.

Dataset Train languages (TL) Test languages* Size (h) Speakers Split (%)
English en en 115 17,687 34.8
1 Biggest en T c

L_1b 120 19,737 36.2
5 Biggest ca, de, en, es, fr T c

L_5b 214 31,583 65.9
20 Biggest be, ca, cy, de, en, eo, es,

et, fa, fr, it, nl, pl, pt,
ru, rw, th, zh-CN, zh-
HK, zh-TW

T c
L_20b 292 40,730 89.8

* T c
L_x denotes the complement to the training languages for dataset x, i.e. all languages

except for the ones used in training. This is due to the large number of testing languages.

When fewer languages are used in the training set, it also represents a smaller portion
of the corpus, making the validation and test sets unnecessarily large. In e�orts to speed up
the training process, as well as improving language balance in the evaluation sets, we did
not use all available data in the validation and test sets. The evaluation data was incremen-
tally reduced to a desired size by capping the number of clips on each age group to 500 and
maximizing language diversity for each age group individually. When the number of clips to
extract for each language-age combination was decided, maximal speaker diversity was also
applied when selecting the speakers to put in the evaluation set. Finally, the evaluation set
was split into a validation and a test set by applying a random 50/50 split of the speakers
within each age group.

In both CVXL 5b and CVXL 20b we have a diversity of languages. The CVXL 5b train-
ing set only contains Indo-European languages, i.e. English, German, Spanish, Catalan, and
French. This is an interesting division to see how well western training languages can be used
to learn globally applicable speech representations.

In CVXL 20b we include additional Indo-European languages such as Russian, Belarus-
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sian, Polish, Dutch, Italian, Welsh and Portuguese, but we also add languages from other
families. We have Kinyarwanda from the Atlantic-Congo family in Africa, Estonian from
Uralic family in northern Eurasia, Thai from the Kra-Dai family in Asia, Esperanto which is
a constructed language and Chinese from the PRC, Hong Kong and Taiwan which belongs to
the Sino-Tibetan family. Thus, in CVXL 20b we combined speech from languages covering
many central parts of the world, but with a majority of Indo-European data.

We also created an English dataset as a baseline to see how well a model could perform
in a monolingual setting. Here, we wanted 500 clips from each age group for the evaluation
sets, so the most closely corresponding number of speakers was extracted randomly from
each age group, although max 20% in order to retain most of the data for training. Again, the
validation and test sets were created by a random 50/50 split of the unique speakers for each
age group in the evaluation set.

We did not use gender information when creating the datasets, as initial tests deemed
the gender recognition task easier than age detection. We therefore prioritized age balance
when creating the evaluation sets.

A detailed view of each dataset with the amount of data for each age group, gender and
language can be found in Appendix A.

2.3 TIMIT
The TIMIT corpus by Garofolo et al. (1993) contains English spoken by 630 di�erent indi-
viduals with 10 voice clips per speaker. The age distribution can be seen in Figure 2.4. Just
as for the Common Voice XL dataset, a heavy bias toward younger people is clearly present.
TIMIT is also relatively skewed towards men, as these make up 70% of the dataset.

Figure 2.4: The age distribution of the TIMIT dataset. The data is
binned into 5-year intervals.
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The dataset has a pre-defined train-test split, however we chose to further divide the
provided train set into a train and validation set. This was done by randomly taking 20% of
the speakers from the provided training set and putting all of their clips into the validation
set.

As the TIMIT dataset was created in a laboratory setting, as opposed to the crowdsourced
Common Voice, it is significantly cleaner. This will become clear in the results part of this
thesis.
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Chapter 3

Approach

3.1 Model selection
In Section 1.1.1, we showed that simple acoustic features have potential in gender classifica-
tion. Therefore, we evaluated MFCC features as a potential lightweight model. The default
settings of the MFCC-extractor by SpeechBrain (Ravanelli et al., 2021) was used to extract
the features. This meant 20 MFCCs was extracted from 23 F-Bank features. Also derivatives,
second derivatives and context parameters were added, resulting in a feature vector of size
660 for each voice clip. Simple MLPs with one hidden layer of size 200 was then used for
both tasks. The results from these simple networks will serve as our baseline.

The central notion in this gender and age categorization project was to utilize models pre-
trained on related speech processing task and apply transfer learning through a fine-tuning
process. Pre-trained models can find more complex relations in data, and consequently solve
more complex problems. Thus, pre-trained models should probably outperform any model
built from scratch as building a model from scratch requires a huge dataset as well as time
and resources that we did not have. This is especially true in age classification as it is a more
complex task than gender classification.

We therefore selected a handful of pre-trained models with high performance in single
speaker speech processing tasks, such as speaker identification and speaker verification. Both
speaker identification and speaker verification require models to capture information about
the speaker, which is highly relevant to both age and gender classification. The selection was
based on the SUPERB benchmark by Yang et al. (2021), which is a standardized testbed for
a comprehensive evaluation of pre-trained models in various speech processing tasks. The
models we selected are:

• ECAPA-TDNN

• XLS-R 300M

• UniSpeech-SAT Large
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• WavLM Large

ECAPA-TDNN by (Desplanques et al., 2020) was the state of the art in speaker verifica-
tion at the time of publication, and was only outperformed in this task in the fall of 2021.
We believed it still had some potential for gender and age classification, and wanted to in-
clude it in this thesis because it is significantly smaller than the other models, and is based
on F-bank features as opposed to the audio signal directly. In a way, comparing the results of
ECAPA-TDNN to the newer transformer models shows how the transformer technique has
changed the quality of audio embeddings.

WavLM (Chen et al., 2021a) and UniSpeech-SAT (Chen et al., 2021b) are similar models,
as they both extend the same base model, HuBERT (Hsu et al., 2021). They both top the
SUPERB leaderboard with di�erent methods of transforming HuBERT to generate more
universally applied speech representations across multiple speech processing tasks. As they
achieve state-of-the-art results, they are of interest to apply in gender and age classification
as well.

We have also included a Wav2Vec 2.0 (Baevski et al., 2020) based model, trained on mul-
tilingual data to produce cross-lingual speech representations, namely XLS-R 300M (Babu
et al., 2021). XLS-R 300M shows intriguing qualities in the language-agnostic aspect of our
project as it produces even more general speech representations, relevant across di�erent lan-
guages. XLS-R is mostly focused on improving on benchmarks for tasks regarding language,
such as speech recognition, language identification, and speech translation. However, it still
produces quality results on speaker identification with regards to the SUPERB benchmark.
XLS-R 300M thus introduces multilingual capabilities while preserving relevant speech rep-
resentations for our tasks.

All pre-trained models are available through HuggingFace1 (Wolf et al., 2020) and Speech-
Brain2 (Ravanelli et al., 2021).

3.2 Baseline with pre-trained embeddings
With a variety of models selected, we are to compare and outline their performance on our
previously unseen tasks, i.e. gender and age classification, to create a benchmark. Here, the
MFCC models will serve as a baseline to compare with the more complex pre-trained models.

We initially utilized the pre-trained models as pure embedders to extract latent repre-
sentations of the datasets. With the embeddings for each model and dataset, we trained and
evaluated di�erent network heads for our two di�erent tasks. The basic schematics of the
complete networks can be seen in Figure 3.1.

The classification heads all consisted of neural networks, trained with the Adam op-
timizer. They all had a single hidden layer of the same size as the embedding dimension,
followed by an output layer corresponding to the task and type of data fit. The nonlinearity
between the hidden layers and the output layers were all ReLU activations, and for regular-
ization, we either used two dropout layers or a single batch normalization layer. For gender
classification, we used a binary classification head with one output node with a sigmoid acti-
vation function, trained with binary cross entropy (BCE) loss. In age classification, we tried
two di�erent heads:

1https://huggingface.co/models
2https://speechbrain.github.io
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(a) Network architecture with batch
norm regularization.

(b) Network architecture with dropout
regularization.

Figure 3.1: General network schematics. For the pre-trained results
the embedder is frozen during training.

1. A regression head with a single output node with linear activation, trained using abso-
lute error (L1-loss) as a loss function. Here, for the CVXL datasets, the classes assumed
an exact age of the average of each age group, e.g. the target of class “fourties” was 45.

2. An ordinal classification head with 7 output nodes corresponding to the 7 classes, all
with sigmoid activation. Here, a specific ordinal loss function was used, as described
in Section 1.2.4. The loss is the sum of the mean squared errors (MSE) of each output
node.

To compare the regression head with the ordinal classification head, the predictions were
binned to our 7 age groups. Thus, the regression head serves as a classifier and can be com-
pared with ordinal classification.

The datasets all su�er from heavy imbalance with regards to age and gender, and there-
fore yield highly biased models during training. We mitigated this by implementing a bin
sampling, meaning all classes in a training batch were sampled from a uniform distribution.
That is, we’re equally likely to include a highly supported class as a lowly supported class
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in the training batch. This in return means that not all data is seen equally often by the
model during one training epoch. The data from a class with high support is abundant, and
thus parts are left unseen, while data from a class with low support is scarce, and therefore
recycled.

With our classification heads defined and data imbalance reduced, we obtained a baseline
on both tasks for the models across all datasets. Next, we attached the ordinal classification
heads to the pre-trained models to begin a fine-tuning process.

3.3 Fine tuning pre-trained models
With a pre-trained baseline across both age and gender classification, we have something to
improve upon. As our models are pre-trained for other speech processing tasks, our results are
closely related to how relevant the speech representations are to age and gender classification.
To improve our results and produce more relevant speech representations, we fine-tuned our
models.

The baseline showed us insights in performance across di�erent classifiers and tasks,
which consequently led us to the structure of our fine-tuning process. As the baseline for
gender classification showed satisfactory result using only the pre-trained embeddings, we
proceeded by not fine-tuning any models for gender classification. Instead age estimation
was the more challenging task, meaning larger improvements in the embeddings could be
achieved using this task for fine-tuning. The results of the age classification networks made
it clear that, given the discrete form of our data, ordinal classification was a better fit for the
problem than regression. Hence, we proceeded by only using ordinal classification heads for
fine-tuning on the age task.

During fine tuning, we adopted the bin sampling method described earlier to combat
the age imbalance in the datasets. On top of this, we used data augmentation to create a
noisier dataset in the hope of producing more generalized embeddings. The augmentation
pipeline was copied from the SpeechBrain-recipe defining the pre-training of the ECAPA-
TDNN network. The augmentations consisted of 5 modifications of the clips:

1. Dropping parts of the signal;

2. Modifying the speed +/- 10%;

3. Adding reverb;

4. Adding noise;

5. Adding both reverb and noise.

For the purpose of generalizing the models to recording conditions, all these modified
clips were added to the same batch as the original clip. This resulted in an actual batch size
6 times larger than the number of unique clips from the original dataset in each batch.

We fine-tuned the ECAPA-TDNN model following a procedure similar to that of how
Ravanelli et al. (2021) had pre-trained the model, only with an age training criteria instead
of speaker identification. Similar hyperparameters were adapted as these were assumed to
be relevant for this task too. Adam was used for optimization with a weight decay set to
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10−6, and the batch size was set to 36. Importantly, due to the low weight decay, two dropout
layers of 25% were used in the ordinal classification head, rather than batch normalization.
A OneCycle learning rate schedule by Smith and Topin (2019) was adopted, using a peak
learning rate of 10−4 with linear decay.

We fine-tuned UniSpeech-SAT, WavLM and Wav2Vec2 XLS-R using the HuggingFace’s
Transformers library. AdamW was the selected optimizer and the batch size was set to 8.
We used a linear learning rate schedule starting at 10−4 together with a linear warmup of
100 steps. A single batch normalization layer was used in the ordinal classification head as a
regularizer.

After the models had been fine tuned on the age task, some improvements were achieved
by retraining the classification head, freezing the embedding part of the networks. Addi-
tionally, we used the fine-tuned embeddings to retrain classification heads for gender classi-
fication, seeing how the fine-tuning on age classification a�ects the performance. This was
done to check the potential of connecting both heads to one embedder, creating one unified
model for both age and gender classification.

3.4 TIMIT
The TIMIT dataset was mostly used in order to compare the resulting models to the previ-
ously achieved results we found in the literature. For gender classification we maximized the
macro average F1-score, however reported the overall accuracy as this is commonly reported.
For age detection, we only performed regression, given that the ages are exactly specified and
previous results are mainly regression results. In both cases the embedders fine-tuned on the
English dataset was used to extract embeddings, and the heads were trained on top of those
embeddings.
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Chapter 4

Results

4.1 Pre-trained embeddings
We’ve selected various cutting-edge transformer models in multiple speech processing tasks,
as well as a previous state-of-the-art model within speaker verification (ECAPA-TDNN).
These models will be used as embedders for an initial gender and age classification bench-
mark. Additionally, we created a baseline from a simple acoustic feature set of MFCCs.

The MFCCs and the pre-trained embeddings were extracted from our four CVXL datasets,
CVXL English, CVXL 1 Biggest, CVXL 5 Biggest and CVXL 20 Biggest in order to gauge the
language generalization performance of the models.

4.1.1 Gender
Our gender classification results were achieved by training a simple binary classification head
on top of the pre-trained embeddings. Table 4.1 shows the macro average F1-scores for each
model across all datasets.

Table 4.1: Macro average F1-score with a binary classification head
on the test sets of the di�erent datasets with pre-trained embed-
dings.

Model English 1b 5b 20b
MFCC 0.845 0.854 0.870 0.864
ECAPA-TDNN 0.960 0.952 0.954 0.949
UniSpeech-SAT 0.952 0.953 0.948 0.954
WavLM 0.957 0.951 0.946 0.947
XLS-R 300M 0.926 0.942 0.942 0.938
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All the pre-trained models outperform the simple acoustic features quite clearly. The
models also perform very well overall and fairly equal. Only XLS-R 300M performs slightly
worse than the other models. This indicates gender classification is an easy enough task for
the smaller ECAPA-TDNN to handle just as well as the larger, more complex, transformer
models.

When the performances on male and female are compared, it is clear that the imbalance
in the datasets, which is roughly 70% male, creates networks better at specifying male voices.
In most cases, the male F1-score is 0.03-0.04 higher than the female score. This occurred even
though bin-sampling was used to combat the imbalance.

4.1.2 Age
For age classification, we trained both regression and ordinal classification heads on top of
the pre-trained embeddings. Table 4.2 shows the regression results for all models across the
test datasets, and Table 4.3 shows the ordinal classification results.

In order to evaluate the performance of the regression, both the mean absolute error
(MAE) and (R2)-score are shown. By maximizing the (R2)-score, we ensured that our models
performed well over all ages, and not just predicting ages close to the mean. This was im-
portant given the age imbalance of the datasets, since such a network would still yield a low
MAE.

Table 4.2: Mean absolute error (MAE) and coe�cient of determi-
nation R2-scores of the age regression on the di�erent datasets with
simple acoustic features and pre-trained embeddings.

Model English 1b 5b 20b
(MAE) (R2) (MAE) (R2) (MAE) (R2) (MAE) (R2)

MFCCs 15.52 0.067 17.48 0.059 16.18 0.094 14.76 0.090
ECAPA-TDNN 9.87 0.579 12.85 0.409 11.43 0.455 10.45 0.435
UniSpeech-SAT 8.84 0.662 12.99 0.39 11.13 0.496 10.42 0.468
WavLM Large 8.36 0.683 12.10 0.472 11.01 0.48 10.53 0.446
XLS-R 300M 10.72 0.498 12.31 0.469 11,71 0.455 11.05 0.433

The WavLM model performs the best overall, with the UniSpeech-SAT model trailing
not far behind. Specifically, the UniSpeech-SAT model seems better when more languages
are used for training. We can see that the regression heads perform the best on the English
dataset for all models, which indicates a lack of multilingual capabilities in our pre-trained
embeddings. However, the regression model improves as it is trained on more multilingual
data for all models except the XLS-R 300M. For this model we see less of a di�erence between
the monolingual and multilingual datasets, probably because it was pre-trained for cross-
lingual speech representations.

Just like for the regression head, we trained the ordinal classification head for all the
models and datasets. In order to compare the two heads, we binned the regression predictions
into the same seven age classes used in the ordinal classification. Table 4.3 shows the macro
average MACEs across all the datasets and models for the two classification heads.

34



4.2 Fine-tuning

Table 4.3: Macro average mean absolute class errors with regression
and ordinal classification heads, using simple acoustic features and
pre-trained embeddings. The regression results were binned into the
same age classes used for the classification.

Model English 1b 5b 20b
(Ord.) (Reg.) (Ord.) (Reg.) (Ord.) (Reg.) (Ord.) (Reg.)

MFCC 1.608 1.600 1.629 1.642 1.570 1.611 1.606 1.619
ECAPA-TDNN 0.912 0.962 1.186 1.179 1.070 1.080 1.115 1.119
UniSpeech-SAT 0.848 0.836 1.222 1.202 1.046 1.067 1.079 1.110
WavLM 0.804 0.799 1.125 1.109 1.002 1.037 1.081 1.120
XLS-R 300M 1.014 1.027 1.084 1.151 1.065 1.099 1.093 1.151

In a monolingual setting on CVXL English dataset, the binned regression head and the
ordinal classification head are quite equal. For UniSpeech-SAT and WavLM, the regression
head is better with a lower macro average MACE, but for ECAPA-TDNN and XLS-R it’s the
opposite. Similarly, in CVXL 1b the regression head is only significantly worse for XLS-R.
However, for both CVXL 5b and 20b the ordinal classification head outperforms the binned
regression head with a lower macro MACE for all the models. Thus, the two heads can be seen
as fairly equal in performance, but as the CVXL corpus contains age groups and not exact
ages, the ordinal classification head is better suited for our data. We therefore continued by
only using the ordinal classification head in the fine tuning stage of this thesis.

4.2 Fine-tuning
With initial results on both age and gender classification using our pre-trained embeddings,
the next step is to apply transfer learning. With the pre-trained embeddings, the performance
is limited by the applicability of the embeddings to our tasks of age and gender classification.
Therefore, we fine-tune the pre-trained models using one of our tasks in order to make the
embeddings more tailored to that task. The fine-tuning was only carried out for age classi-
fication as our results on gender classification are satisfactory with pre-trained embeddings.
Additionally, we only fine-tuned with ordinal classification heads as they proved to be a bet-
ter fit to the CVXL corpus than regression heads.

Table 4.4: Macro average MACE with an ordinal classification head
on the test sets of the di�erent CVXL datasets with fine-tuned em-
beddings.

Model English 1b 5b 20b
ECAPA-TDNN 0.792 1.040 0.953 1.023
UniSpeech-SAT 0.711 0.983 0.897 0.917
WavLM 0.682 0.910 0.857 0.918
XLS-R 300M 0.784 0.964 0.862 0.886

Table 4.4 shows the macro average MACEs for our fine-tuning, where the ordinal clas-
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sification heads were re-trained after the fine-tuning process. We can see an improvement
in performance across all models and datasets with fine-tuning, when comparing to the re-
sults in Table 4.3 with pre-trained embeddings. Evidently, fine-tuning makes the embeddings
better suited to predicting the age of the speakers. WavLM stands out as the overall best per-
forming model, particularly when training on fewer languages.

We also investigated if these new, fine-tuned embeddings could be used for improving,
or at least match, the results on gender classification. Table 4.5 shows the macro average
F1-scores for a binary classification head on the fine-tuned embeddings.

Table 4.5: Macro average F1-score with a binary classification head
on the test sets of the di�erent datasets with fine-tuned embeddings.

Model English 1b 5b 20b
ECAPA-TDNN 0.959 0.955 0.956 0.956
UniSpeech-SAT 0.955 0.959 0.954 0.958
WavLM 0.961 0.962 0.951 0.955
XLS-R 300M 0.951 0.959 0.947 0.943

By comparing to the pre-trained results in Table 4.1, we can conclude that even though
the fine-tuning was performed on the age task, the resulting embeddings are certainly useful
also for the gender classification task. In fact, the F1-scores are slightly better across the
board, suggesting that the fine-tuning might have enhanced speaker related attributes in the
embeddings.

Again, all models perform adequately, however ECAPA-TDNN stands out as a lightweight
alternative to get practically the same results on the gender classification task as the heavier
transformer alternatives.

4.2.1 Language agnosticism
Having fine-tuned our models and achieved improved performance with the fine-tuned em-
beddings, we have provided all necessary information to answer the first question posed in
the problem statement. However, in order to answer the second, we need to dive deeper into
another important part of our research, the language agnosticism of our models.

Table 4.6: Macro average MACE for the fine-tuned models with an
ordinal classification head on the 20b test set. The datasets denote
the datasets used for fine-tuning, i.e. CVXL 1b, 5b and 20b, and not
testing.

Model 1b 5b 20b
ECAPA-TDNN 1.093 1.004 1.023
UniSpeech-SAT 1.139 0.943 0.917
WavLM 1.081 0.908 0.918
XLS-R 300M 1.124 0.941 0.886

The performance on the CVXL English dataset, i.e. a completely monolingual setting,
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should be perceived as the optimal performance for these models, at least when trained as
we’ve presented in this thesis.

For the gender task, the performance di�erence when testing on unseen languages is
remarkably small for all models. This suggests that the attributes of a voice pertaining to
gender are inherently language agnostic, and thus machine learning models can perform just
as well on unseen languages.

However, for the age task, the performance on unseen languages is significantly worse, in-
dicating that the attributes in a voice pertaining to age are in many cases somewhat language
dependent.

Comparing the performance on CVXL English and CVXL 1b clearly shows the di�erence
between testing on a seen or unseen language as these two datasets have practically the same
training set. For the age task the performance is significantly worse on the 1b dataset, at least
indicating that training on a single language is not su�cient for optimal language agnostic
performance.

Figure 4.1: The mean absolute class error (MACE) for each age group
in both monolingual (CVXL English) and multilingual (CVXL 5b
and CVXL 20b) datasets. The MACE-scores are for the WavLM
model fine-tuned for each respective dataset.

For the multilingual datasets, we see a natural increase in performance when training
on five languages instead of only one, but a loss of performance when increasing that to 20
languages. This can most likely be attributed to that the test set in the 20b dataset is more
di�cult than for the other datasets, which probably happened purely by chance. In order
to shed some more light on this, Table 4.6 contains results on the 20b test set only, using
models fine-tuned on other datasets. We do this because the evaluation languages of 20b are
unseen by all models. This is a slightly unfair comparison, as the model fine-tuned on the
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20b dataset is optimized for performance on the validation set of 20b. However, we think it
still clearly shows that training on more languages is always a good thing for performance on
unseen languages, although not much is gained beyond 5 training languages.

4.2.2 Age and language imbalance
A natural occurring phenomena when collecting data, is finding imbalances. In Section 2.2.1
we did an extensive data analysis of our CVXL corpus where we found imbalances in all
demographic data as neither age, gender nor language follow an uniform distribution.

With bin sampling and augmentation, we’ve made e�orts to mitigate the imbalance,
however we’re still left with biased models and varying performance over age, gender and
language.

Figure 4.1 shows the MACE distribution for an age classification by the WavLM model
for di�erent datasets. We can see that the model performs best on younger age groups and
the worst on 70+ for all datasets. We also get a more skewed performance in the multilingual
datasets than the English monolingual one. The di�erence between the best and the worst
performing class is 0.25 on CVXL English compared to 0.91 for CVXL 20b.

Figure 4.2: The mean absolute class error (MACE) for each test lan-
guage in CVXL 20b, sorted in descending order. The MACE-scores
are for the WavLM model fine-tuned on CVXL 20b.

Bin sampling is supposed to prevent the models from being biased toward the highly
supported classes by sampling each class equally often. However, since data from classes
of low support is recycled more, our models could overfit to the relatively few examples
belonging to those classes. Augmentation is mitigating this e�ect, however, due to the heavy
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age imbalance of our Common Voice XL datasets, our models overfit simply due to there
being too much data recycling. This e�ect is especially evident for the 70+ class, where we
see a decrease in performance between CVXL 5b and 20b, probably because the training data
grows by 36% but with the same support for the 70+ age group.

Similarly, performance across di�erent languages also varies. In Figure 4.2 we can see
the MACE for each language in the CVXL 20b dataset. The languages are sorted by their
respective MACE score, with languages as Kazakh, Kabyle and Interlingua preforming the
worst and Armenian, Lithuanian and Punjabi preforming the best. It is unclear why certain
languages yield a better or worse MACE. Neither the amount of examples in the dataset nor
the age distribution within the languages seem to correlate in any way with the language
specific performances.

4.2.3 TIMIT
To compare our models to previous work and the current state of the art we evaluate our
models on the TIMIT dataset. TIMIT is an English dataset containing both the gender and
exact age of the its speakers. We will therefore train a binary classification head for gender
classification and a regression head for age estimation using embeddings extracted from the
TIMIT dataset by models fined-tuned on the CVXL English dataset.

Table 4.7 shows the accuracy of our di�erent models on the TIMIT dataset in gender
classification. We can see that both ECAPA-TDNN, WavLM and UniSpeech-SAT beat the
previous state of the art model, QuartzNet (Kwasny and Hemmerling, 2021). We achieve the
best accuracy of 99.8% with UniSpeech-SAT, improving on the state-of-the-art by 2 ‰.

Table 4.7: Gender classification accuracy on the TIMIT test set using
models fine-tuned on the CVXL English dataset.

Model Accuracy Macro avg. F1-score
Prior work
QuartzNet * 0.996 N/A
This work
ECAPA-TDNN 0.997 0.997
XLS-R 300M 0.995 0.994
UniSpeech-SAT 0.998 0.997
WavLM 0.997 0.997

* Model by Kwasny and Hemmerling (2021)

Performance on the TIMIT dataset was significantly better than the one we obtained on
our CVXL-English dataset. Gender classification on the TIMIT dataset came in at a macro
F1-score of 0.997 for the WavLM, UniSpeech-SAT and ECAPA-TDNN models, compared
to our best macro F1-score of 0.961 on CVXL-English with WavLM. This probably mainly
has to do with that the TIMIT dataset is cleaner compared to the CVXL corpus. By being
built from the open source and crowdsourced CommonVoice project (Ardila et al., 2020),
the CVXL corpus is naturally quite noisy.

In Table 4.8 we can see the regression results for the TIMIT dataset. The best result we
produced was by the WavLM model and constituted of a MAE of 4.11 for males, 4.44 for
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females and an R2-score of 0.54. This can be compared to the previous best result in the
literature by Kwasny and Hemmerling (2021), where their QuartzNet model obtained 5.12
MAE for men and 5.29 MAE for females. We beat the previous state of the art with 1.18 years
for males and 0.68 years for females with the WavLM model. Thus, we can see the strength
of our fine-tuned models compared to previous models in the literature.

Furthermore, we believe optimizing the R2-score, rather than the MAE, creates a better
regression in an unbalanced setting, as it is more evenly accurate along all ages. However,
Kwasny and Hemmerling (2021) does not provide the R2-score of their results.

Table 4.8: Age regression on the TIMIT test set using models fine-
tuned on the CVXL English dataset.

Model MAE R2-score
(Male) (Female) (Total)

Prior work
QuartzNet * 5.12 5.29 5.17 N/A
This work
ECAPA-TDNN 5.00 5.04 5.01 0.364
XLS-R 300M 4.82 5.16 4.94 0.409
UniSpeech-SAT 4.28 4.54 4.36 0.541
WavLM 4.11 4.44 4.22 0.540

* Model by Kwasny and Hemmerling (2021)

4.3 Model applicability
The third question posed in this thesis’ problem statement regards the applicability of these
models in a real-time setting, such as a voiced conversational application. This section aims
to answer that question.

4.3.1 Inference time

Table 4.9: Inference time in ms for 1, 3, 5 and 10 second voice clips.
Results averaged over 1000 examples of randomly generated data on
a NVIDIA GeForce RTX 3090 GPU

Model 1s 3s 5s 10s
ECAPA-TDNN 7.8 7.8 7.5 8.6
UniSpeech-SAT 12.3 12.5 14.0 26.5
WavLM 16.8 18.3 18.8 29.6
XLS-R 300M 12.4 12.7 14.2 26.8

Accuracy is undoubtedly important for any model that is to be used in a real world set-
ting. However, merely high accuracy does not guarantee a models practicality, as it omits an
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integral part, namely time. Great results hold little practical value if they take too long to
produce. Therefore, to attest the practicality of a model, we need to show acceptable accu-
racy in an acceptable amount of time. That is, the inference time of our model needs to be
low enough for the results to be usable in a real-time setting. Table 4.9 and 4.10 show the
inference time across our fine-tuned models for voice clips of varying lengths for a GPU and
CPU respectively.

Table 4.10: Inference time in ms for 1, 3, 5 and 10 second voice clips.
Results averaged over 1000 examples of randomly generated data on
a CPU.

Model 1s 3s 5s 10s
ECAPA-TDNN 180 404 640 1230
UniSpeech-SAT 315 589 762 1149
WavLM 323 592 774 1206
XLS-R 300M 320 570 752 1248

In Section 2.2.1, we discussed the clip length distribution of the CVXL Corpus. We
showed that the voice clips have a mean length of 5.2 seconds and a standard deviation of
1.9 seconds. As even the slowest of our models show a throughput of 28-32 samples per sec-
ond for 10 seconds voice clips, we have a su�ciently low inference time across all data on a
GPU. The inference time on a CPU is 20-50 times slower, up towards 1.2 seconds for a 10
second clip. This is quite slow, but could be feasible in certain situations, especially if an
earlier part of a conversation can be used for the inference. Thus, our results have a practical
value and can predict both age and gender in real time using a GPU and potentially even
with a CPU.

4.3.2 Clip length
In our research, we have made the assumption of full length voice clips being available for use,
with sentences spoken from start to finish. Having fully spoken sentences is not necessarily
true in the context of conversational applications. For instance, in the important applica-
tion of real time analysis, the input is continuously growing. The speaker will therefore be
analyzed while speaking and consequently, the clip lengths fed to the model will a�ect the
model’s performance.

There will always be a trade-o� between time and information as longer clips take longer
to analyze, but contain more information about the speaker. Therefore, we can further ex-
plore the practicality of our models by investigating the aspect of model performance relative
to clip length.

Figure 4.3a shows the macro average MACE scores for our fine-tuned models across dif-
ferent clip limits in the age classification task. Correspondingly, Figure 4.3b shows the macro
F1-scores for gender classification. The clip limits denote the initial seconds used of the voice
clips and thus the last data-point corresponds to having the original lengths of the voice clips,
i.e. capped at 15 seconds. These data-points are equivalent to the previous fine-tuning results
in Table 4.4 and Table 4.5 for age and gender classification respectively. The dataset used is
the monolingual dataset CVXL English.
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(a) Age classification macro average MACE for the fine-tuned models with max clip lengths
of 1, 3, 5 and 15 seconds on the CVXL English dataset.

(b) Gender classification macro average F1-score for the fine-tuned models with max clip
lengths of 1, 2, 3, 5 and 15 seconds on the CVXL English dataset.

Figure 4.3: Results from the fine-tuned models for di�erent clip
lengths. The clip limits denote the initial seconds of the voice clips
used.
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A clear improvement can be seen as longer clips are being used for both gender and age
classification. Results using the first 5 seconds of the clips for age classification, and 3 seconds
for gender, are almost as good as using the full length clips. This indicates that longer clips
are not essential to performance, as after a certain threshold the performance is no longer
limited by clip length.

It is worth noting that there is some uncertainty around what part of the clips contain
speech. Often, the clips begin with some silence, which clearly will influence the results when
using only the first part of the clips. This partially explains the very poor results achieved
when only using the first second, and also means we cannot assume the results in Figure 4.3
reflect the amount of speech needed for a certain performance.

Regardless, this shows that our models are applicable in a real-time setting, as only a small
amount of speech is necessary for close to optimal performance.

4.3.3 Age classification with three classes
Another aspect of value for applicability is the number of age groups used. We trained on
seven age classes, combining the higher age groups due to the low support, as this is how
our data was structured. However, the significance of being able to distinguish between age
groups of ten years is questionable. Distributing speakers into young, middle-aged and old
age groups could be just as applicable and is a simplification of the problem.

In Table 4.11, we show binned results from our fine-tuned models, where the seven age
groups has been divided into young (10-29), middle aged (30-59) and old (60+). To evaluate
this three class model, we use a regular macro average F1-score instead of MACE, as an average
class error metric has little value with only three classes.

Table 4.11: Macro average F1-scores for three age classes (young (10-
29), middle aged (30-59) and old (60+)) when the fine-tuned re-
sults from ordinal classification of seven classes were binned into
the three classes.

Model English 1b 5b 20b
ECAPA-TDNN 0.713 0.635 0.686 0.671
UniSpeech-SAT 0.717 0.652 0.731 0.683
WavLM 0.725 0.704 0.733 0.671
XLS-R 300M 0.705 0.700 0.726 0.711

The three class model achieves decent results with fairly even performance across both
monolingual and multilingual datasets. WavLM seems to outperform the other models slightly,
except for on CVXL 20b where XLS-R 300M is better.

By reducing the problem down to three classes instead of seven, we seemingly simplify
our problem, as we remove boundaries between our classes, but yet we only see decent results.
When grouping classes, we consequently also put more emphasis on the remaining bound-
aries, as it is now vital for our model to distinguish between the age groups on the edges of
the three class division. For example, if our model is poor at distinguishing between people
in their twenties and thirties, in a seven class setting this might still yield an acceptable result
in terms of class error. In a three class setting an incorrect prediction with one class error
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has a greater impact on the end result. The positive aspect of applying the models in this
way is the extreme rarity of classifying an old person as young and vice versa. All the models
are really good at not making this mistake and having a three class problem exemplifies that
well.
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Chapter 5

Discussion

The field of speech processing is undeniably growing fast. All of the pre-trained models that
we have utilized, except for ECAPA-TDNN, did not exist at the start of our research and were
released during the course of it. Thus, it’s not unreasonable that there will be new models in
the near future that could outperform the models tested in this thesis.

To the best of our knowledge, there is no comparable work on age and gender classifica-
tion with language-agnostic models. This puts us in a position where it is somewhat di�cult
to judge the quality of our results. In a monolingual setting, we can compare our results
to previously published results on the TIMIT dataset, but the multilingual aspect remains
unexplored. We rather hope our work will provide a baseline for these uncommon speech
processing tasks in this rapidly growing field.

5.1 Pre-trained embeddings
For the gender task, the pre-trained embeddings seem to contain a lot of relevant informa-
tion as the results are fairly close to optimal. A macro F1-score above 96% is slightly below
what has been performed on other datasets in the literature, but higher than some results
on notoriously noisy datasets such as aGender. Thus, as the CVXL corpus is notably noisy
we believe this is a very good result, and certainly good enough to apply in a conversational
application.

Interestingly, for the gender classification task, the ECAPA-TDNN model performs just
as well as the heavier transformer models. If one were to only be interested in the gender of the
speaker, this would be the way to go given that the inference time and memory requirements
are significantly lower. This can probably be attributed to the simpler nature of the gender
classification problem, and perhaps one could assume the attributes in voice pertaining to
gender are related to the vocal tract and voice quality to a larger extent. This would make
sense as the simpler F-bank features used by the ECAPA-TDNN represent such qualities well,
but lack ways to represent context and diction.
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For the age task, we wanted to try both regression and ordinal classification before de-
ciding what to use later during fine-tuning. When binning the results of the regression to the
classes, it became clear that the two approaches performed relatively equally. Thus, ordinal
classification was assumed to be superior as it suits the discrete nature of the Common Voice
data better.

5.2 Fine-tuned embeddings
We fine-tuned by training the pre-trained models on the age classification task for all CVXL
datasets respectively. The training now utilized a task not used before in training of the
embedders, which is expected to improve the embedding quality for that specific task.

Unsurprisingly, the model that has the best general and speaker related embeddings ac-
cording to the SUPERB benchmark, WavLM, generally outperforms all the other models. It
is also the newest model, and only became available late into the process of writing this thesis.
Further, UniSpeech-SAT performs overall better than both ECAPA-TDNN and Wav2Vec2-
XLS-R 300M taken over all the datasets. This can probably be attributed to the fact that
ECAPA-TDNN is getting outdated by processing F-bank features rather that the sound signal
itself, and that the Wav2Vec2-model is pre-trained on automatic speech recognition (ASR)
rather than a speaker related task. Again, for gender recognition, ECAPA-TDNN performs
as well as the other models, and could therefore be preferable due to its lower requirements
if gender is the only task of importance.

A central question for this thesis is how language independent the resulting models are,
motivating the creation of the di�erent CVXL datasets. The performance on the English
dataset is meant to give an indication of how well the model can perform on a language it has
seen plenty of, whereas the other datasets tell us how well the models generalize to unseen
languages. For both age and gender, the models perform significantly better on the English-
only dataset, although not much for gender. Training only on English performs the worst on
unseen languages, and training on the 5 or 20 biggest languages performs fairly equally.

Much of the variability in the results, for example that the models perform slightly better
on CVXL-5b than on CVXL-20b, can be attributed to chance. The di�culty of the validation
and test sets unfortunately seems a bit random. Having a single multilingual evaluation set
for all the datasets might have yielded clearer results on the performance gain of training
on more languages. However, when using the 20b test set to test all models, see Table 4.6,
one can assume that including more languages in the training is most likely only positive for
performance on unseen languages.

The outstanding results on the TIMIT dataset merely show how fast the embedding mod-
els in this field are improving. They are now great at creating universal speech representa-
tions, good enough to be utilized in tasks unrelated to the way they were pre-trained. Further,
the results are also much better relative to the results on our CVXL datasets. This can be at-
tributed to the cleanliness of the TIMIT dataset, which was produced in a research setting,
in contrast to the crowd-sourced nature of Common Voice. It certainly highlights the sen-
sitivity to noisy data of these models, further solidifying the need for augmentation when
training them.

Due to time-constraints and the relatively optimal results found using pre-trained em-
beddings for gender classification, we chose not to move on with fine-tuning the embedders
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for this task. Although this might have improved the performance on gender classification
even more than the age fine-tuning did, these results were deemed good enough. Also, using
the same embedder for both tasks allows a single model with two separate heads, optimizing
inference time.

This transfer learning approach is likely a better approach than trying to build high per-
forming models from scratch, as most of these models have been pre-trained on large amounts
of data, often in a self-supervised manner. The amount of computational resources and time
needed to match that is simply too large for this project.

5.3 The dataset
Although the CommonVoice project provided us with an abundance of free-to-use data, this
data also came with its problems. First and foremost, only using age bins rather than exact
age was a consistent problem for this thesis, as it introduced questions about how to approach
this. We are satisfied with our solution, namely ordinal classification, but presumably better
results in terms of mean absolute error would have been achieved with exact ages. Second, the
crowd-sourced nature of the data is in a way a good thing, given the variability in recording
conditions. However, the accuracy of the reported age and gender can be questioned.

Furthermore, the heavy imbalance toward men in their twenties is another aspect that
we had to deal with. The main approach we used to combat the imbalance was a simple
bins sampling strategy, i.e. sampling all classes equally often during training. This made the
models equally good at all the classes, although presumably with less generalization for the
smaller, over-sampled classes. However, augmentation proved an e�ective tool to still make
these classes generalize well.

5.4 Future work
Inference time is an important aspect of the practicality and applicable value of our mod-
els. In our research, we used large models, up towards 300 million parameters, as these were
regarded as the current state of the art. These still had an inference time short enough for
usage in real-time settings on a GPU. There exists smaller models, as well as smaller versions
of the same models, that would be of interest to fine-tune. Although, we did not evaluate
them, these models probably have a lower performance, but with a substantial improvement
in inference time. Depending on the loss in performance, these smaller models might have
more of an applicable value than the models we tested. Additionally, various pruning meth-
ods could potentially be applied to the large models in order to boost inference time while
preserving performance.

With their publications, both UniSpeech-SAT (Chen et al., 2021b) and WavLM (Chen
et al., 2021a) performed a weight analysis of the networks. They showed that shallow lay-
ers seem to contribute more for tasks such as speaker verification and diarization, while top
layers are of importance for automatic speech recognition and intent classification. That is,
more information about the speaker exists in the shallow layers, while semantic and con-
tent information is skewed toward the top layers. Therefore, a weighted average of the layer
outputs with learned weights could be implemented in order to use di�erent parts of the
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network. This could help extract more valuable features for both our tasks, where speaker
information is at the core. Keeping the shallow layers frozen during fine-tuning could also
be of interest. This would preserve the pre-trained information and only change the higher
level semantics to, in theory, be age specific.

5.5 Conclusion
The applicability of our models in voice-based conversational applications was the main fo-
cus of this thesis. We wanted to build machine learning models, capable of both accurate
predictions and fast inference on relatively short voice clips, preferably even on previously
unseen languages. Thus, we evaluated our fine-tuned models with both monolingual and
multilingual datasets.

In age classification, across all of our di�erent datasets, our models reached a macro av-
erage MACE which is below 1. On average, our models predict an age less than 1 age group
away from the ground truth. The error is even smaller in a monolingual setting, with WavLM
reaching a 0.682 macro average MACE (see Table 4.4), while the multilingual datasets proved
to be more di�cult. Even here, XLS-R 300M reaches 0.886 macro average MACE with both
UniSpeech-SAT and WavLM not far behind with a macro average MACE of∼0.92. Although
not a completely correct comparison, we think this is equivalent to an average error of ∼7
years and∼9 years for the monolingual and multilingual datasets respectively, which certainly
are applicable results.

For gender classification, as shown in Table 4.5, the macro F1-scores are ∼0.96 across all
datasets and do not vary much between our di�erent models. This gives us a high certainty
that our models are predicting speakers’ genders correctly, well within usability performance
in conversational applications.

Additionally, we did experiments on inference time and clip lengths in Section 4.3 to
further investigate our models’ applicability. We showed that inference on a GPU is very
fast, with ∼30ms on 10 seconds voice clips for the transformer models and even faster at ∼9
ms for ECAPA-TDNN. For a CPU, we get up towards 50 times slower inference speed, with
all the models requiring 1.2 seconds for a 10 seconds clip.

Regarding clip lengths, we achieved similar results with a 5 second clip limit as with
full-length clips for age classification. For gender classification, the performance converged
faster and we showed that a 3 second clip limit gave similar macro average F1-scores as with
full-length clips. However, due to the uncertainty of which part of the clips contain speech,
too much emphasis should not be put on these specific clip lengths. We rather conclude
that a threshold likely exists where more speech in each clip does not improve performance
significantly, and that this threshold is located at a fairly small amount of recorded speech.

Combining the results of accuracy, inference speed, and clip lengths, we have demon-
strated the applicability of our models. With only a few seconds of recorded speech in any
given language, we can predict a person’s age and gender with a GPU, and potentially even
with a CPU, in a short amount of time with a reasonably small error. Thus, we have an-
swered the questions posed in our problem statement, and there seems to be potential for
these models in real-time conversational applications.
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Appendix A

Common Voice XL

Table A.1: The amount of training and testing data for all age groups
in each CVXL dataset. The total amount of data in each age group
for the whole CVXL corpus is also shown. Sizes are represented in
minutes.

Age English 1b 5b 20b All
10-19 784.6 821.5 1269.8 1631.8 1727
20-29 2907.9 2948.4 4733.3 6979.5 7743.3
30-39 1455.5 1499.5 2778.1 3937.8 4382
40-49 782.1 825.3 1862.7 2383.9 2556
50-59 502.9 546.5 1286.8 1541.6 1604.5
60-69 315.5 361.6 694.7 806.7 806.7
70-79 117.9 169.5 234.8 234.8 234.8
80-89 15.3 27.2 27.2 27.2 27.2
90-99 0.9 4.0 4.0 4.0 4.0
Total 6,883 7,203 12,891 17,547 19,086

Table A.2: The amount of training and testing data for male and
female in each CVXL dataset. The total amount of male and female
data the CVXL corpus is also shown. Sizes are represented in min-
utes.

Gender English 1b 5b 20b All
Male 5,382 5,571 9,942 13,314 14,410
Female 1,500 1,633 2,949 4,233 4,676
Total 6,883 7,203 12,891 17,547 19,086
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A. Common Voice XL

Table A.3: Languages used for training and testing together with
their respective size in each dataset. The total support in the Com-
mon Voice XL corpus is also shown. Sizes are represented in minutes.

Language ISO English 1b 5b 20b All
Abkhaz ab - 4.0 4.2 4.5 5.7
Arabic ar - 4.0 4.3 5.3 117.2
Armenian hy-AM - 2.0 2.1 2.6 4.7
Assamese as - 1.4 1.5 1.9 3.9
Bashkir ba - 5.2 6.6 11.1 121.7
Basque eu - 7.1 8.5 14.2 163.9
Basaa bas - 0.3 0.3 0.3 0.3
Belarusian be - 8.0 9.0 530.8 530.8
Bulgarian bg - 2.6 2.8 3.6 9.0
Breton br - 3.2 3.4 4.1 13.2
Catalan ca - 14.3 1018.4 1018.4 1018.4
Chinese (China) zh-CN - 3.2 3.7 342.5 342.5
Chinese (Hong Kong) zh-HK - 5.2 5.5 183.7 183.7
Chinese (Taiwan), zh-TW - 3.6 3.9 149.0 149.0
Chuvash cv - 3.1 3.2 4.4 10.6
Czech cs - 3.7 3.9 5.7 68.1
Dhivehi dv - 3.1 3.4 4.5 42.9
Dutch nl - 5.9 6.7 200.6 200.6
English en 6882.7 6882.7 6882.7 6882.7 6882.7
Esperanto eo - 9.7 11.0 200.2 200.2
Estonian et - 5.8 6.0 237.1 237.1
Finnish fi - 3.0 3.4 4.5 14.2
French fr - 13.2 1558.7 1558.7 1558.7
Frisian fy-NL - 5.1 6.0 17.4 58.4
Galician gl - 3.1 3.1 4.8 16.4
Georgian ka - 2.5 2.8 3.1 16.5
German de - 15.7 1744.2 1744.2 1744.2
Greek el - 3.0 3.1 4.6 22.9
Guarani gn - 1.2 1.3 1.7 2.3
Hakha Chin cnh - 2.5 2.6 3.5 19.2
Hausa ha - 1.2 1.2 1.5 2.2
Hindi hi - 2.6 2.7 3.5 27.2
Hungarian hu - 4.0 4.1 5.1 18.8
Indonesian id - 2.9 3.0 4.1 45.8
Interlingua ia - 3.4 3.5 4.2 6.6
Irish ga-IE - 3.0 2.9 3.9 14.2
Italian it - 14.2 18.7 854.3 854.3
Japanese ja - 3.1 3.3 5.3 56.3
Kabyle kab - 6.9 7.6 10.3 116.9
Kazakh kk - 2.3 2.6 2.9 4.1
Language ISO English 1b 5b 20b All
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Kinyarwanda rw - 3.8 3.7 291.2 291.2
Kurmanji Kurdish kmr - 3.7 3.8 5.4 39.1
Kyrgyz ky - 2.2 2.1 3.0 33.1
Latvian lv - 2.2 1.9 3.2 13.8
Lithuanian lt - 4.7 4.9 7.0 42.5
Luganda lg - 2.4 2.5 3.2 40.2
Maltese mt - 4.7 4.9 6.9 27.5
Mongolian mn - 3.0 3.1 4.6 43.0
Odia or - 1.9 2.0 2.7 3.7
Persian fa - 4.0 4.5 528.2 528.2
Polish pl - 4.5 4.8 240.0 240.0
Portuguese pt - 5.0 6.0 215.4 215.4
Punjabi pa-IN - 2.0 2.1 2.3 3.1
Romanian ro - 3.5 3.7 4.8 35.5
Romansh Sursilvan rm-sursilv - 3.3 3.2 4.2 8.7
Romansh Vallader rm-vallader - 2.7 2.9 3.6 4.3
Russian ru - 5.7 5.5 313.5 313.5
Sakha sah - 3.8 4.1 5.1 6.9
Serbian sr - 1.0 1.0 1.1 1.7
Slovak sk - 2.0 2.2 2.8 10.5
Slovenian sl - 3.9 4.3 4.9 15.3
Sorbian Upper hsb - 3.2 3.4 3.6 5.2
Spanish es - 10.1 1396.4 1396.4 1396.4
Swedish sv-SE - 3.9 4.2 5.5 51.9
Tamil ta - 6.8 7.3 9.5 111.6
Tatar tt - 4.7 5.2 6.4 18.3
Thai th - 3.7 4.2 241.5 241.5
Turkish tr - 3.8 4.1 5.2 114.7
Ukrainian uk - 4.8 5.7 7.2 121.4
Urdu ur - 1.2 1.3 1.4 3.8
Uyghur ug - 4.7 4.6 6.3 25.8
Uzbek uz - 0.6 0.7 0.8 1.2
Vietnamese vi - 2.7 3.0 3.6 9.2
Welsh cy - 11.8 12.5 162.0 162.0
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Röstbaserad klassificering av kön och
ålder

POPULÄRVETENSKAPLIG SAMMANFATTNING Edwin Ekberg, Fredrik Lastow

Människor har en naturlig förmåga att höra vem en talar med, endast genom att höra
dennes röst. Specifikt har vi förmågan att höra vilket kön och ungefär vilken ålder
personen vi talar med har. Vi ställde oss frågan om maskininlärningsmodeller skulle
kunna göra samma sak, och på så sätt hjälpa konversationsbaserade applikationer att
anpassa sina svar till användaren.

Som vanligt i ett maskininlärningsprojekt behövs
det data. Vi valde att utnyttja det crowd-sourcade
och publika datasetet Mozilla Common Voice. Vi
filtrerade ut alla röstklipp som hade data på både
talarens kön och ålder, vilket resulterade i hela
318 timmar inspelad röst. Den stora fördelen
med detta dataset är de diversifierade inspelnings-
förhållandena som skapar naturlig generalisering,
medan en stor nackdel är ett kraftigt bias mot
unga män.

Vi valde att testa modeller som har förtränats
på liknande uppgifter, exempelvis talaridentifier-

ing och verifiering. Hypotesen var att modeller
som på något sätt destillerar information om ta-
laren kan bidra med bra embeddings för köns- och
åldersbestämning. Detta resulterade i att vi tes-
tade fyra olika modeller med varierande storlek
och förträningsprocedurer.
Efter att vi testat prestationen hos de förträ-

nade nätverken, förbättrade vi också resultaten
genom att träna vidare nätverken på åldersklas-
sificering. Det visade sig att ännu bättre em-
beddings (för våra användningsområden) kunde
skapas genom att göra detta. Könsbestämmning
kunde med hjälp av dessa göras korrekt i ungefär
96% av fallen, medan åldersklassificeringen i snitt
gissade mindre än 10 år fel.
För att kunna jämföra våra resultat med tidi-

gare publicerade sådana valde vi även att träna
på det flitigt använda TIMIT datasetet. Här slog
vi de bästa resultaten i literaturen, vilket föres-
lår att våra resultat på Common Voice borde vara
konkurrenskraftiga.
Modellerna bedömdes fullt applicerbara i re-

altidsapplikationer då endast en liten mängd tal
behövs för nästintill optimal prestanda och pro-
cesstiden är mycket kort.


