
FACULTY OF ENGINEERING, LUND UNIVERSITY

MASTER’S THESIS

Implementing spatial variance in the rate
of photolytic breakdown of NO2 in urban

street canyons

Author:
Fabian FRIBERG

Supervisors:
Hesameddin Fatehi

Elna Heimdal Nilsson

A thesis submitted in fulfillment of the requirements
for the degree of Master’s degree in Computer Science

in the

Department of Energy Sciences

April 13, 2022

http://www.lth.se/
http://www.johnsmith.com
http://www.energy.lth.se/english/

ii

iii

Declaration of Authorship
I, Fabian FRIBERG, declare that this thesis titled, “Implementing spatial variance in
the rate of photolytic breakdown of NO2 in urban street canyons” and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at Lund University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

v

FACULTY OF ENGINEERING, LUND UNIVERSITY

Abstract

Faculty of Engineering

Department of Energy Sciences

Master’s degree in Computer Science

Implementing spatial variance in the rate of photolytic breakdown of NO2 in
urban street canyons

by Fabian FRIBERG

In this study a module for calculating the solar exposure of individual fluid cells
was developed to more accurately represent the effect of photolysis on the pollutant
dispersion in an urban street canyon. The module was tested and validated on 12
different cases, each with a different geographical location, time of year and/or time
of day. It was used for four parallel simulations performed on a street canyon model
representing a real-life street canyon in Gothenburg, Sweden, each one using a differ-
ent model for NO2 photolysis. NOx and O3 levels were measured and compared at
street level, mid-canyon level, and sky level, with results showing negligible differ-
ence between models using partial sunlight and no sunlight, while showing signifi-
cant difference between the partial sunlight model and the uniform sunlight model.
We conclude from our results that simulations without any modeling of photolytic
reactions are sufficient for accurately predicting NO and O3 levels, but fail to accu-
rately predict NO2 levels, while simulations utilizing a solar model with uniform
photolysis throughout the simulated domain are sufficient for accurately predicting
NO and NO2 levels, but fail to accurately predict O3 levels. For any study placing an
emphasis on both NO2 and O3 levels within the domain, it is our recommendation to
incorporate a non-uniform solar model. Such a model was developed for this thesis,
and aims to be integrated into the OpenFOAM framework in the future.

HTTP://WWW.LTH.SE/
http://www.lth.se/
http://www.energy.lth.se/english/

vii

Acknowledgements
I would like to thank my main supervisor Hesameddin Fatehi for giving me con-
sistent guidance and support during the whole project period, and for being thor-
oughly engaged throughout the whole process, answering the many questions that
popped up during these turbulent months.

I would also like to thank my supervisor Elna Heimdal Nilsson for giving me engag-
ing and informative lectures on atmospheric chemistry, for providing me with useful
references and for writing well-written templates for my Introduction and Previous
Work chapters. These allowed me to gain a better understanding of both the project
and thesis-writing in general.

Lastly I would like to thank my mother for very actively helping me stay motivated
through the toughest times of the project, and for providing support in various ways
throughout. I could not have done this without you.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1

2 Previous Work 3

3 Chemistry 5

4 Basics of CFD 7
4.1 Governing equations . 7

4.1.1 Continuity equation . 7
4.1.2 Momentum equations . 8
4.1.3 Energy equation . 8
4.1.4 Equations of state . 9

4.2 Transport equation . 10
4.3 Turbulence . 10
4.4 Radiation . 10

5 OpenFOAM 13
5.1 rhoEqn.H . 13
5.2 UEqn.H . 14
5.3 pEqn . 18
5.4 EEqn . 21
5.5 YEqn . 22

6 Radiation models in OpenFOAM 25
6.0.1 FvDOM . 25
6.0.2 viewFactor . 26
6.0.3 P1 . 26

6.1 solarLoad . 26
updateHitFaces() . 28
updateDirectHitRadiation() . 30
updateSkyDiffusiveRadiation() 31
updateReflectedRays() . 34

6.1.1 solarCalculator . 36
sunDirConstant . 37
sunDirTracking . 37
sunLoadConstant . 37
sunLoadFairWeatherConditions 37

x

sunLoadTheoreticalMaximum 38

7 Methodology 39
7.1 Implementing the Photolytic Solver . 39
7.2 Simulation Setup . 44
7.3 Resources . 47

8 Results 49
8.1 Validation . 49

8.1.1 Cyclic boundary algorithm . 49
8.1.2 J field solver . 49
8.1.3 Photolytic reaction rate . 51
8.1.4 Thermal parameter calibration 52

8.2 Simulation results . 54

9 Conclusion 61

A Validation of cyclic J Field solarLoad library 63

B Simulations using different A and Ta values vs. Experimental Data 67

Bibliography 75

xi

List of Symbols

αe f f Thermal conductivity W m−1 K−1

Γ Diffusive constant kg m mol−1 s−1

k Turbulent kinetic energy m2 s−2

µ Dynamic viscosity Pa s
ν Kinematic viscosity m2 s−1

p Pressure Pa
qr Radiative heat flux m s−3

ρ Density kg m−3

T Temperature K
τ Viscous stress Pa s
u Velocity vector m s−1

u Velocity in x direction m s−1

v Velocity in y direction m s−1

w Velocity in z direction m s−1

SMx x-momentum source m s−1

SMy y-momentum source m s−1

SMz z-momentum source m s−1

K Kinetic energy (u2 + v2 + w2) J
i Internal energy J
Si internal energy source J s−1

Φ Dissipation equation J s−1

1

Chapter 1

Introduction

One of the keys to reducing air pollution levels and increasing the air quality of a
city lies in its geometrical configuration (Yassin MF, 2012). Certain urban layouts can
cause air vortices to be formed between buildings in so called “street canyons”, caus-
ing pollutant molecules from vehiclular combustion and industry to become trapped
within, in turn causing these molecules to spend a greater part of their lifecycle near
ground level (Yazid et al., 2014). A consequence of this is that reactions with rela-
tively slow reaction times can take place close to the ground, exposing city inhab-
itants to substances usually found only at higher altitudes (Kikumoto and Ooka,
2012).

In order to comply with air quality directives such as Directive 2008/50/EC of the
European Parliament (Directive 2008/50/EC), accurate predictive models are of great
importance for both industry and regulatory institutions. However, the complexity
of factors lending into the production and dispersion of air pollutants makes analyti-
cal predictions impossible, while the large spacial scale and variety of possible street
and building configurations makes experimental studies prohibitively expensive.
Simulations based on CFD (Computational Fluid Dynamics) have a higher level of
scalability and configurability compared to experimental models, and can therefore
be applied on a wider scale. Experimental data is however still essential for valida-
tion of obtained CFD results.

The pollutant substances most relevant for analysis in street canyons are NO, NO2
and O3 (Pu and Yang, 2014). These chemicals have known adverse health effects for
local residents and pedestrians (Cao et al., 2011). One of the most important reac-
tions involving these chemicals include the reaction NO2 + hv− > NO + O, where
hv stands for incident solar irradiation intensity, meaning the reaction is photolytic
(Jacob, 1999). Existing CFD simulations modelling NOx gases have been limited in
their calculation of the photolysis rate J, and have therefore had to approximate it.

In cooperation with the Division of Combustion Physics and the Department of En-
ergy Sciences at Lund University of Sciences, this masters’ thesis aims to implement
a solar module capable of making real-time calculations of local solar intensity val-
ues within CFD simulations, improving the predictive accuracy of simulations in-
volving photolytic processes, factoring in both solar intensity and temperature into
the breakdown rate of NO2 into NO and O. It will be tested by comparing NOx and
O3 concentration levels in an urban street canyon model with the module turned on
and off, after which the results will be compared to experimental data.

3

Chapter 2

Previous Work

CFD simulations using LES (Large Eddy Simulation) turbulence models have long
been used to investigate non-reactive air pollutant dispersion in various setups.
Baker et al (Baker, Walker, and Cai, 2004) was the first paper to perform LES in
a street canyon that included chemical reactions. The authors simulated a street
canyon of equal height and width and a constant dispersion of NOx against a back-
ground concentration of O3 , with a constant overhead wind perpendicular to the
street orientation. Proceeding studies have extended this setup. Two examples of this
would be Zhong et al. (Zhong, Cai, and Bloss, 2016), incorporating VOCs (Volatile
Organic Compounds) and Han et al. (Ming et al., 2020), who studied the effects of
roof-level turbulence. Spatially variant photolysis has been studied by Grawe et al
(Grawe, Cai, and Harrison, 2007), who simulated the effects of partial sunlight by as-
signing a triangle-shaped shaded area to their domain (representing a sunlight direc-
tion vector of [1 0 -1]), decreasing the ozone breakdown rate in said area in relation
to the rest of the domain. Their results clearly demonstrate that the effects of shading
are significant for ground level NOx concentrations. All the papers mentioned up to
this point have modeled an isothermal system, with a constant temperature of 293K.

During the writing of this paper a paper by Liu et al. was published (Liu et al., 2021)
on the topic of NOx and O3 dispersion in a thermally variant street canyon, with
time-variant sunlight. Their J value was also calculated according to Shetter et al.
(Shetter et al., 1988) and assumed global sunlight exposure.

The general observed trend in most papers is that NO and NO2 concentrations are
high at the proximity of the source points (the ground) and at the leeward side of the
street. O3 tends to enter the inter-building area through the windward wall, rapidly
dissipating by reacting with NO. In each case chemical equilibrium is reached in the
middle of the main vortex. It has been shown that buoyancy effects are significant
at high wind speeds, and that models that include buoyancy should incorporate an
LES-type turbulence model for more accurate results (Bohnenstengel et al., 2004)
(Tominaga and Stathopoulos, 2011).

5

Chapter 3

Chemistry

NOx is a common term for the two chemicals Nitric Oxide (NO) and Nitrogen Diox-
ide (NO2). Although their two components, Nitrogen and Oxygen, are very common
in the atmosphere, NOx gases do not appear naturally in significant amounts in our
atmosphere. This is because the main reaction they are created by, 3.1 , only occurs at
very high temperatures. These temperatures are, however, reached by combustion
engines used by automobiles, airplanes and in industry, and so significant concen-
trations of NOx will be attained in inner city areas (Jacob, 1999).

N2 + O2 = 2NO (3.1)

In the atmosphere, these Nitric Oxide molecules will participate in the following
reactions:

NO + O3− > NO2 + O2 (3.2)

NO2 + hv− > NO + O (3.3)

O + O2 + M− > O3 + M (3.4)

Where Ȯ is an Oxygen radical, hv is an absorbed low wavelength photon, and M is
an inert molecule of any type, which is required for absorbing excess energy created
in the reaction.

In other words, NO depletes ozone in the atmosphere, while NO2 synthesizes it
when exposed to the sun. Total NOx levels will be at their highest in the daytime
when there is more traffic, while the ratio of NO to NO2 will be higher during the
day and lower during the night because of solar radiation levels.

The mixing ratio between NO and NO2 can be calculated as:

[NO]/[NO2] = [O3] ∗ k1/J ∗ c(air) (3.5)

(Jacob, 1999)

k1 is the reaction rate for equation 3.2, which is dependent only on temperature
(Lippmann, Jesser, and Schurath, 1980), and the tropospheric value of c(air) is a con-
stant 2.7 ∗ 1019 (Bannon, 1996), while O3 concentration will be calculated in real-
time. J will be calculated according to 3.6 (Shetter et al., 1988), multiplied by a solar
factor given by the simulation.

6 Chapter 3. Chemistry

J = 8.14∗ 10−3(0.97694+ 8.3700∗ 10−4 ∗ (T− 273.15)+ 4.5173∗ 10−6 ∗ (T− 273.15)2)s−1

(3.6)

In addition to NOx, O2 and O3, chemicals known as VOCs (Volatile Organic Com-
pounds) also affect urban pollution concentrations. Baker (Baker, Walker, and Cai,
2004) considered these negligible, as their reaction times are much longer than those
of reactions 3.3, 3.2, and 3.4, which equilibriate on the scale of 1-2 minutes. This
notion is, however, contested by Carpenter et al. (Carpenter et al., 1998), who de-
termined that for conditions with lower concentrations of NOx, peroxy contributes
significantly to the creation of NO2. In a review done by Zhong et al. (Zhong, Cai,
and Bloss, 2016) it is also stated that the simplified NOx/O3 model often gives inac-
curate predictions compared to experimental data. In a study performed by Zhong et
al. (Zhong, Cai, and Bloss, 2017), a direct comparison is made between the simplified
NOx/O3 model and one including VOC modelling. NO2 and O3 levels were found
to be 30-40% higher in the models including VOCs, with NO levels being lower.

However, even the relatively limited VOC model used by Seinfeld and Pandis (Se-
infeld and Pandis, 1998) utilizes 20 reactions and 23 species, which is a significant
addition to the four reactions and four species existing in our current model. Con-
sidering our time of day is set to be 10 A.M. (when NOx levels are relatively high be-
cause of traffic), limited computational capabilities and our emphasis on photolytic
effects, we did not include a VOC chemistry model in our simulation. It is there-
fore important to keep in mind that NO2 and Ox levels in our simulations could be
significantly lower than real life levels.

7

Chapter 4

Basics of CFD

Computational Fluid Dynamics, abbreviated CFD, is the field of fluid simulation
using computers. It acts as a middle ground between analytical and experimental
approaches to flow solving. The high level of non-linearity involved in most fluid
problems makes analytical solutions infeasible outside of very simple case setups.
Experimental studies, while more accurate than CFD simulations, often involve long
setup times, heavy costs, low malleability and low reproducibility. Changing a pa-
rameter can be done by changing a single line of a file in a CFD setup, while it may
take rebuilding a whole architecture when using an experimental approach.

In the following chapter we will go through some basics of CFD. Information was
taken from "An Introduction to CFD" (Versteeg and Malalasekera, 1995).

4.1 Governing equations

In CFD, governing equations tell us the rate of change for certain variables of in-
terest, given the current value of other variables as input. They must be solved for
each variable, in each cell, for each timestep, in order to properly determine the be-
haviour of a fluid under certain conditions. The most commonly used governing
equations in CFD modelling are those that concern the 3-dimensional flow and heat
transfer of a Newtonian compressible fluid. They can be derived from the Navier-
Stokes equations, which in turn are derived from simple laws of physics, such as the
conservation of mass, Newton’s second law (F=ma) and the first law of thermody-
namics (the rate of change of energy is equal to the sum of the rate of heat addition
to and the rate of work done on a fluid particle).

There are five main governing equations utilized in CFD, conserving the mass, x-
momentum, y-momentum, z-momentum, and energy of a fluid. They are the conti-
nuity equation, momentum equations (in the x, y and z directions) and the energy
equation.

4.1.1 Continuity equation

dρ

dt
+ div(ρu) = 0 (4.1)

The continuity equation, also known as the mass balance equation, is based on the
law of conservation of mass (in this case density, since we are dealing with fixed
volumes). It states that the change of mass in a volume is equal to the mass enter-
ing/leaving it via the flow.

8 Chapter 4. Basics of CFD

4.1.2 Momentum equations

dρu
dt

+ div(ρuu) = −dp
dx

+ div(µgrad(u)) + SMx (4.2)

dρu
dt

+ div(ρvu) = −dp
dy

+ div(µgrad(v)) + SMy (4.3)

dρu
dt

+ divn(ρwu) = −dp
dz

+ div(µgrad(w)) + SMz (4.4)

The three momentum equations in the x, y and z directions tell us that the rate of
change in momentum in a certain direction in a volume is given by the momentum
in that direction from fluid flowing into/out of the volume + the momentum in that
direction given by pressure (the minus sign in front of this term comes from the
fact that pressure pushes in the opposite direction of its gradient) + the momentum
in that direction applied by shear stresses + momentum in that direction applied by
sources. Some solvers will implement gravity by adding a y-momentum source term
in the y-momentum equation.

4.1.3 Energy equation

The energy equation looks different depending on whether one solves it using inter-
nal energy i or enthalpy h0 = i + p

ρ + K. They are as follows:

ρ
di
dt

= −pdiv(u + div(αe f f grad(T))

+τxx
du
dx

+ τyx
du
dy

+ τzx
du
dz

+ τxy
dv
dx

+ τyy
dv
dy

+ τzy
dv
dz

+ τxz
dw
dx

+ τyz
dw
dy

+ τzz
dw
dz

+ Si

(4.5)

d(ρh0)

dt
+ div(ρh0u) = div(αe f f grad(T)) +

dp
dt

+
d(uτxx)

dx
+

d(uτyx)

dy
+

d(uτzx)

dz

+
d(vτxy)

dx
+

d(vτyy)

dy
+

d(vτzy)

dz
+

d(wτxz)

dx
+

d(wτyz)

dy
+

d(wτzz)

dz
+ Sh

(4.6)

What these equations tell us is that the change rate of internal energy in a volume
is equal to the internal energy from fluid flowing into/out of the volume + the po-
tential energy from pressure it receives/loses due to advection + the energy it re-
ceives/loses due to thermal conductivity + the thermal energy gained from viscous
friction + energy from sources. Some solvers will implement gravity into this equa-
tion by adding a potential energy source term.

These equations can be simplified by defining the dissipation Φ as:

4.1. Governing equations 9

Φ = µ{2[du
dx

2

+
dv
dy

2

+
dw
dz

2

]

+[(
du
dy

+
dv
dx

)2 + (
du
dz

+
dw
dx

)2 + (
dv
dz

+
dw
dy

)2]}

+λ(div(u))2

(4.7)

Where λ = 2/3µ. This term represents kinetic energy being converted into thermal
energy by viscous stresses. It is assumed to be negligible for most CFD configura-
tions.

Applying this to the internal energy equation gives:

d(ρi)
dt

+ div(ρiu) = −pdiv(u) + div(αe f f grad(T)) + Φ + Si (4.8)

The continuity equation, momentum equations and energy equation give us the fol-
lowing system of equations:

dρ

dt
+ div(ρu) = 0 (4.1)

dρu
dt

+ div(ρuu) = −dp
dx

+ div(µgrad(u)) + SMx (4.2)

dρu
dt

+ div(ρvu) = −dp
dy

+ div(µgrad(v)) + SMy (4.3)

dρu
dt

+ div(ρwu) = −dp
dz

+ div(µgrad(w)) + SMz (4.4)

d(ρi)
dt

+ div(ρiu) = −pdiv(u) + div(αe f f grad(T)) + Φ + Si (4.8)

We now have five equations and seven unknowns. This discrepancy is due to the
pressure p and temperature T not having any equations of their own. This is solved
by adding equations of state to the system.

4.1.4 Equations of state

The variables p and i can be expressed as functions of density ρ and temperature T.
These functions are called the equations of state. In most configurations the ideal gas
law suffices as an approximation for these equations:

p = ρRT

i = CvT

R = ideal gas constant

Cv = heat capacity

With these equations provided, we now have 7 equations and 7 unknowns, and can
therefore close the system.

10 Chapter 4. Basics of CFD

4.2 Transport equation

Since we already have enough information to solve the flow of our model, we can
now calculate the rate of change for arbitrary fields carried by the flow, commonly
generalized by the letter φ. The generalized transport equation for such a field is
given by figure 4.9. This equation is most often used to represent the rate of change
for the concentration of certain compounds within a fluid.

dφ

dt
+ div(ρφu) = div(Γgrad(φ)) + Sφ (4.9)

What this equation says is that the φ gained in a unit volume φ leaving the unit
volume through advection equals the φ entering the unit volume through diffusion
plus the φ generated within the volume.

4.3 Turbulence

Turbulence is a phenomenon that occurs in fluid flows with a high velocity in rela-
tion to their flow field and viscosity. It can be measured through its Reynolds num-
ber:

Re = VL
v

where V is the velocity, L is the characteristic length of the surrounding vessel and v
is the kinetic viscosity of the fluid. Turbulent properties are usually found in flows
with Re > 2300. Unlike laminar flows, where a constant velocity input always yields
a constant velocity output, a turbulent flow is characterized by a velocity output that
varies with time, even with a constant input.

Characteristic of turbulence is that a turbulent fluid will contain many eddies scat-
tered throughout the flow, varying greatly in shape and angular momentum. The
smallest of these eddies occur on a microscopic level with high velocities and they
are therefore very expensive to compute. Only DNS (Detailed Numerical Simula-
tions) simulations attempt to compute turbulent flow contributions all the way to
the lowest level. They are generally costly and only applicable for very small and
simple cases. Instead RANS and LES models are commonly used to approximate
turbulent phenomena with slightly lower accuracy but at a greatly reduced cost.

RANS stands for Reynold’s Averaged Navier-Stokes and is a time-averaging turbu-
lence model. It averages the time-variant velocities to calculate a turbulent viscosity
contribution in the flow. Common models include the k-epsilon, k-SST omega and
SSG.

LES stands for Large Eddy Simulation. In LES simulations, instead of averaging over
time like in RANS, one averages over space. Most Eddies are allowed to resolve,
but unlike DNS which requires very fine grids, a model is still required for eddies
whose resolution is smaller than the grid cells. Common models include Smagorin-
sky, WALE and kEqn.

4.4 Radiation

Radiation is the transmission of energy between bodies through space in the form of
electromagnetic waves. No medium is required for this, which is why the radiative

4.4. Radiation 11

rays from the sun are able to reach the earth despite there being no air between the
two bodies.

For a given body, incident radiative energy is either absorbed, reflected, or trans-
mitted, according to its absorptivity (a), reflexivity (r) and, transmissivity (τ) coef-
ficients. These range from 0 to 1, and and have a sum equal to 1 due to the law of
conservation of energy.

In most CFD cases, including this one, all boundary surfaces are opaque, meaning
τ = 0.

The equation for how much energy a radiative body emits is given by the Stefan-
Boltzmann law:

jr = AεσSBT4 (4.10)

• A is the area of the body.

• ε is the emissivity of the body. It is defined as the fraction of energy radiated
from the body in relation to the amount of energy that would be radiated by
an ideal blackbody of equal surface area. Emissivity for a surface depend on
wavelength, temperature and material.

• σ is Stefan-Boltzmann’s constant, defined as approximately 5.67∗ 10−8Wm−2K−4.

• T is the temperature of the body.

We can now set up an equation for the radiative enthalpy contribution hr:

hr = aG− (εσSBT4) (4.11)

Where G is equal to the incident radiative energy.

This means that the radiative energy contribution to the energy equation is equal to
the absorbed radiative energy (aG) minus the emitted radiative energy (εσSBT4).

13

Chapter 5

OpenFOAM

OpenFOAM was chosen as the simulation tool of choice to be used in this thesis. It is
a C++-based open source program capable of handling a variety of flow problems in
different environments. It performs calculations based on the governing equations
discussed in the previous chapter. Flow problems are solved by dividing the volume
of a fluid into a three-dimensional (3D) mesh, where the governing equations are
calculated for each cell of that mesh. This is done iteratively for each time step until
the flow is defined for the entire time segment specified by the user.

The main loop in OpenFOAM is performed by so-called solvers, excecutable files
with various functionality based on what type of flow you want to solve. Differ-
ent solvers make different assumptions about the flow, including compressibility,
existence of radiation, existence of combustion etc. Different input parameters are
required by different solvers.

For this case we will modify the rhoReactingBuoyantFoam solver. "rho" means that
it handles compressible fluids, "Reacting" means that it handles chemical reactions,
and "Buoyant" means that it includes the effects of buoyancy for the flow.

Solvers in OpenFOAM have one header file for each Navier-Stokes equation. In each
of these files a matrix is created that perfectly represents its corresponding physical
equation in C++ code form. We will now go through each Eqn file of the reacting-
Foam solver and see how the OpenFOAM solvers set up each matrix and what lines
of code correspond to what terms of the Navier-Stokes equations, as described in the
previous chapter.

5.1 rhoEqn.H

The continuity equation in reactingFoam is represented by:

fvScalarMatrix rhoEqn
(

fvm::ddt(rho)
+ fvc::div(phi)
==

fvOptions(rho)
);

This can be directly converted to the following equation:

14 Chapter 5. OpenFOAM

FIGURE 5.1: Continuity equation in mathematical form

Note that phi in OpenFOAM is equal to flux, that is ρu.

This is already very similar to equation 4.1, except the mass source term has been
added. It is often omitted from governing equations as it is uncommon to include a
mass source term in fluid calculations.

The two namespaces fvm:: and fvc:: have different meanings. A function in the fvm::
namespace expresses the to-be-solved term (dρ

dt) in an implicit way, that is, it is ex-
pressed as a matrix of coefficients to be solved in the current calculation. This is
unlike functions in the fvc:: namespace, which return to-be-solved values explicitly
(by evaluating source terms and/or terms solved in previous calculations).

5.2 UEqn.H

The velocity equation in reactingFoam is represented by:

tmp<fvVectorMatrix> tUEqn
(

fvm::ddt(rho, U) + fvm::div(phi, U)
+ MRF.DDt(rho, U)
+ turbulence->divDevRhoReff(U)

==
fvOptions(rho, U)

);

...

if (pimple.momentumPredictor())
{

solve(UEqn == -fvc::grad(p));
}

This can be directly converted to the following equation:

5.2. UEqn.H 15

FIGURE 5.2: Momentum equation in mathematical form

MRF stands for multiple reference field, and has to do with rotational phenomena
like fans and golf balls. For most purposes it is equal to zero.

The turbulence->divDevRhoReff function returns the density times the effective vis-
cous stress contribution to the momentum equation. Its implementation depends
on the turbulence model chosen. The implementation in linearViscousStress.C is as
follows:

Foam::linearViscousStress<BasicTurbulenceModel>::divDevRhoReff
(

volVectorField& U
) const
{

return
(

- fvc::div((this->alpha_*this->rho_*this->nuEff())*dev2(T(fvc::grad(U))))
- fvm::laplacian(this->alpha_*this->rho_*this->nuEff(), U)

);
}

Alpha_ is phase fraction, which for single phase solvers like reactionFoam is equal
to 1. For the viscosity, µe f f = µt + µ.

µt is calculated based on the turbulence model, and µ is typically read from the
constant/transportProperties file.

dev stands for deviatory, and is defined by

dev(A) = A− 1
3 ∗ tr(A)I

dev2 is a slight modification, where dev2(A) = A− 2
3 ∗ tr(A)I.

From this, divDevRhoEff can be directly converted into the following equation:

16 Chapter 5. OpenFOAM

FIGURE 5.3: divDevRhoEff equation in mathematical form

In their book An Introduction to CFD, Versteeg and Malalasekera give us the follow-
ing equation for the viscous stress in the x-direction:

τx =
d

dx
(µ

du
dx

) +
d

dy
(µ

du
dy

) +
d
dz

(µ
du
dz

)+

[
d

dx
(µ

du
dx

) +
d

dy
(µ

dv
dx

) +
d
dz

(µ
dw
dx

) +
d

dx
(λdiv(u))]

= div(µgradu)+
[βx]

(5.1)

Where λ is a variable that for gases is usually approximated to − 2
3 µ, and βx is a new

variable. Equivalent equations exist for the y and z directions.

The (∇u)T term in our divDevRhoEff equation can be expanded as:

(grad(u))T =

du
dx

du
dy

du
dz

dv
dx

dv
dy

dv
dz

dw
dx

dw
dy

dw
dz

T

=

du
dx

dv
dx

dw
dx

du
dy

dv
dy

dw
dy

du
dz

dv
dz

dw
dz

 (5.2)

We can see that the first row of grad(u)T (corresponding to the shear stress in the
x-direction) matches the inner gradients of the βx term in equation 5.1.

If we write out the β terms of each direction:

βx =
d

dx
(µ

du
dx

) +
d

dy
(µ

dv
dx

) +
d
dz

(µ
dw
dx

) +
d

dx
(λdiv(u)) (5.3)

5.2. UEqn.H 17

βy =
d

dx
(µ

du
dy

) +
d

dy
(µ

dv
dy

) +
d
dz

(µ
dw
dy

) +
d

dy
(λdiv(u)) (5.4)

βz =
d

dx
(µ

du
dz

) +
d

dy
(µ

dv
dz

) +
d
dz

(µ
dw
dz

) +
d
dz

(λdiv(u)) (5.5)

Since div(u) = du
dx + dv

dy + dw
dz = tr(grad(u)) = tr(grad(u)T), we can move λ out of

the parenthesis, expand it into −2/3µ and express the last term of each equation
as − 2

3 µ d
dx (tr(grad(u))T) (except d

dx is replaced with d
dy and d

dz for βy and βz respec-
tively).

If we take a look at the first three terms of each β equation (nine terms in total) we
can see that they make up the terms of µdiv(grad(u)T) perfectly:

Since d
dx (A)− d

dx (B) = d
dx (A− B), we can put together the first and fourth terms of

equation 5.3, the second and fourth terms of equation 5.4 and the third and fourth
terms of equation 5.5. Finally, in matrix form, with, we will have our three β equa-
tions represented by:

β =

µ

d

dx ((
du
dx)−

2
3 (tr(grad(u))T)) d

dy (
du
dy)

d
dz (

du
dz)

d
dx (

dv
dx)

d
dy ((

dv
dy)−

2
3 (tr(grad(u))T)) d

dz (
dv
dz)

d
dx (

dw
dx)

d
dy (

dw
dy)

d
dz ((

dw
dz)−

2
3 (tr(grad(u))T))

= µ

d

dx (
du
dx)

d
dy (

du
dy)

d
dz (

du
dz)

d
dx (

dv
dx)

d
dy (

dv
dy)

d
dz (

dv
dz)

d
dx (

dw
dx)

d
dy (

dw
dy)

d
dz (

dw
dz)

− µ

d

dx
2
3 (tr(grad(u))T) 0 0

0 d
dy

2
3 (tr(grad(u))T) 0

0 0 d
dz

2
3 (tr(grad(u))T)

= div(µgrad(u)T)− div(µ

2
3

tr(grad(u))T)))I

= div(µdev2(grad(u)T))

(5.6)

If we once again take a look at the divDevRhoEff function:

- fvc::div((this->alpha_*this->rho_*this->nuEff())*dev2(T(fvc::grad(U))))
- fvm::laplacian(this->alpha_*this->rho_*this->nuEff(), U)

β corresponds to the first row. The minus signs come from the equation being moved
to the other side of the = sign. this->alpha_ is equal to 1 in mono-phase solvers, and
the factor ρ is multiplied with the equation to convert the unit from kinematic to
dynamic viscosity. The second row corresponds to the div(µgradu) term in equa-
tion 5.1, except the x-direction component u has been replaced by the complete flow
vector u so that it includes the y and z directions.

Looking once again at figure 5.2, we can see that divDevRhoEff is represented by∇σ,
where σ is the Newtonian stress tensor, and is equal to µρ(gradu + dev2(grad(u)T).

18 Chapter 5. OpenFOAM

After splitting the equation in figure 5.2 into its three components, expanding ∇σ
and moving it to the RHS we get the equations:

dρu
dt

+ div(ρuu) = −dp
dx

+ µρ(gradu + dev2(grad(u)T) + SMx (5.7)

dρu
dt

+ div(ρvu) = −dp
dy

+ µρ(gradv + dev2(grad(u)T) + SMy (5.8)

dρu
dt

+ divn(ρwu) = −dp
dz

+ µρ(gradw + dev2(grad(u)T) + SMz (5.9)

These are almost identical to the momentum equations 4.2, 4.3 and 4.4, except with
the addition of the dev2(grad(u)T) term (corresponding to turbulence) and the added
ρ factor (to convert to dynamic viscosity).

5.3 pEqn

The pressure equation in OpenFOAM is represented by:

rho = thermo.rho();

volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));

...

{
surfaceScalarField phiHbyA
(

"phiHbyA",
(

fvc::flux(rho*HbyA)
+ MRF.zeroFilter(rhorAUf*fvc::ddtCorr(rho, U, phi))

)
);

...

while (pimple.correctNonOrthogonal())
{

fvScalarMatrix pEqn
(

fvm::ddt(psi, p)
+ fvc::div(phiHbyA)
- fvm::laplacian(rhorAUf, p)

==
fvOptions(psi, p, rho.name())

);

pEqn.solve();

5.3. pEqn 19

if (pimple.finalNonOrthogonalIter())
{

phi = phiHbyA + pEqn.flux();
}

}
}

...

U = HbyA - rAU*fvc::grad(p);

This can be directly converted to the following equation:

FIGURE 5.4: Pressure equation in mathematical form

The PEqn.H file first solves the pressure p iteratively and predicts the velocity U in
accordance with the PISO loop. Defining the matrix M as the coefficient matrix for
the momentum equation excluding the pressure term, we have the equation MU =
−∇p. From this the following matrices are defined:

A = diag(M)
H = AU - MU
rAU = A−1

rhorAUf = ρA−1 (evaluated at the faces)
HbyA = A−1H phiHbyA = flux(rho*HbyA)

A is the diagonal of M. It represents the pressure coefficients of each cell from its
own velocity value. The H matrix represents the pressure contributions that each
cell recieves from its neighbours.

Looking at the at the pressure correction loop:

while (pimple.correctNonOrthogonal())
{

fvScalarMatrix pEqn
(

fvm::ddt(psi, p)
+ fvc::div(phiHbyA)
- fvm::laplacian(rhorAUf, p)

20 Chapter 5. OpenFOAM

==
fvOptions(psi, p, rho.name())

);

pEqn.solve();

if (pimple.finalNonOrthogonalIter())
{

phi = phiHbyA + pEqn.flux();
}

}

The loop will iterate a certain amount of times based on how orthogonal the matrix
is, in order to iteratively calculate the fluxes. For each iteration, the term fvc::div(phiHbyA)
will change, since it is calculated explicitly and depends on p. psi = ψ = rho

p , meaning

the ddt term is the same as dρ
dt Note that since we are solving for∇p, which depends

on the flux on cell faces, we are first solving for cell faces rather than cell centers.
Because of this, our terms are multiplied by ρ in order to preserve consistency with
the continuity equation when calculating the divergence of phiHbyA.

The equation in 5.4 looks similar to the discretized cell-wise equation in "A low-
Mach number solver for variable density flows" (A. Hay and Nilsson, 2018) (Ch.
1.4.1):

Since our equation came from the standard reactingFoam solver which does not
include buoyancy, and since reactingFoam doesn’t use a low-mach approximation,
the gh term is missing and the pressure terms are slightly different.

In the paper, the above equation is derived from the following equation:

The right hand side of that equation is equivalent to the −∇p in compressible buoy-
ant solvers.

Going from cell-wise notation to matrix notation, we get:

apUp = AU

5.4. EEqn 21

and

∑
n=1

aNUN −
U0

dt
= −H

(as per Ch. 1.4.1 in the paper) together with the fact that

AU - H = MU

we get that

MU = -∇p Which is how M was defined. In this way we have derived the pressure

matrix equation from the OpenFOAM source code in the pEqn.H file.

After the pressure has been calculated, the density is calculated using the continuity
equation. Then the new pressure is used to calculate a new U vector, by setting

U = HbyA - RAU*fvc::grad(p);

5.4 EEqn

The energy equation in reactingFoam is represented by:

{
fvScalarMatrix EEqn
(

fvm::ddt(rho, he) + mvConvection->fvmDiv(phi, he)
+ fvc::ddt(rho, K) + fvc::div(phi, K)
+ (

he.name() == "e"
? fvc::div

(
fvc::absolute(phi/fvc::interpolate(rho), U),
p,
"div(phiv,p)"

)
: -dpdt

)
- fvm::laplacian(turbulence->alphaEff(), he)

==
reaction->Qdot()

+ fvOptions(rho, he)
);

}

This can be directly converted to the following equation:

22 Chapter 5. OpenFOAM

FIGURE 5.5: Energy equation in mathematical form

This is assuming we are using the enthalpy energy equation, where he.name() ==
"h". RT is the temperature gained from chemical reactions.

Since h0 = h + K we have dρh
dt + dρK

dt = dρh0
dt and div(h) + div(K) = div(h0) Moving

the -dpdt term and the diffusive term to the RHS we get:

d(ρh0)

dt
+ div(ρuh0) =

dp
dt

+∇(k(∇T)) + RT + Sh (5.10)

This is the same as equation 4.6 except that the dissipation term has been ignored and
we have an extra reaction term RT. Since there is no radiation term in this solver’s
energy equation file, we added it ourselves, by adding the term radiation->Sh() to
the right-hand side.

5.5 YEqn

YEqn.H solves the scalar transport equation for the concentration of chemical com-
pounds. It is represented by:

{
reaction->correct();
volScalarField Yt(0.0*Y[0]);

forAll(Y, i)
{

if (i != inertIndex && composition.active(i))
{

volScalarField& Yi = Y[i];

fvScalarMatrix YiEqn
(

fvm::ddt(rho, Yi)
+ mvConvection->fvmDiv(phi, Yi)
- fvm::laplacian(turbulence->muEff(), Yi)

==

5.5. YEqn 23

reaction->R(Yi)
+ fvOptions(rho, Yi)

);

YiEqn.relax();

fvOptions.constrain(YiEqn);

YiEqn.solve("Yi");

fvOptions.correct(Yi);

Yi.max(0.0);
Yt += Yi;

}
}

Y[inertIndex] = scalar(1) - Yt;
Y[inertIndex].max(0.0);

}

This can be directly converted to the following equation:

FIGURE 5.6: Compund concentration equation in mathematical form

inertIndex represents the index for inert mass, i.e. the fluid molecules that are not ex-
plicit components in any reaction, but might act as energy receptors for the reactions
of other molecules.

Yi represents the mass fraction of a certain species, that is ρi
ρ .

We can easily see how it resembles the scalar transport equation defined in equation
4.9. The only difference is the RR term, which represents the reaction source.

25

Chapter 6

Radiation models in OpenFOAM

Radiation in OF is added into the energy equation through the radiation->Sh(thermo)
term in the EEqn.H file:

Foam::tmp<Foam::fvScalarMatrix> Foam::radiation::radiationModel::Sh
(

const basicThermo& thermo,
const volScalarField& he

) const
{

const volScalarField Cpv(thermo.Cpv());
const volScalarField T3(pow3(T_));

return
(

Ru()
- fvm::Sp(4.0*Rp()*T3/Cpv, he)
- Rp()*T3*(T_ - 4.0*he/Cpv)

);
}

The most widely used models are S2S, FvDOM and P1. They each implement the
Ru() and Rp() functions, which are the constant and temperature-varying contribu-
tions to Sh(), respectively. The equation looks complicated at first glance, but the
fvm::Sp() row and parts of the third row are simply an addition and subtraction of
the same term in order to increase diagonal dominance. It’s made more clear with
the shifting of some terms:

Sh() = Ru()− (4Rp ∗ T3h
Cp

)− Rp()T4 + (4Rp ∗ T3h
Cp

) = Ru()− Rp()T4

The radiation models will in different ways calculate Ru() and Rp() such that they
make Sh() represent the radiative enthalpy contribution hr from equation 4.11 as
accurately as possible.

A brief summary of the different available radiation models available in OpenFOAM
will be discussed below.

6.0.1 FvDOM

The FvDOM (Finite volume Discrete Ordinates Model) model divides emitted rays
into a discrete number of solid angles, and solves them through ray-tracing. It is a
computationally expensive but accurate radiation model.

26 Chapter 6. Radiation models in OpenFOAM

6.0.2 viewFactor

The viewFactor model calculates, for each boundary face of the mesh, a view factor
coefficient for each other face in the mesh, determined by how "visible" the faces are
to each other. The incident radiation for a face is then calculated by adding together
the emitted radiative energy of all faces visible to that face, weighted by their view
factor. The model requires a lot of memory space to store the view factors, especially
for finer meshes.

6.0.3 P1

The P1 model assumes directional equilibrium between rays, and solves for radia-
tive energy contribution as if it were a diffusive attribute. It works best for cases
where the optical thickness (a * L) is high, i.e. where a substantial fraction of a beam’s
energy is absorbed by the fluid before reaching a boundary.

It sets incident radiation G as a variable and uses the following transport equation
to solve ∇G:

∇ ∗ (Γ∇G)− aG + 4εσT4 + E = 0

Which can be found in the P1.C file as:

// Solve G transport equation
solve
(

fvm::laplacian(gamma, G_)
- fvm::Sp(a_, G_)
==
- 4.0*(e_*physicoChemical::sigma*pow4(T_)) - E_

);

Here, e_ is the emmissivity, sigma is the Stefan-Boltzmann constant and E_ is the
emission contribution.

Gamma is the "diffusive" coefficient for the P1 radiation, similar to the thermal con-
ductivity coefficient k in the general thermal governing equation, and in the code is
calculated to equal the following function:

1.0/(3.0*a_ + sigmaEff + a0)

Here sigmaEff represents the scattering coefficient, which tells us how much ray
intensity fades for each unit length travelled through the fluid.

6.1 solarLoad

The solarLoad library, implemented for the OpenFOAM Foundation’s ditribution
of OpenFOAM, is used to calculate the face-wise solar radiation contribution in a
CFD mesh. The direction of the sunbeams is either set to a constant direction or is
calculated dynamically with the included solarCalculator class. The solar intensity
is either set directly by the user or calculated using the Fair Weather Conditions
method from the ASHRAE Handbook (Heating and Engineers, 2017).

The solarLoad radiation model can either act as a standalone model or be added
onto the viewFactor and FvDOM radiation models by setting useSolarLoad to true

6.1. solarLoad 27

in constant/radiationProperties. The parameters for your solar model are then set
in the solarLoadCoeffs dictionary in the same file. If combining solarLoad with Fv-
DOM, you can only use one frequency band in the domain.

Looking at solarLoad.C’s Rp() function in solarLoad.C:

Foam::tmp<Foam::volScalarField> Foam::radiation::solarLoad::Rp() const
{

return tmp<volScalarField>::New
(

IOobject
(

"Rp",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE,
false

),
mesh_,
dimensionedScalar
(

dimMass/pow3(dimTime)/dimLength/pow4(dimTemperature),
Zero

)
);

}

We can see that its Rp() function returns zero. This is because the Rp() coefficient rep-
resents the part of the radiation contribution that scales with T4. Since the radiative
energy given by the solarLoad radiation model depends only on the sun and not on
the temperatures within the mesh, the solarLoad model only contributes to the Ru()
part of Sh().

The Ru value is calculated with the calculate() function:

void Foam::faceShading::calculate()
{

...

bool facesChanged = updateHitFaces();

...

updateDirectHitRadiation(hitFacesId, includeMappedPatchBasePatches);

...

updateSkyDiffusiveRadiation
(

includePatches,
includeMappedPatchBasePatches

28 Chapter 6. Radiation models in OpenFOAM

);

...

if (useReflectedRays_)
{

updateReflectedRays(includeMappedPatchBasePatches);
}

...

}

It calls on 4 sub-functions, described below.

updateHitFaces()

This sub-function recalculates the sun’s position and subsequently determines the
boundary faces that are directly hit by sunlight based on the new position by call-
ing hitFaces_->correct(). The hit faces are stored in the hitFaces_ object, which is an
instance of the class faceShading, defined in faceShading.C.

bool Foam::radiation::solarLoad::updateHitFaces()
{

...

if (updateIndex > updateTimeIndex_)
{

Info << "Updating Sun position..." << endl;
updateTimeIndex_ = updateIndex;
solarCalc_.correctSunDirection();
hitFaces_->direction() = solarCalc_.direction();
hitFaces_->correct();
return true;

}

...

}

void Foam::faceShading::correct()
{

calculate();
}

void Foam::faceShading::calculate()
{

...

if (((direction_ & nf) > 0) && (t[faceI] == 0.0))
{

6.1. solarLoad 29

dynFacesI.append(faceI + pp.start());
dynCf.append(cf[faceI]);
nFaces++;

}

...

First, all the faces whose normal vectors have a component facing away from the sun,
determined by (direction_ & nf > 0) (& is a dot product operator in OpenFOAM),
and whose transparency equal 0, are collected.

...

scalar maxBounding = 5.0*mag(mesh_.bounds().max() - mesh_.bounds().min());

...

do
{

for (; i < Cfs.size(); i++)
{

const point& fc = Cfs[i];

const label myFaceId = hitFacesIds[i];

const vector d(direction_*maxBounding);

start.append(fc - 0.001*d);

startIndex.append(myFaceId);

end.append(fc - d);

}

}while (returnReduce(i < Cfs.size(), orOp<bool>()));

...

Here we, for each face that was stored earlier, store its center (or rather, the point just
before the sun hits the center) as a starting point. Then we project a vector from that
point towards the sun with a magnitude of approximately 5 times the diagonal of the
mesh (direction_*maxBounding), and store the point at the other end of that vector
as the corresponding end point. The startIndex list helps the program remember
which face the points correspond to.

...

List<pointIndexHit> hitInfo(startIndex.size());
surfacesMesh.findLine(start, end, hitInfo);

30 Chapter 6. Radiation models in OpenFOAM

// Collect the rays which has ’only one not wall’ obstacle between
// start and end.
// If the ray hit itself get stored in dRayIs
forAll(hitInfo, rayI)
{

if (!hitInfo[rayI].hit())
{

rayStartFace.append(startIndex[rayI]);
}

}

...

}

The surfacesMesh.findLine(start, end, hitInfo) function determines, for every start
and end point pair, whether or not the line going from the start point to the end
point ever intersects the mesh, and stores that information in hitInfo. In the forAll
loop that follows, every face that has an unblocked path towards the sun is stored in
rayStartFace. These faces are transferred to the public list rayStartFaces_, which can
be accessed by solarLoad.C.

updateDirectHitRadiation()

This sub-function calculates the heat flux contribution from direct solar exposure.

bool Foam::radiation::solarLoad::updateDirectHitRadiation()
{

...

const vector qPrim =
solarCalc_.directSolarRad()*solarCalc_.direction();

const vectorField& n = pp.faceNormals();

{
qprimaryBf[patchID][localFaceI] +=

(qPrim & n[localFaceI])
* spectralDistribution_[bandI]
* absorptivity_[patchID][bandI]()[localFaceI];

}

if (includeMappedPatchBasePatches[patchID])
{

qrBf[patchID][localFaceI] += qprimaryBf[patchID][localFaceI];
}
else
{

const vectorField& sf = mesh_.Sf().boundaryField()[patchID];
const label cellI = pp.faceCells()[localFaceI];

6.1. solarLoad 31

Ru_[cellI] +=
(qPrim & sf[localFaceI])

* spectralDistribution_[bandI]
* absorptivity_[patchID][bandI]()[localFaceI]
/ V[cellI];

}

The solarCaculator class is first used to calculate the current solar intensity and sun-
light direction vector. The vector qPrim is defined to have the same direction as the
sun and the same magnitude as the solar intensity (directSolarRad()). Then, for each
frequency band, each face of each patch gets added to it a heat flux value (qprima-
ryBf), equal to the dot product between the sun and the face normal, multiplied by
the normalized spectral distribution of that band, multiplied by the absorptivity of
that face for that band. The dot product factor is used in order to account for the
angular visibility of the face.

The calculated flux is then added either to the qr_ variable (which qrBf references)
or to the energy equation of the cells next to the walls, depending on settings set in
the case files.

updateSkyDiffusiveRadiation()

This sub-function calculates the sky diffusive radiation contribution, which repre-
sents the radiation absorbed by the atmosphere and ground and then re-emitted in
a diffuse manner throughout the mesh.

It is calculated differently depending on the solar model used.

void Foam::radiation::solarLoad::updateSkyDiffusiveRadiation
(

const labelHashSet& includePatches,
const labelHashSet& includeMappedPatchBasePatches

)
{

const polyBoundaryMesh& patches = mesh_.boundaryMesh();
const scalarField& V = mesh_.V();
volScalarField::Boundary& qrBf = qr_.boundaryFieldRef();

switch(solarCalc_.sunLoadModel())
{

case solarCalculator::mSunLoadFairWeatherConditions:
case solarCalculator::mSunLoadTheoreticalMaximum:
{

for (const label patchID : includePatches)
{

const polyPatch& pp = patches[patchID];
const scalarField& sf = mesh_.magSf().boundaryField()[patchID];

const vectorField n = pp.faceNormals();
const labelList& cellIds = pp.faceCells();

forAll(n, faceI)

32 Chapter 6. Radiation models in OpenFOAM

{
const scalar cosEpsilon(verticalDir_ & -n[faceI]);

scalar Ed(0.0);
scalar Er(0.0);
const scalar cosTheta(solarCalc_.direction() & -n[faceI]);

{
// Above the horizon
if (cosEpsilon == 0.0)
{

// Vertical walls
scalar Y(0);

if (cosTheta > -0.2)
{

Y = 0.55+0.437*cosTheta + 0.313*sqr(cosTheta);
}
else
{

Y = 0.45;
}
Ed = solarCalc_.C()*Y*solarCalc_.directSolarRad();

}
else
{

//Other than vertical walls
Ed =

solarCalc_.C()
* solarCalc_.directSolarRad()
* (1.0 + cosEpsilon)/2.0;

}

// Ground reflected
Er =

solarCalc_.directSolarRad()
* (solarCalc_.C() + Foam::sin(solarCalc_.beta()))
* solarCalc_.groundReflectivity()
* (1.0 - cosEpsilon)/2.0;

}

const label cellI = cellIds[faceI];
if (includeMappedPatchBasePatches[patchID])
{

for (label bandI = 0; bandI < nBands_; bandI++)
{

qrBf[patchID][faceI] +=
(Ed + Er)

* spectralDistribution_[bandI]
* absorptivity_[patchID][bandI]()[faceI];

}

6.1. solarLoad 33

}
else
{

for (label bandI = 0; bandI < nBands_; bandI++)
{

Ru_[cellI] +=
(Ed + Er)

* spectralDistribution_[bandI]
* absorptivity_[patchID][bandI]()[faceI]
* sf[faceI]/V[cellI];

}
}

}
}

}
break;

}

For the mSunLoadFairWeatherConditions and mSunLoadTheoreticalMaximum mod-
els, the model creates a cosEpsilon value for each face, being the dot product between
the reversed face normal and the vector pointing towards the earth’s core (in almost
every case, the normalized g vector). Since both the reversed normal vector and the
downwards pointing vector are normalized, the dot product will be equal to the co-
sine of the angle between them. This means that a face on the floor, whose reversed
normal vector points downwards, will get the cosEpsilon value of cos(0) = 1. A verti-
cal wall face, whose normal (and reverse normal) will always be at a 90 degree angle
from the g vector, giving the face a cosEpsilon value of cos(90) = 0. Non-orthogonal
faces will have a value inbetween 0 and 1. An exception to this are faces with a nor-
mal vector with a downwards facing component, which have a cosEpsilon value of
[-1, 0).

Each face then is then assigned an Ed and an Er value, which each represents the dif-
fusive radiance contribution from the sky and ground respectively. Their equations
both feature a view factor. For sky diffusivity it equals (1.0 - cosEpsilon)/2.0 and for
ground diffusivity it equals (1.0 - cosEpsilon)/2.0. They both range from 0 to 1, and
add up to 1 for any one face. They can be seen as angle-dependent weights for a face.
A face on the floor will have a ground diffusivity wieght of 0 and a sky diffusivity
of 1, since it can only see the sky and not the ground.

Vertical faces get special treatment. Faces where cosTheta > -0.2, i.e. where the nor-
mal vector points somewhat away from the sun, i.e. significantly shaded faces, are
assigned a sky diffusive weight of 0.55+0.437*cosTheta + 0.313*sqr(cosTheta). Verti-
cal faces somewhat pointing towards the sun are assigned a sky diffusive wieght of
0.45, slightly lower than the 0.5 they would have been assigned by the (1.0 + cosEp-
silon)/2.0 function.

The diffusive radiation intensities for sky and ground diffusion are determined by
the diffusive constant C, the solar intensity directSolarRad and the groundReflectiv-
ity, all defined at run-time in the solarLoadCoeffs dictionary.

The mSunLoadConstant model has a much simpler calculation:

case solarCalculator::mSunLoadConstant:
{

34 Chapter 6. Radiation models in OpenFOAM

...

{
for (label bandI = 0; bandI < nBands_; bandI++)
{

qrBf[patchID][faceI] +=
solarCalc_.diffuseSolarRad()

* spectralDistribution_[bandI]
* absorptivity_[patchID][bandI]()[faceI];

}
}
else
{

for (label bandI = 0; bandI < nBands_; bandI++)
{

Ru_[cellI] +=
(

spectralDistribution_[bandI]
* absorptivity_[patchID][bandI]()[faceI]
* solarCalc_.diffuseSolarRad()

)*sf[faceI]/V[cellI];
}

}

...

}
}

}

Here, the user-defined diffusive solar irradiation intensity (diffuseSolarRad) is sim-
ply added on to walls directly in a uniform manner. The calculation is the same as
in the updateDirectHitRadiation function, except there is no reduction of absorption
based on the angle of exposure.

updateReflectedRays()

This sub-function calculates specular reflection with a depth of 1 bounce. It does so
in a manner similar to that of FvDOM, where only a discrete number of angles are
available. Each time a bounce direction is calculated it selects the discrete angle that
is as close to it as possible, and this becomes its actual direction.

void Foam::radiation::solarLoad::updateReflectedRays
(

const labelHashSet& includePatches
)
{

...

reflectedFaces_->correct();

6.1. solarLoad 35

...

reflectedFaces is an instance of the faceReflecting class, defined in faceReflecting.C.

void Foam::faceShading::correct()
{

calculate();
}

void Foam::faceReflecting::correct()
{

calculate();
}

void Foam::faceReflecting::calculate()
{

...

vector refDir =
sunDir + 2.0*(-sunDir & n[faceI]) * n[faceI];

// Look for the discrete direction
scalar dev(-GREAT);
label rayIndex = -1;
forAll(refDiscAngles_, iDisc)

forAll(refDiscAngles_, iDisc)
{

scalar dotProd = refDir & refDiscAngles_[iDisc];
if (dev < dotProd)
{

dev = dotProd;
rayIndex = iDisc;

}
}

if (rayIndex >= 0)
{

if (refDisDirsIndex[rayIndex] == -1)
{

refDisDirsIndex[rayIndex] = 1;
}

}

refFacesDirIndex.insert
(

globalNumbering.toGlobal(globalID),
rayIndex

);

...

36 Chapter 6. Radiation models in OpenFOAM

Here refDir is calculated as the exact reflection angle off the face. In the following
forAll loop, each available discrete angle is read and compared to refDir. The angle
whose dot product with refDir is the largest is stored as rayIndex.

Since cos(x) gets larger as x approaches 0, the discrete angle with the largest dot
product will also have the smallest angle in reference to refDir. rayIndex, i.e. the
chosen angle, is then stored in refFacesDirIndex together its global ID.

...

scalar maxBounding = 5.0*mag(mesh_.bounds().max() - mesh_.bounds().min());

...

forAll(refDisDirsIndex, dirIndex)
{

if (refDisDirsIndex[dirIndex] > -1)
{

if ((nf & refDiscAngles_[dirIndex]) > 0)
{

const vector direction = -refDiscAngles_[dirIndex];

start.append(fc + 0.001*direction);

startIndex.append(myFaceId);
dirStartIndex.append(dirIndex);

end.append(fc + maxBounding*direction);
}

}
}

}

}while (returnReduce(i < Cfs_->size(), orOp<bool>()));

List<pointIndexHit> hitInfo(startIndex.size());

surfacesMesh_->findLine(start, end, hitInfo);

...

Here the faces hit by the reflected rays are determined in a similar way they were in
updateDirectHits(), except here hitInfo is not used to find the lines without intersec-
tions, but is instead used to find the faces it intersects with.

6.1.1 solarCalculator

The solarCalculator class keeps track of the sun direction and solar intensity. There
are two models for direction and three for intensity. Direction is calculated in the

6.1. solarLoad 37

calculateSundirection function, which uses the beta and theta angle variables, which
are the sun angle above the horizon and the sun’s cardinal angle in relation to the
southern direction, respectively. These are calculated in the calculateBetaTheta func-
tion. The models for sun direction are:

sunDirConstant

Sun direction is set in the dictionary with the sunDirection entry.

sunDirTracking

Beta and theta are calculated from the following parameters:

• localStandardMeridian : GMT (Local Zone Meridian) in hours

• startDay : day from 1 to 365)

• startTime: in hours

• longitude: in degrees

• latitude: in degrees

• gridUp: grid orientation upwards

• gridEast grid orientation eastwards

The parameters are specified in the solarLoadCoeffs dictionary in the constant/radiationProperties
file.

As for intensity, the available models are:

sunLoadConstant

Solar intensity is set in the dictionary entries directSolarRad and diffuseSolarRad.

sunLoadFairWeatherConditions

The solar intensity follows the Fair Weather Conditions Method from the ASHRAE
Handbook(Heating and Engineers, 2017). The entries are:

• skyCloudCoverFraction: Fraction of sky covered by clouds (0-1)

• A: Apparent solar irradiation at air mass m = 0

• B: Atmospheric extinction coefficient

• beta: Solar altitude (in degrees) above the horizontal plane. Is either entered or
calculated

• groundReflectivity : Ground reflectivity

The direct solar flux is calculated as:

directSolarRad = (1− 0.75 ∗ skyCloudCoverFraction3) ∗ A
exp(B/sin(beta))

38 Chapter 6. Radiation models in OpenFOAM

sunLoadTheoreticalMaximum

The solar intensity is the same as for sunlight falling at a 0 degree angle with no
cloud cover.

The entries are (as taken from the source code comments):

• Setrn

• SunPrime

• roundReflectivity

In this model the flux is calculated as: directSolarRad = Setrn*SunPrime

Sky diffusivity is calculated in the same way as in sunLoadFairWeatherConditions.

39

Chapter 7

Methodology

The built-in OF solver that comes the closest to including all of the functionality re-
quired by our project is the rhoReactingBuoyantFoam solver. It includes compress-
ibility, chemical reactions and buoyancy. Radiation is not included in this solver, so
this needed to be added by modifying rhoReactingBuoyantFoam and saving it as a
new solver. This was done by adding the lines

+ radiation->Sh(thermo, he)

and

radiation->correct();

to the EEqn.H file,

#include "createRadiationModel.H"

to the createFields.H file and

#include "radiationModel.H"

to the rhoReactingBuoyantFoam.C file in the rhoReactingBuoyantFoam folder.

7.1 Implementing the Photolytic Solver

J field calculation couldn’t be implemented only by changing solver scripts. It had to
be implemented in the OF source code library. Most of the implementation was done
in the src/thermophysicalModels/radiation/radiationModels/solarLoad/faceShading/faceShading.C
file.

In tandem with this, a solution had to be implemented to account for the fact that
the standard solar radiation model did not account for cyclic boundary conditions.
Cyclic boundaries are used to "transport" field values from one side of the mesh to
another, commonly used for setups with long repeating patterns, like pipe flows.
It is used in our simulation in order to, at least partially, account for the surround-
ings of the street canyon in question, in practice simulating what is equivalent to
an infinite number of parallel infinitely long street canyons. However, the solar rays
of the solar radiation model we were working with was not detected by the cyclic
boundary conditions, which means that rays that were supposed to be blocked by
the surrounding simulated environment were not blocked.

Below is a 2D example of how the unmodified solver calculates which boundary
faces are hit by the sun:

40 Chapter 7. Methodology

FIGURE 7.1: Ray A travels right through a cyclic boundary, as it is
has an opacity of 0, and is considered unblocked. Ray B is blocked as

normal.

In this case, ray B is blocked, as it should be. However, ray A goes through the cyclic
boundary and therefore successfully "escapes" the mesh without being blocked. A
more accurate model would look like this:

FIGURE 7.2: Ray A hits a cyclic boundary. A new identical ray is then
projected from the same face on the opposite side of the mesh, which
is then blocked. The face A was projected from is now considered to

be shaded. Ray B is blocked as normal

Here, ray A is transferred through the cyclic boundary to the opposite side, where it
continues its path until it is blocked. The boundary from which ray A was projected
is now considered to be in the shade.

As explained in 5, the original face shading model calls on the faceShading::calculate()
function to define a start array and an end array and fills them with start- and end
points for tracing a ray from each face to a point outside the mesh in the sun’s di-
rection. Each face with a ray that intersects the boundary mesh gets categorized as
being in the shadow. The searchableSurface::findline() function is the function used

7.1. Implementing the Photolytic Solver 41

to find which rays intersect the boundary mesh and which ones do not. Here it is
shown once again for reference:

forAll(n, faceI)
{

const vector nf(n[faceI]);
if (((direction_ & nf) > 0) && (t[faceI] == 0.0))
{

dynFacesI.append(faceI + pp.start());
dynCf.append(cf[faceI]);
nFaces++;

}
}

...

for (; i < Cfs.size(); i++)
{

const point& fc = Cfs[i];

const label myFaceId = hitFacesIds[i];

const vector d(direction_*maxBounding);

start.append(fc - 0.001*d);

startIndex.append(myFaceId);

end.append(fc - d);

}

...

forAll(hitInfo, rayI)
{

if (!hitInfo[rayI].hit())
{

rayStartFace.append(startIndex[rayI]);
}

}

It was changed so that when a ray projected from a face facing the sun intersects the
mesh, the face intersecting the ray is evaluated. If it belongs to an opaque bound-
ary, the ray continues travelling but is considered to be shaded, and its last mesh
intersection is stored. If it belongs to a cyclic boundary the ray stops and a new
corresponding ray is projected starting from the corresponding face of the opposite
cyclic patch. This is done iteratively for each ray, stopping when a ray segment es-
capes the mesh without intersecting with any boundary face, signifying the ray has
"escaped" into the atmosphere. The ray path, with all its cyclic segments, is stored,
where its end point is set as its last opaque face intersection. All the ray paths that
never intersected an opaque face are considered unblocked and discarded.

42 Chapter 7. Methodology

It is demonstrated in the following figure:

FIGURE 7.3: A ray is projected from a face in the bottom boundary of
the mesh, hits a cyclic boundary, gets transported to the other side of
the mesh, hits an opaque face, hits a cyclic boundary again, gets trans-

ported to the other side of the mesh, and finally escapes the mesh.

Here, the ray hits a cyclic boundary twice during its lifetime, creating 2 new seg-
ments of the same ray for a total of 3 segments. In the second segment, an opaque
face is hit (belonging to the block in the center). The point of intersection with the
opaque face is stored as a "shadow end point", marked by a red dot.

In the case of multiple opaque intersections in multiple segments, the last intersec-
tion of the last of those segments is used. In 7.4, the second intersection of the second
segment is chosen as the shadow end point, marked by a red dot, and the other in-
tersections are discarded.

For each segment up until the one with the shadow end point, we store their start
and end points. For the segment with the shadow end point, we store the shadow
end point instead of its previous end point. These start and end points are then used
to project "shadow rays", one for each segment of each ray (except those that never
hit an opaque boundary face). Unlike the previous algorithm where we only stored
the rays’ intersection with the boundary mesh, here we store each intersection with
the internal field, that is, the fluid area. Each internal field face that is intersected
by these shadow rays is set as a shaded face. For each shaded face, both of its corre-
sponding cells are set as shaded cells. The complement of these cells are stored in the
list "sunCells". In this way, we know which parts of the fluid are exposed to sunlight
and which ones are not.

When the J field is updated during runtime, only the J field indices in sunCells are
updated, meaning only the cells exposed to the sun have their J value updated with
a non-zero value. This is done in the updateJField() function of solarLoad.C:

void Foam::radiation::solarLoad::updateJField(const labelHashSet& litCellsId)

7.1. Implementing the Photolytic Solver 43

FIGURE 7.4: Identical to 7.3, except that the ray travels through mul-
tiple opaque faces. The last opaque face hit is set as a shadow end
point, and a shadow ray is projected from the starting point to the

shadow end point.

{

for (label bandI = 0; bandI < nBands_; bandI++)
{

for (const label cellI : litCellsId)
{

J_[cellI] +=
(solarCalc_.directSolarRad()/solarCalc_.A())

* spectralDistribution_[bandI]
* photoFactors_[bandI];

}
}

}

The J value acts as a weight between 0 and 1, where 0 is no solar exposure and 1 is
solar exposure at air mass = 0, that is, the solar exposure at the top of the atmosphere.
photoFactors is a weight vector describing the photolytic effect of each frequency so-
lar band. In general high frequency bands (approaching or in the UV spectral range)
should be assigned higher values.

Since J is a new field not previously existing in OpenFOAM, there are no available
reactions that use J when calculating their reaction rates. Because of this, a new pho-
tolysisRate class had to be implemented, and the existing chemistry models needed
to be modified in order to be able to utilize this reaction rate. The reaction rate is set
as the J weight value multiplied by equation 3.6.

The module currently does not account for reflective or diffusive radiation when
calculating the J field.

44 Chapter 7. Methodology

7.2 Simulation Setup

The simulations employed a mesh with a width of 14.2m and a height of 75m, with
the canyon width being half the mesh width (7.2m) and the canyon height being a
fifth of the mesh height (15m). Cyclic boundaries were set at the x-wise and y-wise
boundaries, effectively making the mesh equivalent to that of an infinite number of
infinitely long parallel canyons.

A non-uniform grading was used, with the highest mesh resolution at the ground
and along the vertical walls, and with resolution rapidly decreasing along the z di-
rection. The mesh employed a total of 1 048 576 cells.

The air above the canyon was set to have a constant wind with a direction perpen-
dicular to that of the street’s orientation with a velocity of 2.71 m/s, a temperature
of 293K and an O3 background concentration of 4.5 ∗ 10−8. NO2, NO and were also
emitted from the bottom boundary of the mesh, both with a rate of 6.2 ∗ 10−6s−1

respectively.

FIGURE 7.5: Simulation setup

The timestep was set to a base of 3.5e−3 seconds with a courant number max limit of
3.

Tominaga et al. (Tominaga and Stathopoulos, 2011) showed that for street canyon
simulations that include buoyant effects, LES turbulence models show a greater cor-
respondence to experimental data compared to RANS models. For this simulation
we used the kEqn Les model.

The solarLoad model was utilized to calculate solar radiation. The standalone model
was used, i.e. it was not combined with the viewFactor or FvDOM radiation models.
The geographic location and polar orientation of the canyon was set according to the
experimental studies performed by Offerle (Offerle et al., 2007), with the coordinates
set to those of the Swedish city Gothenburg, and with the positive y direction point-
ing North, with a 10◦ tilt toward the east. The time of day in the simulation is set to
10 A.M., which gives a solar vector of approximately [-0.65 0.38 -0.65] and runs for
about 20 minutes. The A parameter, which represents the apparent solar irradiation
at air mass = 0 was set to 45. How this value was arrived at is further discussed in 8.

7.2. Simulation Setup 45

FIGURE 7.6: Mesh grid. Resolution has been lowered globally for bet-
ter viewing.

The absorptivity and emissivity of all boundaries were set to 0.7. Specular reflection
was turned off, as the surfaces of urban houses are mostly diffusive.

The building roof and wall boundary condition, as well as the ground’s boundary
condition, were set as the externalWallHeatFluxTemperature type. This boundary
condition specifies an ambient temperature and thermal conductivity for a patch. It
has the following parameters:

46 Chapter 7. Methodology

FIGURE 7.7: Coefficients for the externalWallHeatFluxTemperature
boundary condition. Source: Boundary Conditions - OpenFOAM 4.1,

NEXTFOAM

The heat flux q is calculated depending on the mode of the boundary conditions. If
mode is set to flux, it is supplied by the user using the q parameter. If mode is set to
coefficient, it is calculated with the following equation:

q = (Ta_− Tp) ∗ (1.0/h_ + totalSolidRes) (7.1)

Where Tp is the temperature of the outside cell, and totalSolidRes can be interpreted
as the wall’s thermal resistance, determined by the thicknessLayers and kappaLay-
ers coefficients. This boundary condition therefore regulates the temperature of the
wall to converge towards the specified ambient temperature Ta, with a convergence
speed depending on the thermal conductivity h and the thickness/conductivity lay-
ers of the wall (NEXTFOAM, 2017). We set Ta_ to 283K and modelled thickness
layers and thermal conductivity according to typical building walls in Gothenburg,
Sweden. How Ta_ was decided will be further discussed in Chapter 8.

The simulations were run without reactions for an initial 1 000 seconds in order to
minimize the effect of transient flow.

Four simulations were performed in total:

• No-sun: A simulation without photolytic reaction. Solar thermal effects are still
included.

• Global-sun: A simulation where the whole domain is considered exposed to
sunlight. Similar to the setup of Liu et al. (Liu et al., 2021).

• Partial-sun: A simulation utilizing the implemented J field solver. Photolytic
breakdown occurs only in areas exposed to the sun, i.e. with J > 0.

• Strong-sun: Same as Partial sun but with the photolytic increased 1000-fold.
Thermal effects are unchanged.

The simulations were run for a total of 500 seconds each.

7.3. Resources 47

7.3 Resources

Computers at the Department of Energy Sciences were supplied for the project. For
cases which require high computational power, resources provided by the Swedish
National Infrastructure for Computing (SNIC) at PDC (Beskow) were used. Open-
FOAM and external libraries used are open source and freely available on the web.
For the duration of the project an office desk and computer were supplied for the
student at the K faculty building at LTH.

49

Chapter 8

Results

8.1 Validation

8.1.1 Cyclic boundary algorithm

The cyclic boundary algorithm was validated using the mesh from the ExternalSo-
larLoad OpenFOAM tutorial case mesh.

Geographical coordinates were set to that of Tokyo, Japan. Time of year was set to
the 1st of January and the time of day was set to 8 A.M.. Below is a comparison of
the solar heat flux field qr with the standard solarLoad library and the implemented
cyclic boundary solarLoad library.

qr field in case without cyclic boundaries,
calculated using the standard solarLoad library

qr field in case with cyclic boundaries,
calculated using the modified solarLoad library

8.1.2 J field solver

The J field solver was validated using the same mesh as the cyclic boundary algo-
rithm. Configurations with different geographical locations, times of year and times
of day were tested and validated. Below are the results for the settings previously
used. The results for all configurations tested can be found in Appendix A.

50 Chapter 8. Results

qr field for Tokyo, Japan, January 1st, 8 A.M. J field for Tokyo, Japan, January 1st, 8 A.M.

Applied on a 1:1 street canyon:

Solar heat flux field, unmodified solver Solar heat flux field, cyclic boundary algorithm active

Inverse J field (J = 0), cyclic boundary algorithm inactive Inverse J field (J = 0), cyclic boundary algorithm active

The module does however perform worse when used on finer meshes, and meshes
with a non-round width-to-height ratio (like a 15x16 mesh). This mesh is very fine,
with a width/height ratio of 14.2/15 = 0.946667 and over a million cells, and so
errors can be found at the sides of mesh (figure 8.5). The total volume of these areas
is however quite small, and so their effect on the simulation is possibly negligible.
Further research, or an improved module, is required.

8.1. Validation 51

FIGURE 8.5: J field error areas in main mesh

8.1.3 Photolytic reaction rate

The J dependent reaction rate and the corresponding chemistry model were vali-
dated using a custom testing case. In the center of the urban street canyon mesh
used in the main simulation of this thesis, in the initial timestep of 0, a column of
air was set to have an initial NO2 concentration of 4 ∗ 10−7. Wind velocity was set
globally to 0, and all reactions except reaction 3.3 were disabled. The same solar ra-
diation parameters were set as in the main simulation, i.e. the location was set to
Gothenburg, Sweden, and the time of day was set to 10 AM. The results can be seen
in figure 8.6.

FIGURE 8.6: Influence of J field on NO2 -> NO + O reaction rate

The impact of photolytic breakdown in relation to the other reactions included in
our chemistry model was briefly tested using the chemFoam solver in OpenFOAM.

52 Chapter 8. Results

This is a specialized solver that solves the chemical interactions of a single cell.

For initial conditions we set the temperature to 293K, pressure to 1 bar, J value to
0.8 (representing a time of day of around 10 AM), NO concentration to 4 ∗ 10−7, NO2
concentration to 1∗ 10−7 and O3 concentration to 4∗ 10−8. We then let chemFoam run
for 1 000 seconds once without photolytic effect, once with photolytic effect and once
with x1000 photolytic effect. The resulting mass fractions of the different compounds
can be seen in the following table:

Chemical mass fractions after 1000s

Solar multiplier NO NO2 O3

0 3.73 ∗ 10−7 2.23 ∗ 10−7 7.31 ∗ 10−70

1 3.80 ∗ 10−7 2.13 ∗ 10−7 9.56−9

1000 5.14 ∗ 10−7 6.52 ∗ 10−9 2.25 ∗ 10−7

We see from these results that in the absence of sunlight, O3 becomes the limiting
factor for NO2 production, and also that the effect of normal sunlight is not a domi-
nant factor for NO2 concentration levels, but a dominant factor for O3 concentration
levels.

8.1.4 Thermal parameter calibration

When performing our first test simulations using an A value of 1360 W/m2 and
setting our wall Ta_ coefficients to that of room temperature (294K), we were getting
temperature values much higher than what was physically possible. We therefore
performed parallel experimental simulations with different boundary conditions,
A, and Ta_ values in order to calibrate our case as to better match the experimental
data available. After multiple rounds of simulations, the final values were set as A
= 45 and Ta_ = 283. This is a potential cause for errors and will be further discussed
in chapter 9. The temperature plot for our final temperature simulation can be seen
in Figure 8.7. The plots for the remaining simulations from the last round of testing
can be found in Appendix B.

8.1. Validation 53

FIGURE 8.7: Temperature graphs over time for the final configuration
used in our simulations. A = 45, Ta_ = 283. Experimental data taken

from Offerle et al. (Offerle et al., 2007)

More preferable would be a model including radiative heat loss from the bound-
aries. This could be done by combining the solarLoad model with the viewFactor or

54 Chapter 8. Results

FvDOM models.

8.2 Simulation results

Levels of NO, NO2 and O3 were measured at six points: four on the sidewalk, half
a meter from the wall, at a height of 1.6m — meant to emulate pedestrian exposure,
one in the middle of the canyon at 10 meters height, and one in the sky at 20 meters
height. A spatial average of an area around each point was measured, working as a
low-pass filter. The results are shown in the figures below:

8.2. Simulation results 55

56 Chapter 8. Results

No statistically significant difference between NO concentration levels of the first
three sun models can be observed after 500s. The no-sun and no-sun models have
similar levels of NO2 throughout the whole simulation time, while the no-sun model
has significantly higher values. However, when it comes to O3 levels, the no-sun
and no-sun models have a much stronger correlation than the no-sun model, which
has O3 levels significantly higher than the other models (with the exception of sky
values, where levels are heavily regulated by the source ozone). O3 levels in the no-
sun model are generally unstable, possibly due to the highly contrasting O3 levels in
the shaded area compared to the sunlit area, making convection play a bigger role
than in the other models.

The significantly higher no-sun NO2 values can be explained by NO2 having no
proper outlet. Since there is no sink that consumes NO2, values will keep increasing
linearly. The presence of sun, whether it be partial or global, is enough to make the
trend logarithmic rather than linear. This might be the reason as to why the differ-
ence between no-sun and no-sun is bigger than the difference between no-sun and
no-sun.

When it comes to O3 levels, the no-sun model stands out due to there being no O3
source at ground level. For the no-sun and no-sun models, O3 can only reach the
bottom of the canyon through convection, which as can be seen in the graphs repre-
senting street O3 levels, has a very low impact. Even the no-sun model, which has
very high amounts of O3 levels in the sky, still has low O3 levels at ground level (on
the leeward side). This means that O3 generated through local photolysis is domi-
nant, hence why the no-sun model has the most ground level ozone.

The distribution of gases can be see more clearly in the following simulation snap-
shots, taken after 80s:

8.2. Simulation results 57

Here we can see the general mixing process of a typical urban street canyon: NO is
produced by vehicles in the bottom of the canyon, which is then transported by the
main vortex of the canyon into the sky, where it mixes with ozone through reaction
3.3, becoming NO2, after which it is transported back into the canyon by the main
vortex. Photolytic effects seem to somewhat mitigate sky NO2 levels, but are not
a dominating factor. In the no-sun simulation, photolysis (reaction 3.3) very clearly
dominates reaction 3.2, confirming that the two reactions are in contention with each
other.

NOx levels are higher at ground level than in the middle of the canyon. This is likely
due to being closer to the source, where turbulent forces help move NO and NO2
toward the windward side of the street.

The NO figure resembles an inverted version of the NO2 and O3 figures. This is due
to the relatively high reaction rate of reaction 3.3, leading to a rapid conversion of

58 Chapter 8. Results

NO and O3 to NO2 in areas where they coincide. The reason NO and NO2 tend to not
exist in the same areas is that the main source of NO2, reaction 3.3, consumes NO.
The bottom of the canyon is somewhat of an exception to these rules, as a higher
ratio of NO and NO2 emanate from external sources and are not created by chemical
reactions.

Despite the depth of the canyon (aspect ratio > 2), NO2 produced from interacting
with above-canyon ozone is still able to travel along the leeward wall and reach the
bottom of the canyon. NO and NO2 are also, to a certain degree, transported by the
vortex along the leeward wall into the sky.

Ozone levels are largely determined by sunlight exposure, confirming the results
we obtained in the chemFoam simulations. The source of O3, in most urban settings,
comes from an outside source, but the no-sun simulation shows that with strong
sunlight, ozone production from reactions 3.3 and 3.4 becomes dominant.

The effect of partial sunlight can be seen more clearly when tuning the scale:

This makes it clear that moderate sunlight also has an effect on the chemistry, and
that local sun variation plays a role, albeit seemingly a minor one.

The following are canyon snapshots from the last timestep of the simulation (500s):

8.2. Simulation results 59

Because of the higher concentration variance between different models compared to
the snapshots at 80s, the color range was individually set for each model, meaning
that the images represent only the relative concentration distribution within each
model. Therefore one must be wary to not make direct visual comparisons between
snapshots of different models when looking at this set of images.

Here we can see that relative distributions roughly remain the same after a longer
period of time, although overall pollutant concentration levels are higher due to
the vehicular NOx source having been active for a longer duration. An exception
to this is the no-sun model, where NO2 levels are now higher in the canyon than
in the sky. The reason for this is unknown. A gradual shift of concentrations where
in-canyon NO2 levels start surpassing sky NO2 levels can be observed at around
the 300s mark of the simulation. It is caused by the no-sun model having lower sky
concentration levels. The cause of this cannot be determined at the moment. More
research is required in order to determine if this trend is reproducible or not.

We can also observe the concentration levels averaged over the full 500 seconds of
the simulation:

60 Chapter 8. Results

These images support the conclusions drawn previously. NO2 levels are at their
highest at the bottom of the canyon close to the source, NO2 and O3 enter the canyon
through the leeward wall, and NO2 and O3 levels are locally affected by sunlight

61

Chapter 9

Conclusion

Four simulations were set up, measuring NOx and O3 dispersion in an urban street
canyon measuring 7.2x15m. Each of the four simulations utilized different models
representing the photolysis-triggered reaction NO2 -> NO + O. The no-sun simula-
tion was without photolysis, the global-sun simulation applied photolytic reaction
to the entire domain, the partial-sun simulation applied photolytic reaction only to
areas of the domain exposed to the sun, and the strong-sun simulation applied pho-
tolytic reaction to areas exposed to the sun with a 1000-fold increased intensity rate.
In order to perform the partial-sun and strong-sun simulations, a new CFD library
was developed to calculate parts of the internal field of the domain exposed to the
sun.

For all simulations, NOx levels were the highest at the bottom of the canyon, near
the source. For all simulations except the strong-sun simulation, photolytic effects
were dominated by the reaction NO + O3 -> NO2 + O, making an area’s prevalence
of ozone a bigger factor for NO2 levels than solar exposure. Ozone-rich air reaching
the bottom of the canyon through the windward wall is therefore a major contributor
to pedestrian and resident NO2 exposure.

Since photolytic effects were subtle in the simulation, it was beneficial to exclude
VOCs from our chemistry model, as including them would have made post-processing
and module validation more complex.

The simulations showed significant discrepancies in NO2 levels between the partial-
sun and no-sun models, and also showed significant discrepancies in O3 levels be-
tween the partial-sun and global-sun models, while showing no other statistically
significant discrepancies between the models (except for the strong-sun model, which
is already assumed to be an outlier).

Assuming that the partial-sun model is the most accurate one (given it has the high-
est complexity of the models and reflects real-world conditions), this tells us that for
future studies regarding only NO and/or NO2 levels, a global-sun model might be
sufficient, while for studies regarding only NO and/or O3 levels, the no-sun model
might be sufficient. For research analyzing the levels of both pollutants simultane-
ously, however, a model using partial sunlight, as developed in this thesis, might be
required for accurate results, as shown in this paper.

For such studies, until the solar module implemented in this thesis is ready for com-
mercial use, our recommendation for the near future for research including the anal-
ysis of both of these pollutants is to only apply photolytic breakdown of NO2 above
the canyon, using a simple horizontal cut-off method. Since convection has been

62 Chapter 9. Conclusion

shown in this study to be of minor significance, this should give fairly accurate re-
sults as long as you don’t make measurements within an area that has sun/shadow
wrongly applied to it. When the solar module has been properly integrated into the
OpenFOAM framework, our recommendation is to apply it every such simulation
instead of using fixed cut-off methods for solar modeling.

For future work, the following areas should be looked into further:

• Several studies having shown them to be significant, an LES simulation uti-
lizing a chemistry model including VOC reactants would be beneficial for the
accuracy of the simulation results.

• The J field module developed in tandem with this paper was not fully utilized.
Only one time of day was simulated, with a limited runtime of 500 seconds,
which is not enough to fully explore the effects of the sun moving over time,
which is included in the implemented module. The potential for further re-
search exploring the impact of photolytic effects at different times of day with
longer run times should therefore be looked into.

• The module is also not ready for commercial use. There are still errors to be
addressed and modifications to be made in the code to make it better adapted
to the existing OpenFOAM framework. This may be developed in the future.

• The strong temperature errors given by test simulations using standard A val-
ues for the OpenFOAM solarLoad radation model should be further investi-
gated. After calibrating the A value to match the temperature of experimental
data, the W/m2 values reaching the surface of our mesh were much lower than
those observed in experimental studies. Most likely there is an error in the con-
version from radiative energy to temperature, either in the solarLoad library
or in our boundary conditions. A model including radiative heat loss into the
atmosphere should be tested on this case, as that would give more accurate
temperature values for the simulations.

• The J field solver should be further developed so as to also work with reflec-
tive rays and with the FvDOM/view factor radiation models. A more realistic
model of radiative heat loss in the mesh would aid greatly in getting simula-
tion temperature levels to coincide better with experimental data.

• More complex geometries should be explored, including obstacles and/or more
complex building structures. These simulations would be greatly augmented
by the J field module, as shaded areas for each obstacle and building could be
calculated in real-time.

63

Appendix A

Validation of cyclic J Field
solarLoad library

8 AM 1 PM 4 PM

qr field for Tokyo, Japan, January 1st. Scale is 0-80.

8 AM 1 PM 4 PM

Inverse J field (J=0) for Tokyo, Japan, January 1st

8 AM 1 PM 4 PM

qr field for Tokyo, Japan, July 1st. Scale is 0-160.

64 Appendix A. Validation of cyclic J Field solarLoad library

8 AM 1 PM 4 PM

Inverse J field (J=0) for Tokyo, Japan, July 1st

8 AM 1 PM 4 PM

qr field for Cape Town, South Africa, January 1st. Scale is 0-160.

8 AM 1 PM 4 PM

Inverse J field (J=0) for Cape Town, South Africa, January 1st

9 AM 1 PM 4 PM

qr field for Cape Town, South Africa, July 1st. Scale is 0-80.

Appendix A. Validation of cyclic J Field solarLoad library 65

9 AM 1 PM 4 PM

Inverse J field (J=0) for Cape Town, South Africa, July 1st

67

Appendix B

Simulations using different A and
Ta values vs. Experimental Data

68 Appendix B. Simulations using different A and Ta values vs. Experimental Data

Appendix B. Simulations using different A and Ta values vs. Experimental Data 69

70 Appendix B. Simulations using different A and Ta values vs. Experimental Data

Appendix B. Simulations using different A and Ta values vs. Experimental Data 71

72 Appendix B. Simulations using different A and Ta values vs. Experimental Data

Appendix B. Simulations using different A and Ta values vs. Experimental Data 73

74 Appendix B. Simulations using different A and Ta values vs. Experimental Data

75

Bibliography

A. Hay, William and Håkan Nilsson (2018). A low-Mach number solver for variable
density flows. http://dx.doi.org/10.17196/OS_CFD. Accessed: 2021-06-02.

Baker, Jacob, Helen Walker, and Xiaoming Cai (Dec. 2004). “A study of the disper-
sion and transport of reactive pollutants in and above street canyons - A large
eddy simulation”. In: Atmospheric Environment 38, pp. 6883–6892. DOI: 10.1016/
j.atmosenv.2004.08.051.

Bannon, Peter R. (1996). The Molecular Dynamics of Air. https://personal.ems.psu.
edu/~bannon/moledyn.html. Accessed: 2021-06-10.

Bohnenstengel, S. et al. (Nov. 2004). “Influence of thermal effects on street canyon
circulations”. In: Meteorologische Zeitschrift 13, pp. 381–386. DOI: 10.1127/0941-
2948/2004/0013-0381.

Cao, Jie et al. (Feb. 2011). “Association between long-term exposure to outdoor air
pollution and mortality in China: A cohort study”. In: Journal of hazardous materials
186, pp. 1594–600. DOI: 10.1016/j.jhazmat.2010.12.036.

Carpenter, L.J. et al. (1998). “Investigation and evaluation of the NOx/O3 photo-
chemical steady state”. In: Atmospheric Environment 32.19, pp. 3353–3365. ISSN:
1352-2310. DOI: https://doi.org/10.1016/S1352- 2310(97)00416- 0. URL:
https://www.sciencedirect.com/science/article/pii/S1352231097004160.

Directive 2008/50/EC. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=
CELEX:32008L0050. Accessed: 2021-05-30.

Grawe, David, Xiaoming Cai, and Roy Harrison (Nov. 2007). “Large eddy simula-
tion of shading effects on NO2 and O3 concentrations within an idealised street
canyon”. In: Atmospheric Environment 41, pp. 7304–7314. DOI: 10.1016/j.atmosenv.
2007.05.015.

Heating, Refrigerating American Society of and Air-Conditioning Engineers (2017).
2017 ASHRAE handbook. Fundamentals. Atlanta, GA : ASHRAE.

Jacob, Daniel J. (1999). Introduction to Atmospheric Chemistry. Accessed: 2021-05-30.
Kikumoto, Hideki and Ryozo Ooka (July 2012). “A study on air pollutant dispersion

with bimolecular reactions in urban street canyons using large-eddy simulations”.
In: Journal of Wind Engineering and Industrial Aerodynamics s 104–106, 516–522. DOI:
10.1016/j.jweia.2012.03.001.

Lippmann, H. H., Barbara Jesser, and Ulrich Schurath (1980). “The rate constant of
NO + O3 → NO2 + O2 in the temperature range of 283–443 K”. In: International
Journal of Chemical Kinetics 12.8, pp. 547–554. DOI: https://doi.org/10.1002/
kin.550120805. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
kin.550120805. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
kin.550120805.

Liu, Jiarui et al. (2021). “The influence of solar natural heating and NOx-O3 pho-
tochemistry on flow and reactive pollutant exposure in 2D street canyons”. In:
Science of The Total Environment 759, p. 143527. ISSN: 0048-9697. DOI: https://doi.
org/10.1016/j.scitotenv.2020.143527. URL: https://www.sciencedirect.
com/science/article/pii/S0048969720370583.

http://dx.doi.org/10.17196/OS_CFD
https://doi.org/10.1016/j.atmosenv.2004.08.051
https://doi.org/10.1016/j.atmosenv.2004.08.051
https://personal.ems.psu.edu/~bannon/moledyn.html
https://personal.ems.psu.edu/~bannon/moledyn.html
https://doi.org/10.1127/0941-2948/2004/0013-0381
https://doi.org/10.1127/0941-2948/2004/0013-0381
https://doi.org/10.1016/j.jhazmat.2010.12.036
https://doi.org/https://doi.org/10.1016/S1352-2310(97)00416-0
https://www.sciencedirect.com/science/article/pii/S1352231097004160
https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050
https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050
https://doi.org/10.1016/j.atmosenv.2007.05.015
https://doi.org/10.1016/j.atmosenv.2007.05.015
https://doi.org/10.1016/j.jweia.2012.03.001
https://doi.org/https://doi.org/10.1002/kin.550120805
https://doi.org/https://doi.org/10.1002/kin.550120805
https://onlinelibrary.wiley.com/doi/pdf/10.1002/kin.550120805
https://onlinelibrary.wiley.com/doi/pdf/10.1002/kin.550120805
https://onlinelibrary.wiley.com/doi/abs/10.1002/kin.550120805
https://onlinelibrary.wiley.com/doi/abs/10.1002/kin.550120805
https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.143527
https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.143527
https://www.sciencedirect.com/science/article/pii/S0048969720370583
https://www.sciencedirect.com/science/article/pii/S0048969720370583

76 Bibliography

Ming, Tingzhen et al. (Oct. 2020). “Field synergy analysis of pollutant dispersion in
street canyons and its optimization by adding wind catchers”. In: Building Simula-
tion, pp. 1–15. DOI: 10.1007/s12273-020-0720-4.

NEXTFOAM (2017). Boundary Conditions - OpenFOAM-4.1. https://www.google.
com / url ? sa = t & rct = j & q = &esrc = s & source = web & cd = &ved = 2ahUKEwi0q -
CWl5XxAhVysYsKHRAfDxsQFjAAegQIAhAD&url=http%3A%2F%2Fwww.nextfoam.co.
kr%2Flib%2Fdownload.php%3Fidx%3D135228%26sid%3D235c1d3fc28364657dbb43ccfe025b25&
usg=AOvVaw3HM8SNAUzUX7dRmNotaJpm. Accessed: 2021-06-13.

Offerle, B. et al. (Feb. 2007). “Surface heating in relation to air temperature, wind and
turbulence in an urban street canyon”. In: Boundary-layer meteorology 122, pp. 273–
292. DOI: 10.1007/s10546-006-9099-8.

Pu, Yichao and Chao Yang (2014). “Estimating urban roadside emissions with an
atmospheric dispersion model based on in-field measurements”. In: Environmental
Pollution 192, pp. 300–307. ISSN: 0269-7491. DOI: https://doi.org/10.1016/j.
envpol.2014.05.019. URL: https://www.sciencedirect.com/science/article/
pii/S0269749114002218.

Seinfeld, J and S Pandis (1998). Atmospheric Chemistry and Physics: From Air Pollution
to Climate Change, p. 1326.

Shetter, R.E. et al. (1988). “Temperature dependence of the atmospheric photolysis
rate coefficient for NO2”. In: Journal of Geophysical Research 93.D6, pp. 7113–7118.

Tominaga, Yoshihide and Ted Stathopoulos (Apr. 2011). “CFD modeling of pollution
dispersion in a street canyon: Comparison between LES and RANS”. In: Journal of
Wind Engineering and Industrial Aerodynamics 99, pp. 340–348. DOI: 10.1016/j.
jweia.2010.12.005.

Versteeg, Henk Kaarle and Weeratunge Malalasekera (1995). An introduction to com-
putational fluid dynamics - the finite volume method. Addison-Wesley-Longman, pp. I–
X, 1–257. ISBN: 978-0-582-21884-0.

Yassin MF, Ohba M. (July 2012). “Experimental simulation of air quality in street
canyon under changes of building orientation and aspect ratio”. In: J Expo Sci En-
viron Epidemiol. 22(5), pp. 502–515. DOI: 10.1038/jes.2012.59.

Yazid, Muhammad et al. (Apr. 2014). “A review on the flow structure and pollutant
dispersion in urban street canyons for urban planning strategies”. In: Simulation
90. DOI: 10.1177/0037549714528046.

Zhong, Jian, Xiao-Ming Cai, and William James Bloss (2017). “Large eddy simulation
of reactive pollutants in a deep urban street canyon: Coupling dynamics with O3-
NOx-VOC chemistry”. In: Environmental Pollution 224, pp. 171–184. ISSN: 0269-
7491. DOI: https://doi.org/10.1016/j.envpol.2017.01.076. URL: https:
//www.sciencedirect.com/science/article/pii/S0269749116312398.

Zhong, Jian, Xiaoming Cai, and William Bloss (July 2016). “Coupling dynamics and
chemistry in the air pollution modelling of street canyons: A review”. In: Environ-
mental Pollution 214, pp. 690–704. DOI: 10.1016/j.envpol.2016.04.052.

https://doi.org/10.1007/s12273-020-0720-4
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi0q-CWl5XxAhVysYsKHRAfDxsQFjAAegQIAhAD&url=http%3A%2F%2Fwww.nextfoam.co.kr%2Flib%2Fdownload.php%3Fidx%3D135228%26sid%3D235c1d3fc28364657dbb43ccfe025b25&usg=AOvVaw3HM8SNAUzUX7dRmNotaJpm
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi0q-CWl5XxAhVysYsKHRAfDxsQFjAAegQIAhAD&url=http%3A%2F%2Fwww.nextfoam.co.kr%2Flib%2Fdownload.php%3Fidx%3D135228%26sid%3D235c1d3fc28364657dbb43ccfe025b25&usg=AOvVaw3HM8SNAUzUX7dRmNotaJpm
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi0q-CWl5XxAhVysYsKHRAfDxsQFjAAegQIAhAD&url=http%3A%2F%2Fwww.nextfoam.co.kr%2Flib%2Fdownload.php%3Fidx%3D135228%26sid%3D235c1d3fc28364657dbb43ccfe025b25&usg=AOvVaw3HM8SNAUzUX7dRmNotaJpm
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi0q-CWl5XxAhVysYsKHRAfDxsQFjAAegQIAhAD&url=http%3A%2F%2Fwww.nextfoam.co.kr%2Flib%2Fdownload.php%3Fidx%3D135228%26sid%3D235c1d3fc28364657dbb43ccfe025b25&usg=AOvVaw3HM8SNAUzUX7dRmNotaJpm
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi0q-CWl5XxAhVysYsKHRAfDxsQFjAAegQIAhAD&url=http%3A%2F%2Fwww.nextfoam.co.kr%2Flib%2Fdownload.php%3Fidx%3D135228%26sid%3D235c1d3fc28364657dbb43ccfe025b25&usg=AOvVaw3HM8SNAUzUX7dRmNotaJpm
https://doi.org/10.1007/s10546-006-9099-8
https://doi.org/https://doi.org/10.1016/j.envpol.2014.05.019
https://doi.org/https://doi.org/10.1016/j.envpol.2014.05.019
https://www.sciencedirect.com/science/article/pii/S0269749114002218
https://www.sciencedirect.com/science/article/pii/S0269749114002218
https://doi.org/10.1016/j.jweia.2010.12.005
https://doi.org/10.1016/j.jweia.2010.12.005
https://doi.org/10.1038/jes.2012.59
https://doi.org/10.1177/0037549714528046
https://doi.org/https://doi.org/10.1016/j.envpol.2017.01.076
https://www.sciencedirect.com/science/article/pii/S0269749116312398
https://www.sciencedirect.com/science/article/pii/S0269749116312398
https://doi.org/10.1016/j.envpol.2016.04.052

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Previous Work
	Chemistry
	Basics of CFD
	Governing equations
	Continuity equation
	Momentum equations
	Energy equation
	Equations of state

	Transport equation
	Turbulence
	Radiation

	OpenFOAM
	rhoEqn.H
	UEqn.H
	pEqn
	EEqn
	YEqn

	Radiation models in OpenFOAM
	FvDOM
	viewFactor
	P1

	solarLoad
	updateHitFaces()
	updateDirectHitRadiation()
	updateSkyDiffusiveRadiation()
	updateReflectedRays()

	solarCalculator
	sunDirConstant
	sunDirTracking
	sunLoadConstant
	sunLoadFairWeatherConditions
	sunLoadTheoreticalMaximum

	Methodology
	Implementing the Photolytic Solver
	Simulation Setup
	Resources

	Results
	Validation
	Cyclic boundary algorithm
	J field solver
	Photolytic reaction rate
	Thermal parameter calibration

	Simulation results

	Conclusion
	Validation of cyclic J Field solarLoad library
	Simulations using different A and Ta values vs. Experimental Data
	Bibliography

